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In the first two sections we consider the system of ordinary
differential equations

(1) —dyLz f(x’ yh y‘.‘» "',yn> (i’:l, 2, tt n)
dx

where f;(x, ¥, ¥5, -+, ¥.) are defined and continuous in a region
En+l . ngéa, ly.|<+°° (i:l, 2"“:”)-

Let us consider (y;, ¥.---,y.) as a vector ¥, then (f,f, -, f)
defines a vector-function of (x, &), conveniently written f(x, ¥).
Thus (1) assumes the simple form

@) Y _f(s, y).
dx
In § 3, the differential equation of the second order is investi-
gated as a special case of (1).

§ 1. Transformations of (1)

Let f(f) be the greatest value of 1, t and max |f(x, ¥)|, where
Se<a
T e T T T T§ —'I)‘-_“rT“!ﬁ“gi; .
Wi=Vvy +y’+-+y° and |fl= VPS4 +12, then f(f) is a
positive continuous function of ¢, not less than unity, in 0<t< + co.
Now for a given positive constant o, consider the function 4(7)
defined by the relation

1 =j"“ di
a(nte o sy’
then 4(7) is a continuous function of 7 in 0 <7<+ o0, 4(#)>>1 in
0<7<+ o and lim4i(#)=+o. And evidently /() has the con-

»>+ 0

tinuous derivative
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/1’(7)=%{1(7)}”°[{f(f)}‘z—{f(r+1)}”f"] (20).

Next put
r(r)=7A(r)
then »(7) and its derivative ¢ (#) are also continuous functions of »
in 0<7<+ o where #(0) =0, p(r)>0 for >0, lim p(¥) = +  and
r> 4o
¢ (r)=24(r) +72 (r)=1. Therefore there exists the inverse function
of p(7), written »(p), which is a continuous function of p in 0 p

<+ and whose derivative #'(y) is also continuous since 7 (p) =
1/¢'(r) holds. Thus we have

r(0)=0, 7r(»)>0 for p>0, limr(p)=+o
ro4m

and 7'(p)>0 for 0 p < + co.
Now consider a mapping from (3, 3, **+, ¥»)-Space onto (7, %,
.-+, 7,)-space, represented by

3) = l{;[ o(uD=yi(ly])  @=1,2,--,n).

Since |9|=p(|¥|), (3) yields immediately the inverse

(4) yi=="y(ln)) (=12, n).
Inl
Thus (3) maps topologically the whole (¥, ¥., -, ¥.)-space onto the
whole (7, 75, +-,7)-space. Now we have for the partial derivatives,

%y + Yo r(y)  G=1,2, - n)
oy; ; l.v/l,

and

DIV (g G =1,2, 0, m)
dy; |yl

and they are continuous functions of ¥ and moreover we have
3(7;',, Yot 771:) —jn-l {;_+ I;'IV»’} >0.
a(yn J’-J:"',y,.)

Hence 3y:/d7, (i,j=1, 2, ---, n) are also continuous functions of 7.
(1) is transformed by (3), x being unchanged, to the system

D Qunfin )+ Y UID (3 kg St 43,1

dx ||
(i=1,2, -, n).
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Consider its second members as functions of (%, 7, %5, **+, 7.), Written
9:(%, 71, 72+, 70)  (i=1, 2, -+, m), then we obtain a system of #
equations in the z unknowns z, 7s, ***, %n -

(5) %:‘(],(i, /ATR/EIIRA 7/n) (i‘———l’ 27 ) n)

where ¢, are continuous functions in the region [0<x<a, |1 <+ o]
Since

fn={nr=4mte

and
g 1 i
YO < e
we have
ly G, W I<IF e ) [ AAYD + w12 () }
< fAyD AUy +ArD Yy}
<(1+1/e){2(lyD}**e,
and finally

dy@x, | _ 1+1/0
L+o < 1+a °
L] |y
Consequently we have

(6) lim _l!l(x, | =0

> +e ]'nl‘*’o

uniformly for x in 0<sx<a.
Now consider the second mapping effected by

Kz—;f—-— ._-—_'1, 2’ ooy ,
E @ n)
(M

which maps topologically the whole (7, %, -*-, 7.)-space, the point
at infinity |[9/=+ oo being added, onto the whole unit sphere in
(Y, Y., -, Y.1)-space:

Y+ Y+ -+ V=1

whose pole (0,0, ---, 0, 1) is the image of the point at infinity 9]
=+ . The inverse of (7) is given by
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3 Y.

8 ]

( ) 7 1 - Yn-H

The system (5) is transformed by (7), x unchanged, to a system
of the form

dY;
9) dx
}12+‘}§:+"'*'}211==1;

(=1, 2, -+, n).

