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Some Applications of Bochner's Method to
Riemannian Manifolds.

By

Makoto M ATSUM OTO

The well-known treatise of S. Bochner [1, 2] is based upon
Green's theorem an d  Ricci's identity. L et V „ be a compact, ori-
entable Riemannian manifold, whose metric is given by th e  posi-
tive definite quadratic form :

ds2 =g1i dx 1dxj.

Hereafter, unless otherwise stated, we shall denote by V. a Rieman-
nian manifold as above mentioned.

If we put, for r-tensors and

(So • 5b) = Vi,...ir

(42 ' • sfi') = ; 0i1 ; i ,

and denote by the Laplacian of ; i. e.

k  gik ,

we have clearly

- -  •  (so . so) =  ( 4 so . so) +  (so' • so').
2

And Green's theorem gives that

j 4(90•F)dv ----.-0 ;
v„

where dv  is n-dimensional volume element. The other hand, we
define operator D  and its dual D* as follows :

aD  . e
t . a al . ap;ap i .,9

D*.e e 1,.. i„ -, j;k .

In above definitions is a  skew-symmetric p-tensor and Ba
b : :bar



_ p v
2), (0.1)2 111213 .11, a3 . ..a 1  ( r )

s --=- R i j e i  (p = 1 )  ; (0.2)
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is generalized Kronecker's delta. A  tensor Ei, is called to be
harmonic P-tensor, if and D*$i1...i„_1=0 [3 ]. In  this
case we see readily

where by definition

(p -1 ) — 1  (  R  — g  R h
 p ) (n

Rij kl 2

and Rd k i  is the curvature tensor of Vn , j .  e.

a I"  ! 1-'1. 1I • L 1I MI— I , 71ax' ax*
Ri1= R '1.0- - g a lR i a l b •

In order to obtain (0.1) and (0.2) we depend upon the following
process, which is first effectively made use of S. Bochner. For an
arbitrary tensor )2i ,  w e  have the Ricci's identity :

;.i; ...1...i R i
= I I (a) 8

Hence, if 72i ,i s  harmonic, w e haveD*v) 11 so that

, i k
;.i ; le6 l a 2 . .4-1 'lion . 1  a

R
a l  jk g a

(s)

It follows from (0.1) or (0.2)

(4 $  •$ )= p  ej k a 3  . a r  e'„ 2),
2 ` ` r  (p)

(4$ • 0  = (p =1) .

This equations and G reen's theorem  is fundam ental for many
beautiful theorems in the paper o f I . Mogi [4], which is written
afresh systematically from papers of S. Bochner [1, 21. Though
th is m ethod  is  seem ed  to  be  m ost im pressive  adap ting  to  the'
harmonic tensor, w e shall obtain som e interesting results for a
certain type of tensor. The first section of this paper is a small
attempt applying this method to the imbedding problem of Rieman-
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nian manifold. In remaining sections we give some additional
results to the papers of I. Mogi [4] and Y. Tomonaga [5].

1. Application to the imbedding problem

A  Riemannian manifold V, can be imbedded in an Euclidean
space o f dimensionality (n  +1 ) , if and only if, there exists the
symmetric tensor 1-1, which is called the second fundamental
tensor o f  V „, such that the Gauss's and Codazzi's equations are
satisfied, say

(1.1)

1-4;k-Ilik; J= 0 . (1.2)

Paying our attention to the Codazzi's equation (1.2), let us genera-
lize that type of tensor. We call a symmetric P-tensor 2 )
to be of Codazzi type, if the differential equation

E kit! .  .ap ; j —  e ja2 .ap ; i =  0 (1.3)

is satisfied. Making use of the method of S. Bochner, we calcu-
late the Laplacian of above as follows :

th
a  2...ip ; ;  b

(eai 2 ...ip; b ;a i 2  . . c . . . p R i , . '  •  i i b )
r= 2 (r)

+eci,...i,.Rci,— ..c... ipRi,." • i,b.
r= 2 (r)

Hence, if a restriction

(e bE abi3,..ip); c;d=0

is subjoined, we have finally
e.)

