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The authour has obtained with M. Yamaguti a theorem on
the existence of periodic solutions for nonlinear differential equa-
tions by a simple method. 1 ) Now we consider the natural exten-
sion o f this method to nonlinear systems. Recently D. Graff'
has proved the existence of periodic systems for a type of nonli-
near circuits. H ere w e w ill show a general principle which gua-
rantees the existence of periodic systems for this type of nonlinear
system, i. e.

+A (xi ) +  (x,)= p, (t) ( i =  1, 2, ... , n) , (1)

where Lii = const., L ,  E  L 0 > 0 , when I I  + I E. 1 + 0,

pi(t) pm+ (0) , T p i (odt-=o, ( i =1, 2, ... , n), and the functions
çoi (x i )  are continuous and moreover the latter fulfil the con-

dition of Lipshitz,3 ) and p,(0 are continuous.
And, as examples, we will show Graffi's example (example I)

and another of van der Pol's type (example II).
The principle is as follows :
THEOREM . The system (1) possesses at least one system of

periodic solution (x,(t),...,x„(t)), (x,(t+w)=-- ---= xi (t)), if the following
conditions are fulfilled,

sgn xi • soi (xi) > 0 f o r  xi I > q, 0,(x ,)=S 50,(x,)dx,--+ 00,0
(1 x, Hoo), n) .

ii) there exist two constants ro and  e  such that

A (x ; t) 4 ) =E L i v1(x,) [Fi (xi ) —Pi (t)] e(> 0)

for N/x 2 + . . . + 4  _ r o , w here F 0 ( 1 , ) - - - - r o i f i ( x , ) d x i ,  P ( t ) = p(t) dt
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and
11

(4 )  • (L„)= (Li i )  • cri.o= 1
. = (e).

PROOF. Put

I- I
— Pi (t) .

Then the system of equations (1 ) is changed as follows :

= E  4 y l — Fi(XJ)+
P (t)

(2)
(Xi) •

Now consider the quantity,

P(x„ x.; Y.) P ( x; y) = 111 3YiY i / 2 +±(0,(x,),

then  d   P(x(t) , y(t)) = — o(;) 1  + 0  (xi) [EL., Pi (xi)dt

+ PA O  11 (Ai) • [Fi(xj) - Pi (0 1-= - A (x ; t).

The hypersurface P(x  ; y )=C, (we denote this by SO ,  encloses in
the 2n-dimensional space (x„...x., ,  y.) a region .9) homeomor-
phic to the interior of a sphere.

d If A (x ; t) 0, the proposition is true. In fact, we have
dt• — A(x ; t)_< 0 for every trajectory which issues from a point on

S „ therefore this trajectory never goes out from .55 at this point,
therefore every trajectory issuing from a point of .55 remains in
that domoin for increasing t.

If M in  A (x ; =  — m(m -

,  0 ) fo r  I x I < ro,  it happens that
d P — — A (x  ; t) is positive in I x  <  r o, therefore a curve (x (t),
dt

y (t))  which issues at the time to from a point of the hypersurface
S , for I x(to) I < ro may pass through the exterior domain of S, for
t> to.

But we shall see as follows that this curve will soon enter into
• and this curve remains bounded. The proof is as follows : we

choose R o sufficiently large (for example R o > 1'0(1+ 6  m  ) ,  and6
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hereafter consider in the domain I x I < R0 in the x-space. Our as-
sertion is to prove that every solution (x (t), y (t)) which issues
from a point (x(4), y(t0 ))ES,, where I x (t0 )  < ro , and passes through
the exterior domain of S .  will again intersects S. fo r I x(t) < R0

and enter into and (x (t) , y ( t)  is bounded for t >  to,  if C is
chosen sufficiently large.

To prove this, we change the coordinates Y., by

I 1 ( ) ( Yi

Then the equations (2) are changed as follows :

17 0— E 4 ( F i —pi ) =17 ,—  (x, t)}

-  T . i i  5 0 i  (X i) .

The hypersurface is defined as
1  n 175 +E 0 i (x,)=C.
2

If C  is chosen sufficiently large, for I x ! <R , max (I Y11,..., I Y
on S . becomes uniformly large. Taking into account the fact that
00(x , t) (i=l, 2, ..., n )  are bounded for I x I <R o , we see that, if C
is chosen sufficiently large, the trajectory (x (t)) in the x-space
corresponding to the curve (x (t), y (t)) which issues from a point
of S .  f o r  I x (4)1 < ro will pass through the domain I x I < R0 in
sufficiently short time. In fact, for every point (x, Y) on S , one

E
L °

1(Xi)
o f Y , Y r, must be sufficiently large, while — —  '

dx,x 17 0— 01(x, t)
8shows that i11.

