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Recently E. R. Kolchin [1] has developed a beautiful Galois
theory of differential fields. The Galois group is equipped with an
algebraico-geometric structure. His main theorem asserts Galois
correspondence between the intermediate differential fields and the
algebraic subgroups (i. e. the closed subgroups in Zariski topology)
of the automorphism group. His results show also that the groups
of strong isomorphisms in his sense have, if irreducible, almost all
properties of group variety in the sense of A. Weil. Combining
Kolchin's results with Weil's method of construction of group vari-
eties ([4]), and using an idea of Nakano [5], we shall show in this
note that Kolchin's irreducible groups are, as he conjectured, group
varieties in Weil's sense. Further we shall add some remarks on
the specialization and the solvability in the whole (eventually re-
ducible) group.

1. Let g/F be a strongly normal extension (cf. [1]). Thus F
is of characteristic O, and g is finitely generated over F' (not only
in differential sense, but also in algebraic sense). g and F have
the samec constant field C, which is assumed to be algebraically
closed. Let G* and G be the group of the strong isomorphisms
and the automorphism group. respectively. For the present we
shall assume that G* is irreducible. All the fields to be considered
are contained in a universal extension g* with constant field C*.
g and C* are linearly disjoint over C, and so specializations over
C and those over g are equivalent for constants.

2. Let @ be a generic element of G*. Cj; is finitely generated
over C, and we canset C;=C(;5), (G5)=G(G# -, 75m). Moreover
we can, and shall, take (;5) so that the affine variety defined over
C with generic point (y5) may be (everywhere) normal. Let g=
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F(?j” B 7/::)'
We have

(D oy=A(,75)/B(, 1s) =R, 75),

(2) 15=C(,67)/D(, 67) =S(y, &7),

() 7=E@G%75)/F(67,7:)=T(5y,75),
where A4, .-+, F are polynomials with coefficients in F, R=A/B,
S=C/D, T=E/F. (Strictly speaking, we must write 7:=R,(3, 75),
1<i<#n, and so on. The above are, therefore, symbolic notations,

but no confusion will occur.)
Lemma 1. There is a polynomial M(X)e¢C[X,, ---, X,.] such that

(a) M) =0,

(b) if (75)—(") over C and if M(;')*0, then & has a
uniquely determined specialization o over that specializa-
tion and we have

4) o7=R(i"), (B) 7'=S@07), (6) %=T(oy7").
Proof. We have only to take M so that M(;') %0 may mean
11:B; (5, ') - 1D (R (4,7")) - I Fe (R (%, 7), 7) =0.  For a detailed

proof see [1], Ch. II, prop. 9.
Lemma 2. There is a polynomial P(Y)eg(Y,, --- Y,] with the

following properties :
(a) P(op) =0,
(h) if oeG*, P(o7) 20 then (;;) has a unique specialization
(7,) over ¢ — o with reference to g such that the j,
are constants and that M(;5)0. (Therefore o and j,
are related by (4), (5), (6).) ‘
Proof. Writing M(C(5,Y)/D(3,Y))=H(Y)/K(Y), where H,
Keg[Y] and K is a power product of the D;, we take

P(Y)=H(Y)-1,D:(5,Y).
If P(o7) %0, set 7.=S(z,07). We see M(7,)%x0, and () is a
unique specialization of (;5) over @ —o. Differerentiating (1), we
have
0=[0.C(z,57) - D(z, o3) — C(4, %) -0:D (7, 37) /D (3, 77)".
Specializing ¢ to o, we have 6,7,=0 for all 4,, and this completes
the proof.
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3. We shall denote by ¥ and 9N, resp., the frontier defined
by M(X)=0 on the affine variety V and the algebraic set defined
by P(o7)=0 in G*.

Proposition 1. For any differential polynomial Q(Y)eg{Y}=
giY, -, Y.} such that Q(57%) =0, and for any oceG*, there exists a
peG such that @(pay)=0.

