
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 1, Number 1, Spring 2009

CELLULAR RESOLUTIONS OF
COHEN-MACAULAY MONOMIAL IDEALS

GUNNAR FLØYSTAD

ABSTRACT. We investigate monomial labelings on cell
complexes, giving a minimal cellular resolution of the ideal
generated by these monomials, and such that the associated
quotient ring is Cohen-Macaulay. We introduce a notion
of such a labeling being maximal. There is only a finite
number of maximal such labelings for each cell complex, and
we classify these for trees, subdivisions of polygons, and some
classes of selfdual polytopes.

1. Introduction. In this paper we study cellular resolutions of
monomial ideals which have a Cohen-Macaulay quotient ring. Cellular
resolutions of monomial ideals, introduced in [2] and [3], is a very
natural technique for constructing resolutions of monomial ideals, and
appealing in its blending of topological constructions, combinatorics
and algebraic ideas. Much activity has centered around it in the last
decade, and good introductions and surveys may be found in [8] and
[11]. Usually one starts with a monomial ideal and finds a suitable
labeled cell complex giving a (preferably minimal) resolution of the
monomial ideal. It was hoped that a minimal resolution of a monomial
ideal was always cellular, but this was shown recently not to be so, [10].

Here we turn this around and start with the cell complex, and
ask what monomial labellings are such that this cell complex gives
a minimal cellular resolution of the ideal formed by the monomials in
the labeling. To limit the task we assume that the monomial labeling
is such that the monomial quotient ring is Cohen-Macaulay, and the
cell complex gives a minimal cellular resolution of it. Such a labeling
will be called a Cohen-Macaulay (CM) monomial labelling.

For a given cell complex, we define a notion of maximal CM mono-
mial labeling. These are essentially labellings by monomials xai in a
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polynomial ring k[x1, · · · , xn] such that any CM monomial labeling of
the cell complex by monomials ybi in k[y1, · · · , ym] may be obtained
by a multigraded homomorphism k[x1, · · · , xn] → k[y1, · · · , ym] send-
ing the monomial xai to ybi . For any cell complex there turns out to
be a finite number of maximal CM monomial labellings, and we are in
particular concerned with classifying these labellings.

First we consider the case where the cell complex is one-dimensional,
it must then be a tree. We show that any CM monomial quotient ring
of codimension two has a cellular resolution given by a tree. Then we
show that for a given tree there is a unique maximal CM monomial
labeling up to isomorphism.

Then we consider the case where the cell complex is two-dimensional.
First we look at the case of a polygon. If it is an n-gon with n even,
there are no CM monomial labellings, and if n is odd there is a unique
CM monomial labeling consisting of monomials of degree (n − 1)/2
in n variables. (This is known but we do not know of a specific
reference.) We then proceed to consider subdivisions of polygons. By
the techniques we use this is quite hard and we only do this in the
case of a polygon with a single chord. We show that there are then
two maximal CM monomial labellings. The description of them splits
into the cases of whether we have an n-gon, where n is even or odd.
In all these cases the monomials are in n + 1 variables. This makes
it reasonable to conjecture that in a subdivision of an n-gon with r
chords, any maximal CM monomial labeling consists of monomials in
n+ r variables.

An interesting example is the subdivision of the hexagon.
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A CM monomial labelling is given by Figure 0.1. One may polarise this
and get a CM monomial labelling in six variables, Figure 0.2. However
this is not maximal. A maximal monomial labelling is given by Figure
3.4 in Subsection 3.2, and consists of monomials in eight variables.

In the end we consider CM monomial labellings of polytopes of
dimension three and larger. We classify the maximal CM monomial
labelling on pyramids over self-dual polytopes X , provided we know
the maximal CM labellings of X . We also consider the elongated
pyramid over X which is a union of X × [0, 1] and the pyramid over
X glued together at X × {1}. Given a maximal CM labelling of X ,
we construct such a labelling over the elongated pyramid. We also
give several examples of CM labellings of three-dimensional self-dual
polytopes, which give cellular resolutions of Gorenstein Stanley-Reisner
rings of codimension four.

The organisation of the paper is as follows. In Section 1 we define the
notion of a maximal CM monomial labelling. We show that there is a
finite number of such for any cell complex, and we give a topological
characterisation of such labellings. In Section 2, 3, and 4 we consider
maximal CM monomial labellings of cell complexes of dimension 1,
2, and 3 and higher, respectively. In Section 2 we consider the case of
trees, and show that there is a unique maximal CM monomial labelling,
up to isomorphism. In Section 3 we consider the case of subdivisions of
polygons, and in Section 4 we give maximal CM monomial labellings of
self-dual polytopes, as well as examples of monomial labellings of three-
dimensional self-dual polytopes giving cellular resolutions of Gorenstein
Stanley-Reisner rings of codimension four.

1. Maximal Cohen-Macaulay monomial labellings. Let
k[x1, . . . , xr] be a polynomial ring, which we may identify with the
semi-group ring k[Nr]. Given an integer n. We shall consider ordered
sets of monomials (xa1 ,xa2 , . . . ,xan) where none divide any other, i.e.
they form a set of minimal generators for an ideal.

A semi-group homomorphism Nr φ−→Ns maps this ordered set of
monomials to another ordered set (yb1 ,yb2 , . . . ,ybn) given by φ(ai) =
bi. In this way we get a category Mon(n) whose objects are pairs
(Nr,a) where a is an n-tuple of elements of Nr and morphisms are
given by semi-group homomorphisms as above, mapping the n-tuples
to each other.
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Now consider the full subcategory CM(n, c) of Mon(n) consisting of
those ordered sets of monomials generating an ideal I such that the
quotient ring k[x1, . . . , xr]/I is a Cohen-Macaulay ring of codimension
c.

Example 1.1 Monomial ideals which are not square free may be
polarised. For instance (a2, ab, b2) is in CM(3, 2) and polarises to
(a1a2, a1b1, b1b2) also in CM(3, 2) (with a1 − a2, b1 − b2 as a regular
sequence in the quotient ring). This leads us to think of non square
free monomial ideals as somewhat compressed monomial ideals. Alter-
natively polarisation is a “loosening up” of the non square free mono-
mial ideal. However, also square free monomial ideals can be “loosened
up”. For instance (ca, ab, bc) in CM(3, 2) may be “loosened up” to
(c1a, ab, bc2) isomorphic to the polarisation above (here c1 − c2 is a
regular element in the quotient ring). A central theme of this paper is
to investigate the most “free” or “loosened up” monomial ideals. We
term these maximal monomial ideals. Here is the formal definition.

Definition 1.2. An object (Nr, a) in CM(n, c) is maximal if whenever
there is a morphism φ : (Ns,b) → (Nr, a), the map Ns → Nr is a
surjection and there is a splitting ψ : Nr → Ns, i.e. φ◦ψ is the identity
on Nr.

Example 1.3. The pair (Nn, (x1, . . . , xn)) is maximal in CM(n, n)
and is, up to isomorphism, i.e. permutation of variables, the only
such object. For, instance, the pair (N3, (x1, x2x3)) is not maximal in
CM(2, 2) because there is a morphism φ to it from (N2, (x1, x2)) such
that e1 �→ e1, e2 �→ e2 + e3. Note that there is also a morphism from
(N3, (x1, x2x3)) to (N2, (x1, x2)) sending e1 �→ e1, e2 �→ e2, and e3 �→ 0.
The morphism φ is a splitting of it, consistent with (N2, (x1, x2)) being
maximal.