=h£(x’ Kr Y2’ “ty Y'H-l) (i=1’ 2’ "t n+1),

where
. u‘ 8Y, i .
hs’(x’ Yh Y.‘:y Tty Kl+l)_L = .(/j(x, 7)) (1—1, 2, ooy n+1)
=1 dy;

and

(10) Y1h1+ Y2k2+"'+Y/.+1hn+1=0.
The second members of the former equations of (9) are not de-
fined for Y,, =1, though it seems clear that, for any fixed value

of o such that 0 <o <1, they converge uniformly to zero as Y,,,
—1—0. And therefore, if we put

hi(x,0,0,---,0,1)=0 (=12, -, n+1),
h; are continuous functions on the whole surface
Sin P 0=xsa, Y7P4+Y 4+ +Y0=1

in (», Y, Y, -+, Y..)-space. Finally, consider the product of the
mappings (3) and (7),

2y Ay .
K=—'—‘—'—:Yi y Yoy 'y Yn _'1, 2’ Yy
1+ {o(lyD) SCECREE O ")
(11) 5

K,H:l EYnH(yn Yoy 0oy yu)

1+ {e(uDt
which maps topologically the whole (y, ¥, -+, ¥.)-space, the point
at infinity |#|=+ o being added, onto the whole unit sphere in
(Y, Y, -, Y..)-space. Then we have the following

Theorem 1. (1) is transformed by means of (11), x unchanged,

to (9) whose second members are continuous on the surface S,., in
x Y, Y, -, Y..)space. The segment

L . ng,—ga> sz‘-:::y—rn:o) KH-l:l
may be regarded as the image of |Y|= + co.
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§ 2. Applications

Theorem 2. A necessary and sufficient condition for every
solution of (1) to have an end point, whose x-coordinate is equal to
a, is. that there exists a positive continuous function ¢ (%, ys, ¥ ***» ¥n),
defined. in E.., with the first partial derivatives which is also con-
tinuous in the interior of E..., and that ¢ converges uniformly in
0<x<a to zero as |Y|—+ ©, and moreover that, in the interior
of E, .., we have

(12) B¢ (09 00y 4 0P 1>,
ox 9y, Y. 9y

Proof. Consider a region

Rn+2 : ngga’ |K|§b (i:'ly 2) Ty n+1)

where b is such a constant as #>1. For every point P(x, Y,, Y.,
o, Yon) in R,.., let Py(x, Yy, Yo, -+, Yyue) denote the point in
which the ray issuing from the point (x, 0,0, ---,0) and passing
through P cuts S,,, and put

Then if we define ‘
h*(x, Y5, Yo ooy Yan) =0hi(x, Yy, Yoo o+, Youra)
h.* are continuous functions in R,... Evidently we get
hf=h, on S,
and
Yih*+Y.h*+ -+ Y, b5 =0 in R,,..

Now in R,.., consider the system
(13) %YL:ll*(x! Y;v YQ: Tty Ynﬂ) (1:]’ 2) ) n+1)
X

which is an extension of the system (9). It is not difficult to show
that a necessary and sufficient condition for every solution of (1)
to have an end point on x=g is that the segment L is the unique
solution of (13) (or (9)) arriving at the point N(«,O0, 0, ---, 0, 1).

1) H. Okamura, Functional Equations (in Japanese), Vol. 32 (1942), pp. 21-27.
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Let P be a variable point (x, Y;, Y3, -+, Y,..1) in R..., then we
can define the D-function D(P, N)* with regard to (13). If we put

Sl’(x, Y;y Y‘z: A Yn«H) =D(P; N))

¢ can.be replaced by a function ¢,(x, Y,, Y., ---, Y,.,,) which has
continuous first partial derivatives in the interior of R,.. and the
same properties as those of ¢ in R,,.” Put

5"(75, Y1 Yoy 0y yn)=$"’l(xy K(y!r Yoy vy yn)s ) Yn+l(yh Yay ooy yn))v

then, if L is the unique solution of (13) arriving at the point N,
¢ possesses the properties required in the theorem. Therefore the
condition is necessary.

It is easy to show that the condition is sufficient.

Example 1. If f=0(|y|) as |y|—+ =, i.e, if there be such
a positive number % that for 0<x<a and |¥|=7,, 7 being a
positive number, we have '

put
(X, Y1y Py -0, Ya) = Y| REM

We have proved in §1 that, concerning the second members
of the system (5), we have ¢g(x, ) =o(|7|'*°) as §—+w (cf. (6)).
Now the above example shows that in general g(x, 1) =0(|n|) as
|9|—+ . For, if g(x, 9)=0({n]), every solution of (5) has an
end point on x=a and therefore every solution of (1) has also an
end point on x=a.

