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The purpose of this paper is to find some properties of
harmonic tensors defined in a domain with boundary, when the
Riemannian metric undergoes an infinitesimal change. The varia-
tions of characteristic roots and Green’s tensor are obtained. The
notion of abstract dimension is introduced to preserve the duality
between differential and codifferential under the change of metric.
An application of the abstract dimension to a physical problem
is in the last paragraph.

§1. Notations and formulas.

Let M be an orientable Riemannian space of dimension # and
of class C= for simplicity, the positive definite metric tensor be
gy. Let D be a bounded connected open set with regular boun-
dary B. :

If A} and A, for example, are associated tensors, we shall
denote them by one and the same symbol A. A tensor is called
skew-symmetric, if its associated covariant tensor is skew-sym-
metric.

We shall adopt the following notations for skew-symmetric
tensors A and B:

* — 1 Jreeidy
(A )’:li2""'n—-p p! Ajl“‘jpe 7’:1"'f7l—p’
1 gjige .
4 — J1de dpty
( A)"li‘.'""";:ﬂ p[ 6ili‘.""i,m Dlej‘l“'j]l'}‘l’ n D’

A, ,=D"4,, ., in D,
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1) <¢A>i,ig...,,,+.=—;—!6:?;:5:';::; N,A4,., onB,
(TA) ., =N“4,, .. on B,
(A-By=-L A4 Bt

LA, B

where D, denotes the covariant differentiation, N the outwards
unit normal vector to the boundary B, and ¢, ., =+vg3d,

We get easily
44A=0, FrA=0
A= TA+T1A
TTA=0, 1 1A4=0
TLTA=TA, _LT_L/11=_LA.'

Thus _[__"I"'A is the normal pért of A and T _| A the tangential part.
Putting d V=g, ., dx"--dx'», do =€ dx**--dx*», dS=N'ds,,

4)ig 1,
we have the following well-known formulas for skew-symmetric
tensors A and B:

$(TA-B)dS=(f(PA-B)dV+({(A-dB)dV=§(A- | B)dS,

$(T4A-B)dS=|{(P4A-B)dV+[§(4A-4B)dV
=¢§(dA- | B)dS,

§(TA-VB)dS={|(PA-PB)dV+({(A-4PB)dV

Q =§(A- 1VB)dS,

® ({(QA-B)dV+({(dA-dB)dV+({(PA-PB)dV
=¢§(T4A-B)dS+$(|VA-B)dS
=§(dA- | B)dS+$("A-TB)dS,

where § denotes the (z—1)-ple integration on B, {{ the n-ple
integration on D and (O=d4rF+rd4. (See [1] and [2] in references.
The notations are some what different.)

100t

)

§ 2. Dimensional differentiation of tensors for a infinitesimal
variation of the metric.

Definition (2-1). An abstract dimension of a tensor A, [A],
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is a real number corresponding to each A and salisfying the follow-
ing conditions :

D [()\i]'“i"]=[6tl ] =0,

an if A’ is any contraction of A, then [A’]=[A],

(IID) if [A]=|B), then |[A+B]=[A]+[B],

av) [AXB|=[A]+[B],

V) if A is a scalar, then[A*]=FkA],

(VD) [gdridx]=2,

(VII) if DA is covariant derivative of A,

then [DA]=[A]—[dx].
There can be two kinds of dimensions, [ ] and [ [, satisfying
the above conditions.
Definition (2-2). If [A]=0 implies [A] =0 and conversely for

all scalars A, then we shall call the dimensions equivalent.

Theorem (2-1). If two dimensions are equivalent, then they
coincide for all scalars.

Proof. Putting dV=+v'g 9, .. dx"--dx'» we have [d V]=[dV]
=n by the conditions in definition (2-1). If [A]=a, [A]=a’ for
a scalar A, then [Ad V_%]=0 by the above conditions. Hence
[AdV ™~ *]=0 by definition (2-2). It follows that [A] +[dV ™ "] =0,
a=a.

Theorem (2-2). If two dimensions are equivalent and |dx']=
[dx'], then they coincide for all relative or absolute tensors.

Proof. If [da']=[dx)=¢, then [g]=[g,)=2—2¢ by conditions
in definition (2-1), hence [dx.|=[gdx’']|=2—§&. TIf Atr-tr;.. ;, is a
tensor of weight w,

B= @—w Ai,...t,,jlmj’l dx"---dx‘a dx;,"'dxx,,

is a scalar, and [B]=[A]—wn(1—§) +¢$+p(2—¢). Similarly [BY
=[A)—wn(1—§) +¢5+p(2—¢). By theorem (2-1), we get [B]=
[BY, hence [A]=[AY.

