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The purpose of this paper is'to obtain a condition for space
with affine connection to be of class one. In previous paper®
for embedding of space with projective connection, we have defined
the class number of the space after the example of Riemann
space and got a necessary and sufficient condition for the space
of class one. We can similarly define the class number of affinely
connected space. :

In order to solve the Gauss equations of hypersurface in
affine space, we can utilize the method, which are used for the
first Gauss equations of hypersurface in projective space, specially
in case of unimodular affine connection (RS,=0). In the general
case R;%0, there is a little different aspect ; but the above method
is-also applicable after slight modifications.

There are many points (marked by [*]) in this paper, which
are omitted to prove or are not discussed in details, as these
points .can be treated by similar way as in previous paper.

§ 1. Introduction.

Consider an m-dimensional space with affine connection V,, where
a current point A is given by a system of coordinates (y',...,5™)
and let A, be linearly independent m vectors at a point A. Then
the connection is given by the following equations:

dA= A.dy’,
(I-I)
dA,=T},Ady,; -

where the functions /%, of y’s are called the components of affine
connection of V,, referring to the coordinates y©.
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Let V., be a variety of n-dimensions in V,, defined by the
equations .

y=y(«,...;2");

where the functional matrix | 9y*/9x*|| is of rank n. When a
current point A displaces on .V,, we have

Hence, if the quantities A,(i=1,...,n) are defined by

dA=A.Brdx*; where (B;“: 3y
ox’

A¢:AGB‘;’¢7 (1'2)

we see that A; are linearly independent #z vectors on V, and
obtain ,

dA=Adx. (1-3)
Further we define

AP:AGB.}? ; (1 '4)
where the determinant | B;*, By | is not equal to zero; and it is
to be seen that the quantities A, A,(G=1,...,n; P=n+1,...,m)

are linearly independent m vectors of V,. For the displacement
on V., we put

dA,=(I%A,+HLA,)dy, , (1-5)
dA,= (H A+ HE,A,)dy. (1-6)

Differentiating (1-2) and comparing to (‘1-5) give

352: =—I'%BB;* + I'iBi* + HiB:. R
X

Similarly from (1-4) and (1.-6) we obtain

%%:- =—1"%,BB*+ H},Be+ HE,B; . (1-8)

As the quantities B;* must satisfy ‘the relations
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3B _ 9By
9x? ox’

which are the integrability condtion of a system of equations

Wo=Br, (1-9)
so we get from (1-7)
B*B;*St,=B;*S4+ B2 (H,—HY) ; (1-10)
where we put
Stu=1%—1%, (1-11)
Sk=1%—T% (1-12)

The integrability condition of (1-7), i.e.

°Be _ ¥B;°
2x99x*  3x*3x!

is, making ,use of (1-10)
B;'}‘B;FB;:RA.‘LV = B;a (R«;.Ijk + H,[I;HI I,IH.])

-+ B (Hugat+ HiyH 5+ HLSG 5 (1-13)
where we put
« 8[1(" A 7 a
RA-uv:*ayJ]"“HAtu lo1v (1-14)
alt, S B
;'vzszrf + 10 (1-15)

The tensor Sj, and R,%, are callad the torsion and curvature
tensors of V,. The integrability condition of (1-8) is similarly

BREBPBIR, S =B (H iy pq+ HEGH (G i+ HraSh
e 7] R Q 1 Q 0 Qa (1 ’ 16)
+ B (Hpl, v+ HiH R+ H/,H .+ HSSS).

When we transform the coordinates y* of V,, to the another
3°, we see easily that the functions /', Hf;, H and Hj% are all
invariant. The other hand, for the transformation of the coordi-

nates a° of V, to the anothe: #, we see that those functions enjoy
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the transformations

i3 TN =t =g be .

— 14 2 b c _ a
[k= ox ( 0°x* re X ox ), H{I[1=Hl?a ox

9x* \ 023z YA Y FY
gr_pr g p. 08 9r
7j ah 82’ af’ ’ Pj Fb ax“ af:i .

Therefore the functions /75 enjoy the transformations analogous to
the components of affine connection, so that we shall call /% the
components of affine connection and S}, R/, the torsion and
curvature tensors of V, induced from V,, with reference to Ap.

§2. The fundamental theorem of embedding.

