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ON CHARACTERIZATIONS OF INTEGRALITY
INVOLVING THE LYING-OVER

AND INCOMPARABLE PROPERTIES

DAVID E. DOBBS

ABSTRACT. The fact that residually algebraic pairs are
the same as INC-pairs is generalized from the context of
integral domains to that of arbitrary (commutative) rings. It
is also shown that if A ⊆ B are rings with D the integral
closure of A in B, then B is integral over A if and only if
(A, B) is an INC-pair for which the extension D ⊆ B satisfies
LO. However, a Noetherian local one-dimensional domain A
is Henselian if and only if B is integral over A whenever B
is a domain containing A such that (A, B) is an INC-pair for
which the extension A ⊆ B satisfies LO.

1. Introduction. All rings considered in this note are commutative
with identity, and all subrings are unital. Following [10, page 28] we
let LO, INC and GU denote the lying-over, incomparable and going-
up properties for ring extensions. If P is a property of (some) ring
extensions and A ⊆ B are rings, we say that (A, B) is a P-pair in case
D ⊆ E satisfies P for all rings A ⊆ D ⊆ E ⊆ B. The case of LO-pairs
was introduced in [5], studied sporadically in the literature (cf. [12]),
and recently given a new characterization in [3, Theorem 2.2]. It was
shown in [5, Corollary 3.2] that GU-pairs are the same as LO-pairs.
As for INC-pairs, they were introduced and characterized (without the
terminology) in [4, Corollary 4] and studied further, but only in the
context of extensions of (commutative integral) domains, in [1]. In
particular, [1, Theorem 2.3] established that for extensions of domains,
INC-pairs are the same as residually algebraic pairs. This domain-
theoretic formulation has persisted in the summary of [1] given in the
monograph [8], and several subsequent papers have also continued to
study INC-pairs and residually algebraic pairs only for extensions of
domains. Accordingly, our first order of business here is to generalize
[1, Theorem 2.3] by showing that, for arbitrary ring extensions, the
concepts of INC-pairs and residually algebraic pairs are equivalent.
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This is done in Proposition 2.1 by using results from [4]. We then
set off to our main goal, which is to highlight an important difference
between the behavior of LO and that of INC.

The major part of this paper is motivated by the fact that prominent
motivation for the study of INC-pairs and LO-pairs was provided by the
following Folklore Theorem: if A ⊆ B are rings, then B is integral over
A if (and only if) (A, B) is both an INC-pair and an LO-pair (cf. [4,
page 37]). It is natural to ask for sharpenings of the Folklore Theorem,
and several have been given: cf. [5, Theorem 2.1, Corollary 3.5]. The
last-cited result, a consequence of which is reprised in Proposition 2.3
below, is noteworthy as it characterizes the integrality of B over A
by the conditions that (A, B) is an LO-pair and A ⊆ B is a MINC-
extension. (As in [5], a ring extension A ⊆ B is said to satisfy MINC
if, whenever comparable prime ideals Q1 ⊆ Q2 of B are such that
Q1 ∩ A = Q2 ∩ A is a maximal ideal of A, then Q1 = Q2. Recall from
[5, Example 2.2] that the MINC property is strictly weaker than INC.)
Our main focus here concerns the question whether the roles of LO and
INC in Proposition 2.3 can be interchanged. Along these lines, there
is one relevant result for domains [1, Theorem 2.12], but its proof does
not extend to the context of arbitrary ring extensions. Nevertheless,
the result is valid in the ring-theoretic setting, and as our second order
of business, Theorem 2.2 establishes this generalization of [1, Theorem
2.12].

However, the full “interchange roles of LO and INC” analogue of
Proposition 2.3 is not valid. In fact, our main result, Theorem 2.4,
shows that if the base ring A is a one-dimensional Noetherian local
domain, then requiring such an analogue would force A to be Henselian
(in the sense of [11]). Independently of Theorem 2.4 (that is, without
reference to the theory of Henselian rings), Remark 2.5 makes the same
point, by considering a rational prime that is split in a given quadratic
algebraic number field. We recall enough classical algebraic number
theory to make Remark 2.5 essentially self-contained.

