MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 3, 1954.

Note on the boundedness of solutions of a system of differential equations

By

Tarô Yoshizawa

(Received Dec. 23, 1953)

In the foregoing papers⁽¹⁾ we have discussed the existence of a periodic solution of the non-linear differential equation and we have obtained a sufficient condition⁽²⁾ for the *boundedness* of solutions in order to use Massera's theorem.⁽⁵⁾ That condition is analogous to Okamura's theorem⁽⁴⁾for the possibility of the continuation of solutions. In this paper we will obtain necessary and sufficient conditions for the boundedness of solutions of such a type that we have discussed formerly on the evaluation of the derivatives of solutions of a differential equation of the second order.⁽⁵⁾

Now we consider a system of differential equations,

(1)
$$\frac{dy_i}{dx} = f_i(x, y_1, \dots, y_n) \quad (i=1, 2, \dots, n),$$

where $f_i(x, y_1, \dots, y_n)$ are continuous in the domain

And we discuss the boundedness for $0 \le x < \infty$ of solutions starting from x=0.

To simplify our statements, here we give at first a list of the domains and their symbols used in the following.

(2) Yoshizawa; *ibid.*, p.153.

(3) Massera; "The existence of periodic solutions of systems of differential equations", Duke Math. Journal, Vol. 17 (1950), pp. 457-475.

(5) Yoshizawa; "On the evaluation of the derivatives of solutions of y''=f(x, y, y')", These Memoirs, Vol. 28 (1953), pp.27-32.

⁽¹⁾ Yoshizawa; "On the non-linear differential equation", These Memoirs, Vol. 28 (1953), pp. 133-141 and "Note on the existence theorem of a periodic solution of the non-linear differential equation", ibid., pp. 153-159.

⁽⁴⁾ Okamura; Functional Equations (in Japanese), Vol. 32 (1942) or Yoshizawa; *ibid.*, p. 139.

Tarô Yoshizawd

 $\begin{aligned} & \mathcal{L}_2: \quad 0 \leq x < \infty, \quad \sum_{i=1}^n y_i^2 \leq \beta^2, \\ & \mathcal{L}_3: \quad x = 0, \qquad \sum_{i=1}^n y_i^2 \leq \alpha^2, \\ & \mathcal{L}_4: \quad 0 \leq x < \infty, \quad \sum_{i=1}^n y_i^2 = \beta^2, \\ & \mathcal{L}_5: \quad 0 \leq x < \infty, \quad \sum_{t=1}^n y_t^2 \leq \gamma^2, \\ & \mathcal{L}_6: \quad 0 \leq x < \infty, \quad \sum_{i=1}^n y_t^2 = \gamma^2. \end{aligned}$

Theorem 1. In order that, given a positive number α and for a suitable positive number β (> α), for any solution $y_i = y_i(x)$ (i=1, 2, ..., n) of (1) such as

(2)
$$y_1(0)^2 + y_2(0)^2 + \dots + y_n(0)^2 \leq \alpha^2$$
,

we have for $0 \leq x < \infty$

(3)
$$y_1(x)^2 + y_2(x)^2 + \dots + y_n(x)^2 < \beta^2$$
,

it is necessary and sufficient that there exists a non-negative continuous function $\Phi(x, y_1, \dots, y_n)$ satisfying the following conditions in the domain J_2 in J_1 ; namely

- 1° $\Psi(x, y_1, \dots, y_n) = 0$, provided $(x, y_1, \dots, y_n) \in J_3$,
- 2° $\Phi(x, y_1, \dots, y_n) > 0$, provided $(x, y_1, \dots, y_n) \in \Delta_{i_1}$
- 3° $\Psi(x, y_1, \dots, y_n)$ satisfies locally the Lipschitz condition with regard to (y_1, \dots, y_n) in \varDelta_2 (as the necessary condition, there is such a function that satisfies non-locally the Lipschitz condition) and we have for all points in the interior of \varDelta_2

(4)
$$\lim_{h\to 0} \frac{1}{h} \left\{ \Psi(x+h, y_1+hf_1, \cdots, y_n+hf_n) - \Psi(x, y_1, \cdots, y_n) \right\} \leq 0.$$

Proof. It is clear that the condition is sufficient. Now we suppose that, for any solution of (1) satisfying (2), the inequality (3) holds for $0 \le x < \infty$. Let Q be a point $(x_1^Q, y_1^Q, \dots, y_n^Q)$ in d_2 and P be a point $(0, y_1^P, \dots, y_n^P)$ in d_3 . And we construct the Okamura's D-function $D(P, Q)^{(n)}$ with respect to the interval $0 \le x \le x^Q$. We

