Notes on Chow points of algebraic varieties.

By
Yoshikazu NAKAI

(Rceived September 5, 1953)

Let V be an algebraic variety embedded in a projective space. Then as is well known we can represent V by a point in a suitable projective space by the method of associated forms ${ }^{11}$. Henceforth we shall call it briefly the Chow point of V and denote it by $c(V)$. In this short note we shall prove two theorems, one concerning the Chow point of a variety, and the other concerning the Chow point of the divisors on a variety.

THEOROM 1. Let V be a variety embedded in a projective space and κ the prime field of characteristic p. Let $M_{\lambda}(\lambda=1,2, \cdots)$ be a sequence of independent generic points of V over some field of definition k for V, then for sufficiently large \% we have $c(V)$ $\subset \kappa\left(M_{1}, \cdots, M_{\alpha}\right)$.

Proof. As is well known a projective model has the smallest field of definition $k_{0}=\kappa(c(V)) .{ }^{\prime \prime}$ Let \mathfrak{P} be the defining ideal of V in $k[X]$. Then we can select special basis $\left(P_{1}(X), \cdots, P_{s}(X)\right)$ for \mathfrak{P} having the following properties.
(1) k_{0} is get by the adjunction of the coefficients of $P_{j}(X)$ to κ.
(2) Let $\mathfrak{M}_{\lambda}(X)$ be monomials in X with suitable ordering and J_{i} be the set of indices such that $P_{i}(X)$ is exactly the linear forms in $\mathfrak{M}_{\lambda_{i}}(X)$ with $\lambda_{i} \in J_{i}$. Then for any proper subset J_{i}^{\prime} of J_{i}, the linear forms $\sum u_{\beta} \circlearrowleft \mathcal{M}_{\beta}(X)$ with $\beta \in J_{i}^{\prime}$ and $u_{\beta} \in k_{0}$ can not be contained in $\mathfrak{\Re}$. Such basis can be get by the procedure given in $\mathrm{W}-\mathrm{I},{ }^{3)}$ lemma 2. Let

[^0]$$
P_{i}(X)=\sum_{j=1}^{\sigma_{i}} a_{i j} \mathfrak{M}_{\lambda_{j}}(X)
$$

Without loss of generalities we can suppose that $a_{i 1}=1$. Then by the property (2) we see that $\mathfrak{M}_{\lambda_{j}}(Q)\left(j=2, \cdots, \mu_{i}\right)$ are linearly independent over k_{0}, where Q is a generic point of V over k_{0}. Since $k_{0}(Q)$ is regular over k_{0}, they are still linearly independent over \bar{k}_{0}. Hence by W-II, Prop. 19, there exist ($\mu_{i}-1$) generic points Q_{p} of V over k_{0} such that $\operatorname{det}\left|\mathfrak{M}_{\lambda_{j}}\left(Q_{p}\right)\right| \quad\left(j=2, \cdots, \mu_{i} ; \rho=1\right.$, $\cdots, \mu_{i}-1$) is not zero. Hence for independent generic points M_{1}, $\cdots, M_{\alpha_{i-1}}$ of V over k_{0}, we have a fortiori $\operatorname{det}\left|M_{\lambda_{j}}\left(M_{\rho}\right)\right| \neq 0$. Hence we can solve the linear equations

$$
\begin{array}{r}
-\sum_{j=2}^{\alpha_{i}} a_{i j} \mathfrak{M}_{\lambda_{j}}\left(M_{p}\right)=\mathfrak{M}_{\lambda_{1}}\left(M_{p}\right) \\
\left(\rho=1, \cdots, \alpha_{i}-1\right)
\end{array}
$$

in $a_{i j}\left(j=2, \cdots, \mu_{i}\right)$, and we have $a_{i j} \in \kappa\left(M_{1}, \cdots, M_{\alpha_{i}-1}\right),\left(j=2, \cdots, \mu_{i}\right)$. Now taking $\mu=\max \left(\mu_{r}\right)-1$, we see that all the coefficients of $P_{r}(X)$ are in $\kappa\left(M_{1} \cdots, M_{\alpha}\right)$, i.e. $k_{0}=\kappa(c(V))$ is contained in $\kappa\left(M_{1}, \cdots, M_{\alpha}\right)$.

Let V^{n} be a projective model and $X=\sum a_{i} A_{i}-\sum b_{j} B_{i}$ a V divisor, where A_{i} and B_{j} are simple subvarieties of dimension $n-1$, $c(X)$ the Chow point of X and k a field of definition for V. Then as is known ${ }^{\text {1 }}$ the field $k(c(X)$) is the smallest one containing k over which X is rational. Then we have

Theorem 2. Using the same notations as above, $\operatorname{dim}_{\varepsilon}(c(X))$ is equal to the maximal number of independent generic points of V over k lying on X.

Proof. Let P_{1}, \cdots, P_{s} be the independent generic points of V over k lying on X. Then since X is rational over $k(x)$, wher $x=$ $c(X)$, each P, has at most dimension $n-1$ over $k(x)$. Hence we must have

$$
\begin{aligned}
n s=\operatorname{dim}_{k}\left(P_{1}, \cdots, P_{s}\right) & \leq \operatorname{dim}_{k}(x)+\operatorname{dim}_{k(x)}\left(P_{1}, \cdots, P_{s}\right) \\
& \leq \operatorname{dim}_{k}(x)+(n-1) s
\end{aligned}
$$

i. e. $\quad s \leq \operatorname{dim}_{k}(x)$

Then if we denote bv m the maximal number of independent generic

[^1]points of V over k lying on X, we must have $\operatorname{dim}_{k}(x) \geq m$.
We shall now say that Q_{1}, \cdots, Q_{s} are independent generic points of X over $k(x)$ when we have the relation
$$
\operatorname{dim}_{k(r)}\left(Q_{r}, \cdots, Q_{s}\right)=(n-1) s
$$

Then by Th. 1 if we take sufficiently many independent generic points of X over $k(x)$ in a suitable manner we have $c\left(A_{i}\right), c\left(B_{j}\right)$ are contained in $x\left(Q_{1}, \cdots, Q_{t}\right)$. Hence $k(x) \subset k\left(c\left(A_{i}\right), c\left(B_{j}\right)\right)$ is contained in $k\left(Q_{1}, \cdots, Q_{t}\right)$. Then have

$$
\begin{equation*}
\operatorname{dim}_{k}(x)+\operatorname{dim}_{k(t)}\left(Q_{1}, \cdots, Q_{t}\right)=\operatorname{dim}_{k}\left(Q_{1}, \cdots, Q_{t}\right) \tag{1}
\end{equation*}
$$

But by the hypothesis there exist at most m independent generic points of V over k among Q_{1}, \cdots, Q_{t}, hence we must have
(2) $\quad \operatorname{dim}_{k}\left(Q_{1}, \cdots, Q_{\imath}\right) \leq n m+(n-1)(t-m)=t(n-1)+m$

Combinig (1) and (2) we have

$$
\operatorname{dim}_{k}(x) \leq m
$$

Thus the proof is completed.

[^0]: 1) Cf. B. L. van der Waerden, "Einführung in die algebraische Geometrie". Julius Springer in Berlin, 1939.
 2) Cf. S. Nakano, " Note on gruop varietirs ", Mem. Coll. Sci., Univ. of Kyoto, vol. XXVII, 1942.
 3) This means the lemma 2 of Chap. I of "Foundations of algebraic geometry" written by A. Weil,
[^1]: 4) Cf. W. L. Chow, "On the defining field of a divisor in an algebraic variety", Proc. Amer. Math. Soc. vol. 1, no 6, 1950.