In addition to the usage mentioned above, we adopt the following
conventions. If A is a ring, then by the dimension of A, we mean
the Krull dimension of A, denoted by dim(A); and if a ∈ A, then Aa

denotes the ring of fractions AS , where S is the multiplicatively closed
set consisting of the powers of a. Any unexplained material is standard,
as in the cited texts.
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2. Results Generalizing from the domain-theoretic context of [1],
we say that a ring extension D ⊆ E is residually algebraic if for each
prime ideal Q of E, the extension of domains D/(Q ∩ D) ⊆ E/Q is
algebraic. Hence, by applying the earlier definition of P-pairs, we have
that if A ⊆ B are rings, then (A, B) is a residually algebraic pair if
D ⊆ E is a residually algebraic extension for all rings A ⊆ D ⊆ E ⊆ B.
Note that in defining a residually algebraic pair of domains, Ayache and
Jabbalh [1, page 49] restricted to the case D = A in the above notation.
The definitions are, in fact, equivalent. Our first result establishes this
fact and extends both [4, Corollary 4] and [1, Theorem 2.3].

Proposition 2.1. Let A ⊆ B be rings. Then the following
conditions are equivalent:

(1) For each u ∈ B, there is a polynomial f ∈ A[X ] such that at least
one coefficient of f is a unit of A and f(u) = 0;

(2) For each u ∈ B, the extension A ⊆ A[u] satisfies INC;

(3) For each ring E such that A ⊆ E ⊆ B, the extension A ⊆ E
satisfies INC;

(4) (A, B) is an INC-pair;

(5) For each u ∈ B, the extension A ⊆ A[u] is residually algebraic;

(6) For each ring E such that A ⊆ E ⊆ B, the extension A ⊆ E is
residually algebraic;

(7) (A, B) is a residually algebraic pair.

Proof. [4, Corollary 4] established that conditions (1), (2), (3), and
(4) are equivalent. Also, since the property in condition (1) is preserved
by passing to images under (unital) ring homomorphisms, it is easy to
see that (1) ⇒ (7). Of course, it is trivial that (7) ⇒ (6) ⇒ (5). Thus,
it suffices to prove that (5) ⇒ (2).

It is enough to show that any residually algebraic ring extension sat-
isfies INC. This, in turn, was established for domains in [1, Proposition
1.5], where it was noted that the assertion had already been published
by Fontana-Izelgue-Kabbaj [9]. The result in [9] is actually due to the
present author, who provided a proof in response to a question that
Fontana had raised (via private communication). That proof, which is
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valid for arbitrary ring extensions (indeed, for commutative unital al-
gebras), is an easy consequence of the following observation: if D ⊆ E
is an algebraic extension of domains and J is a nonzero ideal of E, then
J ∩ D �= 0. The proof is complete.

Theorem 2.2 generalizes the Folklore Theorem mentioned in the
Introduction that integral extensions can be characterized as the ring
extensions inducing both LO-pairs and INC-pairs. The nontrivial part
of Theorem 2.2, namely, that (1) ⇒ (3), was established for domains
by Ayache-Jaballah [1, Theorem 2.12].

Theorem 2.2. Let A ⊆ B be rings. Let D denote the integral
closure of A in B. Then the following conditions are equivalent:

(1) (A, B) is an INC-pair and the extension D ⊆ B satisfies LO;

(2) (A, B) is an INC-pair and the extension D ⊆ B satisfies GU;

(3) B is integral over A.

Proof. (3) ⇒ (2) since integral extensions satisfy INC and GU [10,
Theorem 44]; and (2) ⇒ (1) since GU ⇒ LO [10, Theorem 42]. It
remains to prove that (1) ⇒ (3).

Assume (1). We show that each u ∈ B is integral over A. Let
E denote the integral closure of A in A[u]. Then E = D ∩ A[u].
In particular, E ⊆ D is an integral extension and therefore satisfies
LO, by the classical Lying-over Theorem (cf. [10, Theorem 44]). By
“composing” E ⊆ D with the lying-over extension D ⊆ B, we see that
E ⊆ B satisfies LO. Since E ⊆ A[u] ⊆ B, it follows that E ⊆ A[u]
satisfies LO. Moreover, Proposition 2.1 shows that (E, A[u]) inherits
the property of being an INC-pair from (A, B). Thus, we may replace
(A, B) with (E, A[u]) (and D with E).

