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Introduction. - By an integral domain we mean a commutative
ring R which satisfies the following condition: R satisfies the
ascending chain condition and possesses no zero-divisor =£0. A
local ring is a commutative ring R with an unit element in which:

(1) The set p, of all non-units is an ideal in R ;

(2) Every ideal in R has a finite basis.

A local ring R is called a local domain if the ring M possesses
no zero-divisor.

Let R be an integral domain and K be the field of quotients
of R. It is conjectured by Krull [2, p. 108] that the integral
closure R of | in K is an “Endliche diskrete Hauptordnung .
If ®: R==(0), R is a Noetherian ring and also Krull’s conjecture is
valid [2, p. 105]. Therefore it only remains that his conjecture
should be proved in the case where R: HW=(0). When R is a
1-dimensional local domain, it was already proved by Krull 1].
Hence it is clear that Krull's conjecture is valid provided that an
integral domain R is “einartig” [2, p. 109]. The purpose of this
paper is to prove that Krull's conjecture is valid in the case where
R: R=(0) and R is not “einartig”.

In the first part of this paper we shall prove that Krull's
conjecture is valid if the completion R* of a local domain R
possesses no nilpotent element. The second part is devoted to
the proof of Krull's conjecture in the case in which R* has nil-
potent elements, and we shall prove that Krull’'s conjecture is
generally valid in an integral domain. In the third part we discuss
the sufficient condition that ®: R==(0) holds for a local domain.

In this paper we denote the completion of a local ring R by
R* and the integral closure of an integral domain € in the field
of quotients of & by &.

Numbers in brackets refer to the Bibliography at the end of the paper.
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Part 1

Let R* be the completion of a local domain R, then we have
the following two possibilities:

(1) R* has no nilpotent element ;

(2) R* has nilpotent elements.

First we shall prove, in the case (1), that Krull's conjecture is

valid. If ®R* has no nilpotent element,
O)R*=M*NM*N...nW*N...nD,* [5, p. 254].

where M, is the prime ideal which is not imbedded in any other

prime ideal of the zero ideal in R*. Let &* be the ring of quo-

tients of R*, then we have the following Lemmas.

Lemma 1. 9M,*R* is a prime ideal in &* and V,* /* N R* =D, *
(1=1,2,3,..., h).,

Lemma 2. ‘rj'mz,*ﬂ*=(0)9*

Lemma 3. 9*&* is a maximal ideal in &* (i=1,2, ..., h).

Lemma 4. S*=&*+&*+...+&*+...+&* (direct sum)
where KFA=KXK/M* K> (i=1,2, ..., h) [6, p. 43].

If we denote the unit element of &:* by &* it is well known
that e,-*s,*={2* 2i=] and ¢*+e*+...+¢*=1 [6, p. 43].

Lemma 5. R¥ e R*/M* (1=1,2,..., h).

Proof. Let «* any element of R*. Then, by Lemma 4,
a*=}hjui* where «* e R* and «,*=u*e;*. Hence the correspondence
u* —:Zl*s,-* gives the ring homomorphism of R* onto R*e;*. But
since R*e =~ &*/P,&* by Lemma 4, «*=0 (mod. M,*) by Lemma
1 provided that «*e*=0. Hence by the well-known theorem, we
have R*e*= R*/Wi,*. This completes the proof.

Lemma 6. If we denote the integral closure of R* in the ring
of quotients &* of R* by R*,

R*=R*+ R +... + Re*+... + R, (direct sum)
where R*=R*e* (i=1,2,..., k).

Proposition 1. If we put R*/M.*=£;* and denote the integral
closure of £;* in the field of quotients of £,* by £2,* then £,*~W%R*
(i=L12,...,h).

Proof. If we put M*&* nR*=M*, it follows that M,* is the
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prime ideal of R*. Similarly to the proof of Lemma 5, we have
R*e* ~R*/M*. Hence R*=R*/M*. .

We shall now prove that R*/M*=92.*. First we prove that
R*/M* C 2*. For, let W=a/r be an element of R* where @ and
7 e R* and 7 is a non-zero-divisor, then

Wree W'+ ..+ W+ ...+ ey W+ c,=0, where c; € R*.
Let W, ¢ be the residue classes of W, ¢; modulo M,* , then
Wi e W+ oo+ W™ o 4o W+, =0, where ¢ € 2 ¥

On the other hand, 7W=a in ®*. Hence 7rW=a, where 7, a € 9.*,
Therefore We 2. This implies that R*/M, S 2*.

