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1. Let ¥ be an ordinary or a partial differential field (d.{.)
of characteristic zero, & a differential extension field (d.e.f.) of
%, and y,, -+, ¥, n independent differential indeterminates over @.
The ring of differential polynomials (d. p.) of y,, ---, ¥, over § will
be denoted by R=% {y,, ---, ».} and that over @ by S=8{y,, ---, y.}.

The derivatives of y,, ---, . (y—derivatives) are supposed completely
ordered.

Let p be a nontrivial prime differential ideal (d.i.) of dimen-
sion  in R. If y,,---,y; form a parametric set for p and if y,,,,,

---,y;, are the others of the y’s, then p has a characteristic set
(4, -+, A,) such that the leaders of the A, are derivatives of y; ,,,
---,¥; and that some derivative of each y;,, (1 <k<n—7) appears
as the leader of one of the A;. Such a characteristic set (4, ---,
A,) will be called a characteristic set of p with respect to the

parametric set (y;, -, ¥, ).
THEOREM. The extension ideal Y& is a perfect d. i. The
dimensions of the essential prime divisors ,, -+, B, of pS are all

equal to the dimension of p. Every parametric set for p is such a
set for every B;, and a characleristic set of every ; with respect to
such a parametric set has the same leaders as that of p.

For the “ordinary ” case, the assertion about the leaders of
characteristic sets amounts to that the order of every %, is equal
to that of p, and our assertion is equivalent to Ritt’s assertion (Ritt
[4], p. 51). We can prove that the theorem holds true also for
the “ partial” case. We shall prove the theorem for the general

1) For the terminologies of this paper, see Ritt [4] and Kolchin [1], [2] and [3].
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case (ordinary or partial) by means of minute observations on the
relationship between prime d.i. of R and prime ideals of certain
rings of polynomials. The proof could not be made shorter than
the one described below (§ 3), even if we made use of the resolvent
for the general case as Ritt has done for the ordinary case. Our
" method enables us further to obtain interesting results (§4) con-
cerning extensions of the ground field.

2. Let (AY=(A,,---, A,) be a chain in R. If we denote by
wy, -+, ws the leaders of A, ---, A, respectively. then w; is higher
than w; provided j> i, and every A, contains no y—-derivative higher
than w,. Let us denote by v, -+, v, all the y-derivatives which are
not higher than w, and which are other than w,, ---, w,, and consider
the ring =% (v, ---, v,, w,, ---, w,] of polynomials of v, ---, v,, w;,
-, w, over %. If v,---, v, w, -, w, are taken in this order, then
(A) is a chain in §. Ritt has proved® that (A) is a characteristic
set of a prime d.i. of R if and only if it is a characteristic set of
a prime ideal of .

Let (A) be a characteristic set of a prime d.i. p of R and
such a set of a prime ideal q of §. If R is considered as a ring
of polynomials of all y-derivatives over %, then J is a subring of
R, and p is clearly a prime ideal of R. We can see that p=qn .
Because, {A) is a characteristic set either for q or for pnS, and
a prime ideal of & is uniquely determined by any one of its
characteristic sets.

Furthermore, we can prove that, if S, is the separant of A,
(i=1,-,s),

(1) p={An"'1As} : Sl"'ssv

(2) q={A, -, A}o: Si---Ss,
wheve {A,, ---, A,} is the perfect d. i. generated in R by A, -, A,
and {A, -+, A:}. the perfect ideal genervated in § by A,,---, A,. In
fact, if G any d. p. of {4, ---, 4,} : S;---S,, then S,---S,Ge {4, ---,
A} Cp, and Gep as S,, -+, S, are all not contained in p. Thus, we
get {A,, -, A} 1 Si---S,Cp. Conversely, if Gep, every zero of (A)
is a zero of S;---S,G and S;---S,Ge {A,,---, A,} by the analogue for
d. p. of the Hilbert theorem of zeros.® Thus, Ge {4, -, A} : S,

2) See Ritt [4], pp. 107-108. His proof for the ordinary case can be easily
carried over to the general case.