Let 7% be components of connection of a given z-dimensional
space V, with affine connection. We shall call that V, can be
embedded in an affine space S, of m-dimensions, if there exists
an #n-dimensional subspace S,, whose components of affine
connection induced from S, for suitable choice of A, are equal
to the given 1'% The space V, is called to be of class p, if V,
can be embedded in an affine space of (»+p)-dimensions but
not of (z+¢)-dimensions (p>¢q =>0).

The torsion and curvature tensors Sy, R,%., of flat S,, vanish
and hence from (1-10), (1-13) and (1-16) we have

Sh=1%—1%=0, 2-1)

5—H; =0, (2-2)

R'y=HgH . (2:3)
Hyfu+HéH Giw=0, (2-4)
Hplym+ HEGH i =0, (2-5)

Hyly s+ HepHid A+ HeppH £ n=0; (2-6)

where we call equations (2-3), (2-4), (2:-5) and (2-6) the
Gauss, the first and second Codazzi and the Ricci equations res-
pectively. First we have from (2-1) the

Thecrem 1: If an n-dimensional space with affine connection
V. can be embedded in affine space, the components of affine connec-
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tion of V, is necessarily symmetric.

Now, by means of the fact that the system of equations (2-1),
(2-2), (2-3), (2-4), (2-5) and (2-6) gives the integrability con-
dition of (1-7), (1-8) and (1-9), we obtain the fundamental
theorem of embedding problem as follows:

Theorem 2: A space with affine connection of n-dimensions
can be embedded in an (n+ p)-dimensional affine space if, and only
if, the connection is symmetric and there exist three systems of func-
tions Hf(=Hf), Hy, and H%(i,j=1,...n P,Q=n+1,..,n+p)
satzv’ymg the Gauss, the ﬁrst and second Codazzi and fhe chcz
equations (2-3), (2-4), (2-5) and (2-6).

In our particular case of class one we put

H:H; = Htj’ Hn+1‘j = H;, H, ' =H.

Then, as the fundamental equations of class one, we get

R.}=H,H!— H,H!, (2-7)
Hyyo— Huy+ HyH,— H, H,=0, (2-8)
Hi,— Hi,+ H,H— H,H!=0, (2-9)
H,,—H,,+ HuH!— H,H.=0. (2-10)

§3. The second Codazzi and Ricci equations as
consequences of the Gauss and first

Codazzi equations.

As in the case of Riemann spaces” and projectively connected
spaces of class one”, so in this case of affinely connected spaces,
we can prove that the second Codazzi and Ricci equations are
automatically satisfied, if the Gauss and first Codazzi equations
are satisfied. In fact, differentiating (2-7) covariantly with respect
to 2 and summing three equations obtained from the first by
cyclic permutation of the indices j, k and m, and making use of
the Bianchi identities

{ —
R’i-(jl‘,m) - 0’

we have
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DusHiy=DigHoi; (3:1)
where we put
D,y = Hiyn+ Hi;Hy,
Dfy = H{; 1+ HyHz,.

And so if the first Codazzi equations are satisfied, i,e. D;;;=0,
we have from (3-1)

H,, D+ H,D., + H.D;,;=0.

Form these relations we see easily that Dy =0 (1,7, k=1,...,n),
i. e. the second Codazzi equations are satisfied, if the matrix
| Hi; Il is of rank >3 [*].

Next, differentiating (2-8) covariantly with respect to & and
summing three equations obtained by the above process and ma-
king use of the equations (2-7), (2-8), R,%,=0 and

Hy, w—H,yu=—H R, u— H.R,,,
we have
H;D,+HuD,;+ H,D;=0; 3-2)
where we put
Dy=Hy, o+ HiH..

From these relations we get D,=0(k,I=1,...,%), i.e. the Ricci
equations, if the matrix || H; || is of rank >3 [*].

Thus we have find the similar circumstances as in the case
of projective connection.

§4. The case of unimodular affine connection.

First, we consider the unimodular affine conncetion, that is,
the contracted curvature tensor K.}; is identically equal to zero.
In this case we can have H,=0 for suitable choice of vector
A..,, and hence the first Codazzi and Ricci equations have the
forms :

Hij,k'—Hik,j:O! (4'1)
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H,H;—H;H,(=R,.};) =0, (4-2)
respectively. If we put
K= H, H?, @3
and its contraction
K=K\ y;= H.Hj, (4-4)

the tensor K,, so defined is symmetric on account of (4-2).