Proof. 1f it were false, there would be some @ and some o
with the following property :

(A) Q(‘;'/,‘)*\O, and V{:GG Q(/m“g):()_

Let @, be one with the least number of terms among such @, and
let one of the coeflicients of @, be equal to 1. We have @, (co7)
=0@Qy(¢ 'ro5)]=0 for some oceG* and for all p, teG. As @'— Q)
has fewer terms than ,, we must have Q,(57) — @,°(57)=0" Then
we have @/=@, For otherwise we can choose feg so that Q,—
$[Q.— Q] may have fewer terms than @, and this dif. polynomial
has property (A), contradiction. Therefore @,=@Q, for all peG.
But this means Q,¢F{Y}. Then Q,(vo7)=pc(Q,(3))=0, ..Q,(%)
=0, . Q,(v7) =0 Q,(%)]=0, contradiction. Q.E.D.

Proposition 2. There exist a finite number of automorphisms
O 0.€G osuch that YoeG* i po g,

Proof. By prop. 1 we have N,~'0=4d. By the compactness
of G* in Zariski topology (see the end of the proof of [1], Ch. II,
prop. 13) there exist g, -+, pv¢G such that n.Nn N=4. Q.E.D.

Lemma 3. €¢G,0eG*=>C,,=C,. Especially ¢ is a generic
element of G*.

Proof. Transforming the formula guog=gu C, by p, we have
gupog=guC, Taking account of [1], Ch I, prop. 3, Cor. 5 this
means C,,=C,. As dim ¢=3"C,/C, the lemma is proved.

4. By Lemmra 1, we can write every point of V— in the
form (j,), oc€G*. p, being the same as in prop. 2, we shall write
pio=a;, Put V.=V, 8,=8 (1<i<n). By lemma 3, the subvariety
Tii=1{(s) x (55;5), C} of Vix V, is a birational correspondence be-
tween V;and V, The following lemma shows that we can define
an abstract variety 1 over C (with universal domain C*) by V=
[V Ty

Lemma 4. If (Go)eVi—0B,, (G=)eV,—RB,, and if (o) x ()€
T;:, then Ty is biregular at (;,,) x (=), and we can write ¢'=p;0
=o,7'=po=0; for some oeG*. Moreover, we have (ys;, i3 7)—>
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(7'oz, Tojy O )

Proof. Set p;p,"'=p;. By (1) we have ¢5,=A(y, 7o,)/B(3,5).
It follows &y=p,5m=A(pu, is) /B(usy, 7). Now (7.)¢R implies
B(% 7‘5') %0, B(A"j”/" Ta') =."ji[B (7/; 701)] =0, "’Jt'“/'/:A(/'ng Ta’)/B (,”j:'ﬁy
7ar). Therefore 67 has a unique specialization p,0'y over (ja;)—
(7o) with reference to g. On the other hand (js;, 75;) = (Gor, i7<1) /€,
and (7:)¢8, so we have (js, oy 75)—(7or, 721, ') /8. Hence pyo’
=7/. Then we have, by (2) and (5), (i5;)=S(3, 75%), G+)=S(z,
rx0'7), and(ys;) has a unique specialization (7..), therefore is finite,
over (is)— (7o) /c.
As V, is normal, this implies that the projection of T; on V; is
regular at (7,,). Similarly the projection on Vjis regular at (7).
The first part of the lemma is proved.
Setting o, 'c’=0, we have o¢'=po=0, '=puoc’=po=0c; We see
also that =p,”'c,=R(pi "y, r5) has a unique specialization o=
pio"p=R(p "y, 1or) over (ja)—(ra). Q.E.D.
By this lemma, the above mentioned Variety ! is well defined, and,
every point of 1" can be written in the form P (o). The represen-
tatives of F (o) are those (s )Which do not lie in 8. By prop. 2,
there exists a P (a)el for every ceG*. Thus there is a one-to-one
correspondence -between G* and V.
In the above proof, we saw that & has a unique specialization o
over (7'%)"’(7'0:) /C (or what is the same, over P(c)— P (r)).
Similarly, if P(c)—P(r)/C then o is uniquely specialized to r over
that specialization.
Conversely, let o,c¢eG*, c—z. By prop. 2, we have p;7¢8 for some
j. As dim p,=0, p; and o are independent, p,0>p,7, whence p,o§8.
Then (71,!) and (,tj) have a sense and by (b)

(7o) = (+)/C, i. e. P(e)>P(?)/C.