3) For the ordinary case, see Ritt [4], p. 108 and pp. 27-28. We can see easily
that the assertions are also true for the general case.
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--S,, and pc {A,, -+, A} : S;---S,. This establishes the equality (1).
The equality (2) can be proved similarly.”

3. We shall now prove the theorem of § 1, using the notations
of that section.

If © is considered as a ring of polynomials of all y-derivatives
over @ and R as that over {, we see that p& is a perfect ideal of
S, since any prime ideal of a ring of polynomials generates a
perfect ideal for any extension of the ground field. Hence, p& is
a perfect d.i. of &; and this proves the first point of the theorem.

Let (A)=(A,, ---, A,) be a characteristic set of p, and w; the
leader of A, S: being its separant (i=1,---,s). We arrange, as
we have done in §2, all the y-derivatives which are not higher

than w, in a sequence v, ---, v,, Wy, ---, w,. Let §=%F[v,, -+, v,, w,,
---,w,] be the ring of polynomials of v, w over § and S=G{v,, ---,
v,, W, -+, w,] that over &. Then, (A) is a characteristic set of

the prime ideal q=pN . Let the decomposition of 4§ be (=2
n-—--NnQY¥Y, QY (j=1,---,t) being the essential prime divisors of
0§ in §, then QVNJ=q (=1, ---, ). If {, @)=(¥, -, v, o,
w,) is a generic zero over & of QY for any j, then (v, w) is such
a zero over § of q. Hence, QY has a characteristic set of the
form (A?)=(AP, .-, A,?), where A, has the same leader w; as
A, (i=1,--,s). The separant of A, will be denoted by S, (i=
1,---,s). By §2, (A®) is a characteristic set of some prime d. i.
QB(J) of &, and ﬂi(”n\_@s::‘D“’.

Let G be any d.p. of POn---nP@. If (A) is considered as
a chain in &, then there exist non-negative integers ¢, ---, f, such
that S1---S/*G=H mod [A,, -, 4,]S, where [A4,, ---, A,] is the
d. i. which is generated in R by A, ---, 4,, and hence, [A4,, -+, 4]
S the d.i. generated & by A,, -, A,, and where H has no proper
derivative of w,, ---, w,. As GePBY for every j and A,eqC QP c B
(i=1,--,s; j=1, -, 8), we get HeB? (j=1,---,¢). Hence, by (1)
of §2, there is a non-negative integer @ such that (S5,9.--S,®?H)"¢
[AD, ..., A,9], the d.i. which is generated in & by 4,7, ---, 4,9.
By a procedure similar to the one which is used by Ritt [4] p. 30,
we can find a non-negative integer b such that (§."’~--§"")"”I7"=
APPD 4 ...+ A,OP® (PYe@). Some y-derivatives other than v,,

4) See Ritt [4], p. 106 and p. 87.
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-, V,, Wy, -, w, may be contained in H and P (i=1, --,s); all
such y—derivatives will be denoted by v,,1, --,v,, Then, H* and
P9 (=1, ---,s) can be written as linear combinations of distinct
power products of v,,s, -+, v, over § Let C be any one of the
coefficients of the expression for H*. Then, we see that (5@
S.#)*+*C is a linear combination of A4,?, ---, A4,% over 3, and that
(E""---E‘”)“*”ée Q9. Hence, CeQ® since no S is contained
in Q. As C does not depend on j, we have Ce Q®n---NQ¥=
0%, and hence, H"e S CpS. Therefore, (S/---SfsG)*epS, and
S-S, GepS since pS is a perfect ideal. If we write (—;=27ka
(7:€®, G.eR) as a linear combination over R of 7, 7., ---, which
are linearly independent over %, then S;---S,G,.¢p. Hence, G.eb,
and GepS. Thus, we have established the inclusion PN --- N P®
Cpe.