Remark 1.4. Another paper that considers maps of monomial gener-
ators is [7]. There one studies the LCM lattice of the monomials and
considers a map φ between two such lattices which induces an isomor-
phism on the atoms i.e. the monomial generators. Note that this is a
somewhat different situation from ours since in our case, the map on
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monomials is induced from a map of semigroup rings. If the map φ they
consider preserves joins, they show that if F is a free resolution of the
ideal generated by the first set of monomials, there is a construction of
a complex φ(F ) which is a free resolution of the of the ideal generated
by the second set of monomials. If φ is an isomorphism of lattices, then
F is a minimal resolution iff φ(F ) is a minimal resolution.

Lemma 1.5. Let (Nr,a) and (Ns,b) be two maximal elements in
CM(n, c). Then they are either isomorphic or there are no morphisms
between them.

Proof. If (Ns,b) → (Nr,a) is a morphism, then due to the maximality
of (Nr,a), there is a splitting (Nr, a) → (Ns,b), so s ≥ r. But similarly
since (Ns,b) is maximal, we must have s ≤ r. So s = r and the
semigroup homomorphism Nr → Ns is an isomorphism.

Proposition 1.6. In CM(n, c) there is a finite set of maximal
objects, each of which consists of square free monomials. To any object
(Nr,a) in CM(n, c) there is a morphism from some maximal object to
this object, i.e. there is a maximal object (Ns,b) and a semi-group
homomorphism Ns → Nr taking b to a.

Proof. If the monomials are not square free, we can polarise the
monomials. So we get a morphism (Ns,b) → (Nr, a), where the b’s
are 0, 1-vectors. Clearly there cannot be any splitting φ in the reverse
direction if ai is not square free, since then φ(ai) would not be either.
Thus all maximal objects must be square free.

Now given an ordered set of square-free monomials (m1, . . . ,mn) in
k[x1, . . . , xr]. To each variable xp we associate the subset Vp of [n]
consisting of those positions i such that xp divides mi. This gives us a
multiset of subsets of [n], and this multiset determines the isomorphism
class in CM(n, c) of the ordered set of monomials. If Vp = Vq for some
p < q, we get a morphism from some (Nr−1,b) to (Nr, a) by sending ei

to ei for i �= p, q and sending ep to ep + eq. But then (Nr, a) cannot be
maximal (there cannot be a splitting due to the ranks of semigroups).
Iterating this process we can in the end assume that we to our monomial
labelling have associated a family of distinct subsets of [n]. A maximal



62 G. FLØYSTAD

object must be of this kind. Since there is only a finite number of
families of subsets of [n], there is only a finite number of maximal
objects.

If m1, . . . ,mn are square free monomials, we may to each variable
xp associate the set Vp of all i in [n] such that xp divides mi. If the
monomials give a maximal object, we know from the proof above that
the Vp are all distinct, thus forming a family of subsets of [n]. We let
CM∗(n, c) denote the full subcategory of CM(n, c) consisting of (Nr, a)
such that the monomials xai are square free and the subsets Vp ⊆ [n]
associated to the variables are all distinct. Note that this family of
subsets determines the isomorphism class of the object (Nr, a). Also if
(Nr,a) and (Ns,b) are objects in CM∗(n, c) with associated families F
and G of subsets of [n], then there is a morphism from the first to the
latter iff every element of G is a disjoint union of elements of F . This
lead us to on the families of subsets of [n] to consider the refinement
partial order given by F 	 G iff F consists of refinements of elements
of G together with additional subsets of [n]. (A refinement of a set S
are subsets of it such that S is a disjoint union of them.)

If F is a family of subsets of [n] we let its reduction F red be the
subfamily of F consisting of those elements (which are subsets of [n])
which are not disjoint unions of other elements of F .

Proposition 1.7. a. If F corresponds to an object in CM∗(n, c),
then F red corresponds to an object in this category.

b. An object in CM∗(n, c) is maximal iff the associated family F
is reduced and is maximal among reduced associated families for the
refinement order.

Proof. a. Let F correspond to (Nr, a). The elements of F are indexed
by basis elements ei of Nr. Let F\F red consist of the sets St+1, . . . Sr

corresponding to et+1, . . . , er, so Nr = Nt
⊕⊕r

i=t+1Nei. Then F red

corresponds to the monomials bi we get as the images of ai by the pro-
jection Nr → Nt. Alternatively the ring k[x1, . . . , xt]/(xb1 , . . . ,xbr ) is
obtained from k[x1, . . . , xr]/(xa1 , . . . ,xar ) by dividing out by xi − 1
for i = t + 1, . . . , r. Now the codimension of the latter ring is the
minimal number of sets in F covering [n]. Similarly the codimension of
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the former ring is the minimal number of sets in F red covering [n]. But
the codimension of the former ring is greater or equal to that of the
latter ring since F red ⊆ F . Since the latter ring is Cohen-Macaulay,
their codimensions must in fact be equal, and by [5, Prop. 18.13], the
first is also Cohen-Macaulay. Thus F red corresponds to an object in
CM∗(n, c).

b. Note that we have a morphism (Nt,b) → (Nr, a) since each
element of F is a disjoint union of elements of F red. Thus if F is
maximal it must be equal to F red. Clearly then (Nr, a) is maximal iff
the associated family F is maximal among reduced associated families
for the refinement order.

Now we shall consider some subcategories of CM(n, c). First let X
be a regular cell complex (see [4] for definition) of dimension d = c− 1,
where the vertices are labeled by elements of [n] = {1, 2, . . . , n},
i.e. they are ordered. Let CM(X) be the subcategory of CM(n, c)
consisting of all objects such that when the vertices of X are labeled
with the monomials in this object, the cellular complex associated to
this monomial labeling gives a minimal free resolution of the ideal
generated by these monomials. Such a labeling will be called a Cohen-
Macaulay (CM) labeling of X .

Proposition 1.8. In CM(X) there is a finite set of maximal objects.
These objects lie in the subcategory CM∗(X), which is the intersection
of CM(X) and CM∗(n, c).

Proof. This goes completely as the proof of Proposition 1.6

Remark 1.9. Another variant is to fix an object A = (Nr, a) in
CM(n, c) and define CM(A) to be all objects B in CM(n, c) which
has a map B → A. In [6] we consider the case when A consists of all
square free monomials of degree d in m variables. This is an object of
CM(

(
m
d

)
,m−d+1). Conjecture 1, in Section 4 in [6] may be formulated

as saying that every maximal object over A consist of monomials in
dm − 2

(
d
2

)
variables or less. We showed that this number of variables

may be attained. The ideas implicit in this conjecture was a motivating
factor for this paper. Conjeture 3.16 in the present paper has a similar
flavor.
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To an isomorphism classes of objects in CM∗(X) there is associated
a family F of subsets of [n] which determines this isomorphism class.
In order for a family of subsets of [n] to correspond to an object of
CM∗(X) some conditions must be fulfilled.

Proposition 1.10. Let dimX = d. A family of subsets F of [n]
corresponds to an object in CM∗(X) iff the following conditions hold.

