MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVII, Mathematics No. 2, 1952.

Some Applications of Bochner's Method to RiemannianManifolds.

By

Makoto MATSUMOTO

The well-known treatise of S. Bochner [1, 2] is based upon Green's theorem and Ricci's identity. Let V_n be a compact, orientable Riemannian manifold, whose metric is given by the positive definite quadratic form :

$$
ds^2 = g_{ij}dx^i dx^j.
$$

Hereafter, unless otherwise stated, we shall denote by V_n a Riemannian manifold as above mentioned.

If we put, for *r*-tensors $\varphi_{i_1...i_r}$ and $\varphi_{i_1...i_r}$,

$$
(\varphi \cdot \psi) = \varphi_{i_1...i_r} \psi_{i_1...i_r},
$$

$$
(\varphi' \cdot \psi') = \varphi_{i_1...i_r}; j \psi_{i_1...i_r}; j ,
$$

and denote by $\Delta \varphi_{i_1...i_r}$ the Laplacian of $\varphi_{i_1...i_r}$; i.e.

$$
\Delta\varphi_{i_1\ldots i_r} = \varphi_{i_1\ldots i_r};j; k \ g^{jk},
$$

we have clearly

$$
\frac{1}{2} \cdot \Delta(\varphi \cdot \varphi) = (\Delta \varphi \cdot \varphi) + (\varphi' \cdot \varphi').
$$

And Green's theorem gives that

$$
\int_{V_n} d(\varphi \cdot \varphi) dv = 0 \; ;
$$

where *dv* is *n*-dimensional volume element. The other hand, we define operator *D* and its dual *D** as follows :

$$
D \hat{\xi}_{i_1...i_{p+1}} = \delta^{a_1...a_{p+1}}_{i_1...i_{p+1}} \hat{\xi}_{a_1...a_p; a_{p+1}},
$$

$$
D^* \hat{\xi}_{i_1...i_{p-1}} = \hat{\xi}_{i_1...i_{p-1}j; k} g^{jk}.
$$

In above definitions $\xi_{i_1...i_p}$ is a skew-symmetric p-tensor and $\delta_{a_1...a_p}^{a_1...b_p}$

168 *Makoto Matsumoto*

is generalized Kronecker's delta. A tensor $\xi_{i_1...i_p}$ is called to be harmonic p-tensor, if $D\xi_{i_1...i_{p+1}} = 0$ and $D^*\xi_{i_1...i_{p-1}} = 0$ [3]. In this case we see readily

$$
p! \cdot 4\xi_{i_1...i_p} = -\frac{p}{2} \partial^{jk a_3...a_p}_{i_1 i_2 i_3...i_p} \xi^{i_m}{}_{a_3...a_p} H_{j^{k}l^m} \quad (p \ge 2), \qquad (0.1)
$$

$$
4\xi_i = R_{ij}\xi^j \quad (p=1) \tag{0.2}
$$

where by definition

$$
H_{ijkl} = (p-1)R_{ijkl} - \frac{1}{2} (g_{ik}R_{jl} - g_{il}R_{jk} + R_{ik}g_{jl} - R_{il}g_{jk}), \quad (0.3)
$$

and R_{ijkl} is the curvature tensor of V_n , i. e.

$$
R_{i\cdot kl}^{\hbar} = \frac{\partial \Gamma_{ik}^{\hbar}}{\partial x^l} - \frac{\partial \Gamma_{il}^{\hbar}}{\partial x^k} + \Gamma_{ik}^a \Gamma_{al}^{\hbar} - \Gamma_{il}^a \Gamma_{ak}^{\hbar},
$$

$$
R_{ijkl} = g_{jk} R_{i\cdot kl}^{\hbar}, \quad R_{ij} = R_{i\cdot j\hbar}^{\hbar} = g^{ab} R_{iajb}.
$$