We now prove that Ji* ‘M*2 82* In fact, let b/a be an
element of 2%, where a, be £.* then n(b/a) e 2* (e=1,2,3,..)
where # is a certain element =0 of £,*. The above argument
implies that n(b)* =(a)7,, where 7, ¢ 2*. Let n, a, b; and e be
elements of ®* whose residue classes modulo W,* are #, @, b and
7, respectively, then n.b°=a;7. (rnod M*). Let 4 $0 (M) and
=0 (Em* NPL*N...NME N *J)km NnW,*) (z—l 2,..., h). Put-
ting n= ZIfn,, a= Zl a;, b= 2,) b, and 1—2217.“ then nb*‘—a’r
—0. For nb—a’ r(_—Ajnj() b) (4a:) 27, (‘JJZ,*) hence nb*—a‘7,
=" (mbs—asr.) (W*) (j=1,2,..., k). This implies that nd
—a'r,=0 (M*) (G=1,2,...,h). Hence nd’—a'7.=0. But since a
is a non-zero-divisor in R*, we have n(b/a)=7.. Hence b/a ¢ ER*
If we put b/a=W, we have Wa=5b. Hence Wa=b, where W is
the residue class modulo A*. This implies that 2% CR*/M.*.
Thus the proof is completed.

Colollary. R*=Q2* 4+ 0>+ ... + 2%+ ... +2.*

Proposition 2. £;* is an “ Endliche diskrete Hauptordnung ”.

Proof. Since #.* is a complete local domain, if x,, %, ..., 2.,
be the system of parameters for £* [3] and R be the coefficient
ring in £;* then £,=R{x, %, ..., x,} is a p-adic ring and £,* is a
finite £,-module [4, Lemma 15, 16]. Hence 2,* is an * Endliche
diskrete Hauptordnung” 2, p. 133]. This completes the proof.

Proposition 3. Let R be a local domain and ‘R be the integral
closure of R in the field of quotients of R. If no nilpotent ele-
ment exists in the completion R* of R, then R is an “ Endliche
diskrete Hauptordnung ”.



252 Yoshiro Mozri

Proof. Let «¢ R, then, since R*e,*=2,* by prop. 1, « R*e,*

is an intersection of symbolic powers of associated minimal prime
_ . — Iy
ideals in R*e* by prop. 2. Now, let eR*e,= N g7 be an irredun-
=1

.. — L=,
dant primary decomposition of «R*e* in R*e,*. If we put
Q=R+ R+ + R+ o5+ R+ - + R,
then Q% is a primary ideal in R* by the well-known theorem.
Hence «R*= n@;. In fact, nQ,,— n(n@;‘;): NRF+RN*+ ..
J i

+§}{f” 1+//§}\ *+§RH, 4 ...+ S]_{,,*)=¢A§R,*+ag{2*+ e+ (L?{,* +... 4+ u&}—{h*
=uR*. But we see that QF is a symbolic power of prime ideal
of ®*. For since it is clear that Q% is a primary ideal in 571*, if
the associated prime ideal of Q% is denoted by P, then PF is a
set of nilpotent elements of R* with respect to Q% Hence Pr=
R*+R*+... +p5+...+R,*. where pf is a prime ideal of R,*
belonging to the primary ideal 0% Since %=p5® by Prop. 2,

Q5=PF°. If we put Q NR=qs, then q,, is a primary ideal of
R and the prime ideal p;, belonging to q.; is a minimal prime ideal
in R, and «®R= nq,. For, putting «A=p, where A ¢ R* and B¢ R,
then A ¢ K (field of quotients of R). But since R*nK=%R, 4 ¢ K.
Hence «R*NR=uR and also «R=ngq,. It is clear that q; is a
primary ideal belonging to the prime ideal P n®R=p,. Hence p,
is a prime ideal belonging to «R. If we assume that «R= mi, is
an irredundant intersection of ideals gy, we have (p,;)"'>R. Hence
p,; is a minimal prime ideal in R. For, if we assume that p,, is
not a minimal prime ideal of R, then (p;;)~'(p;)=p;. Hence, if
x€(p,)" and x ¢ R, we obtain xp,;=0 (p;;) and also 2*p,=0 (p.,)
(N=1,2,...). Hence there is an element p(¢R) such that px”—O
(ER) (N=1,2,3,...). But since x ¢ &*, it follows that x= Zx; and
psZp by Lemma 4 and Lemma 6, where x,¢8&,*, pie N, * ' Hence

(2/14) (in")—O(ER*) Therefore paf=0(R*) (N=1, 2, 3, ...).
But since R* is an “ Endliche diskrete Hauptordnung ” by Prop. 1,
we have x, ¢ N* (i=1,2,...,h). Therefore x¢ R* and whence
x ¢ R. This is a contradiction. Therefor p,; is a minimal prime
ideal of ®. But since qi; is a primary component belonging to p.,
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qi; is a symbolic power of p, Hence R is an ““ Endliche diskrete
Hauptordnung ” [2, p. 104]. This completes the proof.

