MEMOIRS OF THE COLLEGE OV SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 3, 1954.

Note on the bound edness of solutions of a system of differential equations

By

Tarô YOSHIZAWA

(Received Dec. 23, 1953)

In the foregoing papers⁽ⁱ⁾ we have discussed the existence of a periodic solution of the non-linear differential equation and we have obtained a sufficient condition⁽²⁾ for the *boundedness* of solutions in order to use Massera's theorem.^{(3)} That condition is analogous to Okamura's theorem^{(4)} for the possibility of the continuation of solutions. In this paper we will obtain necessary and sufficient conditions for the boundedness of solutions of such a type that we have discussed formerly on the evaluation of the derivatives of solutions of a differential equation of the second order.^{(5)}

Now we consider a system of differential equations,

(1)
$$
\frac{dy_i}{dx} = f_i(x, y_1, \dots, y_n) \quad (i = 1, 2, \dots, n),
$$

where $f_i(x, y_1, \dots, y_n)$ are *continuous* in the domain

 J_i : $0 \leq x < \infty$, $-\infty < y_i < +\infty$ (*i*=1, 2, …, *n*).

And we discuss the boundedness for $0 \le x < \infty$ of solutions starting from $x=0$.

To simplify our statements, here we give at first a list of the domains and their symbols used in the following.

(2) Yoshizawa; *ibid.,* p.153.

(3) M assera; *"The existence of periodic solutions of sy stems of differential equations",* Duke Math. Journal, Vol. 17 (1950), pp. 457-475.

(5) Yoshizawa; "On the evaluation of the derivatives of solutions of $y'' = f(x, y, y')$ ", These Memoirs, Vol. 28 (1953), pp.27-32.

⁽¹⁾ Yoshizawa ; " *On the non-linear differenti.d equation",* These Memoirs, Vol. 28 (1953), pp. 133- 141 and *"Note on the existence theorem o f a periodic solution of the non-linear differential equation", ibid..* pp. 153- 159.

⁽⁴⁾ Okamura ; Functional Equations (in Japanese), Vol. 32 (1942) or Yoshizawa ; *ibid.,* p. 139.

294 *Dar6 Yoshizawd*

 $\theta \!\leq\! x \!<\! \infty, \quad \Sigma \, y_i^2$ $A_3: x=0, \sum_{i=1}^{\infty}$ A_4 : $0 \le x < \infty$, $\sum_{i=1}^{n} y_i^2 = \hat{\beta}^2$, θ_5 : $0 \leq x < \infty$, $\sum_{i=1}^n y_i^2 \leq \gamma^2$, J_6 : $0 \le x < \infty$, $\sum_{i=1}^{n} y_i^2 = \gamma^2$.

Theorem 1. In order that, given a positive number α and for *a suitable positive number* β (> α), *for any solution* $y_i = y_i(x)$ (*i*=1, $2, \dots, n$ *of* (1) *such as*

(2)
$$
y_1(0)^2 + y_2(0)^2 + \dots + y_n(0)^2 \le \alpha^2
$$

we have for $0 \leq x < \infty$

(3)
$$
y_1(x)^2 + y_2(x)^2 + \cdots + y_n(x)^2 < \beta^2
$$
,

it is necessary and sufficient that there exists a non-negative continuous function $\Phi(x, y_1, \dots, y_n)$ *satisfying the following conditions in the* $domain$ Λ_2 *in* Λ_1 ; *namely*

- 1° $\phi(x, y_1, \dots, y_n) = 0$ *, provided* $(x, y_1, \dots, y_n) \in J_n$
- 2° $\phi(x, y_1, \dots, y_n) > 0$, provided $(x, y_1, \dots, y_n) \in A_4$
- 3° $\phi(x, y_1, \dots, y_n)$ satisfies locally the Lipschitz condition with *regard* $to(y_1, \ldots, y_n)$ *in* Δ_2 (as the necessary condition, *th e re is su ch a function that satisfies non-locally the Lipschitz condition) an d w e have f o r all points in the interior* of J_2

(4)
$$
\lim_{h\to 0} -\frac{1}{h} \left\{ \psi(x+h, y_1+hf_1, \cdots, y_n+hf_n) - \psi(x, y_1, \cdots, y_n) \right\} \leq 0.
$$