Therefore we can applicate the methods, by which we have dealed

with the first Gauss equntions of hypersurface in projective space.
That is, from (2-7), (4-3) and (4-4) we have

Ka!'UKkl_Ka-btk jz=HutHf c.Q’k, (4'5)
and further from (4-5)
RafliRc-’J"chKL-(;UI(A‘]I_KH-,[, jchAz, (I)

and finally contracting (I) with respect to @ and b we get
Mjkl:Kilc jl_KilKjk; (4-6)

where we put
M= 1 R.Ry:
R T Ty g ek

This intrinsic tensor M, satisfies the identities
Mi il _Mjfu:Mkj:‘ja

and that it is necessary to satisfy the identity M, .,=0 from
(4-6). This identity is result from

I k k
Rn-’rrL(ILR!l1~ij) + Ra -,('A'jRi Lemih) + Rh’;n.fh Rl 1{c|°fj) + Rl- _hliju:c»ln.Eh) = Oy (II)

by contraction of @ and k, & and I [“].
Now, we define the type number of space as follows:
Definion: A unimodular hypersurface S in an affine space
will be said to be of type one if the rank of the matrix | K; |i is
zero or one. It will be said to be of type - where = is an integer
of the set 2,...,n, if the rank of the above matrix is .
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It is easily seen [*] that S is of type one if, and only if, the
tensor M. is identically equal to zero; and the type number
(=2) of S is equal to the rank of the matrix

Mabul Ma(wg .................. Ma[wu
Myu Miges ooveeeea.. My
. SR M,,.

Hence the type number is deiermined by intrinsic properties of S.
Next we can prove that, if S is of type (= 3), the system

of functions K;; satisfying the equations (4-6) is uniquely deter-
mined to within algebraic sign and this solution will be real if,
and only if, the condition

Mabr’j Mal»jlc Mahki 2 07

]lecij Mmjlc Mbcki (III)

Mcaij M-ajk Mak:?
is satisfied, when S is of type (=3) [*]. Next let us write (4-6)
in the homogeneous form ‘

F'Mijlcl=Kilc jl—KzflKjlc, (4'6')
and we obtain easily from (4-6)

Kh[iMm_]ljlc_-Kl[ij]him: 0. (4' 7)

Represent the resultant system of (4-6’) and (4:7) by R.(M).
We can prove that the equations (4-6) will have a real solution
if, and only if, the inequalities (III) and

Z Mzhij Mzhjlc Mthlcf > 0,
a,b,e,t,jk
Mu:ij Mr:.‘jk Mn:ki (IV)
Muu‘ 4] Mmjk Mukrj

and that the equations
R,.(M)=0, V)

are satisfied [*]. Further we sez easily ¢ = ¢ [*]; where ¢ is the
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rank of the matrix || H,;|l and from (I) we have a tensor
K, intrinsically for « = 3, which must satisfy the following equa-
tions

Rh-'lz":jz Khol;i “‘I{h,-kij, (VI)
I{ifljk = Kj)-lz‘k (VH )
,L-Zj Ka{Chl = Oy
A (VII)
cedj corll

and (I) [*]. Finally we put
Li}' = K‘z‘,-ajtu (4'8)

and shall confine our consideration such a domain in V, that L
does not vanish. We put

Hy,=e'L,, (4-9)

and substituting this expression in (4-1) giv:s

prLiy— Ly Lij=0; (4-10)
where we put
Lijlc:Lij,In_Ltlc.jr (4' 11)
_9 log dlogp
4-12

Let us write (4-10) in the homogeneous form
PrLij— ;L1 Liyp=0, (4-10")

and represent the resultant system of (4- 10’) by @.(L), it fol-
lows that the equations

Q.(L)=0 (IX)

are necessary and sufficient for (4-10) to have a solution and then
the solution is uniquely determined [*].