By the last remark we have (P(c),a)—(P(),7). Now P(s)
has no other specialization over c—z. For if (o, P(s))—(z, P(7')),
then ' is the unique specialization of o over P(o)—»P('), =7,
Therefore o—r in G* and P(a)—PF(z)/C in FV are completely
equivalent.

5. Lemma 5. The multiplication in V given by P(o)-P(z)
=P(o7) is a law of composition in Weil's sense, by means of which
¥ becomes a group variety.

Proof. Let 5, 7 be two independent generic element of G*. By
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(1) we have
=R i), - oT=R(, %),
5 C(P(e7)) =Coz CC(5 17)=C(P(3), P(3)).

Therefore there is a function ¥, defined over C on }'x I, with
values in ¥, such that P(5%) =% (P(5), P(7)). Let (77,)—>G=)
$¢8. We can write ;" 's=W(3), where W is a rational function
with coefficients in . Then we have

Ty=R(y, 7‘:‘3),
(7) 63,=50""5p=R@Gpi ", i: ) =R(W(@7) i+
Similarly, as (;‘gj) $¢8, we have
(8) om=R(W(o7), i=),

where R=A/B and B(W(s7), ;‘,j)=a,~,“[B(7,~, 7:,)]=0. On the
other hand, by N°4, 67 is a unique specialization of a7 over P(&)
From this and from (7), (8) we see that o7 is a unique speciali-
zation of g7y over (P(a), P())—(P(s), #’(7))/g. Hence P(57)
is uniquely specialized to P(a7) over (P (), P (7))~ (P(a), P())
/C. Since the product of two normal varieties is again normal,
J’x 1" is normal. Therefore ¥ (I*(c), I’(7)) is defined and is equal
to I’(o7). Thus ¥ is everywhere defined, and of course associa-
tive.

Next we consider inverse elements. As C;=C;"", we can
define a function @ over C by

P )=0P(3)).

Let (7.,)¢8. We can write »z=U(7), where U is a rational func-
tion with coefficients in F. By (3) we have = (as,is5,), -~ o'y
=T(y,7s), 07y=5"(py)=0."(Ux))=U@, ") =U[T(3, 735, )
By (i )48 we have also ¢7'»=U[T(3, 7.,)], and we see as above
that =" and P(c7') are uniquely specialized over P(5)— P(c)/g
to o and P(c7') respectively. @(P(s)) is then defined and equal
to P(o7).
Thus our V satisfies all the conditions of a group variety, and the
lemma is proved.

6. Now we abandon our assumption that G* is irreducible.
Our result, then, can be summarized in the following.

Theorem. If g/F is a strongly normal extension, the component

).

J
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of the identity G,* of the strong isomorphism group G* is represen-
ted faithfully by an (abstract) group variety V. VF, together with
its law of composition, is defined over C, and C* is its universal
domain. In this representation, the irreducible sets of G,* corres-
pond to the Subvarieties of ¥ defined over C. If c€¢G,* is represented
by P(c)e¥ then C(P(c))=C,. Hence the automorphisms in G*
are represented by the subgroup V(c) consisting of the C-rational
Points of V. V

Remark. If this group variety ¥V is complete (i. e. an abelian
variety), then by a theorem of Matsusaka we can take, as a model
of G,*, an abelian variety in a projective space, which is birationally
equivalent over C to V ([6]).