Proof. It is clear that the condition is sufficient. Now we suppose that, for any solution of (1) satisfying (2), the inequality (3) holds for $0 \le x < \infty$. Let *Q* be a point $(x_1^0, y_1^0, \dots, y_n^0)$ in A_2 and *P* be a point $(0, y_1^P, \dots, y_n^P)$ in d_3 . And we construct the Okamura's D-function *D P, Q*^{(n)} with respect to the interval $0 \le x \le x^{\circ}$. We

⁽⁶⁾ Hayashi a n d Yoshizawa ; *"N ew treatise of solutions of a system of ordinary differential equations an d its application to the uniqueness theorems",* These Memoirs, Vol. 26 (1951), pp. 225-233.

indicate by $\delta(Q)$ the minimum of $D(P, Q)$ when *P* displaces in *4³ .* Here if we put

$$
\varPhi(x, y_1, \cdots, y_n) = \delta(Q) \quad \text{with} \quad Q = (x, y_1, \cdots, y_n),
$$

we can see that this $\mathcal{P}(x, y_1, \dots, y_n)$ is the desired function by the properties of D-function.

In Theorem 1 we have obtained a necessary and sufficient condition for the boundedness of solutions by using the Okamura's D-function, and yet such a condition may also be obtain by the consideration of the *distance* between a point and the solutions as follows ; namely

Theorem 2 . *In order that the proposition in Theorem I may be verified, it is necessary an d sufficient that, for a suitable positive constant* γ ($>\alpha$), *there exists a non-negative function* Φ (x, y_1, \dots, y_n) *of* (x, y_1, \dots, y_n) *satisfying the following conditions in the domain* \mathcal{A}_3 ; *namely*

- *1°* $\Phi(x, y_1, \dots, y_n) > 0$, *provided* $(x, y_1, \dots, y_n) \in J_3$,
- 2° $\Phi(x, y_1, \dots, y_n) = 0$ *, provided* $(x, y_1, \dots, y_n) \in \mathcal{A}_n$
- 3° *for any solution of* (1), $y_i = y_i(x)$ (*i*=1, 2, ···, *n*), the func*tion* $\Phi(x, y_1(x), \dots, y_n(x))$ *is the non-decreasing function of x (so long as it has a sense).*

Proof. Now we shall show that the condition is necessary. Suppose that there exists β for α given and then we take a positive number γ such as $\gamma > \beta$. Here we consider all the solutions of (1) starting from P in the domain J_3 and indicate it by \mathfrak{Y}_P . Now we take a point Q such that $x^q \ge x^r$, $\sum_{i=1}^{n} (y_i)^2 = r^2$ and consider the section of the solutions belonging to \mathcal{Y}_P by $x = x^{\prime\prime}$ which lie in \mathcal{Y}_2 for $x^P \le x \le x^{\prime\prime}$. If this section is an empty set, we put

$$
D(P, Q) = \sqrt{\sum_{i=1}^{n} (y_i^Q - y_i^P)^2}
$$

and if otherwise, it is clearly a bounded closed set and hence we can consider on the plane $x = x^{\circ}$ the distance between this closed set and Q , which we denote by $D(P, Q)$. Now we indicate by $\partial(P)$ the infimum of $D(P, Q)$ when *Q* displaces in \mathcal{I}_θ , yet satisfying $x^{\varphi} \geq x^{\nu}$. Hence if we put

$$
\varPhi(x, y_1, \cdots, y_n) = \delta(P) \quad \text{with} \quad P = (x, y_1, \cdots, y_n),
$$

296 *rar6 Yoshizawd*

this $\mathcal{P}(x, y_1, \dots, y_n)$ is the desired function.

Remark. Since by $\partial(P) \geq r - \beta > 0$ we have for $P \in \mathcal{A}_3$

$$
\inf_{P \in A_3} \delta(P) > 0,
$$

we can replace the condition 1° and 2° by the condition

$$
\inf_{(x, y_1, \cdots, y_n) \in \Delta_3} \varPhi(x, y_1, \cdots, y_n) > \sup_{(x, y_1, \cdots, y_n) \in \Delta_6} \varPhi(x, y_1, \cdots, y_n).
$$

The continuity of $\phi(x, y_1, \dots, y_n)$ cannot be obtained in case of Theorem 2; to be continuous it is sufficient to see that ϕ satisfies the Lipschitz condition, but it is impossible in general.

But in the case where $\phi(x, y_1, \dots, y_n)$ has the continuous first partial derivatives, the condition 3° is clearly replaced by the inequality

$$
\frac{\partial \Phi}{\partial x} + \sum_{i=1}^n \frac{\partial \Phi}{\partial y_i} f_i(x, y_i, \dots, y_n) \geq 0,
$$

and therefore it is useful in important practical cases.

