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Recently E. R. K olchin  [1] has developed a  beautiful Galois
theory of differential fields. The Galois group is equipped with an
algebraico-geometric struc tu re . H is  m ain  theorem asserts Galois
correspondence between the intermediate differential fields and the
algebraic subgroups (i. e. the closed subgroups in Zariski topology)
of the automorphism g ro u p . His results show also that the groups
of strong isomorphisms in  his sense have, if irreducible, almost all
properties o f  group variety in  the  sense of A . W e il. Combining
Kolchin's results with Wells method of construction of group vari-
eties ([4]), and using an  idea of Nakano [5], we shall show in this
note that Kolchin's irreducible groups are, as he conjectured, group
varieties in  Weil's se n se . Further we shall add some remarks on
the specialization and the solvability in  th e  whole (eventually re-
ducible) group.

1. Let g/ F b e  a strongly normal extension (cf. [ 1 ] ) .  Thus F
is of characteristic 0, and g  is finitely generated over F  (not only
in  differential sense, bu t a lso  in  algebraic se n se ) . g  and F  have
the same co n stan t feld  C .  which is assumed to be algebraically
closed. L et G * and G  be  th e  group o f  th e  strong isomorphisms
a n d  th e  autom orphism  group. respectively. For the present we
shall assume that G * is irreducible. A ll the fields to be considered
are  contained in  a  universal extension g *  w ith  constant field C*.
g  and C* are  linearly disjoint over C, and so specializations over
C and those over g  are  equivalent for constants.

2. Let 5- b e  a  generic element of G * .  Ca- is finitely generated
over C, and we can set C r-,' C(Y6- ), (ri,- • , Moreover
w e can, and shall, take ( 7 )  so that the affine variety defined over
C with generic point (;-6-) may be (everywhere) normal. Let g=
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(
7
1  i  7  •  •  •  •  r i l l )  •

W e have

(1) (5-7)=A(7),r6 -)/B( .6,

(2) 7'6-
 -- - C(r , (3 7;)/ D ( -6, -d 0 =--- S(,&7;),

(3) '6 = E ( 6-7,,, r )/ F ( 6-6,;-6- ) =T(&7,-,;-,7),

where A , •-•, F  a re  polynomials with coefficients in F, A/B,
S = C / D ,T = E / F . (Strictly speaking, we must write -6- 7,,--R i (?2,

i 5 n ,  and so o n . T h e  above are, therefore, symbolic notations,
but no confusion will occur.)

L em m a  1 . There is a polynomial M (X)EC[X„ ••-, X„.] such that

(a) M ( r )  4 0,
(b) i f  0 -0 , ( -') o ver C a n d  if  M (r )  -.40, then W. h a s  a

uniquely determined specialization CT over that specializa-
tion and w e have

(4) 07, =R , (5) a- 0 ,  (6) r i = T ( ,  r ' ) .

P r o o f  W e have only to take M  so that M (y ' )  0 may mean
11,13,(, y') • Il i D i (71 ,R(7,,y')) • IlkFk(R(71,7'),7')4 O. F o r  a  detailed
proof see [1], Ch. II, prop. 9.

L e m m a  2 .  There is a polynomial P(Y)Eg[Y, ••• Y„] with the
following properties :

(a) Pc6--0 0,
(b) if 0-€G*, P(0-6) A70 then (ri ) has a unique specialization

( ro )  over W C r  with reference to g  such that the ri

are constants and that M (i - ,,) O . (T h e re fo re  0- and y,
are  related by (4 ), (5 ), (6 ).)

PFoof. W riting .111 (C (7„Y )/D (-6 , Y ))=H (Y )/K (Y ), where H,
KEgLY] and K  is  a  power product of the D i, we take

P (Y )= H (Y )• 1 1 ,D ,Y ) .

If P (3 - ï )  0 ,  s e t  y ,= S (,0 -6 ) .  W e  se e  M(r„)=—T- 0, a n d  (7,,) is a
unique specialization o f  ( -0 )  over Differerentiating (1), we
have

0=--[4,C(r;,Ti-) • D (7„ — C (7;  , Fr • 4,D(x,iiv))]/ D(7,-, (77X .

Specializing & to we have a,ro =0 for a ll a„ and this completes
the proof.
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3. W e  sh a ll d en o te  b y  3  and 9 ,  resp., the  frontier defined
by  M (X ) —0 on the affine variety V  and the algebraic set defined
by P(Œ-6) = 0  in  G*.

Proposition 1. For any differential polynomial Q(Y)Eg{ Y.} =
Y„ • • •, Y„} such that Q(ii ) 4.0, and for any a- EG*, there exists a
G  such that Q(,00- 7,) L-<. 0.