7. An application. In the rest of this note we shall identify
G,* with V, o with P(c).

Proposition 3. If r€G (not necessarily r¢G,=G,* nG), then the
correspondence V>o—:"'orel is an everywhere biregular birational
correspondence from ¥ to V. '

Proof. If teG, oceG* then org=og, gUorg = gUog=guUC,.
Transforming by =%, we have gu 'org=guUC,, ..C,=C;-1,.. Now
let & be a generic element of G,*. o x:'&r hasalocus I: on ¥'x V
over C. We shall prove that the birational correspondence 7. is
everywhere biregular and 7. (c)=:""0z. »

t7 can be written in the form 7,=W,(y), where the W are
rational functions with coefficients in F. Let o¢G,*, (;5)¢8. Then
we have

From this we can see, as in other places, that r~'oc(=/P(z""e7))
is a unique specialization of ~'ér over c—o, and that the projection
of 7. on the first factor is regular at ¢ with 7.(¢)=rt""ez. Rep-
lacing = by 7', and repeating the same argument, we see that 7%
is everywhere biregular. Q. E. D.

Proposition 4. Let o,6G*, 1<i<7#, and let (o}, -+, 0,)—(a/,
-, 0/). Let W (X) be any word (in 7 letters). ‘Then W (o) has
a unique specialization W(s’) over (0)—{s’). (Here the notation
o0 =o0, is abandoned.)

Proof. 1f all o, lie in G,*, this is a property of a group variety.
In the g_eneral case, let
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G*=7,G*U ---Ur,G* (7:,€G)

be the decomposition of G* into the components. We shall denote
by 7, the transformation in G,* by ©;: Ti(o)=r7,"o7; (c€G*).
If o, 6’¢G,*, we have

(z0) (zy07) = 7,715 (0) o’

("i”)—1=0'—17(—1=74;:4],:-1(”—1)-
Thus for any word W(X) we have W(o)=W(z)-?,(c), where
we set o,=t,40;, and W(z) denotes the group element obtained
from W(s) by the substitution o;—z,q.

@, is a function on ¥=G,*, with values in ¥, which is uniquely
determined by W and (by lemma 5 and prop. 3) is defined every-
where. Now &,=t;y04 and if (7,,,) is a representative of P(s)),
then
Fa=7"0""(nom) =R(T07p, 7,0) (t=70),

a

—_ PR as P e
://—‘R(‘ s 7, ”’3"1')’ and T s //Eg

Hence we see that the &, are unique specializations of the o, over
(e)—>(¢'). Then (o,d, @,(5))— (s, 5, @,(G")). Since W(z)eG,
we can see as above that W(z)- @, (¢') =W (') is a unique speciali-
zation of W(s)-@,.(5)=W(s) over @,(5)—®,(5'). Q.E.D.

8. Proposition 5. If G* is irreducible, then the commutator
group D(G*) is also an irreducible group.

Proof. Let &, 7, &4, Ty, -~ be independent generic points of G*.
Set «;=v,7,0,7'%, -5,55,7'7,7". Then «;,,—«,. Hence, if we
denote by £, the irreducible set with generic point «;, we have

%1 c ‘@2-(; e
As dim 9,<dim G*, we must have, for some i, $;=9,;.,. Then
$=9im=9;,,=-, and , is a group. By prop. 4 (the trivial case),

D(G*)cC %, Now by [1], Ch. II, prop. 9, Cor. 1 we see that 9,
—D(G*) is contained in a lower-dimensional bunch of subvarieties
of $:.. By [1], Ch. II, prop. 15, H;,=D(G*). Q.E.D.
(This proposition, together with the proof, is Kolchin’s. Cf. [2] §4.
As the propositions used in the proof are valid for any group
variety, this is a property of group varieties.)

Corollary 1. If G is irreducible, then the commutator group
D(G) is again irreducible.

Proof. We have only to show that GNnD(G*)=D(G). Let
ceG, o=W(z), t:¢G*, where W is a word of the form
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W(X) =X XX, X, X, 1 X0, Xor L X

Specialize the r; simultaneously to some automorphismes =;/. By
prop. 4, we have o=W(7')eD(G). Q.E.D.

Corollary 2. If G*(or G) is irreducible, and if it is solvable
as an abstract group, then it is so as an algebraic group, i. e. it
has a normal chain with abelian factor groups consisting of alge-
braic subgroups.

