Note on the continuation of harmonic and analytic functions

Ву

Yukio Kusunoki

(Received Oct, 5 1954)

1. In the present paper we shall state some notes concerned with the following problem for which P. J. Myrberg has found a wonderful result¹⁾:

Let the notations HB(AB), HD(AD) denote respectively the classes of bounded harmonic (analytic) functions and of harmonic (analytic) functions with bounded Dirichlet integral. Let R be an arbitrary Riemann surface and E be a closed subset of R. Then what conditions are necessary and sufficient, in order that E should be *removable* for each family defined on R-E (i.e., it would be possible to continuate without singularities all the functions belonged to the class harmonically or analytically onto E)?

2. The case of HB and HD

Lemma.²⁾ Let R be an arbitrary Riemann surface of hyperbolic type. Let $g(P, P_0)$ be the Green's function on R with a pole P_0 and let U be an arbitrary neighbourhood which contains the pole P_0 . Then the Dirichlet integral $D_{R-U}[g]$ of g taken over R-U is finite, especially

$$D_{R-U}[g] = \int_{\partial U} g d\bar{g}$$

if the boundary³⁾ ∂U of U is analytic, where, in general, the barred letter stands for the conjugate harmonic function.

Proof. It suffices to assume that ∂U is analytic. Consider the exhaustion of R

¹⁾ P. J. Myrberg: Über die analytische Fortsetzung von beschränkten Funktionen. Ann. Acad. Sci. Fenn. Ser. A, I. 58 (1949).

²⁾ Cf. Nevanlinna: Uniformisierung. 1953.

³⁾ In the following ∂A denotes the boundary of A.

$$U=R_0 \subset R_1 \subset R_1 \subset \cdots \subset R_n \subset \cdots \to R$$

where $\partial R_n = I'_n$ consists of a finite number of closed analytic curves. Let $g_n(P, P_0)$ be Green's function on R_n with the pole P_0 , then the sequence $\{g_n\}$ is convergent uniformly on every compact subset of $R-P_0$ to the Green's function $g(P, P_0)$ on R. Now we have for n > m

$$egin{aligned} 0 &< |\int_{\Gamma_m} g_n dar{g}|^2 = D_{R_n - R_m} [g_n, g]^2 \leq D_{R_n - R_m} [g_n] D_{R_n - R_m} [g] \ &= \int_{\Gamma_m} g_n dar{g}_n \cdot D_{R_n - R_m} [g] \,, \end{aligned}$$

where the integrations are taken in negative direction with respect to R_n $(n=1, 2, \cdots)$. For $n \to \infty$ (m: fixed) we have

$$(1) \qquad 0 \leq |\int_{\Gamma_m} g d\bar{g}|^2 \leq \int_{\Gamma_m} g d\bar{g} \cdot D_{R-R_m}[g].$$

Hence we have for any m

$$\int_{\Gamma_m} g d\bar{g} \geq 0$$
,

therefore

(2)
$$D_{R_{m}-R_{0}}[g] = \int_{\Gamma_{0}} g d\bar{g} - \int_{\Gamma_{m}} g d\bar{g} \leq \int_{\Gamma_{0}} g d\bar{g} < \infty.$$

Since this implies $D_{R-R_0}[g] < \infty$, it follows that for $m \to \infty$ $D_{R-R_m}[g] \to 0$. We obtain therefore from (1) and (2) the desired result.

Theorem. (1) Let E be a closed set of inner points on an arbitrary Riemann surface R. Then in order that E should be removable for the classes HB, HD defined on R'=R-E, it is necessary and sufficient that the logarithmic capacity of E vanishes.

Proof. Sufficiency: We consider a domain F (on R), whose boundaries are composed of E and the closed analytic curves Γ_0 . Let $\{F_n\}$ be an usual exhaustion of F and ω_n be the harmonic measure of F_n , then $\omega_n \to 0$ $(n \to \infty)$ implies $D_{F_n}[\omega_n] \to 0$, vice versa. Since the theorem⁵⁾ of Nevanlinna remains true for this component F, it follows that $u \in HD$ is also bounded. $(|u| \le M)$. Let u_0 be

⁴⁾ For the case HB, see P. J. Myrberg loc. cit. 1).

⁵⁾ R. Nevanlinna: Über Mittelwerte von Potentialfunktionen. Ann. Acad. Sci. Fenn. Ser. A, I 57 (1949).

R. Nevanlinna: Über das Anwachsen des Dirichletintegrals einer analytischen Funktion auf einer Riemannschen Flächen. Ibid. 45 (1948).

a harmonic function on $F \cup E$ which takes on I_0 the value u, then by the inequalities $-2M\omega_n \le u - u_0 \le 2M\omega_n$ (in F_n) we have for $n \to \infty$ $u = u_0$ i.e., u is harmonic on E.