, ..-abc3 ...cpt1l c 3 . . . I xcriv iaibj 2) ;(p)
where we put

1 (g, R b i + g-,,j R„,).
(r) 2

Define the positive-definiteness o f Ma ," following I. M ogi [4]. If,
for any symmetric tensor 72'l,



170 M ak oto Matsumoto

1 1 4 b e e(V)
then is called to be positive-definite. In  the  above equation

(P )

means that th e  equality does not be satisfied at least one
point of K .  The equation (1.5) gives us the

Theorem  1. I f  M„ibj (P 2 ) o f  V „ is positive-definite, there
(74

exists no p (_ . 2)-tensor of  Codazz i type satisfying (1.4).
Now we apply Theorem I to the second fundamental tensor

I f  V„ can be imbedded in a n  Euclidean space of dimensio-
nality (n + 1), such that (g'11„,,),,, ;  = 0  a n d  furthermore h2  is

( 2)

positive-definite, then .H.,5 m u s t  vanish, and hence from (1.1) V.
m ust be Euclidean. This fact leads us to the

Theorem 2 .  I f  V „ is not Euclidean and M ait, j  is positive-
(2)

definite, then it is impossible that V„ is imbedded throughout in an
Eucliden such that

In  p a rtic u la r , if  V „ is  an minimal variety of Sn+i, the mean
curvature g H , , , ,  is equal to zero. Also, i f  V. is an umbilical
variety of S„+ ,, we have where À is constant in virtue of
(1 .2 ). Hence we have Ho ,— 0. Thus we have, as a consequence
of Theorem 2, the

Corollary. I f  V „ is not Euclidean and M is positive-definite,
(2)

then it is impossible that V„ is imbedded throughout in  an  Euclidean
such that V „ is m inim al or umbilical variety.

2. On harmonic vectors

Y. Tomonaga [5] gave a sufficient condition that the covariant
derivatives of any harmonic tensor vanish, provided that V7,  is
symmetric, say, R k ijk ;1=0. That is, i f  V, is symmetric and  T„b c ijk  i s

(P)

Positive-definite, then any harmonic tensor is covariant constant. In
this statement T a b e g j is given by

(P )

P  — 1 ) p P"  PP
.  rd, \  a ,g, I ..s.c.k

(r ) 2 2
-p  (g„1?,,,+ gh R,, k ) + gragb,Rck,

(this form is slightly modified by th e  author) a n d  th e  positive-
definiteness of this tensor is defined as follows :
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T  i  per '0(P)
where e k  is any tensor, which is skew-symmetric with respect to
I and j. I f  Tin  i s  compact, 0  is equivalent to  j=0
[4], so that the above theorem of Y . Tomonaga say the vanishing
o f Laplacian o f any harm onic tensor. H ence if the assumptions
of the above theorem are satisfied and if  the one-dimensional Betti
number does not vanish, then from (0.2) w e have RiP=0. Thus
we have the

Theorem 3 .  I f  V„ is symmetric a n d  T. ; ,(p is positive-
(P )

definite and furthermore the one-dimensional Betti number of  V. does
not vanish, then the determ inant R i ;  is throughout equal to zero.

Next, in the theorems of I . Mogi [4] for the conformally flat
V,„ w e  must suppose th a t  the dimension n  o f Tin  i s  more than
three, because in case of dimensionality two or three the conformal
curvature  tensor is identically  equal to  zero. Hence, in these
cases, those theorems are satisfied without such a supposition. Thus
we may expect more remarkable results for these cases.