P ro o f If  it w ere false, there w ould be som e Q and some Cr
w ith the following property :

(A )  Q((i7;)-1 -,--0 , and v p€G Q(p0 - 0  = 0.

Let Q. be one with the least number of terms among such Q , and
let one of the coefficients of  Q .  be equal to 1. W e have Q„'(76-6)

Qo (1)- 1 1.- 0- 72)].=---  0 for some a-EG* and for all p, r EG. A s  Q° — QoP
has fewer terms than Q 0 , we must have Q„(6'-o) — = 0  Then
w e have Qe= Q,,. For otherwise we can choose E g so that Q0—

Q„— QP] may have fewer terms than Q0 , and this dif. polynomial
has property (A ), contradiction. Therefore Q ,,=-Q ,, fo r  a ll ,nEG.
B ut this means Q0E F{Y} . T hen  Q„( f , ) ( Q , ( 0 ) =  0 , .*. Q„
=0, Q,,(6- )  =T T  Q , , ( ) ] = 0 ,  contradiction. Q.E.D.

Proposition 2. There exist a  finite number of automorphisms
•••, G  such that vo-EG*

P ro o f By prop. 1 w e have n p„ ; 1, - '91-=(6. By the compactness
of G * in Zariski topology (see the end of the proof of [1], Ch. II,
prop. 13) there exist p,, • • • , px E G  such that n ,,0 , - '9 = 0 .  Q.E.D.

Lemma 3 .  pEG,G-EG*------>Cp 0 =C o . Especially tic? i s  a  generic
element o f G*.

P ro o f Transforming the formula gu a g = g u  C, by  p, we have
gu po-g=gu C „. Taking account of [1], C h  I , p ro p . 3, Cor. 5 this
means Cpc --- C o .  A s dim  0- ---(3"C,,/C, the lemma is proved.

4. By Lem m a 1, w e can w rite  every  point of in the
form  ( b ) , , o - EG *  p i being the same as in prop. 2, we shall write

= Put Vi= V, • ( 1  S O .  By lemma 3, the subvariety
T I ,= (Yoi) x C }  of V,, x  VI i s  a  birational correspondence be-
tween V. and VI. The following lemma shows that we can define
an  abstract variety o v e r  C  (with universal domain C * )  b y  I ' .
[ V, ;

Lemma 4 .  I f  (;-0 ,)E V,, —  v i - 5 8  a n d  if  (;-„,) x (y„) E

T j i ,  then To  i s  biregular a t  (7„,) x (y,), and w e can w rite  o- f  p i cr
o-1 ,7f  =  =  ( 3 -

4 f o r  some 0  G* . Moreover, we have yii 1,
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(ro, ioj, (T )•
P ro o f Set pi p , ' B y (1 ) w e have A (1,, y. 1 )/B(7),ra 1) .

It follows iii 7,- = p i ,a-07_, A (p i i7), i'61). Now (y o ,) 04 implies
B(7 0, •'. B ( P A ,  r a t )  -= To):14---; 0 , p /i. ji) a l)/  B  (p i i y;

T h ere fo re  a  h a s  a  unique specialization pi 3 O-');, over (yai)--
(y „,) with reference to g .  On the other hand 0 - , rt,)/c,
a n d  (y,)/13, so  w e  h a v e  ( y , e j ) - 4 y 0 ,, y,,, 7')/g. Hence

Then we have, b y  (2 )  and  (5 ), (y 3 ) =S(77, Frj o ,  ( r. : ,) =S(7",
a n d (y )  has a unique specialization (i v ), therefore is finite,

over 670-. ( -„,)/c.
A s  V, is normal, this im plies that th e  projection of T ,  o n  V, is
regular a t (yo ,). Similarly the projection on Vi  is regular at
The first part of the lemma is proved.
Setting pi

- 1 0- ' = c ,  w e have cl----p,c=0-„, r' = p '- _ — _ c = c i . We see
also that 6- 72=--  p, - 1(- i- i 7)= R ( p s - 17,- , 7- 51 )  has a unique specialization c72=
p r 10- i = R ( lot - 1 7), l o , )  o v e r  (y ) — (r0 , ). Q .E .D .
By this lemma, the above mentioned Variety V is well defined, and,
every point of V can be written in the form  P (o) .  The represen-
tatives of P ( c r )  are  those ( y 0 ) which do not lie in By prop. 2,
there exists a  P(Œ )€ V  for every 0- EG * .  Thus there is a  one-to-one
correspondence between G* a n d  V.
In  the above proof, we saw that 6- has a  unique specialization c
o v e r  (yo-i )--->(y„,)/C (o r  w h a t  is  th e  sam e , o v e r P ( & ) - - - * P ( r ) ) .
Similarly, if P (0 - ) - - P (7 )/ C  then c  is uniquely specialized to r  over
that specialization.
Conversely, let c,z- EG*, Gr--, r. By prop. 2, w e have piz-15.8 for some
j. A s dim pi -- 0, pi  and  0- are independent, pj c.-->Pj 7, whence pp EP .
T hen  (raj )  and ( 7 , )  have a sense and b y  (5)

(r. i ) —(7ti ) /C, j .  e.