7' s sufficiently small for such a trajectory, where
Y,„

a is the variation o f 17 ,7, corresponding to the part of trajectory
such that Ix (t) < Ro . Therefore, taking account of
(x , t), we see that the point (x(1)) will pass through the domain
ix  <  Ro in sufficiently short time.

It follows that the variation 8Y  is sufficiently small, therefore
the direction cosines of the curve (x,(t), x 2 (t), x . ( t ) )  are almost
constant, that is the curve (x (t)) behaves like a straight line, i. e.
dx , +  (s) (i=1, 2, ..., n )  E al= 1 , ei a r e  uniformly small,ds 

where s  is the arc length of the trajectory (x (t)) in the x-space.

(3)
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Then we consider the variation of P along the trajectory

aP=S dP  dt =$P/s ds= d s +  P /  d s .
dt 1.(t)! <>•) ro<1,(t)1 STRo

In the second member, the second term is negative and the first
term may be positive. But we easily see aP negative.

In fact, consider the ratio of the two functions to integrate,

P /§ in 4(01.5_4 _  P i n  x I <  ro in ro< I x  <R0
1-)/  in rox ( t ) ; Ro l P in ro <  Ix i <Rol § in IA L - 70

taking into accout the fact that the second factor is nearly equal
to 1, and ( P in  x <  ro ) m ,  (Pin ro< I xR 0)_<—s, we see
that the ratio is less than  m  x  2 .  Secondly the arc length of the

part I x (t) I < ro is less than 3ro, because the trajectory behaves
like a  straight line, and that of the second term is greater than
Ro —ro , therefore we see that

iv (t) i<R0
d s : I P/§ dsl...< m -2-  3 r I) —   D x 6.  m  .

_<ro Ro—ro 1 1 0 ro

As we have chosen Ro so as to let this ratio be less than 1, we see
that 8P <O.

Now we shall consider the continuous mapping T:
(x(t„), (to)) - -  (x ( 1.04- (0 ) , Y(t0 - F(0)), (o) is the common period o f p,
(t)), where (x(to+m), Y (to+ w)) is the point of the trajectory at the
time to + co corresponding to the initial value WO, y(to) ) .  We
shall prove that, i f  (x(to ) , y (4)) E S , the image (x(to +w), y (to + (0))
belongs to

We shall prove this by contradiction, so we suppose that the-
re exists a point (.1,(t„1- (u) , ( . 0 ) )  not belonging to .5), in this
case the initial point ( x ( t 0 ) , Y ( 0 )  fulfils either i) x  (0 1  >R o or
i i )  I x(to ) I Ro

In the first case, if we take e(> 0 ) sufficiently small, we have
x(to+g) I> Ro and that (x(to +E), y(to +g)) E 50 (because at the point

x(to)  such that x(t0 )1> R o . we have 
d

 P l  — e ), therefore there
dt

would exist a  time 7  between 10+e and to + w such that (x(r) ,
Y( 7 )) ES,,, to + e <r_<_to + ( 0  and th a t  (x(t), y(t))E-SD, for to -t-€ t< z - .

On the other hand, we should have I  x(7) I <ro (as we have
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—
d  

P >  0 at this point), therefore by tracing the trajectory in thedt
reverse sense for time, and taking account of the relation 4P < 0
(which we have just obtained by the above analysis), there would
exist a time r' between to + s  and 7 such that

(x(r'), y (r ') )4 5 ). (that is, lies in the exterior domain of Sc ).
This contradicts with the choice of 7. In the second case, i. e. if
x (to) < Ro, by the above analysis, we can choose e (> 0) such

that I x(to + s) > R „ where 0<.  < (0, and that (x(to + s), y (to + s))
OD. This situation is entirely the same as 1), thus in both cases,
we meet with the contradiction.

As we have proved T (S ,)c (T (S„) is the image of S. by
the transformation T ) ,  and as the mapping T  is topological, we
have finally

c

As the closed domain -SO is homeomorphic to 2n-dimensional
sphere (i. e. X  _< 1), by applying Brouwer's fixed point theorem,i=1
we conclude that. there exists at least one fixed point, that is

(x (to ) , y (to )) = (x(tû w ) , y ( t o +a))).

Therefore the trajectory corresponding to this initial value
(x(to), y (t0 ) )  must be periodic.

Thus we have finished the proof of the theorem.