The condition mentioned above are those for the solutions starting from $x=0$ and yet we can obtain a necessary and sufficient condition in order that, given a positive number α , there exists a suitable positive number β depending only on α such that, for any solution of (1) satisfying at *every* $x = x_0$

$$
\sum_{i=1}^n y_i(x_0)^2 \leq \alpha^2,
$$

we have always for $x_0 \le x < \infty$

 $\sum_{i=1}^{n} y_i(x)^2 < \beta^2$.

If we change the notion of the distance, a necessary and sufficient condition in order that the solutions of (1) are bounded as *x* increases is mentioned as follows by the method in Theorem 2; namely

Theorem 3. In order that, for any solution of (1), $y_i = y_i(x)$ $(i=1, 2, \cdots, n)$, *passing through any point P, there exists* $\alpha(P)$ *such that* $\sum_{i=1}^{n} y_i(x)^2 < \alpha^2(P)$ *for* $x^P \le x < \infty$, *it is necessary and sufficient that there exists a positive function* $\Phi(x, y_1, \dots, y_n)$ *of* (x, y_1, \dots, y_n) *satisfying the following conditions in* J_1 ; *namely*

1° $\psi(x, y_1, \dots, y_n) > 0$,

- 2° $\phi(x, y_1, \dots, y_n)$ tends to zero uniformly for x, as $\sum_{i=1}^n y_i^2 \rightarrow \infty$,
- 3° *for any solution of* (1), $y_i = y_i(x)$ (*i*=1, 2, ···, *n*), *the function* $\Phi(x, y_1(x), \dots, y_n(x))$ *is the non-decreasing function of x.*

Proof. It is clear that the condition is sufficient. Now we show that the condition is necessary. Let P be a point in \mathcal{A}_1 and \mathcal{Y}_h , be the family of all the solutions passing through *P*. By the hypothesis, any solution belonging to *D,* lies in the domain such as $\sum_{i=1}^{n} y_i^2 < \alpha^2(P)$, $0 \le x < \infty$, and hence the section of \mathcal{Y}_P by $x = x^2$ $\sum_{i=1}$ $(x^{\rho} \leq x^{\rho})$ is a bounded closed set. Now we consider the distances between the points of this set and a point *Q* on *x*-axis $(x^P \leq x^Q)$ and we indicate the maximum distance by $D(P, Q)$. Clearly we have

$$
0\leq D(P,Q)<\alpha(P).
$$

Let $\gamma(P)$ be the supremum of $D(P, Q)$ when Q moves on x-axis, always satisfying $x^p \leq x^q$.

Now we put

$$
(5) \qquad \qquad \delta(P) = \frac{1}{1 + \gamma^2(P)}
$$

(this is the distance of points projected stereographically), then since $0 \leq r(P) \leq \alpha(P)$, we have

$$
0 < \frac{1}{1 + \alpha^2(P)} \le \delta(P) \le 1.
$$

And also if we have $\sum_{i}(y_i)^2 \geq G^2$ for a sufficiently great positive number *G* independent of x^p , then we have

$$
G\leq D(P,Q)
$$

for the point *Q* on *x*-axis, where $x^r = x^q$, on the other hand we have

 $r(P) \ge D(P,Q)$,

hence

$$
\gamma(P)\geq G.
$$

Therefore we can verify the inequality

 $\partial(P) \leq \varepsilon$ (ε : however small) ;

298 tard Yoshizawd

namely $\delta(P)$ tends to zero uniformly for *x* as $\sum_{i=1}^{n} (y_i^P)^2 \rightarrow \infty$. Moreover if *P* and *Q* $(x^r < x^q)$ lie on the same solution of (1), we have

 $\delta(P) \leq \delta(Q)$

Now put

 $\Phi(x, y_1, \cdots, y_n) = \delta(P)$ with $P = (x, y_1, \cdots, y_n)$,

and then $\phi(x, y_1, \dots, y_n)$ is the desired function.

Remark 1. If every solution of (1) is *unique* for the Cauchyproblem, "for any solution of $(1) \cdots$ for $x^r \le x < \infty$ " is replaced by " every solution of (1) is bounded as *x* increases".

Remark 2. In the case for the solutions starting from $x=0$, we can also discuss in the same way.

Finally, I wish to express my sincere thanks to Emeritus Prof. Toshizo Matsumoto and Prof. Akira Kobori to whom I owe a great debt for his guidance in my research.