MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 2, 1953.

Notes on Chow points of algebraic varieties.

By

Yoshikazu NAKAI

(Reeived September 5, 1953)

Let V be an algebraic variety embedded in a projective space. Then as is well known we can represent V by a point in a suitable projective space by the method of associated forms¹⁾. Henceforth we shall call it briefly the Chow point of V and denote it by c(V). In this short note we shall prove two theorems, one concerning the Chow point of a variety, and the other concerning the Chow point of the divisors on a variety.

THEOROM 1. Let V be a variety embedded in a projective space and κ the prime field of characteristic p. Let M_{λ} ($\lambda = 1, 2, \cdots$) be a sequence of independent generic points of V over some field of definition k for V, then for sufficiently large " we have $c(V) \subset \kappa(M_1, \cdots, M_n)$.

PROOF. As is well known a projective model has the smallest field of definition $k_0 = \kappa(c(V))$.²⁾ Let \mathfrak{P} be the defining ideal of V in k[X]. Then we can select special basis $(P_1(X), \dots, P_s(X))$ for \mathfrak{P} having the following properties.

(1) k_0 is get by the adjunction of the coefficients of $P_j(X)$ to κ .

(2) Let $\mathfrak{M}_{\lambda}(X)$ be monomials in X with suitable ordering and J_i be the set of indices such that $P_i(X)$ is exactly the linear forms in $\mathfrak{M}_{\lambda_i}(X)$ with $\lambda_i \in J_i$. Then for any proper subset J_i' of J_i , the linear forms $\sum u_{\beta} \mathfrak{M}_{\beta}(X)$ with $\beta \in J_i'$ and $u_{\beta} \in k_0$ can not be contained in \mathfrak{P} . Such basis can be get by the procedure given in W-I,³⁰ lemma 2. Let

¹⁾ Cf. B. L. van der Waerden, "Einführung in die algebraische Geometrie". Julius Springer in Berlin, 1939.

²⁾ Cf. S. Nakano, "Note on gruop varietirs", Mem. Coll. Sci., Univ. of Kyoto, vol. XXVII, 1942.

³⁾ This means the lemma 2 of Chap. I of "Foundations of algebraic geometry" written by A. Weil,

Yoshikazu Nakai

$$P_i(X) = \sum_{j=1}^{\sigma_i} a_{ij} \mathfrak{M}_{\lambda_j}(X)$$

Without loss of generalities we can suppose that $a_{i1}=1$. Then by the property (2) we see that $\mathfrak{M}_{\lambda_j}(Q)$ $(j=2,\cdots,a_i)$ are linearly independent over k_0 , where Q is a generic point of V over k_0 . Since $k_0(Q)$ is regular over k_0 , they are still linearly independent over $\overline{k_0}$. Hence by W-II, Prop. 19, there exist (a_i-1) generic points Q_p of V over k_0 such that det $|\mathfrak{M}_{\lambda_j}(Q_p)|$ $(j=2,\cdots,a_i; p=1,$ $\cdots, a_i-1)$ is not zero. Hence for independent generic points M_1 , $\cdots, M_{\alpha_{i-1}}$ of V over k_0 , we have a fortiori det $|\mathfrak{M}_{\lambda_j}(M_p)| \neq 0$. Hence we can solve the linear equations

$$-\sum_{j=2}^{a_i} a_{ij} \mathfrak{M}_{\lambda_j}(M_p) = \mathfrak{M}_{\lambda_1}(M_p)$$
$$(p=1,\dots,a_i-1)$$

in $a_{ij}(j=2,...,a_i)$, and we have $a_{ij} \in \kappa (M_1,...,M_{\alpha_i-1})$, $(j=2,...,a_i)$. Now taking $\alpha = \max(\alpha_i) - 1$, we see that all the coefficients of $P_i(X)$ are in $\kappa (M_1,...,M_{\alpha})$, i.e. $k_0 = \kappa (c(V))$ is contained in $\kappa (M_1,...,M_{\alpha})$.

Let V^n be a projective model and $X=\sum a_i A_i - \sum b_j B_j$ a Vdivisor, where A_i and B_j are simple subvarieties of dimension n-1, c(X) the Chow point of X and k a field of definition for V. Then as is known¹⁰ the field k(c(X)) is the smallest one containing k over which X is rational. Then we have

THEOREM 2. Using the same notations as above, $\dim_{t}(c(X))$ is equal to the maximal number of independent generic points of V over k lying on X.

PROOF. Let P_1, \dots, P_s be the independent generic points of V over k lying on X. Then since X is rational over k(x), wher x = c(X), each P_t has at most dimension n-1 over k(x). Hence we must have

$$ns = \dim_{k}(P_{1}, \dots, P_{s}) \leq \dim_{k}(x) + \dim_{k(x)}(P_{1}, \dots, P_{s})$$
$$\leq \lim_{k \to \infty} dm_{k}(x) + (n-1)s$$

i. e. $s \leq \dim_k(x)$

Then if we denote by m the maximal number of independent generic

126

⁴⁾ Cf. W. L. Chow, "On the defining field of a divisor in an algebraic variety", Proc. Amer. Math. Soc. vol. 1, no 6, 1950.

points of V over k lying on X, we must have $\dim_k(x) \ge m$.

We shall now say that Q_1, \dots, Q_s are independent generic points of X over k(x) when we have the relation

$$\dim_{k(x)}(Q_x,\cdots,Q_s)=(n-1)s$$

Then by Th. 1 if we take sufficiently many independent generic points of X over k(x) in a suitable manner we have $c(A_i)$, $c(B_j)$ are contained in $x(Q_1, \dots, Q_i)$. Hence $k(x) \subset k(c(A_i), c(B_j))$ is contained in $k(Q_1, \dots, Q_i)$. Then have

(1)
$$\dim_k(x) + \dim_{k(k)}(Q_1, \cdots, Q_k) = \dim_k(Q_1, \cdots, Q_k)$$

But by the hypothesis there exist at most m independent generic points of V over k among Q_1, \dots, Q_t , hence we must have

(2)
$$\dim_k(Q_1, \dots, Q_t) \le nm + (n-1)(t-m) = t(n-1) + m$$

Combinig (1) and (2) we have

$$\dim_k(x) \leq m$$

Thus the proof is completed.