Definition (2:3). If [dx*]=0 or [g;]=2, the dimension may be
called absolute dimension, and if |dx'|=1 or [g,;]=0, relative
dimension. |3].

It follows immediately for equivalent absolute and relative
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dimensions that :
[Alws=[A)a+g—p+nw,
[dV]a=n, [N]a=0, [dSla=n—1,
[DA}a=[ALa—1, [Ala=[|A[]w,
where |A| is the absolute value of A, that is,

AP =g A", A 5,

J17tdg 1t ip

Since [g,]=0 and [+g]=0 for relative dimension, all associated
absolute or relative tensors have the same dimension. It is ade-
quate to use relative dimension for our simplified notation A.
When components of a tensor A(x,?) are differentiable func-
tions of independent variables x, ---,x, and a parameter ¢, vA

8A 04 4

denotes the variation of A, that is, vA is a tensor of the

same kind as A. We assume that A is of C* for simplicity.

Let A*1'r;...;, be components of a tensar A of weight w,
- and vgy(x, £) =20, 1).

Definition (2:4). Dimensional derivatives of A are defined as
Jollows :

(',‘Atl"'t,, =vAi,"'¢,, ) +wt|Asi2“ + +w pAI] t,,_]s
. Jivtdg Jydp s J| Jg

d10dg

) —(u‘;.IA"""I’ = —(u A,, Ty,

sjody Jr i

(e 1,
(w+ » )wA' Py
where a=[A).s and w=w;,g".
dA is a tensor of the same kind as A and [OA] [A].
We get
6g,'j= 0. 3g: 0, 66;, iy, 0,
®)
ddy'=widn'—2- dy', ddo,=—wido 4+ do, 0dV=0,
n : n
since wvdx*=0.
Let £ and £ are linear operators defined by :

_QAi].--i,, =(U"A"mil‘. . +"'+(U‘7’Ail"'~‘
Jy i s Jidy s

Jl"'jf]
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-8

TR s Ag i
+ () 4 P +...+ 0) 4 P
¢ gy ! 8y ¢ Jq ! Jr

o
(6) +_ (UA‘I"'ipjl...j ’
n 97
O Atrvtp - — 14 —eee—@ip 1
A jl"'jq ")J A jl"‘jq s A jl"'jq
s At -t ) s Atyi
p— P —_—e — 1 4
wj‘A 1 orrdg (u,qA F

1 'fq'

+<%+1) (uA‘l""pj .

If A and 4A are covariant skew-symmetric tensors of weight
w, we get easily (v—ww)dA=4d(v—wow)A and v—ww=050+£2 by
(4) and (6), it follows that ”

@ : O+ dA=4(0+92) A.

This identity holds not only for convariant skew-symmetric tensor
A, but for any skew-symmetric tensor A, since the operations,
2,8 and J, are commutable with the operations, uppering or
lowering of the indices of A and weighting A by +g. Similary
we get

8) B+ A=F G+ 2)A.
We also have the identity v
) (LA-B) + (A-2'B) =0,

provided that [A]w+[Bla=—n

A __ 1
if  (TA:B)dS=(A-1B)dS=— 1,

scalar of relative dimension 0, we have
(T2A-B)dS+ (TA-£B)dS
(10) =(%A-| B)dS+ (A-1£B)dS

=_(pi—1)' A“ie.‘."'B&'“"pado"]

A"rde, B, |, is a
1 2

by (5) and (6).

If A is a scalar of relative dimension (—=#), that is, if AdV
is a scalar of dimension 0, then »{{AdV={({v(AdV)=(({d(AdV),
and if A® is a tensor of relative dimension (1—#), that is, if A'do;
is a scalar of dimension 0, vfA'de,=¢v(A'do,)=4$6(A'ds;). We
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shall denote them d6{{AdV and 6§ A‘da, for simplicity, that is, the
operation 0 upon a integral is applicable zf and only if the relative
dimension of the integral is 0.