Part 11

We shall prove the validity of Krull’s conjecture in the case
where R* has nilpotent elements. If the radical of R* is denoted
by ¥*, it is clear that I*®* is the radical of &* and the radical of
R* too. For, let I* be the radical of R*, then I*&*CIT*, since any
element of Z*8&* is integrally dependent on R*. But being I*&*
Cl*Q*, it follows that 7*Q*=1*. Now, let / be any nilpotent
of ®* and let « be a non-zerodivisor of R*, I/« is a nilpotent
element of R*. Hence 1€ «R*. Therefore, if an ideal A* of R*
has a non-zero-divisor, we have 3*27*. Therefore there is a 1-1
correspondence such that */1* ~ 9[* between the ideal Y(* of R*/1*
and the ideal A*>7* of R*. Putting R*/T*=0*, the ring of quo-
tients of o* is &*/L*Q*. For, Rs/I*Re= (R*/1*) 7, where S is the
set of all non-zero-divisors in R* [2, p. 20]). If we set R*/l*=p*,
since W*/T* > R*/1*, we have that o*Do*. But since (R*/1%) g1
RS/ RF=*/1*]*, where S is the set of all non-zero-divisors
in R* 2, p. 20], o*Co*CR*/I*R. Now, let o* be the integral
closure of o* in the ring of quotients of o* then any element A
of o* is expressible as I/7 where I, 7 are elements of v* and 7 is
a non-zero-divisor of o*. Hence

A2y +¢,(I/7)" "+ ...+ ¢, (I/7) +¢,=0 where c, € o*.

Let ¢, I, @ be respectively representatives in R* of the residue
classes ¢, I, 7, then 1" +¢, 1" m+¢,I" 27+ ... 4 €y I7™ " + ¢, 7" =0
(*). Hence (/m)"+c(I/7)+...+Cpy(/m) +¢c,=0(T*R*). But
1*&* being the radical of R*, it follows that //7 is integrally
dependent on R*. If we put [/r=A, we have [=7A. Hence we
obtain 7=7A in :{*/T*. Therefore o* C3*. Since o* < 0*, it follows
that o*=0o*.

If ¢ is an element &, « is a non-zero-divisor in R*. Hence
«R* can be expressed as an intersection of finite primary ideals
containing the radical Z* of ®* by Prop. 3. If «R*=n@Q, is an

g

irredundant intersection of primary ideals ?Q;‘;, we put @;‘;nﬁ=a¢,.
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Then «R=nNqy If we assume that «R= Ngqy is an irredundant
representation, the prime ideal p,; belonging to the primary ideal
Qs is @ minimal prime ideal in R. For, if we assume that p;; is
not minimal in R, similarly to the proof of Prop. 3, (5;,)“3?1,
and (py) '(py) =py. Hence if x¢R, and xe€ (p,;) ", then xp,;=0(p,,)
and also 2"p,;==0(p,) (N=1, 2, 3,...). Therefore there is an element
p(in R) such that px¥=0(R) (N=1,2,3,...). As xe&* if x, p
are the residue classes of x, p mod. *&*, px"=0(R*/i*): Hence
by Prop. 3, x ¢ R*/I*. Therefore x ¢ R*. This implies that x ¢ R.
This is a contradiction. Hence py; is a minimal prime ideal. Simi-
larly to the proof of Prop. 3, we have that R is an *Endliche

diskrete Hauptordnung ”. Therefore we have the following theorem
from the above argument and Prop. 3.

Theorem 1. Let R be the integral closure of a local domain

R in the field of quotients of R, then R is an ““ Endliche diskrete
Hauptordnung ”.