In order to obtain (0.1) and (0.2) we depend upon the following process, which is first effectively made use of *S.* Bochner. For an arbitrary tensor $\eta_{i_1...i_r}$ we have the Ricci's identity:

$$
\eta_{i_1...i_r\,;\,j\,;\,k} - \eta_{i_1...i_r\,;\,k\,;\,j} = -\sum_{s=1}^r \eta_{i_1...i_s\,;\,i_r} R_{i_s,j}\,k
$$

Hence, if $\eta_{i_1...i_r}$ is harmonic, we have $D^*\eta_{i_1...i_{r-1}}=0$, so that

$$
\eta_{ia_2...a_r;j;k}g^{ik} = \eta_{la_2...a_r}R'_j - \sum_{s=2}^r \eta_{ia_2...a_r}R_{a_s,jk}R_{a_s}^{i}
$$

It follows from (0.1) or (0.2)

$$
(A\xi \cdot \xi) = -\frac{\dot{p}}{2} \xi^{jk a_3 \dots a_p} \xi^{lm}_{a_3 \dots a_p} H_{jklm} \quad (p \ge 2),
$$

$$
(A\xi \cdot \xi) = R_{ij}\xi^i \xi^j \quad (p = 1).
$$

This equations and Green's theorem is fundamental for many beautiful theorems in the paper of I. Mogi $[4]$, which is written afresh systematically from papers of S. Bochner $[1, 2]$. Though this m ethod is seem ed to be m ost im pressive adapting to the' harmonic tensor, we shall obtain some interesting results for a certain type of tensor. The first section of this paper is a small attempt applying this method to the imbedding problem of Rieman-

Some Applications of Bochner's Method to Riemannian etc. 169

nian manifold. In remaining sections we give some additional results to the papers of I. Mogi $[4]$ and Y. Tomonaga $[5]$.

1. Application to the imbedding problem

A Riemannian manifold V_n can be imbedded in an Euclidean space of dimensionality $(n+1)$, if and only if, there exists the symmetric tensor H_{ii} , which is called the second fundamental tensor of V_n , such that the Gauss's and Codazzi's equations are satisfied, say

$$
R_{ijkl} = H_{ik}H_{jl} - H_{il}H_{jk}, \qquad (1.1)
$$

$$
H_{ij;k} - H_{ik;j} = 0.
$$
 (1.2)

Paying our attention to the Codazzi's equation (1.2) , let us generalize that type of tensor. We call a symmetric p-tensor $\xi_{i_1...i_n} (\geq 2)$ to be of Codazzi type, if the differential equation

$$
\xi_{ia_2...a_p}; j-\xi_{ja_2...a_p}; i=0 \qquad (1.3)
$$

is satisfied. Making use of the method of S. Bochner, we calculate the Laplacian of above $\xi_{i_1...i_p}$ as follows:

$$
A\xi_{i_1...i_p} = \xi_{a_2...i_p} ; i_1; b g^{ab}
$$

= $g^{ab}(\xi_{ai_2...i_p}; b; i_1 - \xi_{ci_2...i_p} R_{a}{}^{c} \cdot i_1 b - \sum_{r=2}^{p} \xi_{ai_2...c...r} R_{i_r}{}^{c} \cdot i_1 b)$
= $g^{ab} \xi_{ab i_3...i_p} ; i_2; i_1 + \xi_{ci_2...i_p} R^{c} i_1 - g^{ab} \sum_{r=2}^{p} \xi_{ai_2...c...i_p} R_{i_r}{}^{c} \cdot i_1 b.$

Hence, if a restriction

$$
(g^{ab}\xi_{ab i_3\ldots i_p}); c; d = 0 \qquad (1.4)
$$

is subjoined, we have finally

$$
(\Delta \xi \cdot \xi) = \xi^{abc_3...cp} \xi^{ij} c_3...c_p M_{aibj} \quad (p \ge 2) ; \tag{1.5}
$$

where we put

$$
M_{aibj} = -(p-1)R_{aibj} + \frac{1}{2}(g_{ai}R_{bj} + g_{bj}R_{ai}).
$$
 (1.6)