1. No d of the subsets in F cover [n].

2. Let W be a union of subsets of F . Then the restriction of X to
the complement of W is acyclic.

3. For every pair F � G of (vertices of ) faces of X, there is an S in
F such that S ∩ F is empty, but S ∩G is nonempty.

Remark 1.11. Letting F be the empty set and G consist of a single
vertex v in condition 3, we see that the elements of F cover [n].

Remark 1.12. In brief condition 2. shows that X gives a cellular
resolution of the ideal, condition 3. shows the minimality of this
resolution, and condition 1. (together with the fact that the elements
of F cover [n]) shows the ideal has codimension ≥ dimX + 1. Thus
condition 1. and 2. gives that the monomial quotient ring is Cohen-
Macaulay.

Proof. We first show that condition 2. holds if and only if X gives
a cellular resolution of the ideal associated to the monomial labelling.
The latter is equivalent to the subcomplexX≤b, induced on the vertices
corresponding to monomials xa with a ≤ b, being acyclic for every b.

Suppose now condition 2. holds. Then X≤b is X restricted to the set
U of vertices i such that mi divides xb. If there is a zero in position
p in b, then clearly Vp is disjoint from U . So all such Vp are subsets
of the complement W = U . But the union of these must be all of W ,
since if q is in W then mq does not divide xb and so there must be
some variable xp in mq not in xb, and so q is in Vp. Thus X≤b is X
restricted to the complement of a union of Vp’s, and so is acyclic.

Now suppose X≤b is always acyclic. If W is a union of Vp’s, let
b be the 0, 1-vector with 0 in positions p. Then X restricted to the
complement of W is X≤b, and so acyclic.
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Now consider condition 1. That the monomials in the labelling
generate an ideal I of codimension ≥ dimX + 1 is equivalent to there
being no dimX variables whose associated vertex sets cover the vertices
of X .

Condition 3. gives the condition of minimality of the cellular reso-
lution. In fact, minimality is equivalent to the fact that for each pair
F � G the monomial label xb associated to G is strictly larger than
the monomial labelling xa associated to F . Since we are considering
square free monomials, some variable xp must occur in xb and not in
xa. Hence Vp ∩G is nonempty while Vp ∩ F is empty.

An extra condition that must be fulfilled if the family F corresponds
to a maximal object is the following.

Lemma 1.13. If a family of subsets F of [n] corresponds to a
maximal object in CM∗(X), then for every S in F , the restriction of
X to S is connected.

Proof. SupposeX restricted to S is not connected, and let S be S1∪S2

such that X|S is the disjoint union of XS1 and XS2 . We want to show
that F ′ = F ∪{S1, S2} fulfils the criteria of Proposition 1.10. But then
F ′red would give us a larger family of subsets for the refinement order,
contradicting the fact that F corresponds to a maximal object.

The criteria 1. and 3. hold for F ′ given that they hold for F . We
must show that 2. holds. Let G be the set of complements of sets in
F , and let T be the intersection of elements in a subfamily of G. Let
T1 and T2 be the complements S1 and S2 respectively. We know that
X restricted to T and to T ∩ T1 ∩ T2 are acyclic. We must show that
X restricted to T ∩ T1 and to T ∩ T2 is acyclic. This follows from the
following.

Claim 1. Suppose Y1 and Y2 are open subsets of Y such that
Y = Y1 ∪ Y2 and Y1 ∩ Y2 are acyclic. Then Y1 and Y2 are acyclic.

This claim follows form the Mayer-Vietoris sequence.

We also have the following property of a maximal family.
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Proposition 1.14. Let F be a maximal family in CM∗(X). Let
t ∈ T ∈ F . Then there exists S1, . . . , Sdim X in F such that

1. T ∪ ∪dim X
i=1 Si covers X,

2. t is not in any Si.

Proof. By Proposition 1.10.3 there are S1, . . . , Sr in F whose union
contains all the neighbour vertices of t, but not t itself.

Note that since the complement of S1 ∪ . . . ∪ Sr must be connected,
this complement is simply {t} and so S1, . . . , Sr cover X\{t}.

Let G be the family consisting of the Si and T . Then X restricted
to every complement of a union of elements of G is acyclic. Hence
the associated monomial labeling of X gives a cellular resolution of
the associated ideal. By the Auslander-Buchsbaum theorem, the cor-
responding quotient ring then has codimension ≤ dimX+1. Therefore
one must be able to cover X with dimX + 1 subsets in the family G,
and this cover must contain T since only T contains t ∈ V .

We let CM†(X) be the subcategory of CM∗(X) such that the as-
sociated family F also fulfils the condition of Lemma 1.13. Then all
maximal monomial labelings of X lie in this subcategory.

2. Cellular resolutions of projective dimension 2. Let an
ordered set of monomials generate an ideal I such that S/I is Cohen-
Macaulay of codimension two. A minimal cellular resolution of S/I
must then be an acyclic graph, a tree. We first show that such a
cellular resolution exists, describing in principle all such graphs.

2.1 Existence of cellular resolution. Let m1, . . . ,mn be the mono-
mials, and let K be the complete graph whose vertices are [n]. Label
vertex i with mi and the edge {i, j} with lcm(mi,mj). For d ∈ N,
let K≤d be the subgraph of K, consisting of all vertices and edges la-
beled with a monomial of total degree ≤ d. Let {Fi} be a sequence of
subgraphs of K such that the following holds.

i. Fi ⊆ Fj for i ≤ j,

ii. Fi is a spanning forest for K≤i.
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As soon as K≤d contains all vertices and is connected, Fi will be Fd

for i ≥ d and Fd is a spanning tree T for K.

Proposition 2.1. Let m1, . . . ,mn be generators of I such that S/I
is Cohen-Macaulay of codimension two.

a. The labelled tree T constructed above gives a minimal cellular
resolution for I.

b. If a tree T labelled by the monomial m1, . . . ,mn gives a minimal
cellular resolution of S/I, then T may be obtained by the construction
above.

Proof. a. Let

⊕n
i=1Sei

d−→S → S/I

be the start of the minimal resolution and let K be the first syzygy
module, the kernel of d.

Since the Taylor complex, the cellular complex associated to the n−1-
simplex labelled by m1, . . . ,mn, gives a resolution of S/I, the first
syzygy module will be generated by

σi,j =
lcm(mi,mj)

mj
ei − lcm(mi,mj)

mi
ej.

Each such syzygy corresponds to en edge in the complete graph K.

Let e be the least integer for which K≤e contains an edge. The edges
in Fe give an injective map

⊕{i,j}∈Fe
Sei,j → K

It is injective because Fe does not have homology in (homological)
degree 1. Also the syzygies corresponding to the edges in Fe generate
K≤e. To see this let σi,j be a syzygy, associated to an edge {i, j} not
in Fe, then Fe ∪ {i, j} will contain a cycle i1 → i2 → · · · → ir → i1.
Considering S(−e)r → K defined by these edges and letting M be the
least common multiple of the mij , we get a minimal syzygy

∑

j

M/lcm(mij ,mij+1)σij ,ij+1 = 0
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where the coefficient of σi,j is nonzero. Since I has projective dimension
one, some coefficient must be constant here, and since all σij ,ij+1 have
degree e, all coefficients must be constant. Hence σi,j is a linear
combination of syzygies corresponding to edges in Fe.

