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" In the foregoing papers®® we have discussed the existence of
a periodic solution of the non-linear differential equation and we
have obtained a sufficient condition® for the boundedness of solutions
in order to use Massera's theorem."” That condition is analogous
to Okamura's theorem“for the possibility of the continuation of
solutions. In this paper we will obtain necessary and sufficient
conditions for the boundedness of solutions of such a type that we
have discussed formerly on the evaluation of the derivatives of solu-
tions of a differential equation of the second order.*”

Now we consider a system of differential equations,

(1) *“1}3“ =j;(x, yly ty yn) (i:l, 2y Tty n)y
dx

where f;(x, y,, .-+, ¥.) are continuous in the domain
d: 0ZLx< o, —oo <Y<+ oo (i=1, 2, -+, n).

And we discuss the boundedness for 0 <x < c of solutions starting
from x=0.

To simplify our statements, here we give at first a list of the
domains and their symbols used in the following.
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dy: 0Sx<, fjl Y

n
‘13: x=0s Zy‘zgagy
i=1

di: 0=x<co, 3ly’=p,

i=1

n
4, 0<x<o, My’<77
{=1

d;: 0= x<o, y’=;"
i=1
Theorem 1. In order that, given a positive number a and for

a suitable positive number B (> «a), for any solution y.=y,(x) (=1,
2, -, n) of (1) such as ,

@ 10 +3.(0) + 43, 0P <,

we have for 0<x<
(3) yj(x)9+y2(x)?+...+yu(x)g<ﬂg’

it is necessary and sufficient that there exists a non-negative continuous
Sfunction P(x, y,, -+, y.) satisfying the following conditions in the
domain 4, in 4,; namely

1° @(x, y,, ---, ¥.,) =0, provided (x, y,, ---, ¥,) €d;,

20 D(x,y, -+, ¥,)>0, provided (x,y,, -+, ya)€d,,

3° D(x, y, -, ¥a) salisfies locally the Lipschitz condition with
regard to(y,, -+, y,) in d., (as the necessary condition,
theve is such a function that satisfies nom-locally the
Lipschitz condition) and we have for all points in the
interior of d,

(0 lim }1 { @ @AR Yt hfy oo kB — P (x, 3, ---,yu)}éa

Proof. It is clear that the condition is sufficient. Now we
suppose that, for any solution of (1) satisfying (2), the inequality
(3) holds for 0<x<o. Let Q be a point (x4 y* ---, ) in 4, and
P be a point (0, y.*, -+, y.*) in 4,. And we construct the Okamura’s
D-function D P, Q)" with respect to the interval 0<x< 1% We

(6) Hayashi and Yoshizawa; “New treailse of solutions of a system of ordinary
differential equations and its application to the uniqueness theorems’, These Memoirs,
Vol. 26 (1951), pp. 225-233.
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indicate by 4(Q) the minimum of D(P, ) when P displaces in
d;. Here if we put

(p(x) Yy yﬂ>=6(Q) with Q= (xv Vi oo yn)9

we can see that this @(x, y,, ---, y.) is the desired function by the
properties of D-function.

In Theorem 1 we have obtained a necessary and sufficient
condition for the boundedness of solutions by using the Okamura’s
D-function, and yet such a condition may also be obtain by the
consideration of the distance between a point and the solutions as
follows ; namely

Theorem 2. In order that the proposition in Theorem 1 may
be verified, it is necessary and sufficient that, for a suilable positive
constant v (> a), there exists a non-negative function @ (x, ¥, -+, ¥»)
of (x, %1, -+, ¥.) satisfying the following conditions in the domain d,;
namely

1° @(x, 3, -+, y.) >0, provided (x,y,, -, y.)€ds,

2° D(x, 3, -, 3.0 =0, provided (x,y, -, y.)€d,,

3°  for any solution of (1), y:=y:(x) (i=1, 2, ---, n), the func-
tion @(x, y,(x), -+, ¥.(x)) is the non-decreasing function
of x (so long as it has a sense).