L e t V , b e  conformally flat Riemannian manifold of three
dimensions and b e  covariant constant ( th is  is, O f course,
harmonic). Then from  (0.2) we obtain R,,V= 0 and hence

(R i i ; R „ ; 1 )V = O. (2.1)

Conformal flatness o f v., means the vanishing of the tensor C i i k

defined by

1 D
C i j k

=
R i j :  k

-
 i k  •  j

-
k -

4

Hence (2.1) is w ritten as follows :

e J R, k kR; ; -  0,

from which we have easily

(2.2)

Since s'7 ,  is  covariant constant, w e obtain from  (2.2) by differen-
tiating covariantly

a log À— t  • (2.3)

From this we see that A in (2.2) is uniquely determined to within
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constant coefficient. The symmetry of imposes

k i ; j =///?: ,R ; j . (2.4)

Putting together we obtain the
Theorem 4 . I f  V. is conformally flat space of three-dimensions

a n d  i f  there ex ists a cov ariant constant v ector, then  th e  scalar
curvature R of  V , satisf ies (2 .4 ) and any covariant constant vector
is given by (2.2) an d  (2.3), which is uniquely determined to within
constant coefficient.

T h u s, i f  w e deno te  by  s  the number of harmonic vectors,
whose covariant derivatives do not vanish, then the one-dimensional
Betti number is equal to s+1.

3 . Special harmonic tensor in Ruse's space

Consider the Ruse's space of recurrent curvature, say

=R,,,j eli ,  (21 +  0). (3.1)

By the similar process as the deduction of Y . Tomonaga in prov-
in g  the theo rem  sta ted  a t the begining of the last section, we
obtain the form :

Q) = g be al _ a y ;  d ;b ;c a l

= e.abd3 ..dp;c  f i1d3  
d
_v;k--r■

abcijk
eabc3 ...cp ..c v ;k

.1 
(Jo

i--12— (gaR bikr+ gniR ark l) ,11
R a i  gbi +R b i gai)2k2 2

—P (P — 1 )  R.bri
 2k} .2

Now suppose tha t a  harmonic tensor 4...4, satisfies the following
differential equation :

;j = ei, ..ip 21; (3.3)

where 2j  i s  the same one as in (3 .1 ) .  Substituting from (3 .3 ), 0
is w ritten in the form :

(fl =  ab c 3 ...cr .cp {

(2'2)11,.1,15}. (3.4)(p)

(3.2)
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It is to be noted that 11„,,,i o f  (0 .3 ) entrances into ( 3 . 4 ) .  On the
(p)

other hand, from (3 .1 )  and Bianchi's identity we have

R hijk21+ R p1 2 R .

Contracting this equation by e lek 2 1 gives

. 1 RÀ'A".---- -R. (2. 2) .
2

Therefore 0  takes the form

P= ( 2 .  2 ) e a b c 3c v L o i i  (p > 2 )

(p)
setting

R— .a v i l i  ( g a i g h j — g a j g b , ) •
(p) (p) 4

Especially the case p=1  is more simple ; i. e .

0= (2. )).L 0 N -'' (3.7)
(p=1)

L i=2R „+  R ( 8 . 8 )
2

Since (2 . ) )  is positive, (3 .5 )  or (3 .7 )  gives the
Theorem 5 . I f  V. is  Ruse's space of  recurrent curvature and

L„,,i (p _ 2 )  o r L i ( p = i )  is positive-definite, then there exists no
(P)
harmonic p-tensor satisfying (3 .3 )

The positive-definiteness of Lr , j j  and L,; is given by
(p)

Labi p r b)2" __ 0,

(A)

L,102  0  ;
(P) *

where ?2 ii is any skew-symmetric tensor and )2i is any vector. From
(3.2) is also written as

0 =  J i
j

Hence we have the
Theorem 6 . I f  V. is Ruse's space of  recurrent curvature and

L„,u (P1.-i"_ 2 )  or L „(p=1) is definite (positive or negative), then there(p)
exists no harmonic p-tensor satisfying ( 3 .3 ) ,  such that its Laplacian
is covariant constant.

University of Kyoto

(3.5)

(3.6)
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