This is obvious by Cor. 1. Now we can. remove the restriction
to irreducible G. Our original proof of this was based upon the
next proposition, but Kolchin pointed out the simple facts that G,
and G/G, are solvable if G is solvable, and that any subgroup of
the finite group G/G, corresponds to some algebraic subgroup of
G. The above statement follows immediately.

Proposition 6. Let H, H;,, be subgroups of G, and let ;, D
be the smallest algebraic subgroups containing H; and H,,,, respect-
ively. If H,,, is a normal subgroup of H; and if H;/H.,, is abelian
(i.e. if H;DH;.,2D(H,)), then we have also $;29,,,2D(H)).

1). The case of a group variety. First we consider the case
where G* is irreducible (hence a group variety). The proof is
valid for any algebraic subgroup of an (abstract) group variety.

We shall denote by the symbol g.pr the geometric projection,
i. e. the operation of taking the projection of a variety or a bunch
in a product space. Note that the geometric projection is identical
with the set-theoretical projection when the projection is regular.

Let I” be the graph of the function ¢: Gx Geaxb—aba™'b™"
€G. Set & =gpr J(GxGx9%,)n!l']. If heH, we have

gprl(Gxhx D) N0 H, .. gpr[(Gxhx9%)nl]>H*,
9% x H,C &,

Then if #'eH*,, we have gpr (h'x Gx H.) n1’]D H,, hence the left
side contains ,*, D* x H,* c&*. Therefore for any a, beD, we have
aba='b7'€¢9;,,. Thus $;,, contains the commutator group of £, and
so is a normal subgroup of $, with abelian factor group $:/9;..
2). The general case. Let G° be the component of the identity

of G. Set H.:nG"'=H/, and let $, be the smallest algebraic sub-
group containing H. 7The commutators of H,' being in H,,,NnG"=
S, HY/H/. is abelian, hence 9,°/9;.: is abelian by 1). H," is a
normal subgroup of H; of finite index. Let «,H,(1<j<t;) be the
cosets of H,, We can easily see that U ;9. is the smallest algebraic



Automorphism-groups of differential fields 291

set containing H;, ;= uU;9,". Considering the function ¢»: G"a
—'aza 'eG" (by prop. 3, this is an everywhere-defined (rational)
function), we can see, by an analogous argument as in case 1),
that " 'aca 'e;,, for any ae9/, reH,, We have also that ceH,=)
'H\.cCG'NH, v =H{y, .. t7Hiyvo=Hl,, o077 tat=9i,, for
any teH,.

Now let @, b be any two elements of ;. We can write a=r.a,
b=z:b;, (a, b,¢9"). Then we have

aba b =rt,a,5h,a,7 7,7 b e
J L Pt | - - =1 - ~1. -1 -1 =1
= TeTpTa [*B{‘u(‘p a7 ba, e b T :‘

Since ,, ty¢H;, we have t 5,07 'ty e H,,, C D, On the other hand,

the elements | ], {}, () are in H' 9'/H{., being abelian we

have

[ I=nita'am)ba s by e = e (77 @@, ™) byra T b
E‘-ﬁ{ﬂ—abl‘-aqb;v} 73_1___7,&7%.—121 (mOd @?H)

This completes the proof.
(In [3], Kolchin proved this proposition for the case of an algebraic
matric group.)

Addendum. Kolchin gave also to prop. 1 a simpler proof as
follows. There is a teG such that Q(sy) %0 Dbecause Q(o7)<0.
Let 0,¢G be specialization of o, and put p=rzo7'. Then we have
p€G Q(poy)=0. p and o being independent, we have po—po,,
therefore Q(po7) =<0. Q.E.D.

After this note was finished, we knew by his kind letter that
our theorem and also the converse theorem (namely every group
variety over a field of characteristic zero can be considered as the
Galois group of a differential field) had been obtained by him with
C. Chevalley. Professor Kolchin gave me also valuable criticisms
on my proofs. I express here my heartfelt thanks for their kind
appreciations to Prof. Kolchin and also to Profs. Chevalley and
Akizuki.
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