B y th e  la st rem ark  w e  h av e  (P (o) ,  0-)---*(P (7 .-), 7 ). Now P (0 -)

has no other specialization over For if (0- , P ( o ) ) —>(r, P ( 7 ' ) ) ,

then z- '  is the unique specialization of G  over P(0-)--4 )(7 1 ) ,  . .  r = r f .

Therefore i n  G* and P ( o ) — P ( r ) / C  in U  a re  completely
equivalent.

5. Lemma 5. The multiplication in V  given by P (cr ) •  P (7 )
=  P (a . r )  is a law of composition in Weil's sense, by means of which
V becomes a  group variety.

P ro o f Let a, rc- be two independent generic element of G * .  By
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(1 )  w e have
(77 7;.= R(Fr-  )7, ri) ,

C(1 -1(a- )) = G-i- c C(7,T ri -)=---C(P(cf), P (-)) .

Therefore there is a  function V , defined over C  o n  V x I', with
values in  I ', such  th a t PO- ( P ( & )  ,  P ( 0 ) .  L et (yi-,)--4 (7,,)
(P . W e  c a n  w r ite  pi

- 1-6-=- W ( ) ,  w here  W  is  a  rational function
with coefficients in  F .  Then w e have

(7) =R (
Similarly, as (y, I )(P ,  w e have

(8) (3-71i ----- R (W (0 - 7,),; - ti ),

w here  R------A /B  a n d  B(W (0- 0 , yr.3)-k  O. O n the
other hand, by N °4 , cry, is a unique specialization of (-5-)2 over P(o )

(0-)
From this and from  ( 7 ) ,  ( 8 )  we see that cry, is a unique speciali-
zation of over (P(& ), P(.=)) , (P (0 ) , P(7 ))/g . Hence P ( a - )
is uniquely specialized to 11 (o- 7) over ( P ( ) , ( P ( T ),  P ( r ) )
/ C . Since the  product o f  tw o norm al varieties is again normal,

x U  is no rm al. Therefore IF (1 1 (a ) ,  P (7 ) )  is defined and is equal
to  P (0 - 7 ) .  Thus //f is everywhere defined, and of course  associa-
tive.

N ex t w e  consider inverse e lem ents. As C  =C6- - ' ,  we can
define a  function 0  over C  by

P(6- - 1 ) --= 0/4 ( )).

L et ( y ) ( P .  W e can write hy,---- U ( ) ,  where U  is a rational func-
tion with coefficients in F .  By (3 ) we h a v e  = rw , ) ,

=T(7;, (010 =a-  ( U ( .6 ))=U =  U [T  7 0 1
B y (yo i l ( P  w e have also cr'n.--- U[T(-6, y„ ,)], and we see a s  above
that and P ( )  a r e  uniquely specialized over P (5 - ) - 4 -' ( c )/g
to 0 - 1 -and P (0 -- 1 )  respectively. 0( P(Œ)) is then defined and equal
to  P (0 - - - 1 ).
T hus ou r V satisfies all the conditions of a group variety, and the
lemma is proved.

6. Now we abandon our assum ption that G * is irreducible.
O ur result, then, can be summarized in  the following.

Theorem. If g /F is a strongly normal extension, the component
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of the identity Go* of the strong isomorphism group G* is represen-
ted faithfully by an (abstract) group  varie ty  V . V, together with
its law  of composition, is defined over C, and C * is its universal
dom ain . In this representation, the irreducible sets of Go* corres-
pond to the Subvarieties of

 J 7

 defined over C . If a-EG„* is represented
by  P(0)E  V then C(P(0 - )) =C o . Hence the automorphisms in G„*
are represented by the subgroup V (c ) consisting of the C-rational
Points of V.

R e m a r k . If this group variety TY is complete (i. e. an abelian
variety), then by a theorem of Matsusaka we can take, as a model
of Go *, an abelian variety in a projective space, which is birationally
equivalent over C  t o  V ([6]).