Example 2. If there be a positive continuous function ¢{«)

of u for =0, jmﬁ%=+w and |f|<4(l¥|), then put
0
[ g,

?(x, yly y‘_‘y BN yn) =e7l"—50 m'

2) H. Okamura, * Sur I’Unicite des Solutions d’un Systéme d’quzatio;ts différen-
ticlles ordinaires”, Mem. Coll. Sci. Kyoto Univ. A, 23 (1941), pp. 225-231; H. Oka-
mura, *“ Sur une sorte de distunce relative @ un systéme différentiel ”, Proc. Physico-Math.
Soc. of Japan, 3rd series, Vol. 25 (1943), pp. 514-523; K. Hayashi and T. Yoshizawa,
“New Treatise of Solutions of a System of Ordinary Differential Equations and its
Application to the Uniqueness Theorems’, Mem. Coll. Sci. Kyoto Univ. A, 26 (1951),
pp. 225-233. )

3) H. Okamura, “ Condition nécessairve €t suffisante vemplie par les é‘quations
différentielles ordinaires sans toints de Peano”, Mem, Coll. Sci. Kyoto Univ. A, 24
(1942), pp. 24-27.
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Theorem 3. A necessary and sufficient condition for every
solution of (1) to have an end point, whose x-coordinate is equal to
a, is that, given any positive number «, there exists a positive number
A(a) such that, for any solution y=¥y(x) of (1) through a point
(%5, ¥,) arbitrary in E,.,, provided that |y(x,)|<«a, we have |y(x)|
<f(a) so long as y=y(x) lies in E,., for ,<x<a.

Proof. Since the sufficiency of the condition is easily verified,
we will prove only its necessity.

At first consider the region

St 0Sx=a, (Y=«
which is a bounded closed region. Let S,%, be the image of Ez2,
under the mapping (11), then S%, is a bounded closed set, and
hence, the set of all the points, which are on any solutions of (9)
going to the right from any points in S,%,, is a closed set.” Under
the assumption of the theorem, this set has no point common with
the segment L. Consequently Y,,-coordinate of every point in
this set is smaller than a positive number y(«)(<1). Hence we
consider such a positive number B(a) that ;=1—(1/{1+0(B)}%.
Then, for any point (x, ) in the inverse image of this set under
(11) (e, in the set of all points which are on any solutions of
(1) going to the right from any points in E.%,), we get |¥| <3(«a).

Corollary. The content of Theovem 2 is also verified when we
suppose ¢ to be defined merely for the region [0=<x=a, |Y|=71,l, 7
being a positive constant.

Remark. Conditions for every solution of (1) to have an end
point on x=0 may be obtained in the same way and however, for
instance, the inequality (12) may be replaced by the following

o oy oy A
14) 4% v 2 ik O <0,
( 9x  dy, /i 3y /. 8y,.f -

§ 3. Differential equation of the second order

In this section we will investigate the differential equation
, d’y ' dy
(15) = (% ¥ - )

as a special case of (1).

4) It may be easily verified by means of the equicontinuity of solutions of (9):
the equicontinuity is oweing to the boundedness of ;.
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~ Let D be a bounded closed region [0<zx<a, wx)<y<w()]
in xy-plane, where w(x), w(x) and their derivatives are continuous
in 0=<x<a and w(x) <w(x) in 0<x<a. And let D* be a three
dimensional region of the point (x, y, z), where (x,y) ¢ D and
— o <2< 4. Moreover, suppose f(x, ¥, z), defined and continu-
ous in D*,
Now consider the system of differential equatioris

(16) D o—e Bfay,2)
dx
which is equivalent to (15), then it becomes by the vector notation

dy

——=F(x, ),

ix (x, ¥)

where ¥=(y,2) and F(x, ¥)=(z,f(x, ¥, 2)). Of course, we can
apply ‘the mapping (11) to (16), but this time, we proceed by
means of a mapping from (y, 2)-space into (y, ¢)-space represented by

=Y 2=y
o dt
N g e
- —_j"‘_“_t_ff . for z<0,
WY

where f(t) is the greatest value of 1, ¢ and (m)a)li |f(x, 9, 2)| and
If‘ryﬁ‘l)

then f(f) is a positive continuous function of ¢. Clearly (17) may

be solved for y and z. Since

@X_ e ,d_t_,>() ﬂv —_ -
3 f UBF D oz y{f()}
and
dZ 1

>0,
dz Sy
these derivatives are continuous in D*,
Now put b=j:“ {j%}" (>0), W(x 2)=Y(@(), Z7 () and
W, O)=Yw(x), Z7'(2)), Z7'(¢) being the inverse function of

Z(2), Z(2) converges to b or —b respectively as z—+o or — o
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and W(x, &) and W(x, ¢) converge uniformly for x in 0<Sx<{a to
zero as {—+b. If we put W(x, b)=W(x, —b)=W(x, b)=W(,
—b)=0, W(x,¢) and W(x, ¢) are continuous in [0<x<a, -0
¢<b] and we get W(x ) <W(x?) in [0<x<a, —b<(<b].
Their partial derivatives W., W., W, and W, are also continuous.