⁽⁶⁾ Hayashi and Yoshizawa; "New treatise of solutions of a system of ordinary differential equations and its application to the uniqueness theorems", These Memoirs, Vol. 26 (1951), pp. 225-233.

indicate by $\delta(Q)$ the minimum of D(P, Q) when P displaces in \mathcal{A}_{3} . Here if we put

$$\Psi(\mathbf{x}, \mathbf{y}_1, \cdots, \mathbf{y}_n) = \delta(\mathbf{Q}) \quad \text{with} \quad \mathbf{Q} = (\mathbf{x}, \mathbf{y}_1, \cdots, \mathbf{y}_n),$$

we can see that this $\Psi(x, y_1, \dots, y_n)$ is the desired function by the properties of *D*-function.

In Theorem 1 we have obtained a necessary and sufficient condition for the boundedness of solutions by using the Okamura's *D*-function, and yet such a condition may also be obtain by the consideration of the *distance* between a point and the solutions as follows; namely

Theorem 2. In order that the proposition in Theorem 1 may be verified, it is necessary and sufficient that, for a suitable positive constant γ (> α), there exists a non-negative function $\Psi(x, y_1, \dots, y_n)$ of (x, y_1, \dots, y_n) satisfying the following conditions in the domain Δ_3 ; namely

- 1° $\Psi(x, y_1, ..., y_n) > 0$, provided $(x, y_1, ..., y_n) \in J_3$,
- 2° $\Psi(x, y_1, \dots, y_n) = 0$, provided $(x, y_1, \dots, y_n) \in \mathcal{A}_6$,
- 3° for any solution of (1), $y_i = y_i(x)$ (i=1, 2, ..., n), the function $\Psi(x, y_1(x), ..., y_n(x))$ is the non-decreasing function of x (so long as it has a sense).

Proof. Now we shall show that the condition is necessary. Suppose that there exists β for α given and then we take a positive number γ such as $\gamma > \beta$. Here we consider all the solutions of (1) starting from P in the domain J_3 and indicate it by \mathfrak{Y}_{P} . Now we take a point Q such that $x^{Q} \ge x^{r}$, $\sum_{i=1}^{n} (y_i^{Q})^2 = \gamma^2$ and consider the section of the solutions belonging to \mathfrak{Y}_{P} by $x = x^{q}$ which lie in J_3 for $x^{P} \le x \le x^{q}$. If this section is an empty set, we put

$$D(P, Q) = \sqrt{\sum_{i=1}^{n} (y_i^{Q} - y_i^{\prime\prime})^2}$$

and if otherwise, it is clearly a bounded closed set and hence we can consider on the plane $x=x^{Q}$ the distance between this closed set and Q, which we denote by D(P, Q). Now we indicate by $\partial(P)$ the infimum of D(P, Q) when Q displaces in J_{6} , yet satisfying $x^{Q} \ge x^{P}$. Hence if we put

$$\Psi(\mathbf{x}, \mathbf{y}_1, \cdots, \mathbf{y}_n) = \delta(\mathbf{P}) \text{ with } \mathbf{P} = (\mathbf{x}, \mathbf{y}_1, \cdots, \mathbf{y}_n),$$

Tarô Yoshizawa

this $\Psi(x, y_1, \dots, y_n)$ is the desired function.

Remark. Since by $\delta(P) \ge \gamma - \beta > 0$ we have for $P \in \mathcal{A}_3$

$$\inf_{P\in A_3} \quad \delta(P) > 0,$$

we can replace the condition 1° and 2° by the condition

$$\inf_{(x, y_1, \cdots, y_n) \in \mathcal{A}_3} \Psi(x, y_1, \cdots, y_n) > \sup_{(x, y_1, \cdots, y_n) \in \mathcal{A}_6} \Psi(x, y_1, \cdots, y_n).$$

The continuity of $\Psi(x, y_1, \dots, y_n)$ cannot be obtained in case of Theorem 2; to be continuous it is sufficient to see that Ψ satisfies the Lipschitz condition, but it is impossible in general.

But in the case where $\Psi(x, y_1, \dots, y_n)$ has the continuous first partial derivatives, the condition 3° is clearly replaced by the inequality

$$\frac{\partial \psi}{\partial x} + \sum_{i=1}^{n} \frac{\partial \psi}{\partial y_i} f_i(x, y_1, \cdots, y_n) \geq 0,$$

and therefore it is useful in important practical cases.