Define the positive-definiteness of M_{aibj} following I. Mogi [4]. If, for any symmetric tensor η^{ij} ,

$$
\underset{\scriptscriptstyle (p)}{M_{aibj}}\eta^{ab}\eta^{ij}\underset{\scriptscriptstyle \mp}{\geq} 0
$$

then M_{aibj} is called to be positive-definite. In the above equation (p) means that the equality does not be satisfied at least one point of V_n . The equation (1.5) gives us the

Theorem 1. If $M_{aibj}(p \geq 2)$ of V_n is positive-definite, there *exists no* $p \leq 2$ *)-tensor of Codazzi type satisfying* (1.4).

Now we apply Theorem I to the second fundamental tensor H_{ii} . If V_n can be imbedded in an Euclidean space of dimensionality $(n+1)$, such that $(g^{ab}H_{ab})_{;i,j}=0$ and furthermore $M_{(2)}^{(a)}$ is positive-definite, then H_{ij} must vanish, and hence from (1.1) V_n must be Euclidean. This fact leads us to the

Theorem 2. If V_n is not Euclidean and $M_{a^{i}b^{j}}$ is positive-(2) *definite, then it is impossible that V"is imbedded throughout in an Eucliden* S_{n+1} *, such that* $(g^{ab}H_{ab})_{;i,j}=0$ *.*

In particular, if V_n is an minimal variety of S_{n+1} , the mean curvature $g^{\omega}H_{a}$, is equal to zero. Also, if V_n is an umbilical variety of S_{n+1} , we have $H_{ij} = \lambda g_{ij}$; where λ is constant in virtue of (1.2). Hence we have $H_{ij,k}=0$. Thus we have, as a consequence of Theorem 2, the

Corollary. If V_n is not Euclidean and $M_{a^{i b j}}$ is positive-definite *then it is impossible that V"is imbedded throughout in an Euclidean* S_{n+1} , such that V_n is minimal or umbilical variety.

2. On harmonic vectors

Y. Tomonaga [5] gave a sufficient condition that the covariant derivatives of any harmonic tensor vanish, provided that V_n is *symmetric, say,* $R_{\text{high};l}=0$. That is, *if* V_n *is symmetric and* $T_{\text{abel}k}$ *is Positive-definite, then any harmonic tensor is covariant constant.* In this statement $T_{\mathit{a\mathit{bc} t\mathit{j} k}}$ is given by

$$
T_{\text{abcijk}} = -\frac{p(p-1)}{2} R_{\text{abij}} g_{ck} + \frac{p}{2} (R_{\text{ai}} g_{\text{bj}} + R_{\text{bj}} g_{\text{ai}}) g_{ck} -p(g_{\text{ai}} R_{\text{bjck}} + g_{\text{bj}} R_{\text{aick}}) + g_{\text{ai}} g_{\text{bj}} R_{ck}, (p \ge 1),
$$

(this form is slightly modified by the author) and the positivedefiniteness of this tensor is defined as follows :

Some Applications of Bochner's M ethod to Riem annian etc. 171

$$
T_{abcijk}\eta^{abc}\eta^{ijk}\sum_{\mathbb{R}}0\ ;
$$

where γ^{ijk} is any tensor, which is skew-symmetric with respect to *i* and *j*. If V_n is compact, $\xi_{i_1...i_p}; j=0$ is equivalent to $\Delta \xi_{i_1...i_p}; j=0$ [4], so that the above theorem of Y. Tomonaga say the vanishing of Laplacian of any harmonic tensor. Hence if the assumptions of the above theorem are satisfied and if the one-dimensional Betti number does not vanish, then from (0.2) we have $R_{ij}\xi^j=0$. Thus we have the

Theorem 3. If V_n is symmetric and T_{ap} _{*(p)*} $\Delta p \geq 1$) is positive*definite and furthermore the one-dimensional Betti number of V. does not* vanish, then the determinant $|R_{ij}|$ is throughout equal to zero.