To prove the inverse inclusion, it is sufficient to show that
any d. p. G of p is contained in every B*. For any Gep, there
exist non-negative integets ¢, ---, £, such that S;/---S/G=H mod
[A,, -+, A,], where H contains no proper derivative of wy, ---, W..
And, by the proceduae which was used above, there are non-
negative integers @ and b such that (S,---S,)*""H*=A,P,+---+ A,
P, (P;eR). Let ()=, --,7.y be a generic zero over & of PV
for any j, and denote by (v, ---,v,, ®, -+, w,) the values of (v, -,
v, w;, -, w,) for (), then (v, w) is a generic zero over & of Q¥
and such a zero over § of q. Now, H and P; (=1, ---,s) may
contain some y—derivatives other than (v, w) ; all such y-derivatives
will be denoted again by v,.1, -, v,. And, we write H*=31L,V,
and Pi=>Q.,V, for every i (L, Q.<), where V, Vg,k---are
distinct p(I;wer products of v,.y,--,v,, Then, we get in § the
equation (S;---S,)**"L,=A,Qu+ -+ A,Q, for each k. If we sub-
stitute (v, ), for {v, w), then (S,---S,)**" L, vanishes, since A; are
all contained in q. If any S; vanished for (v, ), Q. would contain
S;, and so would do =2 N, and this would be a contradiction.
Hence, L, vanishes for (¥, »), and L,e QY. Therefore, we can
find non-negative integers e, ---, e, such that [[P9...T9 [, is a
linear combination of A, ---, A,? over §, where I, is the initial
of A, (i=1,---,s). Thus, we can get a power product J of I,?,
..., I such that JH* is a linear combination of A4,?,---, A, over
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€. Hence, JH*ePP. As I is not contained in P, we get
Hep™?, Since A;eqCc QY CP?, we see that S/1---SAHGePP. As
we know that S; is not contained in QP=R’NT, S; is not con-
tained in P». Therefore, Ge¢PYP. Thus, we have established the
inclusion pS P N--- NP®, and the proof of pS=PLN--- NPD s
completed. As Q©, .-, Q@ are the essential prime divisors of ¢S,
it is clear that PO, ---, P® are such divisors of pS. The other
assertions of the theorem are already shown to be true in the
course of the above description.

_ 4. In the preceding section we saw that pS and q§ have
corresponding decompositions. From this fact, we can deduce
somé properties which, with the other results described below, are
sufficient to treat various problems concerning extensions of the
ground field. Henceforce, our development is deeply due to.Weil
[5] (Chap. I). Many of our propositions have analogous proofs
as those of Weil [5]. Proofs will be given only for the proposi-
tions which depend essentially on the consideration of properties
peculiar to d. p. We suppose that various d. f. and elements (dif-
Sferential quantities), which will be treated together in the rest of this
paper, ave all contained in a common d.f.

Prop. 1. Let & and 9 be two d. f., and § a common differ-
ential subfield of & and . If every (finite) set of differentially
algebraically independent elements in & over §§ is still such over 9,
then every set of differentially algebraically independent elements in
S over ¥ is still such over ®.

When three d.f. §, & and $ have the property described in
prop. 1, we shall say, following Weil, that & and $ are differeren-
tially independent over . It is easy to see that this notion is surely
broader than the independence in the algebraic sense. Therefore,
if % is a common differential subfield of two d.f. & and 9, and
if & and $ are linearly disjoint over &, then they are differential-
ly independent over $.