The condition mentioned above are those for the solutions starting from x=0 and yet we can obtain a necessary and sufficient condition in order that, given a positive number α , there exists a suitable positive number β depending only on α such that, for any solution of (1) satisfying at every $x=x_0$

$$\sum_{i=1}^n y_i(x_0)^2 \leq \alpha^2,$$

we have always for $x_0 \leq x < \infty$

 $\sum_{i=1}^n y_i(x)^2 < \beta^2.$

If we change the notion of the distance, a necessary and sufficient condition in order that the solutions of (1) are bounded as x increases is mentioned as follows by the method in Theorem 2; namely

Theorem 3. In order that, for any solution of (1), $y_i = y_i(x)$ (i=1, 2, ..., n), passing through any point P, there exists $\alpha(P)$ such that $\sum_{i=1}^{n} y_i(x)^2 < \alpha^2(P)$ for $x^P \leq x < \infty$, it is necessary and sufficient that there exists a positive function $\Psi(x, y_1, \dots, y_n)$ of (x, y_1, \dots, y_n) satisfying the following conditions in J_1 ; namely

1° $\Psi(x, y_1, \cdots, y_n) > 0$,

296

- 2° $\Psi(x, y_1, \dots, y_n)$ tends to zero uniformly for x, as $\sum_{i=1}^n y_i^2 \to \infty$,
- 3° for any solution of (1), $y_i = y_i(x)$ $(i=1, 2, \dots, n)$, the function $\Psi(x, y_1(x), \dots, y_n(x))$ is the non-decreasing function of x.

Proof. It is clear that the condition is sufficient. Now we show that the condition is necessary. Let *P* be a point in \mathcal{A}_1 and \mathfrak{Y}_P be the family of all the solutions passing through *P*. By the hypothesis, any solution belonging to \mathfrak{Y}_P lies in the domain such as $\sum_{i=1}^{n} y_i^2 < \alpha^2(P)$, $0 \leq x < \infty$, and hence the section of \mathfrak{Y}_P by $x = x^q$ $(x^P \leq x^q)$ is a bounded closed set. Now we consider the distances between the points of this set and a point *Q* on *x*-axis $(x^P \leq x^q)$ and we indicate the maximum distance by D(P, Q). Clearly we have

$$0 \leq D(P, Q) < \alpha(P).$$

Let $\gamma(P)$ be the supremum of D(P, Q) when Q moves on x-axis, always satisfying $x^{P} \leq x^{Q}$.

Now we put

(5)
$$\delta(P) = \frac{1}{1+r^2(P)}$$

(this is the distance of points projected stereographically), then since $0 \leq r(P) \leq \alpha(P)$, we have

$$0 < \frac{1}{1 + \alpha^2(P)} \leq \delta(P) \leq 1.$$

And also if we have $\sum_{i=1}^{n} (y_i^{r})^2 \ge G^2$ for a sufficiently great positive number G independent of x^{r} , then we have

$$G \leq D(P, Q)$$

for the point Q on x-axis, where $x^r = x^q$, on the other hand we have

 $\gamma(P) \geq D(P, Q),$

hence

$$\gamma(\mathbf{P}) \geq G.$$

Therefore we can verify the inequality

 $\delta(P) < \varepsilon$ (ε : however small);

Tarô Yoshizawa

namely $\delta(P)$ tends to zero uniformly for x as $\sum_{i=1}^{n} (y_i^P)^2 \to \infty$. Moreover if P and $Q(x^P < x^Q)$ lie on the same solution of (1), we have

 $\delta(P) \leq \delta(Q).$

Now put

 $\Psi(x, y_1, \dots, y_n) = \delta(P) \quad \text{with} \quad P = (x, y_1, \dots, y_n),$

and then $\Psi(x, y_1, \dots, y_n)$ is the desired function.

Remark 1. If every solution of (1) is *unique* for the Cauchyproblem, "for any solution of (1) ... for $x^r \leq x < \infty$ " is replaced by "every solution of (1) is bounded as x increases".

Remark 2. In the case for the solutions starting from x=0, we can also discuss in the same way.

Finally, I wish to express my sincere thanks to Emeritus Prof. Toshizo Matsumoto and Prof. Akira Kobori to whom I owe a great debt for his guidance in my research.

298