We get from (10) and (3)

3(TA-B)dS
=(T6A-B)dS+ (T A-0B)dS+ (T¥A-B)dS+ (T A-2B)dS
=(0A- 1 B)dS+ (A-10B)dS+ (£ A-| B)dS+ (A-| ¥B)dS

=0(A-_1 B)dS,
11) . :
0$(TA-B)dS

—(§(POA-B)dV+({ GA-ABYAV+{[ (7 A-0B)dV
4 (§(A-d0B)dV+{{ (P2 A-BydV+{{(LA-B)dV
+{{(FPA-£B)dV+({(A-4d¢B)dV=0$ (A-_| B)dS,

for skew-symmetric tensors A and B sum of whose relative
d1mens1on is (1=n).
It follows from (7) and (8) that

4= 40+ 49— 04,

W =Po+FL— .Q'V',

AP = AP+ AP Q' — AQ'P + A9 — 04,
WA=PAS+P Q- QAP L A— 0P 4,

12)

~ Let A be a skew-symmetric tensor of relative dimension
(1—%), p a positive scalar of relative dimension (—2).
Consider the elliptic differential equation
OA+2pA=0 " in D,
A;O on B,
where 4 is a characteristic root. We shall assume that 4 and A
are differentiable with respect to the parameter ¢ and A is nor-
malized by {{p(A-A)dV=1.
From (13) we get ({(A-0A)dV=-2
Operatlng J, we have ,
—0A= 25;[(1&4 JVA)+(.QA P4A) + (2FA-FA)
+ (RdA-4A))dV+i({op(A-A)dV, -

3)
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by (3), (9), (12) and (13).
If A is a scalar, then FA=0, JA=F4A by definition, and

—0=—21{{p(RA-A)dV+2({(LAA-4A)dV+i{{ép(A-A)dV.

Let o, -, ¢, be the characteristic roots of |wj—pudj|=0, 0=%
and we shall assume g, <y, o, p, S py, 0, <06,, where p,,
!y, 0,,and 0, are constants. Since {{(FdA-A)dV=—({(4A-4A)dV,

we get an inequality for o4:

)] ("23)

(7 (ae—11.) — 2t +0.)

Putting K=”,n7dV, we also get an inequality :

23K

> 2,40,

§3. Conformal change of metric.

Let x and y be two points in D. Set of functions A“/(x,y)
of variables (x) and (y) may be called a double tensor, [1],
if

| ox' 3y’ _
i — k|l
AV y) =—2r 55 AM(x.3)
for any coordinates transformations: (x)— (%) and (¥)—(9). The
covariant differentiation with respect to (x) or (y) and the dimen-
sional differentiation can be defined as follows :

aAﬂJ
8 k

Dl(y)A‘u aAyl +{ }(y) y

D, A= + (it APV,

BAMI=pAM 4 0l (x) AV + w0l (y) AT

— L) A= () A%,

where a and &' are relative dimensions of A’¢ with respect to
(x) and (y), which we denote [A]=(a, «’) for simplicity.

The notions above may be extended for any tensor, and relations
analogous to (12) hold for 4, D, and D,,.

If A% (x,y) and B,;(x,y) are double tensors for example, and A"
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(x,¥)B,;(x,y) is of dimension (-#) with respect to (y), then its

integration over D with respect to (y), (A" (x,y)B;(x,»)dV(y),

is a contravariant tensor with respect to (x), and moreover

0{{ABdV (y) =({0(ABdV), since ABdV(y) is of 0 dimension with

respect to y.

For conformal change of metric, w,=rgy,

from (4), (5) and (6) we get
5At"“i"j,-~j,,=”Atlmipj,"‘j,,+ (P—q—nw—a)r At i
odx'=0. ddo,=0, 0dV=0,
!JA"”""jl,..jq=(m+a)~‘A"""ﬂj,...jq,

.Q/Ail“'t,,‘ = (ml+d) I'Ai‘mif’.
J1 7799 X MY

jl"'jq’

(15)

iy
where m=p+q= the degree of A, m'=n—m, we shall call m’ the
dual degree of A.

Since degree of A is smaller than degree of 4A by one, and
greater than degree of FA by one, relative dimension of A is
greater than relative dimension of 44 or VA by one, we also
have : : g

ddA=40A+ (m+a) (dcA—zdA),

WA=PVOA+ (m +a) FrA—FA),

(16) OPAA=FVdoA+ (m'+a) (APt A—dF A)
+ (m+a—2) (d:VA—dF A),
OVAA=dV0A+ (m+a) PdrtA—V:dA
+ (m+a—2) FrdA—F4A),
by (12).