Necessity: We separate the set E into two disjoint subsets E_1 , E_2 such that each harmonic measure is positive. Let $g_i(P, P_0)$ (i=1,2) be Green's function on $R-E_i$ whose pole P_0 lies in R'. Then the function $h=g_1-g_2$ is harmonic everywhere on R'. Let U be a neighbourhood of P_0 , then $D_{R'}[h]=D_{R'-U}[h]+D_U[h]$. By Schwarz's inequality

$$D_{R'-U}[h] \leq [\sqrt{D_{R'-U}|g_1|} + \sqrt{D_{R'-U}|g_2|}]^2$$
.

Now by our Lemma we have $D_{R'-U}[g_i] \leq D_{R-E_i-U}[g_i] < \infty$ (i=1, 2). Since $D_U[h] < \infty$, $h \in HD$. But E is not removable for h, otherwise $g_i=0$ by the minimum principle, for cap. $E_i>0$ implies $\inf_{x\in E} g_i=0$.

3. The case of AB and AD

Let R be a Riemann surface which covers exactly m-times $(\infty > m \ge 2)$ the unit circle K: |z| < 1. Then a disc on R would be also removable for AB or AD in the following weak sense⁶⁾. Let z_1, z_2, \cdots denote the projections (arranged with multiplicities) of branch points. Now we take on each i-th sheet the disc K_i $(i=1, 2, \dots, m)$ such that

(3) Proj.
$$K_i \cap \text{Proj. } K_j = \emptyset \ (i \succeq j), \text{ Proj. } K_i \supsetneq \{z_n\}$$
 for all i and one of the discs K_i is empty \emptyset .

Then we have

Proposition 1. If $\{z_n\}$ converge only to the peripherie of K and the series

$$(4) \qquad \qquad \sum_{n=1}^{\infty} (1-|z_n|)$$

is divergent, then at least a disc K_j ($\Rightarrow \phi$) is removable for AB or AD defined on $R' = R - \bigcup_{i=1}^{m} K_i$.

Proof. Let $f \in AB$ or AD and $f_i(z)$ be its *i*-th branch. Consider the function

$$F(z) = \prod_{i < j} [f_i(z) - f_j(z)]^2$$

where the product is taken over all the combinations of the indexes

⁶⁾ Cf. P. J. Myrberg: loc. cit. 1)

L. Ahlfors: Remarks on the classification of open Riemann surfaces. Ann. Acad. Sci. Fenn. Ser. A. I 87 (1951).

i, *j*. Then F(z) is single-valued, regular, in the z-plane and moreover $F(z_n) = 0$ $(n = 1, 2, \cdots)$. Now we assume $F \not\equiv \text{const.}$ We take the ring domain $K_r : r_0 < |z| < r$ such that $K_r \cap (\bigcup_{i=1}^m \text{Proj. } K_i) = \emptyset$ and $\partial K_r \not \ni \{z_n\}$. By the argument principle we have usually for $r_0 < r < 1$

$$\frac{1}{2\pi} \left[\int_{|z|=r_0} + \int_{|z|=r} \frac{\partial}{\partial r} \log |F(re^{i\theta})| r d\theta \right] = n(r, 0)$$

where n(r, 0) denotes the number of zero points of F(z) lying in K_r . It follows that

(5)
$$\sum_{r_0 < |z_n| < r} \log \frac{r}{|z_n|} = \int_{r_0}^r \frac{n(r, 0)}{r} dr \leq O(1) + \int_{|z| = r}^{+} \int_{|z| = r}^{+} |F| d\theta.$$

Obviously right hand side is uniformly bounded for $f \in AB$. Next, let F_r be a connected piece of R lying over the circle |z| < r. Now we may assume that for $r \ (\ge r_0)$ F_r always consists of m-sheets. Then

$$\int_{|\mathbf{x}|=r}^{+} |F| d\theta \leq 2(m-1) \sum_{i=1}^{m} \int_{|\mathbf{x}|=r}^{+} |f_i| d\theta + O(1)
\leq 2\pi m (m-1) \log_{\partial F_r}^{+} |f|^2 d\theta + O(1).$$

Let

$$Q(r) = \int_{\partial F_r} |f|^2 d\theta.$$

Since f=u+iv is single-valued on R', we have for $r_0 < r < 1$

$$Q'(r) = \frac{2}{r} \int_{\partial F_r} \left(u \frac{\partial u}{\partial r} + v \frac{\partial v}{\partial r} \right) ds \leq \frac{4}{r_0} D_{F_r - F_{r_0}}[f] + O(1), \quad ds = rd\theta$$

therefore by integration from r_0 to 1 we find that the right hand side of (5) is also bounded for $f \in AD$. Hence for $r \to 1$ we have $\prod_{n=1}^{\infty} |z_n| > 0$. i.e. $\sum (1-|z_n|) < \infty$, which contradicts to (4). Therefore $F(z) \equiv 0$ and it follows at once by the conditions (3) the desired conclusion.