7. An application. In the rest of this note we shall identify
G0 *  w ith  V , 0- with P(0-).

Proposition 3. If r E G (not necessarily rE Go = Go* n G), then the
correspondence 17 )o----> r - lo-rE I' is an everywhere biregular birational
correspondence from V to  V.

P roo f I f  rEG, 0-EG* then  o-z-g=o-g, =  gu 0-g=gu Co .
Transforming by 7- 1 , we have gu r- '0-rg=gu Ca , C0 =C,-1 0 ,. Now
let -6- be a generic element of G,*. x 7- 1 f r  has a locus T., on V x
over C . W e shall prove that the birational correspondence T , is
everywhere biregular and 7', ( a )

77) can be w ritten in the fo rm  r -= W,(7,), where the W  are
rational functions with coefficients in F .  Let 0- (G o*, 0 .  Then
w e have

(r-1
7 - 1 (T r i =  W{R(7 - 1 1 - 1 7), ro,)].

From this we can see, as in other places, th a t r- 1 0-,- ( = P ( r - 1 0- r ))
is a unique specialization of r- -1 r• over and that the projection
of T . on the first factor is regular at 0- w i th  T,(0-) —7 - 1 0- 7. Rep-
lacing r  b y  z-- 1 , and repeating the same argument, w e see that 7',
is everywhere biregular. Q. E. D.

Proposition 4. Let 0-,EG*, 1 r ,  and let (ci, •••,
•••, 0-,!). Let W  (X ) be any w ord (in r le tte rs). T hen  W(0- )  has
a unique specialization W(0- ' )  over (0-)--› (6'). (Here the notation
No- =a-, is abandoned.)

Proof If all a- ,  lie in G,*, this is a property of a group variety.
In  the general case, let
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G*= r,G„* u • • • u r,G0 * ( r ,E G )

be  the decomposition o f G * into the components. We shall denote
b y  71, the transformation in G,1* b y  r iT i ( 0 - )  7 , —I f f r i  (0 - E Go

* ) .

If  G r, c'EGo *, w e have

( 7 1') ( (0")
(r i a)

Thus for any w ord W ( X )  w e  h av e  W(c) --= W(7) • 0,„(0 - ) ,  where
w e set rr; =7, 0 ,7i- „  a n d  W (7 )  denotes th e  group element obtained
from  W ((r ) by the substitution 0- i-- *rkm.

0„. is a function on with values in IV, which is uniquely
determined by W  and (by lemma 5 and prop. 3 ) is defined every-
where. Now  7k-01)0-i, and  if  (r,,,cy )  is a representative of P (6 -/ ),

then
5-76= ps

- 1 1iso- ) = R (7 - 1  p8
- 1 72, rp , o -;) ( 7 =  k u ) ),

» ,= p s o d ,  and 7- 1 ,0,- 1 7Eg.

Hence we see that the  a ,' are unique specializations of the a  over
( 0 - / ) .  T h e n  (cr, 0„ (P,1 (a- ' ) ) .  Since W (r ) E G ,

we can see as above that W (7) W (0-') is a unique speciali-
zation o f  W(7) • W (a ) over 0„,(FT)--»0,,,(5-'). Q.E.D.

8. Proposition 5. If  G * is irreducible, then the  commutator
group D (G *) is also an  irreducible group.

Proof. Let 2 2  • • • be independent generic points of G*.
Set 7 , - 1 . Then H ence, i f  we
denote by tiS, the  irreducible set with generic point Ki, w e  have

•S:21 -Ç- • • •
A s d im  1.1S d im  G*, we m ust have, for some i, Then

•• •, and is a group. B y prop. 4  (the trivial case),
D (G * )  ç , .  N ow  by  [1 ],  C h. II, prop. 9, Cor. 1 we see that
—  D(G*) is contained in  a  lower-dimensional bunch of subvarieties
of $_;),. By [11, Ch. II, prop. 15, ,-----D ( G * ) .  Q.E.D.
(This proposition, together with the proof, is K olch in 's . Cf. [21 §4.
A s  th e  propositions used in  th e  proof a re  valid  fo r  any group
variety, this is a  property of group varieties.)

Corollary 1. I f  G  is irreducible, then the commutator group
D (G ) is again irreducible.

P ro o f W e have o n ly  to  show  th a t  G nD (G *) = D  (G ) . Let
0- EG, a  W (7) , 7;EG*, w here W  is a  word o f the  form
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W (X) = • • X„_, X„ .
Specialize the 7, simultaneously to some automorphismes 7/. By
prop. 4, w e have (7. = W(7 1 )ED (G ). Q. E. D.