Now we get further a map ⊕{i,j}∈Fe+1Sei,j → K. Again this map is
injective. We may also argue as above that it is surjective on K≤e+1: If
{i, j} is an edge in K≤e+1 not in Fe+1 or K≤e, then adjoining it to Fe+1

we get again a cycle and a syzygy. This must have degree e + 1 and
since σi,j has degree e+1 the coefficient of σi,j must be a constant and
so it is a linear combination of the other syzygies. In this way we may
continue and get that ⊕{i,j}∈TSei,j → K is injective and surjective and
so an isomorphism.

b. Let T be a tree labeled by m1, . . . ,mn giving a minimal cellular
resolution of S/I. We will show that T≤i is a spanning forest for K≤i.

All edges of T≤i are contained in K≤i. The uniqueness of graded
Betti numbers in a minimal free resolution, implies that the cardinality
of T≤i equals the cardinality of F≤i in the resolution constructed in a.
Hence T≤i must be a spanning forest for K≤i.

Example 2.2. The ideal (xn, xn−1y, . . . , yn) is of codimension two
with Cohen-Macaulay quotient ring. There is a unique tree giving a
cellular resolution of this ideal, namely the linear graph on n+1 vertices.

On the opposite side of the spectrum one has the following.

Example 2.3. Let x1, . . . , xn be the variables. For i = 1, . . . , n let
mi be the monomial Πp�=ixp. These generate an ideal of codimension
two whose quotient ring is Cohen-Macaulay. By the construction in
the theorem, any tree T with vertices [n], gives a cellular resolution of
the ideal I.

2.2. Maximal CM monomial labelings. Now given a tree T with
vertex set [n], we shall show that, up to isomorphism, there is a unique
maximal monomial labelling in CM(T ). Let us describe this.
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Maximal monomial labelling of T. Orientate T , i.e. give each edge
an orientation. Each edge s e−→ t disconnects the tree into two parts.
For each edge e associate a variable xe to all nodes in the connected
component of s and ye to the connected component of t. To each node
v in T there will now be a map {edges in T } v−→{x, y}. Here v(e) = x
if xe is associated to v and correspondingly for y. We label the vertex
v with the product of all the variables associated to v, i.e. with

(1) Mv = Π
v(e)=x

xe × Π
v(e)=y

ye

Theorem 2.4. Let T be a tree on the vertices [n]. In CM(T ) there is,
up to isomorphism, a unique maximal object M given by the monomial
labeling (1). Moreover, for every monomial labeling L in CM(T ) there
is a unique morphism M → L to this object from the maximal object.

Proof. Given an element in CM(T ) where the monomials mi are
in the polynomial ring k[z1, . . . , zr]. If s e−→t is an edge, let the
reduced expression for mt/ms be zae/zbe . The sought for morphism
of semigroup rings from k[{xe}e∈E , {ye}e∈E] to k[z1, . . . , zr] must send
Mt/Ms = ye/xe to mt/ms. Since the images of ye and xe must be
relatively prime (otherwise all the monomials would have a common
factor), the only possibility is sending ye to zae and xe to zbe . Hence
the uniqueness of the morphism is clear. We shall now show that this
morphism actually does send the monomial Mv in (1) to mv.

Consider a variable, say z1. To each vertex v we associate the
exponent of z1 in mv. This set of z1-exponents must be convex in
the sense that given a path (in the non-oriented graph) s1 → s2 →
. . . → sn−1 → sn, the z1-exponents on this path from s1 to sn must
first be nonincreasing and then nondecreasing. To see this, suppose to
the contrary that there were i < j < k where the exponents fulfilled
ni < nj > nk. Then letting M be lcm(mi,mk), the subgraph T≤M

would not be connected, contradicting the fact that T gives a cellular
resolution.

Now orientate the graph so that all arrows point towards v. There
will be a vertex u such that z1 does not occur in mu (otherwise the
ideal would not have codimension two). So let

u = u0
e1−→u1

e2−→ . . .
er−→ur = v
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be the path from u to v. Its z1 exponents must be non-decreasing. Now
Mv = Πr

i=1yei × Πe�=eiye and the z1 exponent of the image of the first
factor is precisely the exponent of z1 in mv. We must then show that
the z1 exponent of the image of the second factor is zero, i.e. z1 does
not occur in zae for any e �= ei.

If s e−→t is any other edge in the tree, then deleting e, note that t, v
and u will be in the same connected component. So the path from s
to u must pass through t. But then the z1 exponents along this path
must be non-increasing, and then zae does not contain z1.

In view of the uniqueness of the morphism, it is immediate that the
labelling (1) is maximal.

Remark 2.5 In [9], J.Phan studies the LCM lattice of a monomial
ideal, or rather he starts from an atomic lattice and studies monomial
ideals with this as their LCM lattice. He shows that for every such
lattice there is a distinguished square free monomial ideal, which he
calls a minimal monomial ideal, which has this lattice as the LCM
lattice.

If one considers the maximal monomial labeling we have on a tree, this
is in fact a minimal monomial ideal on the atomic lattice it generates.
Note however that for a given tree T , the objects in CM(T ) will give
many different LCM lattices. In particular Example 2.3 shows that
on any tree with n vertices there is a monomial labeling whose atomic
lattice is the lattice L̂ where L̂\{0, 1} is the antichain of n elements. In
fact this monomial labeling is also the minimal monomial ideal for this
lattice.

An interesting question is : Given two ideals I and J in CM(n, 2)
which have the same LCM lattice, do they have the same set of
trees which give a cellular resolution? If so it would induce a nice
correspondence between families of trees and families of atomic lattices.

3. Subdivisions of polygons. Consider a polygon whose vertices
are labeled by 0, 1, . . . , n − 1 and let X be a subdivision without
introducing new vertices. I.e. we get the subdivisions by introducing
chords in the polygon. We shall use the notation [i, j], called a string to
denote the vertices obtained by starting at i and increasing by one each
step modulo n until we reach j. The length of a string is the number
of vertices in it. We denote by V the set of vertices {0, 1, . . . , n− 1}.
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We want to describe the maximal monomial labelings in CM(X). By
Lemma 1.13 we may assume that these are in CM†(X). To a monomial
labeling on X , there is associated a family F of subsets of the vertices
V which determines the monomial labeling up to isomorphism (i.e.
permutation of variables).

Lemma 3.1. Let F be the family of subsets of V associated to an
object in CM†(X). Then each element in F is a string [i, j].

Proof. Let s be an element of F and suppose s is not a string. Then
s is a disjoint union of two or more strings, none of which are adjacent.
If there is a chord between any of these strings, then X restricted to
the complement of s is not connected, contradicting Proposition 1.10.
Hence there are no chords between strings in s, and so X restricted to
s is not connected, contradicting Lemma 1.13.

Lemma 3.2. For every vertex i there is a string in F ending at i
and a string in F starting at i.

Proof. Since the monomials constitute a minimal generating set for
the ideal, there must be some variable in mi which is not in mi−1.
But then to this variable the associated vertex subset must be a string
starting at i. Similarly we get a string ending at i by considering mi+1.

Lemma 3.3 Let i be a vertex which is not the end of a chord. Then
in F there is a string ending at i−1 and a string starting at i+1 whose
union cover V \{i}.