Example I. Graffi's example
The system of differential equations is as follows :

(L;i 1 +MX 2 +f (x 1 ) i 1 +v 1 (x1) =p,(t), 1 L, ,  M > 0, M">

+L;i2+f2(x2)i2+ 2(x2) =P2(t). pi(t)

where F l(x ') --- Ri, (I + œ ), and  c
'

(1
'
1 )1  (1  x , H  co), (R„

C, are positive).
If the condition

R ,  R o — R ,  4 _ .4) 2  ) 24L,L, 2( m
C, C ,  I

(4)

be satisfied, the existence of at least one system o f periodic solu-
tions may be concluded.
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PROOF. We have only to show that the condition i i )  of the
theorem is fulfilled.

I  L 2  

Here (Li i ) = in, (Li ) = °
A 4 -' ,  (a—L1L2 — A l),

\ a a
A (x„ x2; 1

T[L.2501(x,) —  (t ) 114S0 1(x) I — P2(t)}

— M9 92(2) Fi(xl) —  (t) } + LIS 2(x2) F2(x2) — P2(t) ti
1  { L o R  x  m (R 2  R1 „ 2

3
±

Ci
)X1 X27

- 1-.1 e2L  1 , 4 1

+ 2 2(x ; x1x2 + 2,(x ; t) x 2
2 ,

{I x, I—> co
where 2, (x ; when

I x2 1— * co
Therefore by the relation (5 ) ,  we can find s, and L  such that

A (x ; t )>  s , for I x, I L  (i= 1 , 2).

On the other hand, from the hypotheses that F i (x,)—* œ,
F œ (z -  c o )  ,  and P i(t )  are bounded, we can find L' (>_ L)

such that

A (x ; 6 for I xi I L ,  x , I L'.

for I x2 I L ,  x ,  I L'.

Therefore for Vx 1
2 + 2L ', we have A. (x ; t) E. Q. E. D.

Example II. The system of vUn der Pol's type.
The system is as follows :

L 1
.

1 + +kixi=p,(t), M> 0, L,L,— M 2> 0 \

L Y 2 ± P 2 (X 2 2 — a 2 ) i 2 + 0 2 = P 2 ( t ) ,  ( 1-t,> 0, ki> 0, Pi (t+

If M  is sufficiently small with respect to  L„ L , or if L„ k,
differ slightly from L2, /12, k2 respectively, that is, if

M < j
4/ L 1L0k1ku 1 i0• Min (  L 2 p ,k , L1k2P2)

Pik2 P2ki

we can conclude the existence of at least one periodic system.
PROOF.

(5)
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1 A (x  ; t) = x13 P ia '— x12 P , ( 0 }  +
3 2

1= [Lok 1ti,x 1
4 — M(k1p,x1x23 + kP1x, 3 x2) + L,k 2p 2 x ]+ R (x  ; t ) .

38 -

T o  asssert that A (x ; s(> 0 )  for both sufficiently large
I x1 1) x 2  I ,  we have only to show the first term is positive for

x, I + Ix0 I> L (> 0 ) .  For this purpose we consider the following
„ratio for I x, I + I x2 I> 0, Lk +- -  -  , by easy compu-

k1p2x1x2  + kp 1x1
3x0

tation we have,
>  ( A /L 2k ,p ix1 2 + L,k ,,u 2x2

2 ) 2 >  LA 1122x1 5 + L 1 k 2 1 i2  x 2 2  

2 k1i0xx03 + 0412 + P2k1x02

-i/L1L2It3tt2k1k2.

A s th e  first factor of this last 'member is greater than Min
VL 2p1k1 N/Lik2Na n d  b y  th e  hypothesis (5) , the ratio

Pik2 112ki
L,k,p,x,4 + LA42424  > (1 + 0 )  , (8> 0 ) .  By the same reasoning as

M(k1p2x1x:+ kil-t1x, 3x2) —
example I, we can conclude A (x ; t) (> 0) f o r  x I> ro, properly
chosen. Q. E. D.

Footnote.
1) S. Mizohata and M. Yamaguti : On the existence o f periodic solutions of the

non-linear differential equation, a (x ) • + (x ) --p(1). (This Mem.).
• 2 )  D. Graffl: Forced oscillations for several nonlinear circuits. p. 262-271. Ann.

of Math. 54 (1951).
3) These conditions are only sufficient conditions to guarantee the unicity of tra-

jectories in the phase space in which we will consider.
4) Hereafter we denote ( x 1 , - - , b y  x ,  and Vx 12 + •• • by . We should

remark that when we write fo r  example 0 (x ) ,  it means tp(x,, •••,x„) defined in the
(x,, •••, x„)-space (we denote this briefly by x-space), on the other hand when we write

( x i )  it means a real function defined in — 00<xi< + c/o.