Let the Riemannian space be euclidean, (x) and (y) the
cartesian coordinates of two points, #° the square of distance of
(x) and (y). We regard »° as a double scalar of relative dimen-
sion (1,1).

Put [y,=——+ 07

2 9x'oy
order- .(1,1) and relative dimension (0,0). For the special con-
formal change of metric, w;=rd,;, where r is a constant, we get

87'2=0, 51—‘4|j=0.

then [;; is a double tensor of covariant

It follows that :
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Theorem (3:1). If the space is Riemannian and 7 is the
geodesic distance between fwo points (x) and (y) sufficiently near,
then or—0, oI,;—0 when (x)—(y), for comformal change of
melric.

Let G,],, SN ¢ %) be Green’s tensor for the elliptic differential

equation :
O0A=0 in D with given L TA and TLA on B.

It is known that Green’s tensor is unique under some appropriate
topological conditions for domain D and the tensor is characterized
by the following properties :

0.G(x,»=0 in D,
G(x, y) =0, if xis on B,

G(x,¥) —7r(x,y) is regular at x=y,
where

o\,
1 1| >
Tay —misy--im (%2 9) ~m=28S, 7 (n=3)

im! ) imidm !’

Sn is the area of the unit (#—1) sphere. [2].

We shall assume [G],.‘_l=(1__";,, 1__’%_>,

since [7]""':(1—%’ 1—%—)‘.

By theorem (3:1) dy -0 when (x)— (y), and we get easily 6G=0,
if (x) is on B. Thus we have:

Theorem (3:2) O0G is regular for any (x) and (y) in D,
0G=0 if (x) is on B.

Operating ¢ on [J,G=0, it follows

0.0G (x, ) =[(%—m+ 1){des (P~ 4.2 |

'+(m—1—%){r(x)AIV,—Am)V,} '
(17)
+(m+1—~;—~) 7.2 () d.—P. 4.z ()

+<_”2__m,-1){‘-(x)V‘A,—V,r(x)d;}]G(x,y) .
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by (16). .

Putting the right side in (17) G(x,y), we have
3G (y,2)=—{1G(x 2 G, dV(x)

since G (x,y) =0 if (x) is on B.
' Integrating by part, we get

06 =—2(m—2=1)[[: 016 7.6
+4F.Gxy) - G(x2)])dV(x)
—o( 2 —m—1)[[r@[LCx» 4.6 2)

+ P.4.G(x,y) -G(x2)]dV(x).
It follows that:
if r=const. dG=0;
if m=0, that is, G is a double scalar,

0G (%, 3) = 2—n) [ {r[4.G(x,¥) +4.G (x,2))dV(x),

since VG=0, OG=F4G=0;

. . n
if » is even and m=7,

0G(x,2) =2{{rt(x)[(P.G(x,y) V.G(x,2))
+(4.G(*%,)+4.G(x,2)]dV(x)
since 4P +r4d)G=0G=0.

4, An application to electrostatic field.

Let p(x) be the dielectric constant for an electrostatic field
in an n-dimensional Riemannian space with the metric tensor g;.
Physical dimension of f, [¢]ny, is L "QE~', where L,Q and E
denote the dimensions of length, electric charge and energy re-
spectively, and L, Q,E are independent since dimensions of mass
and time do not appear.

Electric energy contained in a domain D is given by

aso asp . ”
“‘T;F FYY gie, ., dx--dx*», where ¢

is the electrostatic potential, and [¢]n,=EQ™,
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[gij]phy:[e]nlly:QoEoLﬂ [dxi]nhy:l‘-
,fl] ﬁn
fm f nn

Putting Ju= //-"T"-‘ Ziss /=

we have

890690 j i, ‘n-— 8¢ asp (] ‘\/ (; ‘i1, iy
A gre, ., dx-dx Py ax’f S0, ., dxt--dat,
Hence f;; may be used as the fundamental tensor for the electro-
static field instead of g;,.

We have  [fidww=L"S" [fydtdx]py=S" [¢lmy=S* E},

where S=(QE") ",

If physical dimension of the absolute value of a tensor A with
respect to the fundamental tensor f;, is S°E®, we shall define abstract
relative dimension of A, [Al., as a, since it satisfies the axioms
of abstract dimension in § 2.

Thus we have [fy;}a=0, [dx'].n=1, [¢]r..,=1—%

Variation of ¢ is a conformal change of f;,, and the arguments in
previous paragraphs hold for such a kind of problems in physics,
providing that f,; is the fundamental tensor.
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