Proof. By Lemma 3.2 there are strings ending at i− 1 and starting
at i+ 1. Letting W be their union, we know that X restricted to the
complement of W is acyclic. But i is an isolated vertex here, and so
this must be the only vertex in the complement of W .

Lemma 3.4. Given a string s in F starting at i, which is not the
endpoint of a chord. Then there is a string in F starting at i + 1 of
length greater or equal to that of s. Similarly if s ends at j, not the
endpoint of a chord, there is a string ending at j−1 of greater or equal
length than that of s.
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Proof. There is a string t starting at i + 1 which together with a
string ending at i− 1 covers V \{i}. It t was contained in s, then s and
the string ending in i − 1 would cover V . Impossible. Hence t is not
contained in s, and its length must be at least that of s.

Now we are ready to do the case when X is a polygon, i.e. it contains
no chords.

Theorem 3.5. Let X be a polygon and F the family of strings
associated to an object in CM†(X).

a. If the number of vertices is odd, n = 2r+ 1, then F consists of all
strings of length r. Hence, up to isomorphism, there is only one object
in CM†(X) and this is the only maximal monomial labeling of X (up
to isomorphism).

b. If the number of vertices is even, there are no monomial labelings
of X giving ideals of codimension three with Cohen-Macaulay quotient
ring, i.e. CM(X) is empty.

Remark 3.6. This result is known but we don’t know of a specific
reference. It is of course closely related to the Buchsbaum-Eisenbud
structure theorem in [1, Thm. 2.1].

Proof. Let L be the length of the longest string in F . By Lemma
3.4 all strings of this length must be in F . Since two strings cannot
cover the vertices, we must have 2L < n. If n is even, equal to 2r,
then L < r. But then there will be two disjoint nonadjacent strings
of length L, and so X restricted to the complement of the union of
these is disconnected. Hence n cannot be even. If n is odd, equal to
2r+1, a similar argument gives that L cannot be less or equal to r−1.
Hence we must have L = r. Again an argument as above gives that
there can not be in addition any string of length less or equal to r− 1.
And so all strings have length r. It is easy to check that the family of
all strings of length r fulfils the criteria of Proposition 1.10, and so it
corresponds to an object in CM†(X). Being the only object of CM†(X)
(up to isomorphism), it must be a maximal monomial labeling of X .
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Now in the rest of this section, we shall consider the case of a polygon
with one chord. In this case we shall show that there are exactly two
maximal objects in CM(X). They must be in CM†(X) and so the
families F1 and F2 of subsets of vertices will consists of strings. Let us
describe these families of strings explicitly.

Maximal monomial labelings of X. Let the chord be between 0
and a where 2a ≤ n. Suppose the number of vertices n is odd, equal to
2r + 1. The first family F1 is the family in Theorem 3.5 a. extended
by adding one string. It consists of :

a. All strings of length r.

b. The string [1, a− 1].

The family F2 is given by :

a. All strings of length r + 1 containing [0, a].

b. All strings of length r containing i) 0 but not a − 1, or ii) a but
not 1.

c. All strings of length r − 1 disjoint from [0, a].

d. The string [1, a− 1].

In both cases the families consists of n+1 subsets of vertices, and hence
the maximal labellings of X are monomials in n+ 1 variables.

Suppose the number of vertices n is even, equal to 2r. The family F1

is given by :

a. All strings of length r containing 0.

b. All strings of length r − 1 not containing 0 and 1.

c. The string [1, a− 1].

The family F2 is the mirror image of the family F1 :

a. All strings of length r containing a.

b. All strings of length r − 1 not containing a and a− 1.

c. The string [1, a− 1].

Again in both cases the families consists of n+1 subsets of vertices, and
hence the maximal monomial labellings of X are monomials in n + 1
variables.
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Theorem 3.7. Let X be a polygon with a chord. Then there are two
maximal objects in CM(X), and their associated families of subsets of
vertices are given by F1 and F2 above.

We shall proceed to prove this theorem through a series of lemmata.
In the lemmata below we let F be the family of subsets of vertices
arising from an object of CM†(X).

Lemma 3.8. There is no string in F containing the complement of
(0, a).

Proof. Let i be in the complement of [0, a]. By Lemma 3.3 there is
a string ending in i− 1 and a string starting in i+ 1, together covering
V \{i}. At least one of them has length ≥ (n−1)/2, say the one ending
in i− 1. We can then by Lemma 3.4 push it backwards till it ends in
a. Then it must start in 1 or earlier. If there were a string containing
the complement of (0, a), these two strings would cover V . Impossible.

3.1. The case of n even. We now assume that the polygon has an
even number of vertices 2r.

Lemma 3.9. Let i be in (0, a). Let s1 be a string ending in i−1 and
s2 a string starting in i+ 1. Then s1 has length r and s2 length r − 1,
or conversely.

Proof. Suppose s1 has length ≥ r + 1. By Lemma 3.4 we can then
step by step push it back to a string ending at 0 which also has length
≥ r + 1. It does not begin in [0, a] by Lemma 3.8, so we can also
push it forward to a string starting at 0 and having length ≥ r + 1.
Together with the one ending in 0, these two would cover the vertices
of X . Impossible.

Thus s1 has length ≤ r, and similarly s2 has length ≤ r. If s2 has
length ≤ r− 2, the complement of s1 ∪ s2 consists of {i} together with
another disjoint component. Impossible. Thus the strings have length
r or r − 1. If both had length r − 1, the complement of s1 ∪ s2 will
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again consist of at least two components. If both had length r, we could
push the end of s2 one step back to get s′2 such that s1 ∪ s′2 covers V .
Impossible. Thus the lengths are r and r − 1.

Thus either there is a string of length r containing 0 but not a, or
there is a string of length r containing a but not 0. These cases turn out
to be mutually exclusive and separates the treatment into two cases.
These are symmetric and we shall consider the first case.

Lemma 3.10. Suppose a string in F containing 0 but not a, has
length r.

a. Then all strings in F containing 0 have length r, and all strings
of length r containing 0 are in F .

b. All strings in F which do not contain 0 or 1 have length r − 1,
and all strings of length r − 1 not containing 0 and 1 are in F .

Proof. Let s be the string of length r in F containing 0 but not a.
We can push it successively forward until we get a string starting in 0.
We can also start with s and push it successively backwards to a string
ending in 0. If the length jumps up at some stage, these two strings
will cover V . Impossible. Thus all these strings have length r.

Now let s be a string starting in 2. By Lemma 3.9, s has length r−1.
We can successively push it forward, one step a time, until it starts in
a. If it now had length ≥ r, then since there is a string of length r
ending in a − 1, these would cover X . Impossible. Thus all of these
strings have length r − 1.

Let now s be a string in F ending in −1. We can successively push it
backwards, getting s′ ending in −r. Since there is a string [−r+1, 0], s′

must start at 2 or later, in order to avoid two strings covering V . Thus
all such strings have length ≤ r−1. Now there is a string t starting at 2
of length r−1. If s (ending in −1) had length ≤ r−2, the complement
of s ∪ t would be disconnected. Thus s has length r − 1, and we get
part b.