Corollary 2. If  G*(or G ) is irreducible, and  if  i t  i s  solvable
as an  abstract group, then it is so  a s  a n  algebraic group, i. e . it
has a normal chain with abelian factor groups consisting o f  alge-
braic subgroups.

This is obvious by Cor. 1. Now we can remove the restriction
to irreducible G .  Our original proof of this was based upon the
next proposition, but Kolchin pointed out the simple facts that G,
and G/G, are solvable if  G  is solvable, and that any subgroup of
the finite group G /G , corresponds to some algebraic subgroup of
G .  The above statement follows immediately.

Proposition 6. Let H 1 . 1111., be subgroups of G, and let ST),,
be the smallest algebraic subgroups containing H, and H i i .„ respect-
iv e ly . If  H,,,, is  a normal subgroup of H, and if H 0 / H1+  i s  abelian
(i.e. if D H ,  D  D ( Hi) ) ,  then we have also s), D .Ç,f) D  DO:5 f ).

1). The case of a group variety . First we consider the case
where G* is irreducible (hence a  g ro up  v a rie ty ). T h e  proof is
valid for any algebraic subgroup o f  a n  (abstract) group variety.

W e shall denote by the symbol g p r the geometric projection,
î. e. the operation of taking the projection of a variety or a bunch
in  a  product space. Note that the geometric projection is identical
with the set-theoretical projection when the projection is regular.

L et P be th e  graph of the function ir : G x Gea x b , aba- 1 b- 1

E G .  Set E* pr i k (G x G x P t  If  hEH,, w e have

g.pr,[(G x hx n g.pr,[(G x h x n D

..• )
* t X  H„ c

Then if h'a,1*„ we have g.Pr,,[(h' x G x S',)7!„,) n /'J D  111 , hence the left
side contains ),*, esTN* x S,5,* c &*. Therefore for any a, b q ,., we have
aba - 1 1Y- 1 E. „ 1 . Thus c o n t a i n s  the commutator group of S:1,, and
so is a normal subgroup of • w i t h  abelian factor group

2). The general case. Let G0 be the component of the identity
of G .  Set H i nGa— H,°, and let ..-)„" be th e  smallest algebraic sub-
group containing H . The commutators of H," being in H, 1 n

,  is  abelian, hence . s"/S,..14 ,  is abelian b y  1 ) .  H," is a
normal subgroup of H ; of finite in dex . L e t 7.1110

0 (15j_<t1) be the
cosets of H. W e can easily see that u r i .N  is the smallest algebraic
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set containing H„ u r5 ,°. Considering th e  function G a
--->r- lara - 1 EG" (by prop. 3, this is an everywhere-defined (rational)
function), w e can see, by a n  analogous argum ent as in case 1),
that r - lara - 1 E ',',, for any aq )," , rE H „ W e have also that 1-..EH,=>

.*. 7 - 1 117,, -. =H ; ),,, .*. 7 - 1 V +1 7  V + I  for
any rEHi .
Now let a, b  be any two elements of W e can w rite  a = r a ,
h=r,,b„ (a,,b,Ek-S,"). Then w e have

aba - 1 1)- 1 = r „ a b ,a , - 1 r„ - '6, - 1 7, - 1

raritra - 1 ■7ri- 1 [ 7 ft rp-lairti) biai - 1 7Œ
- 1 1* bi - 1 73- 1 1.

Since 7, 7 ft( I i„  w e have 7,7,,7 7,- 'eH i + , c On the other hand,
the elements I_ 1, {  } ,  (  )  are in ,°/".1%., being abelian we
have
[ 1= 7.-‘, b,r „- -1 1 b '

(mod •'1,-1) •
This completes the  proof.
(In  [3], Kolchin proved this proposition for the case of an algebraic
matric group.)

A ddendum . Kolchin gave also to prop. 1 a  simpler proof as
follow s. There is a  rEG su ch  tha t Q ( 7 ) 0  because Q(EF,2)
Let 0- 1 EG  be specialization o f  0- , and put p=-7.(T;- 1 . Then w e have
pE G  Q (po-,) O .  p  a n d  c r  being independent, we have po---+i00-,,
therefore Q(p0-12) O. Q. E. D.

After this note was finished, we knew by his kind letter that
our theorem and also the converse theorem (namely every group
variety over a field of characteristic zero can be considered as the
Galois group of a differential field) had been obtained by him with
C. Chevalley. Professor Kolchin gave me also valuable criticisms
on m y  p roofs. I express here my heartfelt thanks fo r  their kind
appreciations to Prof. Kolchin a n d  a lso  to  P rofs. Chevalley and
Akizuki.
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