Propr. 2. Let Fbead. f., S ad ef. of ¥ and (& -, 0.)
a set of elements. Then, we have dimg () = dimg (L) (we mean by
the dimension, as in §1, one in the differential sense), and the
equality dimg(c) holds if and only if & and F(¢) (the d. f. which
is obtained by adjoining to & all the {—derivatives) are differentially
independent over .
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Pror. 3. Let ¥ be a d. f., and (y,, -+, 1..) and (L, -, L.) two
sets of elements; and let F{y) and ¥{C) are linearly disjoint over
%, Let v, -, Yo, 2., -+, 2, ave independent differential indeterminates
over ¥, and put R=F{y, -, ¥}, S=F {2, -+, 2.} and T=F{y, -+,
Yo 21,y 241 5 and let p, q and P be the prime d. i. defined by {7),
(¢) and (3, &) in R, S and T respectively. Then we have P=(p,
3.

Prop. 4. Let F bead. f, S ad e f of § and (3, -, 7.) a
set of elements. Let ¥(7y) and & be differentially independent over
%. And let F' be the d. f. consisting of all those elements of ®
which arve differentially algebraic over §. Then §'(n) and & are
linearly disjoint over . .

ProP. 5. Let F be ad. f.,and ® a d. e. f. of §, and (3, -,
7.) a set of elements. Let y,, ---,v, be independent differential in-
deteriminates over ®, and put R=F{y, -+, .} and S=&{y, ---, y.}.
Let p and P be the prime d. i. defined by (3) in R and in & ve-
spectively. Then yS=T if and only if F(y) and O are linearly
disjoint over .

Proof. We determine v,, -, v,, w,, ---, w,, I, and § by means
of a characteristic set (A, ---, A;) of p as we have done in §3.
(n) is a generic zero over ¥ of p; we denote by v, ---,v,, @, -, w,
the values of »,,---, v,, w,, ---, w, for (5). Then, (», ) is a generic
zero over ¥ of q=pn. Since ¢S is a prime ideal of § if and
only if the two fields §(v, ---,v,, @, -, »,) and & are linearly dis-
joint over ¥ (Weil [5], p. 15), this is the necessary and sufficient
condition for the equality pS=. We shall prove that the condi-
tion is equivalent to that ¥(») and ® are linearly disjoint over {¥.

If F{») and & are linearly disjoint over %, so are clearly
¥ (¥ ) and G. Conversely, suppose that (¥, w) and @ are linear-
ly disjoint over . Now, assume that % (») and ® are not linearly
disjoint over . Then, there must exist polynomials B,, -, B, of
v, w and some finite set 3/, 7”, .- of y—derivatives over ¥ which
are linearly ir}dependent over ¥, and which are linearly dependent
over ®; let grkB,,=0(r,ce(55, not all zere). If we replace (v, o,
7', 7'',-+) by the corresponding y-derivatives {v, w, y', ¥",--), and
if we get from B, ---, B, polynomials C,, ---,C, of (v, w, ¥, ¥",--+)
over ¥, then >17.C, must be contained in p&, since p& is, by our
hypothesis, equal to P with (») as a generic zero. Let all y, be



Extensions of the ground field in the theory elc. 263

written as linear combinations 7'k=§}ukhe,l(u,c,.e%) of a set (¢) of
linearly independent elements of & over %. Then > Z}u,me,,C €psS,
and we must have ZuMC ep for every Ak, and Zuk,‘Bk must be
zero. Therefore, all =, must be zero, and so must be all 7.. Thus,
we must be led to a contradiction. This proves that the linear
disjointness of ¥ (v, w) and & over ¥ implies that of ¥(y») and &
over .

ProOP. 6. Let F (7, -+, 7y be a differentially algebraic extension
of ad. f. & and S ad. e f of ¥. If ¥ is differentially alge-
braically closed in &, then F(y) and & are linearly disjoint over .

" Proof. Let y,, ---, ¥, be independent differential indeterminates
over @, and put R=%F{y, ---,»} and S=B{y, ---,»}. Let p and
P be the prime d. i. defined by () in R and & respectively. By
prop. b, it is necessary only to prove the equality p&S="2.