Therefore, the mapping (17), x unchanged, maps topologically
the region D, the points at infinity |z|=+ o being added, onto the
bounded closed region

P :0=5x=<a, —bSCSh, WEOS3=Wx D)
in (x, 7, £)-space. The segment
L :0<x<a, =0, =b
may be regarded as the image of 2= 4 « and the segment
L, : 0Zx<Za, =0, Z=—b

as the image of z=—co.
The system (16) is transformed by (17), x being unchanged,
to the system

dr [ A gy S 22)
dx 2 {f(t) }J {f(Z‘)}"
@& _Sxy 2

dx  {f(|z]}®

Consider its second members as functions of (x,7, ), written
9:(x, 7, ) and ¢.(x, 5, {) respectively, they are defined and continu-
ous in 9, except on the segments L, and L,. Since they converge
uniformly to zero as {— +b, put ¢,(x, 0, b) =¢,(x, 0, —b) =¢.(%, 0, b)
=g.(x, 0, —b)=0. Then ¢, and ¢. are continuous functions in 9
and we obtain the following system

dy,

‘E:.(/l (x, T/, C)

rq
dx

(18)
=.(/'_’(xr 7, C)

whose second members are continuous on the bounded closed region
D in (%, 5, £)-space.
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Theorem 4.” A necessary and sufficient condition for any solu-
tion of (15) going to the right from any point in D to have, pre-
serving the continuity of its derivative, an end point on the boundary
of D is that there exists a positive continuous function @(x,y, 2)
defined in D* as follows; namely & (x,y, z) converges uniformly for
(x,¥) €D to zero as z—+ o and satisfies the Lipschitz condition
with regard to (y, 2), i.e., given any positive number c, there exists
such a positive constant K, that, if (x,y) € D, (x,9) € D, |2|<c and
2I< ¢, we have

(19) P (x, y,2) —P(x, 3, 2) | SK(|ly—y| +|2—2]).
And finally, for points of D*, we have
(20) QEI’J (/}(x, Yy, Z);O“).

Proof. Since ¢, and ¢, are continuous on the bounded closed
region 9, every solution of (18) has its end points on the boundary
of 9. Therefore a necessary and sufficient condition for any
solution of (15) going to the right from any point in D to have,
preserving the continuity of its derivative, an end point on the
boundary of D is that the segment L, is the unique solution of
(18) arriving at the point A(a, 0, b) and the segment L, the unique
solution arriving at the point B(a, 0, —b).

Let P be a variable point (%, 7, ) in 9, then we can define
two D-functions” D(P, A) and D(P, B). Now put

¥ (x,7,2)=min{D(P, A), D(P, B)}
and
D(x,y,2)="(x Y(y, 2), Z(2)).

Then, if L, is the unique solution of (18) arriving at A and L, is
the unique solution arriving at B, ¢ possesses the properties required
in the theorem.

5) H. Okamura, Functional Equations (in Japanese), Vol. 27 (1941), pp. 27-35;
I'. Yoshizawa, “ Note on the non-incrcasing solutions of ¥"=f(x, v, %), Mem. Coll. Sci.
Kyoto Univ. A. 27 (1952), p. 158, lemma 2.

6) (20) is Nagumo’s notation. Cf. H. Okamura, “ Swur une sorte de distance
relative a un systéme différentiel ”, Proc. Physico-Math. Soc. of Japan, 3rd series, Vol.
25 (1943), pp. 520-521; T. Yoshizawa, “ On the Evaluation of the Derivatives of Solutions
of y'=f(x,,%)”, Mem. Coll. Sci. Kyoto Univ. A, 28 (1953), p. 28.

7) Since $) is nct a cuboid we need to define D-function by the Okamura’s
second method. Cf, H. Okamura, loc. cit. 6).
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It is easy to show that the condition is sufficient.