Proof. Now we shall show that the condition is necessary.
Suppose that there exists B for « given and then we take a positive
number 7 such as 7> pf. Here we consider all the solutions of (1)
starting from P in the domain J; and indicate it by ¥),. Now we take

a point @ such that x“=>x", 3! (y,9)?’=7" and consider the section of
i=1

the solutions belonging to ¥), by x=x" which lie in 4, for x” <x<a"
If this section is an empty set, we put

D(P, Q) =f\/§a: (y:4—y")*

and if otherwise, it is clearly a bounded closed set and hence we
can consider on the plane x=x? the distance between this closed
set and @, which we denote by D(P, Q). Now we indicate by
6(P) the infimum of D(P, @) when @ displaces in J,, yet satisfying
x*=x". Hence if we put

(I)(x, Y 0y yn)z(;(P) with P: (x) Vi, oy y">y
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this #(x, y,, -++, ¥.) is the desired function.
Remark. Since by d(P)=>y—/3>0 we have for Ped,

inf  3(P)>0,
Peds

we can replace the condition 1° and 2° by the condition

inf D(x, Yy, ooy ¥0) > sup D(x, Y1y **5 Yu)-
(% 31 5 3 ) €ds (% 31, 5 yn ) €4y
The continuity of #(x, y,, -, y,) cannot be obtained in case of

Theorem 2; to be continuous it is sufficient to see that ¢ satisfies
the Lipschitz condition, but it is impossible in general.

But in the case where @(x, y,, ---, ¥.,) has the continuous first
partial derivatives, the condition 3° is clearly replaced by the
inequality

20 L 3\

I ‘~—— x y "y Yan 20’
ax T2 ‘f‘( o2

and therefore it is useful in important practical cases.

The condition mentioned above are those for the solutions star-
ting from x=0 and yet we can obtain a necessary and sufficient
condition in order that, given a positive number «, there exists a
suitable positive number 2 depending only on « such that, for any
solution of (1) satisfying at every x=x,

>_.x (1) <o,
we have always for x,<x< o
§ ¥ (x)? </

If we change the notion of the distance, a necessary and
sufficient condition in order that the solutions of (1) are bounded
as x increases is mentioned as follows by the method in Theorem
2; namely

Theorem 3. In order that, for any solution of (1), y.=y:(x)
(=1, 2, -+, m), passing through any point P, there exists a(P) such

that Ey,(x) < a*(P) for x" < x< oo, it is necessary and sufficient that

=1

there exisls a positive function P(x, y,, -+, ¥.) of (x,¥,, -+, ¥.) satisfying
the following conditions in J,; namely

1° &(x, 9, -+, ¥,)>0,
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2° D(x, ¥, -+, ¥.) tends to zero uniformly for x, as _Jy, *— 0,

3° for any solution of (1), y.=y:(x) (i=1,2, .-, n)
Junction @ (x, y,(x), -+, y.(x)) is the non-decreasing func
tion of x.

Proof. It is clear that the condition is sufficient. Now we
show that the condition is necessary. Let P be a point in 4, and
9),, be the family of all the solutions passing through P. By the
hypothesis any solution belonging to ¥), lies in the domain such

as }jy <da’(P), 0<x <, and hence the section of 9), by a=x*

(x”Sx") is a bounded closed set. Now we consider the distances
between the points of this set and a point @ on xaxis (2" <x%)
and we indicate the maximum distance by D(P, @). Clearly we
have

O0<D(P, Q) <a(P).

Let 7(P) be the supremum of D(P, Q) when @ moves on x-axis,
always satisfying x° <a“
Now we put

o _ 1
®) WB=

(this is the distance of points projected stereographically), then
since 0 <y (P)<a(P), we have

1
—_— < i(P)X 1.
1+a*(P) = P)=
And also if we have 3 py ( ¥:")*>=G" for a sufficiently great positive
number G independent of x”, then we have
GEZD(P, Q)

for the point @ on zx-axis, where x”=x?, on the other hand we
have

1(P)=D(P, Q),
hence
(P)=G.
Therefore we can verify the inequality

d(P) <e (¢: however small) ;
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namely 0(P) tends to zero uniformly for x as )i(y"’)ﬂ-»oo. Moreo-
i=1

ver if P and @ (2" <a?) lie on the same solution of (1), we have

d(P)=9(Q).
Now put
’I)(x9yh tty yn)za(P) with P= (x’yly "',yn);
and then @(x, y, ---, y.) is the desired function.

Remark 1. If every solution of (1) is unique for the Cauchy-
problem, “for any solution of (1)---for 2” <{x <o ” is replaced by
“every solution of (1) is bounded as x increases”.

Remark 2. In the case for the solutions starting from x=0,
we can also discuss in the same way.

Finally, I wish to express my sincere thanks to Emeritus Prof.
Toshizo Matsumoto and Prof. Akira Kobori to whom I owe a great
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