By the above reduction, we now have that B = A[u] is a finite type A-
algebra and A is integrally closed in B. It suffices to show that A = B.
By globalization, it is enough to prove that if P is any prime ideal of
A, then the canonical ring homomorphism AP → BP := B ⊗A AP is
an isomorphism. Since A ⊆ B satisfies LO, we can find a prime ideal
Q of B such that Q∩A = P . Note that Q is isolated in its fiber above
P since A ⊆ B satisfies INC. Therefore, by Zariski’s Main Theorem (as
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in [7, Theorem]), there exists v ∈ A \ P such that the canonical ring
homomorphism Av → Bv = B ⊗A Av is an isomorphism. Tensoring
this isomorphism (over A) with AP leads to the desired isomorphism
AP → BP , since Av ⊗A AP

∼= AP and Bv ⊗A AP
∼= BP canonically.

The proof is complete.

It may seem natural to ask if D could be replaced with A in conditions
(1) and (2) in Theorem 2.2. Additional motivation for this question
comes from the fact that its “dual”, in which the roles of INC and LO
(resp., of INC and GU) are interchanged, has an affirmative answer.
Indeed, we have the following result, which is an immediate consequence
of [5, Corollaries 3.5 and 3.2].

Proposition 2.3. Let A ⊆ B be rings. Then the following
conditions are equivalent:

(1) (A, B) is an LO-pair and the extension A ⊆ B satisfies INC;

(2) (A, B) is a GU-pair and the extension A ⊆ B satisfies INC;

(3) B is integral over A.

Despite Proposition 2.3, the question of whether D could be replaced
with A in conditions (1) and (2) in Theorem 2.2 has a negative answer
in general, even for domains. In fact, as Theorem 2.4 explains, only
very special rings A admit an affirmative answer.

Theorem 2.4. Let A be a one-dimensional quasilocal domain.
Consider the following two conditions:

(i) If B is a domain containing A such that (A, B) is an INC-pair
and the extension A ⊆ B satisfies LO, then B is integral over A;

(ii) A is Henselian.

Then:

(a) (ii) ⇒ (i).

(b) Suppose also that A is Noetherian. Then (i) ⇔ (ii).
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Proof. (a) Assume (ii). Let B be a domain containing A such that
(A, B) is an INC-pair and the extension A ⊆ B satisfies LO. By [4,
Theorem] (or Proposition 2.1), B is algebraic over A. Let D denote
the integral closure of A in B. Since A is Henselian by assumption,
it follows from [11, (30.5)] that D is quasilocal. Furthermore, by [6,
Lemma 2.2 (b)], D inherits the Henselian property from A. Now, let
M (resp., N) denote the unique maximal ideal of A (resp., D), so
that the set of prime ideals of A (resp., D) is {0, M} (resp., {0, N}).
(By integrality (cf. [10, Theorems 42, 44, 47 and 48]), N ∩ A = M
and dim(D) = dim(A) = 1.) Therefore, by considering the tower
A ⊆ D ⊆ B, for which A ⊆ B satisfies LO, we see that D ⊆ B
also satisfies LO. Moreover, by Proposition 2.1, (D, B) inherits the
property of being an INC-pair from (A, B). Thus, without loss of
generality, we may replace A with D. In other words, we may also
assume that A is integrally closed in B, and our task is to show that
A = B. This, in turn, follows from [1, Theorem 2.5, (i) ⇒ (iv)] (and,
thus, essentially from [4, Theorem], the (u, u−1) Lemma [10, Theorem
67], and an argument of Visweswaran [12]), which applies since A is
quasilocal, A is integrally closed in B and (thanks to Proposition 2.1)
(A, B) is a residually algebraic pair.

(b) By (a), we need only show that if A is Noetherian, then (i) ⇒
(ii). We prove the contrapositive. Consider, then, a Noetherian local
one-dimensional non-Henselian domain (A, M). We shall produce an
extension domain B of A such that (A, B) is an INC-pair, the extension
A ⊆ B satisfies LO and B is not integral over A.

Since A is not Henselian, [11, (30.5)] supplies an extension domain
D of A such that D is integral over A and D is not quasilocal. Pick
distinct maximal ideals Q1, Q2 of D and an element u ∈ Q1 \ Q2. By
integrality, Q1∩A = M = Q2∩A. There is no harm in replacing D with
A[u]. As D is then module-finite over A, we have [L : K] < ∞, where
L (resp., K) denotes the quotient field of D (resp., A). Therefore, by
the Krull-Akizuki Theorem (as formulated in [2, Proposition 5, page
500]), each ring between A and DQ1 is (Noetherian and) of dimension
at most 1. In view of the final comment in the proof of Proposition
2.1, algebraicity now ensures that (A, DQ1) satisfies condition (3) in
the statement of Proposition 2.1 and, thus, is an INC-pair. Moreover,
it is evident that the extension A ⊆ DQ1 satisfies LO. However, the
extension D ⊆ DQ1 does not satisfy LO, since no prime ideal of DQ1
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meets D in Q2. (The point is that A ⊆ D, being an integral extension,
satisfies INC, whence Q2 �⊆ Q1.) By the classical Lying-over Theorem,
DQ1 is not integral over D (a fact that could also be seen via [10,
Exercise 10, page 24]) and, a fortiori, is therefore not integral over A.
Thus, B := DQ1 has the asserted properties, to complete the proof.