This intrinsic tensor p; so determined must satisfy thz equa-
tions

Pig— 5= (X)
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from (4-12) ; and then we define a system of functions H,(i,J
=1,...,m#) by (4:9); and we prove easily that the functions H,;
satisfy the equations (4-1) and further we have a system of fuc-
tions H;(i,j=1,...,n) satisfying the Gauss equations (2-7) [*].
Consequently we have the

Theorem 3: If an n (= 3)-dimensional space V. with sym-
metric unimodular affine connection is of type - (= 3) and the tensor
L;; does not vanish, V., is of class one if, and only if, the inequal-
ities (III) and (IV), and the equations (I), (II), (V), (VI), (VII),
(VIID), (IX), and (X) are satisfield.

§ 5. The general case.

Now we consider the general case when the tensor R, does
not identically vanish. In this case, though we define also the
tensor K%, and K,; by (4-3) and (4-4) respectively, K;; is nevar
symmetric and yet we have

Raf}th:~zk= KL-’I;L]'KIL'][ - K(L-,;Lijij (Il)

that is analogous to (I). We put

Puty= o (Kly+ Kb, G-1)
and then we obtain from (4-3) and (2-7)

Kly=Ply= LRl (5-2)
and hence P); and —R,;/2 are symmetric and skzw-symmetric

parts of K,!; with respect to i and j respectively. Contracting
(5-2) with respect to @ and b gives )

K,=P,;+Q,; (5-3)

where we put
P;=P.,, : (5-4)
Qo= -1 Ry (5-5)
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and hence P, and @, are symmetric and skew-symmetric parts
of K, respectively, and that @, is .intrinsic tensor. Substituting
(5-2) and (5-3) in (I’) and summing thc equation cbtained frem
(I") by interchanging ¢, k into j, [ respectively, give

NL.IZUA;:P.L-'? jP/c]z—Pa-,,"ngk]x 5 (XI)
where we put
2N, = RGR, e + RGyRY+ R Quu— R Qe (5-6) .
Contracting (XI) with resgect to a and b gives

N;ju:‘ ucPﬂ"‘PﬂPj/c; : (57)

where we put - R

Nau= § Nt == R QuQu+ Quo (5-8)

The intrinsic tensor N,;. so defined has:the identities
NijlrI: _Njilclleclij- (5 9)

Moreover this tensor must have the identity N, =0 from (5-7)
and this is equivalent to (II), whith is easily seen by contraction.

Now, if the conditions (II) are satisfied, the tensor N, has
the same properties with the tensor M, in. the last section.
Hence, we can define the type number of space with non-unimodular .
‘connection, in terms of the symmetric part P; of K, instead
of K, itself. Consequently we havé the

Lemma: Jf a space with symmetric non-unimodular affine
connection of dimensions n(=>3) is of lype =(=>3), the equations
(5-7) have s ch a real solution P,;(=P;,), that is unigely determined
to within algebraic sign if, and only if, the inequalilies .

Vo
e

Mm iJ Nubjlc ) Afuwu: g 0, i
.Ivhmfj th-jk Nht‘kl? (III’)
N(;aij Nl,‘ujlc Nt aki

and
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2 Nabij Nabjlc Nnhki > 0’
a,0,¢,3,5,k . ,
Nb(‘ij Nbcjk Nbclci (IV )
Ncaij MﬂWC NE“’“' ‘

and the equations (I1) and further
R.(N) =0, V"

ave satisfied ; where the system of polynomzals R.(N) of Niu are
analogous to (V).

-Next, making use of P,; and (XI), we obtain the functlons
P}, intrinsically [* ], and, from (5-2), K,%;. It is to be remarked
here, that we have two kinds of solutions P;; and P;(=—Py)
satisfying (5-7) and hence, according to them, two kinds of functions
P, and*P)l, (=—P)%,) from (XI), and from (5-2) and (5-3)
we get

1
a-hi = u-h j Ra.?i ’
1Ty (5-10)

K;=P;+Q,,
and

. 1
a-,'i = —Pa?i - ""‘Ra-hi ’
! T R (5-10")

R,-j =—Py+ Q.