Let © be an integral domain, thenn&, =& (where p, runs over

Po —
all maximal ideals of &). But since &y, is a local domain, (&,,)=

N (@p) (where p runs over any minimal prime ideal of &,) by
PEDo

theorem 1, provided that (&,,) is the integral closure of &,, and (&)
is the integral closure of &,. Hence, since &=n(&,,), we have
©=n(S,) (where p runs over any minimal prime ideal). This
implipes that © is an “ Endliche diskrete Hauptordnung ” [2, p. 109].
Thus we have the following

Theorem 2. Let & be an integral domain and & be the integral

closure of & in the field of quotients of S, then & is an “ Endliche
diskrete Hauptordnung .

Part 111

In a local domain R, we shall discuss the sufficient condition
that R: R=(0). If a local domain is 1-dimensional, namely

“einartig”, R: R==(0) if and only if the completion R* of R has
no nilpotent element [1]. But, if R is not “einartig”, that is, »—

If n is a prime ideal in &, we denote the quotient ring of & with respect to r
by &x.
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dimensional (2=>2), we do not know whether the above argument
be valid. Therefore, when R is n—dimensional (%»=>2) and the com-
pletion R* of R has no nilpotent element, we discuss whether
R: R==(0) be valid.

If R* has no nilpotent element, (0)R*= nﬁmf , where IM*
the prime ideal which is not imbedded in any other prime 1deal
of the zero ideal in R*. The R*=2*4+2*+... 4+ 2%+ ...+ 2,* by
Corollary of Prop. 1, where £,* is the integral closure of R*/IN*
=0

Now we shall prove that ®: R==(0) if a local domain R
satisfies one of the following conditions:

(1) R and its residue field R/p,=/" have different character-
istics,

(2) R and its residue field R/p,=[" have same characteristic
p (including p=0) and [I": ['"] is finite,

(3) R and its residue field R/p,=/" have same characteristic
p>0 and W;* (integral closure of W;*) is a finite module over W;*
where the complete local domain W,* is a ring finite extension of
2% by p-th roots of finite elements of I" (:=1,2,3, ..., h).

Since 2.* is a finite module extension over 2,* in the above
cases (1), (2), (3) respectively, we have £.*: 2x(0) (i=1, 2,
..., h). Now if 7*/n* ¢ R* where #*, 7* ¢ R, and 7* is a non-zero-
divisor in R*, 7,*/7* ¢ 2% by Prop. 1, where =.*, 7, are residue
classes of 7#* and 7»* modulo W, *. Therefore f,* ;i*/i*zi;-*e!%*
(i=1,2,...;h) where f* e 2,%: 2% Now let representatives in R* of
fi*, ) * be X, A%, and . *==0(0*) but 7. *=0(M* N M* N... n M,
AME N AW (=1, 2, oo ). It we st F*=3tf* and
Z*:Ez‘,- /1,; , then F*y*—m*i*=(., For, F*r*—-?r*l*z;n*ff*h*—
xR Ak = ([ ¥ — 1A% =0 (mod M*) (i=1,2,..., k). Thus
F*y*—n*i*=0. Namely F*(r*/n*)=2*e¢R* as 7* is a non-zero-
divisor in W*. Since #*/7* is any element of R* and F* is a
fixed element in R*, we have F*R*=0(R*). But F* being a
non-zero-divisor in R*, we can conclude that R*: R*==(0).

Now assume that R: R=(0), namely RC R =R[4,]CR.=R,
[A]]C...cR=R,..[A]C...CR, then A ¢R* In fact, if we assume
that A,=b,/a, (where a,, b, ¢ R) ¢ R*, then a,»*=b,, where r* ¢ R*.
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Hence a,7=b, and re¢R. This is a contradiction. Namely R* C R*
[A,] Next assume that A,=b./a, (where a,, b,e R) e R*[A,], then
b/ao—Zc,* (b,/a,)t, namely b.a{"=a, (V‘c*b a®™ "), where c¢* e R*
(i=1, 2 ., G;). Hence bqa"‘—an(z,c a”“'b‘) where ¢; ¢ R. This
implies that A.=b./a,= Y‘c(b,/a,)‘ This contradicts the assump-
tion R,DOR. Therefore A, $§R*[A;]. Continuing in this way,
R*cR*[A]JcR*[A4,, A.]C...cR*[A4,, 4, ..., A JCR¥[A4,, 4., ...,
A._., A/]C..., which contradicts the above prOpOSItlon R*: R*==(0).
Namely R: ER=!:(O). Thus we have the following

Proposition 4. If a local domain® R satisfies one of above
conditions (1), (2), (3) and the completion R* of R has no nil-
potent element, then R: R==(0).
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