Let (A,, -, A.) be a characteristic set of p, and let us use
the same notations as in the proof of prop. 5. Since P is one of
essential prime divisors of p&, P has, by the theorem of §1, a
characteristic set of the form (A4,, ---, A.), where A, has the leader
w; as A, (i=1 , s). If v, v, are 1ep1aced by v, -, v,, we get
from A, and A, polynomials B, and B of w, over ¥(») and over
®(v) respectively. Ritt has proved” that B, is irreducible over
§(v) and that so is B, over ®(»). While, B, and B, have a com-
mon root ®,, hence B, is divisible by B, and the coefficients of
B, are algebraic over {(»). Since v, ---,v, are algebraically inde-
pendent over &, and since § is algebraically closed in ®, F(v) is
also algebraically closed in ®&(¥). Therefore, the coefficients of
B, must be contained in F(»), and consequently B,=§1 except for
a factor in §(v). Hence, we may conclude that A,=A, for they
may be supposed irreducible polynomials of v, ---, v,, w, over ¥
and over ® respectively. In the next place,.replacing v,, -+, v,, w,
by v, ==, ¥, ®, we get from A, and A, polynomials B, and B, of
w, respectively. And, B, is irreducible over ¥ (v, »,), and so is B,
over &(v, w,), as Ritt has proved.” Since they have a common
root w., B. is divisible by B,; and the coefficients of B, are alge-
braic over ¥(v, w,). While, F(», »;) and © can be easily seen to
be independent over % in the algebraic sense, and consequently

5) See Ritt [4], pp. 88-90 and § 2 of this paper.
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F (v, w,) is algebraically closed in &(», w,). Hence, the coefficients
of ;B_;, are contained in F(», »,), and consequently B,=B, except
for a factor in F(», w,). As it can be easily proved that there are
non-negative integer @ such that I*A,=PA, (P: a polynomial of
v's, w, and w, over ®), where I, is the initial of A4, we may con-
clude that A,=A, because they may be supposed irreducible
polynomials of y—derivatives. Continuing similar considerations, we
can conclude that A,=A,(i=1, ---,s). This establishes the equality
pS="4.

PrOP. 7. Let %, O, (91, =y 7m)s D1 s ¥), R, S, p and P be
as in prop. 5. Then, YS= for every differentially algebraic ex-
tension field & of ¥ if and only if ¥ is diffeventially algebraically
closed in (7).

Proof. By pryp. 5, pS is a prime d.i. for every differentially
algebraic extension field & of ¥ if and only if ¥(y) is linearly
disjoint over & with every such &. If ¥ is not differentially alge-
braically closed in $F(y), it is easily proved that () is not
linearly disjoint over § with at least one differentially algebraic
extension field ® of . Conversely, assume that § is differentially
algebraically closed in & (y), and that & is any differentially alge-
braic extension field of §. Let (£, -+, Z.) be any set of linearly
independent elements of & over §. Applying prop. 6 to the fields
FE), ¥ and F(n), we can see that F(l) and F(») are linearly
disjoint over . Consequently, (£, -+, &,) is a set of linearly
independent elements over ¥<{7), and & and (») are linearly
disjoint over .

PropP. 8. Let F bead. f., @ ade. f of F and (y, -, 79.) a
set of elements. If ® is differentially algebraically closed in & (z)
and if & and F(n) are linearly disjoint over F, then ¥ is differ-
entially algebraically closed n T (7).

PropP. 9. Let Fbead. f,S ad e f.of §Fand (9, ,7.) a
set of elements. If & and F(n) are differentially independent over
%, and if § is differentially algebraically closed in §(y), then &
and ¥ (7) are linearly disjoint over ¥, and & is differentially alge-
braically closed in & (y).

Prop. 10. Let ¥ be a d.f., and (3, -, pm) and (&, -, &) two
sets of elements. If ¥ is differentially algebraically closed in (),
and in F(C), and if F{p) and F{&) are differentially independent
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over ¥, then §{y) and F(L) are linearly disjoint over §, and ¥ is
differentially algebraically closed in F%{y, ¢}.
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