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We have read McLachlan's treatise on the theory and appli-
cation of Mathieu functions which has quite recently reached  us
for the first tim e. After Whittaker and Watsons' treatise on the
modern analysis, Mathieu functions satisfy homogeneous integral
equations. Until to-day certain special functions are known as the
kernels of the integral equations. McLachlan found many other
kernels although they are yet special functions. On the other hand
Mr. Bunshiro Hiromoto, attending to my seminary of the first se-
mester o f two years ago, found the general form of the kernels
which I intend to report here briefly.

After a long study of Mathieu functions, Hiromoto's research
has begun from Whittaker's proposition that the odd Mathieu
functions satisfy the integral equation

G  =21 sinh (k sin n sin 0) G (0) clO

is not complete. It is satisfied by se 2.4-1 (x, (1) but not by s e ,( x ,  q ) ,
since Hiromoto proved that the kernel of the integral equation
satisfied by Mathieu functions belonging to one of four types is
orthogonal to Mathieu functions of the remaining types in (-7r , 7r).
There is another incomplete proposition.

Now Hiromoto reassured that i f  K (x, O), twice continuously
differentiable in — 7r < x <7r, — < O < 7r and periodic with period
27  for both variables, satisfy

—  le (cos -  x — cos' 0) K, (1)ax2

then the periodic solutions with period 27r say G (x) of the Mathieu
differential equation

dy + (a —16q cos 2x)y = 0 (2)
dx2
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or

+  (A —  le' cos =.x)y 0 (2')
dx2

satisfy the intgral equation

G(x)=2J7K (x , G (0)dd . (3)

McLachlan transformed (1) into an equation of the elliptic
type by some imaginary transformation whose several particular
integrals are known from which many particular kernels are found.
Without knowing it, Hiromoto solved directly the equation (1) by
Riemann's method. By the transformation

e= k/2 COS (0 + x ), )2=k/2 cos (d—x), (4)

(1 ) becomes

aic +K=0.

Changing the notations,

+K=0

axay
Riemann's function v(x, y ; $, 0 satisfies (6) and takes the value 1
on the characteristics x=$ an d  y=  o f (5 '). Putting

X= 2 N/(x—$) (y—),

such function satisfies

d'v dvX ,
 +

+ ;
d X  d X

therefore we have

v (x,Y ; e, )---J0(2  ( x —  e) (Y - 6)). ( 7 )

If we will find the solution of (5) under the boundary conditions
that for y=0, we have K=F(x) and for x=0, we have K--=0(y),
we have by the Riemann's formula

axay
has for its adjoined equation,

31) +v=o.

ae.ft (5)

(5')

(6)
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K(E, ,2) .50 (o)Jo (2 Ve)2) + .S* 0 JoI 2 V/ (e— x) 19' (x)dx

+r Li 2 V$ 02— Y) IVAY)dY (8)0
provided 9(0) (0). o, ib being arbitrary functions, (8 )  is the
general integral of (5) from which the general solution of (1) can
be found by the inverse of the transformation (4).

For an example let 9(x) = cos x, 0(y) = cosy, then we have

K ($,)=-J, (2 V4) —f Jo { 2 V )7(;— x) sin xdx

21/4 (/—y) } sin ydy.0
Expanding J 0 into the power-series, we have by some calculations,

ic(e ,0  =cos ($ + )2)
which becomes by the inverse transformation (4)

K(x, 0) ----cos(k cos x cos 0).

This is the wellknown kernel for ce2n. We may obtain the remain-
ing ones in the same way.

R em ark . These considerations may be applied in  any other
case, but the partial differential equation satisfied by the kernel is
always difficult to be integrated in  a finite form . For Lames
differential equation

d2Y  — In (n+l)lesn 2x+
dx2

we have for the kernel K(x,

_   n (n+ 1 )  K

a$a (1—$ ) =
where

sn 2  X + °

2 2
For Whittaker's differential equation

d 2 y + a sin 2x  dY + (19 —Pa cos 2x)y= 0,
dx2d x

w e have for the kernel
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2 
 0 2 K

 ( l e — ti
aK 

 +paK---=oaeft a$' 3)2

which may be transformed into

2  3 2 / 7  +{(P+1)a—   1   u.2 $72}V=0,
3;3)2 2

This is  a particular case of that of Hill's equation.
Generally when the function under the integral sign does not

need necessarily to be equal to the function w hich w e w ant to
represent by the integral formula. Now let

L. (y) — au
c r Y  + ai d n - 1 Y  + + any = 0,

(y) ( - 1 ) n  d 4  ( a
"  Y )  + (— n-j1 ) n - 1  d  ( a 1  3 ')  + + a„y  = 0,

d.xn dx"-1

M n (z)-- 6,  d m z + b,  + + b „,z  0 ,
d0".d t 1 i

1)"" d " 1 - 1  ( b i +  +  b z = 0 .9 0 - 1

Let the kernel satisfy the partial differential equation

K (x, 0)1= M0 {K(x, O)},

then in case of periodic integral, we have

y (x) K(x, 0)z (0)dO

where y is  the integral of Ln (y) = 0 ;  z  tha t of ilig (z)=0.

For Example let

L.(y) — 14 +x  
d y +x 2y =0,

dx2d x

d2zM 0 (z )= - -

then the partial differential equation satisfied by the kernel K(x, 0)
becomes

,,a2K+ x a2Kx- + x  - K + =0,ax- a x ao2

14(Z) =- 1)"' (kZ) 

( 9)
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and

'(x) =  I t K(x, 0)z(0)d0.

Under the assumption of the periodicity, z (0 ) must be constant,
say 1. Putting t= cos 0, (9 )  becomes

0  ac aw a rc arcx-
v

  + ( i— t-) + x - -  t +x-0K =0.

If w e put x =e ', (9 ) becomes
avc a 2 K+ +e-r'K= O.

ao,

This is the equation well known under the vibrating membranes
with several boundary conditions. Here we shall solve simply
by the seperation of variables. Putting K= X (x) '9(0), w e have at
once

x2  d'X dX + (x2 - m 2 )X =0,
dx

d2 0   + m 20_ 0 9

der
where m2 is a constant. As the general integral, we shall have in
form

K= E (A „J„,(1) +B.1-„(x)) (a„, cos m0 + b„, sin m0).

If we assign the arbitrary constants so as

K - J o (x) - 2 J 2(x) cos 20 + 2 J., (x) cos 40 -
and = cos (x cos 0),

then we have the well known formula prov ided À  -

27r'
1 "Mx) = cos (x cos 0)c/0

By the differentiation under the sign of integral, we may have the

general formula, 9i +   1   )> 0,
2

1 x- "J„(x) = sin2"0 cos (x cos 0) dO
2n + 1  , . / 7r H (n -  -

2