Lemma 3.11. In the situation of Lemma 3.10, the family F has one
string starting in 1 and this is the string [1, a− 1].
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Proof. Let s begin in 1. Then s has length ≤ r − 1 since else we
could push it forward one step and get a string of length r starting in
2. Impossible. If s ends in a point ≥ a, let t end in −1, note that t
has length r − 1. Then s ∪ t has a complement which is disconnected.
Hence s ends in a point in (0, a), According to Lemma 3.9 its endpoint
must be a− 1.

Proof of Theorem 3.7 [ Even number of vertices ] The Lemmata above
show that a maximal family in CM†(X) must be either F1 or F2. It is
an easy matter to verify that they also satisfy the criteria of Proposition
1.10.

3.2. The case of n odd. We now assume that the number of vertices
of the polygon is odd equal to 2r + 1. We let F be a maximal CM
family of subsets of vertices.

Lemma 3.12. a. Let i be in (0, a). Let s1 end in i− 1 and s2 begin
in i+ 1. Then both s1 and s2 have length r.

b. All strings in F have length ≤ r + 1.

Proof. Part a. goes as Lemma 3.9. To show part b., let s be a string
of length ≥ r + 2. It does not both start and end in [0, a] by Lemma
3.8. Suppose it ends outside of [0, a]. Then we can push it backward
to a string containing 0, and then forward to a string starting in 0, of
length ≥ r+ 2. But by part a. there is a string ending in 0 of length r
and these two would cover V . Impossible.

Lemma 3.13. All strings in F containing [0, a] have the same length,
and this length is either r or r+ 1. Either i) all strings of length r+ 1
containing [0, a] are in F , or ii) all strings of length r containing [0, a]
are in F , in which case a < r, or iii) there are no strings containing
[0, a], in which case a = r.

Proof. There is a string s ending in 0, it has length r by Lemma
3.12. By Lemma 3.8 it does not start in [0, a]. We may then push it
forward to a string t starting in 0, having length ≤ r + 1. Suppose the
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length is r + 1. We can freely push it back and forth over [0, a] and
its length will not decrease by Lemma 3.4, and not increase by Lemma
3.12, so all such strings are in F . Suppose there in this case also were
a string s in F of length r containing [0, a]. Suppose the distance from
its start point i + 1 to 0 is less or equal to the distance from its end
point to a. There is a string u ending in i − 1 which together with
s covers V \{i}. The length of u cannot be r + 1 since we then could
push u one step forward and this string together with s would cover V .
Thus u has length r. But then the complement of u would be a string
u′ containing [0, a] of length r + 1 and thus be in F . Thus s and u′

together would cover V . Impossible.

Suppose now there is a string t of length ≤ r − 1 containing [0, a],
and let t end in i− 1. There is a string s starting in i+ 1. Since s ∪ t
must be V \{i}, s must have length ≥ r + 1. We can then successively
push s forward till it starts in r+ 1. Its length must by Lemma 3.12.b
be r + 1, and so it ends in 0. But this is impossible by part a. of the
same lemma. Thus the length of t is r or r + 1.

Suppose now the string t in the beginning of the proof had length
r. (Then a < r.) We can push it back and forth over [0, a]. All these
strings are in F , and the length does not increase since by the first part
of the proof, strings covering [0, a] cannot both have length r and r+1.

The argument now splits into two cases corresponding to whether F
contains strings of length r+1 or not. These will give the two maximal
families F1 and F2.

Lemma 3.14. a. Suppose F has strings of length r + 1. Then all
strings in F disjoint from [0, a] have length r − 1 and all such strings
of length r − 1 are in F .

b. Suppose F has no strings of length r + 1. Then all strings in F
disjoint from [0, a] have length r and all such strings of length r are in
F
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Proof. a. Suppose s is disjoint from [0, a]. If its length is r, its
complement has length r + 1 and covers [0, a]. Thus it is also in F .
Impossible since the vertices of X cannot be covered by two sets in F .
The length of s cannot be ≥ r + 1 by a similar argument. Suppose s
has length ≤ r − 2. So suppose it ends in i − 1 distinct from −1. If t
begins in i+1 it must together with s cover V \{i} and thus have length
≥ r+ 2. Impossible. Similarly it cannot start in a vertex distinct from
a + 1. So it would have to start in a + 1 and end in −1. But that is
not possible if the length is ≤ r − 2. Thus s is of length r − 1.

Now there is a string starting in a + 1. Since it cannot cover V
together with a string containing [0, a], its endpoint must be before 0.
Thus it has length r− 1. The same holds also for strings ending in −1.

We now push the string starting in a + 1 successively forward until
we get a string t starting in −r. The endpoint of t is not ≥ 0 since it
would then cover V with the string [0, r]. Thus t is in the complement
of [0, a] and has length r − 1, and ends in −2.

The proof of part b. is analogous.

Lemma 3.15. a. Suppose F has strings of length r + 1. Then
[1, a− 1] is in F and is the only string starting in 1 or ending in a− 1.

b. Suppose F has no strings of length r + 1. Then [1, r] is in F ,
and the only other possible string in F starting in 1 is [1, a − 1].
Correspondingly [a− r, a− 1] is in F and the only other possible string
ending in a− 1 is [1, a− 1].

Proof. a. Let s start in 1. Then it is of length ≤ r since otherwise
we could push it forward to a string starting in 2 of length ≥ r + 1.
Impossible by Lemma 3.12. If it ends in a point ≥ a, let t be a string
of length r − 1 ending in −1. Then the complement of s ∪ t would be
disconnected. Impossible. Thus s ends in a point in (0, a). According
to Lemma 3.12 it must then end in a − 1. The argument concerning
the string ending in a− 1 is analogous.

b. Let s start in 1. As above its length must be ≤ r. Suppose the
length is < r. If it ends in (0, a) its endpoint must be a− 1 according
to Lemma 3.12. That s ends in a point ≥ a is as above impossible.



CELLULAR RESOLUTIONS OF COHEN-MACAULAY MONOMIAL IDEALS 79

The string starting in 2 has length r. Pushing it backward one step,
its length cannot increase. Thus we get a string of length r starting in
1.

Proof of Theorem 3.7 [Odd number of vertices ] The lemmata above
show that if F has a string of length r + 1, it must be the family F2.
Also if F does not contain strings of length r + 1, it must contain all
strings of length r and the only possible extra string being [1, a − 1].
But adding this string gives a family fulfilling the criteria of Proposition
1.10. Hence if F is maximal it must be F1.

We formulate the following conjecture concerning maximal CM mono-
mial labelings of subdivisions of polygons.

Conjecture 3.16. Given an n-gon with a subdivision of k additional
edges (but no additional vertices). Then any maximal CM monomial
labeling has n+ k variables.

Example 3.17. A cellular resolution of the monomials of degree
two in three variables is given by removing one of the interior edges in
Figure 3.1.
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We may polarise and get Figure 3.2. However this is still not a
maximal monomial labeling. Removing the edge between xy and yz
in the first diagram, there is another way of “polarising” this, Figure
3.3. (The point here is that the indices are always 1 and 2.)

Combining these two last diagrams we get a maximal monomial
labeling with eight variables in Figure 3.4. Note that there are two
possible maps from this monomial labeling to the one in Figure 3.1,
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factoring through the second and third figure respectively.

4. Cohen-Macaulay monomial labelings of higher dimen-
sional polytopes. This section investigates CM cellular resolutions
supported on polytopes. We give constructions of CM monomial la-
belings on some classes of selfdual polytopes where the class contains
polytopes of arbitrary dimensions. These labelings are shown to be
maximal. We also conjecture that any polytope supporting a CM cel-
lular resolution must be selfdual.