Remark. When $\{z_n\}$ converge to a inner points z_0 ($|z_0| < 1$), z_0 is removable for F, therefore we have also $F(z) \equiv 0$. i.e. the conclusion of Proposition 1 holds.

Proposition 2. Let R be a Riemann surface (with a finite or infinite number of sheets) spread over the unit circle K which has only algebraic branch points whose projections are z_1, z_2, \cdots . Then

if the series (4) converges, any closed domain E on R is not removable for AB defined on R-E.

Proof. Since the linear transformation which maps K into itself does not change the convergency of (4), we assume at first that E contains the origine z=0 and there is no branch point on z=0. Let P_0 be a point of R lying on z=0. Now we consider the exhaustion R_n $(n=1, 2, \cdots)$ of R where R_n is the connected piece which spreads over the circle $|z| < r_n$ (r_n) is determined in later) and contains the point P_0 . From the convergency of (4) we find that R_n consists of only a finite number k_n of sheets. Let $g_n(P, P_0)$ be Green's function of R_n . Since $g_n(z, P_0) \le \log 1/|z|$, $z \in R_n$, for $n \to \infty$

(6)
$$g(z, P_0) \leq \log 1/|z|.$$

Every domain $G_{\lambda} = E\{g > \lambda\}$ becomes compact, therefore by Lemma

$$(7) D_{R-G_1}[g] = 2\pi\lambda.$$

Since for $\lambda = \log 1/r$, Proj. G_{λ} is contained in |z| < r, we have by (7)

where $p=g+i\bar{g}$ and $\Gamma(t)$ denotes all the circles over |z|=t. Hence there exists a sequence $\{r_n\}$ tending to 1 such that

(9)
$$\frac{1}{2\pi} \int_{\partial R_n} |p'|^2 d\varphi \leq \frac{1}{2\pi} \int_{\Gamma(r_n)} |p'|^2 d\varphi \leq 1/r_n^2 \quad (n=1, 2, \dots).$$

As $\log x \le x$ $(x \ge 0)$, it follows

(10)
$$\frac{1}{2\pi} \int_{\partial R_n} \log |p'| d\varphi \leq 1/2r_n^2 \quad (n=1, 2, \cdots).$$

Let B(z) denotes the Blaschke product of (4), then the function

(11)
$$\varphi(z) = zB(z) p'(z)$$

is regular analytic on R. By means of Poisson integral we construct in the circle $|z| < r_n$ a harmonic function u_n whose boundary value is $\max_{\mu=1,\ldots,k_n} \log |\varphi_{\mu}|$ where φ_{μ} denote the branches on R_n of φ . Then the regular function

⁷⁾ Cf. H. Selberg: Ein Satz über beschränkte endlich vieldeutige analytische Funktion. Comm. Math. Helv. Vol. 9 (1937).

$$f_n(z) = \varphi(z) e^{-\psi_n(z)}, \quad \psi_n = u_n + i \bar{u}_n$$

is single-valued in $|z| < r_n$ and $|f_n(z)| \le 1$, $z \in R_n$ by maximum modulus principle. As $R_n \to R$ we can choose a subsequence, say again $\{f_n(z)\}$, converging uniformly to the bounded regular function f(z) defined on R. Now for all the points P_n (except P_0) over z=0, $f(P_n)=0$. While, since

$$b=|B(0)|=\prod_{n=1}^{\infty}|z_n|>0$$

and

$$u_n(0) = \frac{1}{2\pi} \int_0^{2\pi} u_n(r_n e^{i\varphi}) d\varphi \leq \frac{1}{2\pi} \int_{\partial R_n}^{+} |p'| d\varphi,$$

we have by (10)

$$|f(P_0)| = b \lim_{n \to \infty} e^{-u_{n}(0)} \ge b e^{-1/2} > 0$$
.

It follows that f is non-constant ϵAB on R. Now the function F(z) = f(z)/z is regular on R except a point P_0 , where it has a simple pole. By maximum modulus principle $|F(z)| \leq 1/\rho_0$, $z \in R_n - R_0$ (for any n) where R_0 is a small circle of radius ρ_0 with center P_0 which is contained in E. We see that $F \in AB$ on R' and cannot continuate without singularities onto E. q.e.d.

We have therefore by Propositions 1 and 2 the following

Proposition 3. Let R' be a Riemann surface defined in Proposition 1. Then the necessary and sufficient condition that at least a disc should be removable for the class AB is the divergency of series (4).

Kyoto University