Next, in the theorems of I. Mogi [4] for the conformally flat V_n , we must suppose that the dimension *n* of V_n is more than three, because in case of dimensionality two or three the conformal curvature tensor is identically equal to zero. Hence, in these cases, those theorems are satisfied without such a supposition. Thus we may expect more remarkable results for these cases.

Let $V₃$ be conformally flat Riemannian manifold of three dimensions and ξ_i be covariant constant (this is, of course, harmonic). Then from (0.2) we obtain $R_i \xi^j = 0$ and hence

$$
(R_{ij;k} - R_{ik;j})\xi^i = 0.
$$
 (2.1)

Conformal flatness of V_3 means the vanishing of the tensor C_{ijk} defined by

$$
C_{ijk}=R_{ij;k}-R_{ik;j}-\frac{1}{4}(g_{ij}R_{;k}-g_{i\ell}R_{;j}).
$$

Hence (2.1) is written as follows :

$$
\varepsilon_{j}R_{k} - \varepsilon_{k}R_{k} = 0,
$$

from which we have easily

$$
\xi_i = \lambda^{-1} R_{i,i} \tag{2.2}
$$

Since ξ , is covariant constant, we obtain from (2.2) by differentiating covariantly

$$
R_{\tau i \tau j} = \frac{\partial \log \lambda}{\partial x^j} R_{\tau i} \,. \tag{2.3}
$$

From this we see that λ in (2.2) is uniquely determined to within

constant coefficient. The symmetry of $R_{i,i;j}$ imposes

$$
R_{;i,j} = \mu R_{;i} R_{;j} \,. \tag{2.4}
$$

Putting together we obtain the

Theorem 4 . *If V. is conformally flat space of three-dimensions a n d if there exists a cov ariant constant v ector, then th e scalar curvature R of V , satisfies* (2.4) *and any covariant constant vector is given by* (2.2) *an d* (2.3), *which is uniquely determined to within constant coefficient.*

Thus, if we denote by *s* the number of harmonic vectors, whose covariant derivatives do not vanish, then the one-dimensional Betti number is equal to $s+1$.

3 . Special harmonic tensor in Ruse's space

Consider the Ruse's space of recurrent curvature, say

$$
R_{\lambda ij_k;l} = R_{\lambda ij_k} \lambda_l, \quad (\lambda_l \neq 0).
$$
 (3.1)

By the similar process as the deduction of Y. Tomonaga in proving the theorem stated at the begining of the last section, we obtain the form :

$$
\varphi = g^{bc}\xi_{a_1...a_p}; d; b; c \xi^{a_1...a_p}; d
$$
\n
$$
= \xi^{abd_3...d_p}; c \xi^{ij}{}_{d_3...d_p}; \xi^{r}_{(p)}^{R}_{(p)}^{abcijk} + \xi^{abc_3...c_p} \xi^{ij}{}_{c_3...c_p}; k
$$
\n
$$
\left\{ \frac{p}{2} (g_{ai}R_{bjkl} + g_{bj}R_{aikl}) \lambda^l + \frac{p}{2} (R_{ai}g_{bj} + R_{bj}g_{ai}) \lambda_k - \frac{p(p-1)}{2} R_{abij} \lambda_k \right\}.
$$
\n(3.2)

Now suppose that *a harmonic tensor* $\xi_{i_1...i_p}$ *satisfies the following differential equation :*

$$
\xi_{i_1\ldots i_p}; j = \xi_{i_1\ldots i_p} \lambda_j; \qquad (3.3)
$$

where λ_j is the same one as in (3.1). Substituting from (3.3), Φ is written in the form :

$$
\varphi = \xi^{abc_3...c_p} \xi^{ij}{}_{c_3...c_p} \left\{ \frac{1}{2} R_{uv} \lambda^u \lambda^v (g_{ai} g_{bj} - g_{aj} g_{bi}) - (\lambda \cdot \lambda) H_{abij} \right\}.
$$
\n(3.4)