In the end we consider an example of a three dimensional selfdual
polytope and construct a maximal CM monomial labeling of it. Along
the way we give several examples of how the labeled polytopes give
cellular resolutions of Stanley-Reisner rings of simplicial polytopes.

In this section our cell complex X will be a convex polytope.

4.1 Necessary conditions on CM monomial labelings.

Lemma 4.1. Let P be a polytope supporting a CM cellular resolution.
Then its f -vector is symmetric, i.e. if fi is the number of i-dimensional
cells, then fi = fdim P−1−i.

Proof. By polarising we may assume the monomial labeling of P is
square free. Since P is a polytope, the corresponding cellular resolution
has type 1. But a simplicial complex which is Cohen-Macaulay of type 1
is Gorenstein. Hence the resolution is self-dual and so fi = fdim P−1−i.
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Conjecture 4.2. If P is a polytope supporting a CM cellular
resolution, it is a selfdual polytope.

Example 4.3. A three-dimensional polytope which is a bipyramid
cannot support a CM cellular resolution. If the base is an n-gon, where
n ≥ 3, it has n+ 2 vertices and 2n faces. But then 2n �= n+ 2.

4.2. CM monomial labellings of pyramids. Given a polytope X , let
PX be the pyramid over X , i.e. the convex hull of X and a point t
outside the linear space where X lives. The polytope X is selfdual iff
PX is.

Theorem 4.4. Given a CM monomial labeling (a1, . . . ,av) of X.
Let y be a variable.

a. Then (a1, . . . ,av, y) is a CM monomial labeling of PX.

b. The labeling of X is maximal iff the associated labeling of PX is
maximal.

c. Every maximal CM monomial labeling of PX is of this form.

Proof. a. If C is a cellular resolution over S of the quotient
ring S/(a1, . . . , av), then the cone of C ⊗k k[y](−1)

·y−→C ⊗k k[y] is
a resolution of the quotient ring of S ⊗k k[y] given by the labeling of
PX .

b. Let the monomial labeling (a1, . . . ,av) correspond to a family F
of subsets of V . We need to show that F is maximal iff F ∪ {{t}} is
maximal.

If F is maximal, then if we could add a subset T̃ of V ∪ { t } to F ∪
{{ t }} and still have the conditions of Proposition 1.10 holding, then
we could add T̃ ∩ V to F , Proposition 1.10 still holding. Since F is
maximal, T̃ ∩ V would have to be a disjoint union of sets in F . But
then the same would hold for T̃ . Therefore F∪ {{ t }} is maximal.

Conversely, if F∪ {{ t }} is maximal, then if we add a subset T to
F and still have the criteria of Proposition 1.10 holding, then we could
add this to F∪ {{ t }} with the criteria still valid. Hence T is a disjoint
union of sets in F∪ {{ t }} and so it must be a disjoint union of sets
in F , and so F is maximal.
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c. Suppose the maximal family F on PX contains S∪ {t} where S
is nonempty. Let W = V \S and Y = X|W . Let F ′ = {T ∩W |T ∈
F}. Then the family F ′ has the property that the complement of
any union of elements in F ′ gives an acyclic restriction. Hence the
family F ′ determines a cellular resolution of the ideal generated by
{ai}i∈W . Since dimY < dimX , the quotient ring by this ideal will
have codimension ≤ dimY + 1 ≤ dimX . Thus Y can be covered by
≤ dimX elements in F ′. But then PX can be covered by S ∪ {t}
together with these, a total of ≤ dimX + 1 elements of F . But this is
impossible for a CM labeling.

Example 4.5. A three-dimensional bipyramid is a simplicial poly-
tope. In order for its Stanley-Reisner ideal to have a cellular resolution
supported on a three dimensional polytope, the base of the bipyramid
must be a pentagon (the number of vertices must be four more than
the dimension). In this case a minimal cellular resolution is given by
the pyramid over the pentagon labeled as follows. (A label ij is short
for xixj .)
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Figure 4.1

4.3. CM monomial labelings of elongated pyramids. The elongated
pyramid EPX over X is the union of X × [0, 1] and the pyramid over
X , with the base of the pyramid identified with X × 1. The polytope
EPX is selfdual iff X is. If V is the vertex set of X let EPV be the
vertex set of EPX . It consists of V × {0, 1} and the vertex t of the
pyramid. Given a family F of subsets of V , we get a family EPF of
subsets of EPV consisting of (letting S vary over F) i) S × {1} ∪ {t},
ii) S × {0, 1}, iii) V × {0}.
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Theorem 4.6. Let F be in CM∗(X).

a. The family EPF is in CM∗(EPX).

b. If F is maximal, then EPF is maximal.

Proof. a. The family F fulfils the conditions of Proposition 1.10. We
must show that EPF fulfils the same conditions.

Condition 3. Let F ⊆ G be two distinct faces of EPX . Suppose G is
contained in the pyramid over X×{1} with vertex t. If G is contained
in the base, condition 3. is clear. If G is the pyramid over a face of X ,
then if F is strictly contained in this base face, condition 3. is clear.
If F is the base face then there is a set S in F disjoint from F (by
considering the inclusion of faces F ⊆ X), and then condition 3. holds
by considering S∪{t}. If G is contained in X×{0}, condition 3. clearly
also holds. Suppose now that G is A× [0, 1] where A is the face of X .
If F is contained in B× [0, 1] where B is a face strictly in A, condition
3. is clear. Otherwise F is either A × {0} or A × {1} in which case
condition 3. is also clear.

Condition 1. Let S̃1∪· · ·∪ S̃m be a covering of EPV by sets of EPF .
If none of these are V ×{0}, then since they cover V ×{0}, a selection
of, say r of these must be of the form S × {0, 1} where these S’s cover
V . But then r ≥ dimX + 1. Since something also must contain t, we
get m ≥ dimX + 2.

If one of the above is V × {0}, the rest will cover V × {1}. We need
at least dimX + 1 such and so m ≥ dimX + 2.

Condition 2. Let S̃1 ∪ · · · ∪ S̃m be a union of subsets of EPF . We
will show that X restricted to its complement is acyclic. Suppose first
that V × {0} is one of the sets in the union. If none of the S̃i contains
t, the complement is contractible. If some S̃i contains t, the acyclicity
of the complement follows by the fact that this is true for X .

Suppose then that V × {0} is not one of the sets in the union. Then
the complement will consist of the union of A×{1} and B×{0}, where
A ⊆ B, and possibly t, where X restricted to A or B are both acyclic.
Then EPX restricted to this complement is also acyclic.
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b. We now want to show that if F is a maximal family, then so is
EPF . Let T ⊆ EPV be a set of vertices. Suppose EPF ∪ {T } fulfils
the criteria of Proposition 1.10.

Let T 0 × {0} = T ∩ (V × {0}). Suppose T 0 is not in F . The reason
is either that i) it is empty or ii) X restricted to the complement C of
the union of T 0 and various other elements of F is not acyclic, or iii)
T 0 covers V together with ≤ dimX − 1 elements in F , or iv) it is a
disjoint union of sets in F .