In view of Theorem 2.4, one might well wonder, given a one-
dimensional Noetherian local non-Henselian domain A, how to pro-
duce an extension domain B so that condition (i) in Theorem 2.4 fails
to hold. Accordingly, it seems worthwhile to present a particular ex-
ample illustrating the main point of Theorem 2.4. Remark 2.5 does
so independently of Theorem 2.4, with an example that depends on
classical algebraic number theory.

Remark 2.5. It is possible to give a concrete example that exhibits
a negative answer to the question that was raised following the proof
of Theorem 2.2. In fact, we next produce an extension A ⊆ B of
domains such that (A, B) is an INC-pair, the extension A ⊆ B satisfies
LO and B is not integral over A. (The reader will observe that in
this example, A is a Noetherian local one-dimensional domain; in the
closing comment, we also verify directly that this A is not Henselian.)

The desired example is shaped strategically so that, to use the no-
tation figuring in the statement of Theorem 2.2, the extension A ⊆ D
has fibers that are not singleton sets. Its details depend on a con-
sequence of the fundamental equation of ramification theory (a nice
ring-theoretic exposition of which can be found in [14, Corollary, page
287]). In a given quadratic algebraic number field L, this consequence
classifies the (rational) prime numbers as being either split (sometimes
known as “decomposed”), inertial or ramified. These mutually exclu-
sive cases are characterized in [14, Theorem 32 (c), page 313] (cf. also
[13, Theorem 6-2-1, Corollary 6-2-3]). As noted in [14, Remark (1),
page 289], any L as above has infinitely many split prime numbers, but
our construction needs only one instance of a split prime. For simplic-
ity, we might focus on the prime 2, which, according to the above-cited
criteria, is split in the quadratic algebraic number field L = Q(

√
m),

where m is a squarefree integer, if and only if m ≡ 1 (mod 8). (Thus,
L can be taken either real or complex, with m as, for instance, 17 or
−7.)
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Suppose then that p is a prime number that is split in L = Q(
√

m),
with m as above. Let E denote the ring of algebraic integers of L, that
is, the integral closure of Z in L. Since p is split in L, the ideal P := pZ
is such that PE = Q1Q2 for some distinct prime ideals Q1, Q2 of E. In
particular, Q1 ∩ Z = P = Q2 ∩ Z. We show that (A, B) := (ZP , EQ1)
has the asserted properties.

The verification proceeds much as in the proof of Theorem 2.4 (b),
essentially since the “Henselian” assumption was used in that earlier
proof mainly to obtain distinct Qi, a situation that we have achieved
concretely here by using ramification theory. Indeed, it is evident that
the extension ZP ⊆ EQ1 satisfies LO; and Proposition 2.1 and the
Krull-Akizuki Theorem can be used as before to show that (ZP , EQ1)
is an INC-pair. Also, note via [2, Proposition 16, page 314] that the
integral closure of ZP in L is EZ\P , which differs from EQ1 = B by
having a prime ideal that meets E in Q2. In particular, B is not integral
over A, and the proof is complete.

In closing, we note that Remark 2.5 is compatible with Theorem 2.4,
since A := Z2Z is a one-dimensional Noetherian local non-Henselian
domain. All but possibly the non-Henselian assertion is clear. To
verify this, we need only apply the definition of a Henselian ring, as
given in [11, pages 103–104]. Indeed, note that the residue field of A is
canonically isomorphic to Z/2Z, that (X +1, X, 2) = Z2Z[X ], and that
the factorization X2+X+2 = (X+1)X in (Z/2Z)[X ] does not lift to a
factorization via monic polynomials in Z2Z[X ]. The verification comes
down to the fact that neither X2 + X + 2 nor 1 is congruent to X + 1
(or to X) modulo 2Z2Z[X ]. Thus, as is often the case in verifying ring-
theoretic assertions in number-theoretic contexts, the assertion follows
from the fact that 1

2 /∈ Z.
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