Some Applications of Bochner's Method to Riemannian etc. 173

It is to be noted that H_{abij} of (0.3) entrances into (3.4) . On the other hand, from (3.1) and Bianchi's identity we have

$$
R_{hijk}\lambda_i+R_{hiki}\lambda_j+R_{hlij}\lambda_k=0.
$$

Contracting this equation by $g^{\lambda j}g^{\lambda k}$ gives

$$
R_{uv}\lambda^u\lambda^v=\frac{1}{2}\,R\cdot(\lambda\cdot\lambda).
$$

Therefore ϕ takes the form

$$
\varphi = (\lambda \cdot \lambda) \xi^{abc_3 \dots c_p} \xi^{ij}{}_{c_3 \dots c_p} L_{abij} \quad (p \geq 2) ; \tag{3.5}
$$

setting

$$
L_{abij} = -H_{abij} + \frac{R}{4} (g_{ai}g_{bj} - g_{aj}g_{bi}).
$$
 (3.6)

Especially the case $p=1$ is more simple; i. e.

$$
\varPhi = (\lambda \cdot \lambda) L_{ij} \xi^i \xi^j \qquad (3.7)
$$
\n
$$
(\rho = 1)
$$

$$
L_{ij} = 2R_{ij} + \frac{R}{2}g_{ij} \,.
$$
 (8.8)

Since $(\lambda \cdot \lambda)$ is positive, (3.5) or (3.7) gives the

Theorem 5 . *I f* V. *is Ruse's space of recurrent curvature and* $L_{obj}(\cancel{p} \geq 2)$ or $L_{ij}(\cancel{p} = 1)$ is positive-definite, then there exists no *harmonic p-tensor satisfying* (3 .3)

The positive-definiteness of L_{ω} and L_{ω} is given by

$$
L_{abij} \eta^{ab} \eta^{ij} \geq 0,
$$

\n
$$
L_{ij} \eta^{j} \eta^{j} \geq 0 ;
$$

\n
$$
\eta^{(p)} \sum_{\pi} \eta^{j} \eta^{j} \geq 0 ;
$$

where η^{ij} is any skew-symmetric tensor and η^i is any vector. From (3.2) ϕ is also written as

$$
\varphi = 4\hat{\varepsilon}_{i_1\ldots i_p\,;\,j}\,\hat{\varepsilon}^{i_1\ldots i_p\,;\,j}\ .
$$

Hence we have the

Theorem 6 . *If* V. *is Ruse's space of recurrent curvature and* L_{obj} $(p \geq 2)$ *or* $L_{ij}(p=1)$ *is definite* (*positive or negative*), *then there exists no harmonic p-tensor satisfying* (3 .3), *such that its Laplacian is covariant constant.*

University of Kyoto

References

[1] Bochner, B., *Vector field and Ricci curvature*, Bull. Amer. Math. Soc., 52 (1946), 178-195.

[2] Bochner, S., *Curvature and Bethi numbers,* Annals Math., 49 (1948), 379-390.

[3] Hodge, W. V. D., The theory and applications of harmonic integrals, Cambridge Univ., Press., (1941), 144-146.

[4] Mogi, I., On harmonic field in Riemannian manifold, Ködai Math. Seminar Reports, 4-5 (1950), 61-66.

[5] Tomonaga, Y., On Betti numbers of Riemannian spaces, Jour. Math. Soc. Japan, 2 (1950), 83-104.

 \bar{z}

 $\frac{1}{2} \left(\delta_{\rm{max}} \right) = \frac{1}{2} \left(\delta_{\rm{max}} \right)$