Corollary. In the condition of the theovem, ¢ can be replaced
by two functions ®,(x,y,2z) and @,(x,y,2) as follows; namely
& (x,y, 2) is defined in a region

d () eD, k<z<+cw,k : constant
and converges uniformly to zero as z—+ w, and P,(x, y, z) is defined
in a region
dy: (x,9) €D, —0<2Z k., k. : constant
and. converges uniformly to zero as z— — .
For the proof, put
V.(x,7,)=D(P, A,
Py(x, %, £)=D(P, B),
and then, put
?(x, 3, 2)=",(x, Y(y,2), Z(2)),
Dy(x, v, 2)=W.(x, Y9, 2), Z(2)).
Remark 1. A condition for any solution of (i5) going to the
left from any point in D, to have an end point on the boundary

of D, may be obtained in the same way with only the modification
that the inequality (20) shall be replaced by the following

(21) Dy ®(x, y, 2)<0.

Remark 2. %(x, 7, Z) can be modified® to have bounded con-
tinuous partial derivatives in the interior of 9. Therefore, ¢ (x,y, z)
can be also modified to have continuous partial derivatives in the
interior of D*. And then, in the interior of D* (20) reduces to

17 7/
LN

22
(22) ax oy

2+ 27 f(x, 9, 2 >0.
0z

Example.” If there be a positive continuous function ¢(#) of

u. defined for #=>0, and rrr:(‘{%:+oo and | fix. 3, 2) | =¢(z]),
then put T

8) H. Okamura, loc. cit. 3).
9) M. Nazumo, “ Uber die Differentialgleichung y"=f(x, y, y')”, Proc. Physico-
Math. Soc. of Japan, 3rd series, Vol. 19 (1937), pp. 861-866.
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2 wdu
@, (x,y, z)=e”—50?(u> for z=>0
and
12l e
D,(x, y, z)=e"_5o v for 2<0.

Theorem 5.” A necessary and sufficient condition for any
solution of (15) going to the right from any point in D to have,
preserving the continuity of its derivative, an end point on the
boundary of D is that, given any positive number «, there exists a
positive number 3(«) such that, for any solution y=y(x) of (15)
through a point (x,, v,) arbitrary in D, provided that |y (x) | < «, we
have |y (x )| <p(a) as long as y=y(x) lies in D for x,<21<a.

For the proof proceed as in the proof of Theorem 3.

Theorem 6. A necessary and sufficient condition for any solu-
tion of (15) going to the right from any interior point in D to reach,
Dreserving the continuity of its derivative, at a point of the boundary
of D is that there exists a positive continuous function @*(x,y, z)
defined in the interior of D* as follows; namely ®*(x,y, z) has
continuous partial derivatives i1 the interior of D* and salisfies

(23) D o0 L3 n g, 2) =0
ox oy 82
and converges uniformly for (x,y) € D to zero as z2— + .

Proof. Proceed as in the proof of Theorem 4. Since, this
time, the inequality (20) is necessary only in the interior of D¥*,
it may be replaced by (23).

Remark. Theorems 4, 5 and 6 can be also verified when D
is supposed merely as a bounded closed region in xy-plane.’” If
D is the region given in the beginning of this section we obtain
the following

Theorem 7. The condition of Theorem 6 is necessary and
sufficient for any solution of (15) going to the vight from any point
in D to have, preserving the continuity of the derivative, an end
point on the boundary of D.

Proof. Since the necessity of the condition may be easily
verified, we will prove only its sufficiency.

Suppose, on the contrary, that there exist a solution y=y(x)

10) M. Nagumo, loc. cit. 10); T. Yoshizawa, loc. cit. 6), p. 27.
11) T. Yoshizawa, loc. cit. 6), p. 30, foot notes 1).
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of (15) going to the right from a point (x, y,) in D whose image
under (17), being a solution of (18), tends to a point (x,, 7, &) on
the segments L, or L,. If the condition in Theorem 6 holds, as
x—x,—0 the solution y=y(x) tends to a point P,(x, y,) of the
boundary of D and we get lim y(x)=+ o (or —). And, in

rpr1—0

any neighborhood of the point P, there is at least a boundary point
P.(x., ¥.) (x.<x,) of D on the solution y=y(x). At the point P,
the solution y=y(x) has to be tangent to the boundary of D. On
the other hand, there is such a constant K that |w'(x)|, |’ (x)| < K
and therefore |y (x,)| < K'™. It contradicts the relation lim y'(x)

£-»£1—0

=+ (or —o). Hence the condition is sufficient.
Corollary. In the conditions of Theorem 6 and 7, @* can be
replaced by two functions as in the corollary of Theorem 4.

12) The theorem may be proved when the curve y=(x) (or the curve y=
%(x)) consists of a finite number of arcs of similar properties.