Now we impose the conditions (I’), which must be satisfied two
intrinsic tensors K, %, and K, and also K,%; and K,. Then we
get

Km’;[ich]l—Ka l[ij_h Ra IARL ojky

Kz-’;[jKl:]l — Kn.ink[i = Ra:"li c-’.;k-

Subtracting the above two equations and making use of (5-10).
and (510) give

Ra-?t[jpk]l - Ra-’;[ij]i + 2Pa.';yQ/cjz—‘ 2Prz-l;[lec]i =0,

and contracting with respect to @ and b we have

Pi;Quy— Pr;Qu=0, (5-11)
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By the similar methods; which we find the functions K., from
(I), we obtain @;=0(i,j=1,...,n) for = >3 on accont of (5-11),
contradicting to hypothesis of V, to be non-unimodular. THherefore,
if the conditions (I’) are imposed, we can not adopt both systems
P;, K,; and K.;; and hence those functions are uniquely determi-
ned. -

Now the functions K.,’; so determined must satisfy the condi-
tions (VII’) and (VIII'), which are formally analogous to (VII) and
(VIII) respectively, on account of the definition of K,"; (4-3).
The other hand, the condtion (VI) are satisfied naturally by means
of (5 2) in this case. Making use of K,»; and (VII'), (VIII")
gives two systems of functions Hy(=H;) and H;(i,j=,...,n)
satisfying (4-3) and therefore the Gauss equations (4- 7) [*].
Consequently we have the

Theorem 4. ...... If a space with symmrtnc non- ummodular
affine connection of n(Z= 3)-dimensions is of type (= 3), there exist
twossystems of functions H,;;(=H,;) and H;(i, j=1,..., n) satisfying the
Gauss equations (2.7) if, and only if, the inequalties (1II') and
(IV'), and the equations (1), (), (V’), (VII'), (VIII") and (XI)
are satisfied.

Next the Ricci equations (2-10) can be written in

H;;,—H,; ;=2Q, ' (5-12)

from which the functions H; can be always found. Because the

integrability condition® of a system of partial differential equations
(5-12) is . -

Q(ij,lr)= 07
that is
Ra:l(ij,k) = 0,

i.e. the Bianchi identities. Thus we obtain the functions H,
(i=1,..., n) satisfying (5-12) but not uniquely. Howeuer, this fact
is not hmdered in the following discussions.

Finally, in the similar manner with the case of ummodular
connection we shall confine our consideration such a domain in
V. that the functions L;=K,%, does not vanish. Then we put
(4:9) and substitute in the first Codazzi equations (2-8) and have
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oLiy— oL+ Lijz=0 (5-13)
analogous to (4-10) ; where we put '
Aa,=p,+H,. ' ©(5-14)
Hence we have
Qa (L) =0, (IX')

as a .necessary and sufficient condition for (5-14) to have a
solution a;; where the system of equations (IX’) is analogous to
(IX),. that is, the system of polynomials of the curvature tensor
and its covariant derivatives. Then a solution o, is uniquely
determined and is expressed intrinsically [*].

The integrability condition of

dlogp _
i

[
ox i

is equivalent to the equation
Ti— k=26 it 0.9

from (5-14) and (5-12) ; where (X’) is a system of equations in-
volving only the curvature tensor and its first and second covariant
derivatives. Conversely if (X') are satisfied by the solution g,
of (5-13), we obtain a function p and from (4,9) H.,(=H,)
" (i,j=1,...;n) satisfying (2-9). Consequently we have the

Theorem 5: If a space V. with symmetric non-unimodular
affine connection of n(= 3)-dimensions is of type t©(=3), and the
tensor L does mot vanish, V, is of class one if, and only if, the
inequalities (I1I') and (IV'), and- the equations (I'), (II), (V'),
(VII'), (vIII'), (IX"), (X') and (XI) are satisfied.

Mathematical Institute
Kyoto University Yoshida College

References.

(1) M. Matsumoto, The class number of embedding of the space with projective
connection Jour. Math, So. Japan (in press.). ) !

(2) T. Y. Thomas, Riemann spaces of class one and their algebraic characterization



Affinely Connected Spaces of Class One. 249
Acta Math,, 67 (1936). :
C. B. Allendoerfer, Rigidity of -spaces of class greater than one, Amer,
Jour. Math,, 61 (1939).
(3) M. Matsumoto, loc. cit.
(4) L. P. Eisenhart, Non-Riemannian geometry, Amer. Math, Coll. Publ. VIII,
§ 56, Theorem 4.
(5) L. P. Eisenhart, Condition that a tensor be the curl of a vector, Bull. Amer,
Math. So., vol. 27 (1922).