In case ii) C × {0} will also be a complement of a union of elements
of EPF . Impossible. In case iii), let T 0 ∪ S1 ∪ · · · ∪ Sr cover V where
r ≤ dimX − 1. Now T , the subsets Si × {0, 1}, and S1 × {1} ∪ {t}
comprise a total of dimX+1 sets. That is one short of possibly covering
EPV . If V \T 0 is not empty, the complement of ∪r

i=1(Si×{1}∪{t})∪T
will be disconnected: Its restriction to level 0 and level 1 are non-empty
and disjoint, since T 0 and the Si cover V . Impossible. So we can
conclude that either T 0 is a disjoint union of sets in F or it is empty,
or it is V .

Now let T 1×{1} = T ∩ (V ×{1}). Suppose T 1 is not in F . Then the
reason is either that i) it is empty or ii) X restricted to the complement
C′ of the union of T 1 and various other elements of F is not acyclic, or
iii) T 1 covers V together with ≤ dimX − 1 elements in F , or iv) it is
a disjoint union of sets in F .

In case ii) C′ × {1} will also be the complement of the union of
elements in EPF , since V × {0} is in EPF . Impossible. In case iii)
EPV will be covered by dimX + 1 elements since V × {0} is in EPF .
Impossible. So we can conclude that T 1 is a disjoint union of sets in F
or it is empty.

Now suppose T 0 is V . If T 1 is empty, then since T is not V × {0}
(since T is not in EPF), T must be V × {0} ∪ {t}. But then EPX
restricted to the complement of T is a sphere and so not acyclic. If
T 1 is a disjoint union of sets in F , EPV can be covered by dimX + 1
elements according to Proposition 1.14. Impossible.

Now suppose T 0 is empty. If T 1 is empty then T must be {t}.
Impossible since the complement of T ∪ {V × {0}} will be a sphere
and so have homology. If T 1 is a disjoint union of two or more sets in
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F , then by the following Lemma 4.7 there are sets S1, S2, ..., SdimX−1 in
F such that T 1 and these sets cover V . But then EPV will be covered
by dim X+1 subsets of EPF if dim X ≥ 2. Impossible. If dim X = 1,
then either T contains t and EPV is covered by two subsets of EPF ,
or T does not contain t and EPX restricted to the complement of T is
disconnected, also impossible.

Hence T 0 must be a disjoint union of sets in F . Proposition 1.13
guarantees that T 0 together with d = dimX elements S1, . . . , Sd in F
covers X . If T 1 is empty, the complement of ∪d

1(Si ×{1}∪{t})∪T will
be disconnected. Impossible. Therefore both T 0 and T 1 are disjoint
unions of sets in F .

If T 0 = T 1 and T is T 0 × {0, 1} ∪ {t}, then according to Proposition
1.14, we can cover EPV with dimX + 1 elements. Impossible.

Suppose T 0\T 1 is nonempty. Let v be in the difference set. By
Proposition 1.14 there exists a covering of V consisting of T 0 and
S1, . . . , Sr where T 0 is the only set containing v. Then the complement
of T ∪ ∪r

i=1(Si × {1} ∪ {t}) is disconnected. Impossible.

Hence T 0 ⊆ T 1. Now by Proposition 1.14 there exists d = dimX
elements S1, . . . , Sd of F which together with T 0 cover V . If T contains
t then T and the Si × {0, 1}, a total of dimX + 1 sets, would cover
EPX . Impossible. Hence t is not in T . If T 1\T 0 is nonempty. Let v be
in the difference set. Again by Proposition 1.14 there exists a covering
of V consisting of T 1 and S1, . . . , Sr where v is only in T 1. Then the
complement of T ∪ ∪r

i=1(Si × {0, 1}) is disconnected. Impossible.

In conclusion T 0 = T 1 is a disjoint union of sets in F , and T is
T 0 × {0, 1}. Thus T is already a disjoint union of sets in EPF , and so
this family is maximal.

Lemma 4.7. Let F be a maximal family of CM∗(X) where X is
a polytope. Let T1 and T2 be two disjoint sets in F . Then there are
S1, S2, ..., Sdim X−1 in F such that the union of the two T ′s and the
S ′s cover the vertices of X.

Proof. The restriction of X to the complement of T1 ∪ T2 is acyclic.
By Alexander duality, [12, Thm. 3.44], the restriction of X to T1 ∪ T2

is also acyclic and hence connected. So there is an edge e connecting
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points t1 ∈ T1 and t2 ∈ T2. For each face containing e there is a set
S in F disjoint from {t1, t2} which includes a vertex of the face. The
restriction of X to the complement W of the union of the S′s will
be acyclic. In X|W the edge e is a maximal face. Hence X|W \ {e}
is disconnected, since otherwise X|W would have nonvanishing H̃1 -
cohomology. Let Ui be the vertices in the connected component of ti in
X|W \ {e}. Then T1 ⊇ U1 since otherwise X restricted to W \T1 would
be disconnected and this cannot be so since W \ T1 is the complement
of a union of sets in F . Similarly T2 ⊇ U2, and so the two T ′s and the
S ′s cover the vertices of X . As in Proposition 1.14 we may conclude
that there are dim X − 1 of the S ′s that together with the two T ′s
cover the vertices.

Example 4.8. The Stanley-Reisner ring of an octahedron with
a stellar subdivision of one face has cellular resolution given by the
elongated pyramid over a triangle.
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Figure 4.2

4.4. CM labellings of a three-dimensional polytope. Another family
of selfdual polytopes of dimension three has plane diagrams given as
follows. Given a 2n-gon labeled modulo 2n by vertices 0, 1, . . . , 2n− 1.
Add a vertex c at the centre and edges from the centre to each oddly
labeled vertex. Also add edges from 2i to 2i+ 2 on the outside. This
is the planar graph corresponding to a selfdual polytope with 2n + 1
vertices. When n = 4 this may be displayed as follows.
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This has a maximal Cohen-Macaulay labeling given as follows.

Proposition 4.9. Given the 3-polytope P above with n = 4. The
family of subsets {0, 1, 2}, {2, 3, 4}, {4, 5, 6}, {6, 7, 0}, {c, 1, 3}, {c, 3, 5} ,
{c, 5, 7}, {c, 7, 1}, and {1, 2, 3}, {3, 4, 5} is a maximal family in CM∗(X).

Proof. It is a tedious but straightforward task to show that this family
fulfils the criteria of Proposition 1.10. To show that it is maximal we
must also show that this family cannot be extended, i.e. we cannot
add another subset S of vertices, or refine a subset, and still have
all the criteria 1, 2, and 3 of Proposition 1.10. This is laborious but
straightforward.

Now this 3-polytope P gives a cellular resolution of the Stanley-
Reisner ideal of various simplicial polytopes where the number of
vertices is four more than the dimension. We give examples of such
simplicial polytopes of dimension two and three.

Example 4.10. The hexagon has cellular resolution given by P when
labeled as follows. (A label ij denotes xixj .)
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Example 4.11. Consider the bipyramid over the triangle.
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We can take stellar subdivisions of various pairs of faces. The cellular
resolution of its Stanley-Reisner ring is then given by various labellings
of P . With stellar subdivision of faces 124 and 235 we have Figure 4.6.
With stellar subdivision of faces 124 and 234 we have Figure 4.7, and
with stellar subdivision of faces 124 and 125 we have Figure 4.8.
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