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When V  is a projective variety defined over a field k,* )  there
corresponds a projective variety V (m ) whose points are in a one-
to-one correspondence with positive 0-cycles of degree m  in V , by
virtue of results on associated forms due to W. L. Chow and B. L.
van der Waerden 131 When V is a non-singular curve, then V(m)
is also non-singular, as was proved by Chow [2] (cf. van der
Waerden [8 ]). From this, a question arises : If  V  is normal,* ) then
is  V (m ) normal?

In the present paper, we will prove the following results (which
answer the question):
. 1) W hen k  i s  o f  characteristic z ero, then  th e  question is

affirmative.
2) Though in  th e  other case the question is not affirmative,

there exists a biregularly equivalent* ) v ariety  V ' to V  such that the
variety V ' (m ) is normal.

We will prove further the following result :
3) I f  k  is of characteristic zero and i f  V ' is a  variety which

is biregularly equivalent to V , then V (m ) and V' (m ) are biregularly
equivalent to each other, without assumption that V  is normal.

Here the writer wishes to express his hearty thanks to Prof. Y.
Akizuki, Prof. J. Igusa and Mr. Y. Nakai who gave the writer
many helps during the preparation of the present paper.

§ 1 .  Definitions and notations.
(1) Let k  be a field, let ( x )  x , " )  ( i= 1 ,  • • • ,  ni) be

vectors with indeterminates and let e be the symmetric group

*) For the definitions, see § 1.
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of degree m .  For any element a  of there corresponds a uniquely
determined automorphism, which will be denoted also by 0- , such
that 0- (x j ( " ) = x ° " .  An element !  of the ring k [x ]=k [x ," ) , 
x, , •-• , x„̀ - '1 is called a symmetric for m on vectors (x "Ts  if (3- (  f )
for any element 0- of L e t  g be any element of k [x ] and let H
be the set of elements 0-  of such that 0 - ( e = g ;  I I  is obviously
a subgroup of 0 .  Then f =  , , , i i # m a i ( g )  is a symmetric form ;
this symmetric form f  is called the symmetric form generated by g
and will be denoted by (g ),.

On the other hand, let u„ •••, un be indeterminates. Then the
coefficients of the polynomial 11,(1+E i x u ), regarded a s  a  poly-
nomial in  ui 's, are  called the fundamental symmetric forms on the
vectors (x ( ') )'s. A s is easily seen, a  fundamental symmetric form
is of the  form (xh ( " ) • • •xi, "")). if a n d  conversely. The
form ( x 1 (1) • •• x i , " , •) ) ,  will be denoted by s i p..

(2) A  ring will mean a com m utative ring. A  ring is called
a  normal ring if it is an integrity domain which is integrally closed
in its field of quotients. When o is an integrity domain, the integral
closure of o in  its field of quotients is called th e  derived normal
ring of o.

A n  integrity domain o is said to be a  regular extension of its
subring I  if the field of quotients of o  is a  regular extension of
that of I in  the sense of W eil [9].

(3) A n affine variety V defined over a field k  is a  variety in
the sense of W eil 19] defined over k .  When (x) (x„ •••,x„) is a
generic poin t o f V  over k , the ring k[x]=k[x,,•-•,x„ ] is uniquely
determined within isomorphisms over k ;  this ring  is called the
(affine) co-ordinate ring of V and the field of quotients of this ring
is called the function f ield of V.

A  Variety in  the sense of [9] is called a n  abstract variety . A
complete abstract variety in a projective space is called a  projective
v ariety . Let V  be a projective variety defined over a field k  and let
(z) = (4,• • • ,z„) be the homogeneous co-ordinate of a generic point of V
over k .  Then the function field of V is k(z o/z„ •••,z/z,) (with z, 0).
When z, is transcendental over the function field of V, we call the
ring k [z ]= k [z 0 ,  • •• , z,1 the homogeneous co-ordinate ring o f  V.

Two abstract varieties V  a n d  V' defined over the same field
k  are said to be biregularly equivalent to each other i f  they are
in  everywhere biregular correspondence to each other ; in  other
words, i f  V  a n d  V ' correspond to the same model over k  in the
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sense of N agata [ 5 ,  1].
We will notice here that the function field of a variety over a

field k  is a regular extension of k, by the definition in Weil [9].
Therefore the co-ordinate ring of an affine variety over its field k
of definition and the homogeneous co-ordinate ring of a projective
variety over its field k  of definition are regular extensions of k.

In our treatment on projective varieties, we need to consider
fields of definition which contain infinitely many elements. There-
fore for the simplicity of statements, we will assume always that
the fields of consideration contains infinitely many elements.

(4) An abstract variety V  defined over a field k  is called a
norm al variety (over k ) if the model over k, in the sense of Nagata
[5, I], which corresponds to V , is a normal model, namely, if the
specialization ring of any point of V  in the function field of V  over
k  is normal. Then an affine variety is a normal variety if the
co-ordinate ring of the variety (over the field of definition of
consideration) is a normal ring. Even when a projective variety
V  defined over a field k  is normal, the homogeneous co-ordinate
ring h  o f V  defined over k  may not normal. When h  is normal,
we call V an arithmetically norm al v ariety . As is easily seen, any
arithmetically normal variety is a normal variety.

(5) Let V  be an affine variety defined over a field k  and let
(xi"), • , (x )  be independent generic point of V  over k .  Let
s „  • • • , s ,  be all of fundamental symmetric forms on (x i" ) 's . Then
the affine variety with the generic point ( s „  • • - ,  s , )  defined over k
is called the Chow variety of positive 0-cycles of degree m  in V
and will be denoted by V (m).

Let V  be a projective variety defined over a field k  and let
(z (1 ) ) ( z o ( f) , •••, z,P) (i=1, • • • , m) be independent generic points of
V  over k .  Choose one j  such that z7 ) 0 and set (x ( i)) =
• • • , z„( 7 z i ( l)). Let so , • • • ,  s ,  be all of fundamental symmetric forms
on (x ( i) ) 's. Then the projective variety with generic point (s) —
(so , • • • ,  s , )  is called the Chow variety of positive 0-cycles of degree
ni in V  and will be denoted by V ( m ) .  (Observe that there exists
one 1 such that s1 =1, because xi il)= 1  for any i .)  The affine variety
with the generic point ( s )  defined over k  is called the affine repre-
sentative of V (m) defined by z = 1 .  (Observe that this affine variety
is really an affine representative o f V (m).)

As is well known (see [3] or [7]), the definition of V (m) does
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not depend on the choice of the subscript j  (up to linear trans-
formations). Further the following must be noted :

Let A  be a  linear transformation of the vector space S " of
dimension n  into a  vector space S ' .  Set (y ( ") ( x ( 1 ) ) A .  Then
the fundamental symmetric forms on (y''') 's are linear combinations
of these on (an 's. From this we see immediately.

W hen a given affine or projective variety V  is transformed by a
linear transformation (in an affine OY projective space which contains
the ambient space of  V ), then the variety V (m ) is transformed by a
linear transformation.

§  2 .  Normality of V (n t) (1 ) .

LEMMA 1. Let o and o' be normal rings which contains a field
k .  If o and o' are regular extensions of k, then ()Oh o' is a normal
ring. (Nakai)

For the proof see [5, II].
Now, we first consider the affine case. Let V be an affine

variety defined over a field k and let (xw) (i=1, m )  be indepen-
dent generic points of V  over k .  Then

LEMMA 2. Let f  be an element of the ring o  k [x " ) , • • • ,
If f  is invariant under any automorphisms induced by the permuta-
tions of superscripts o f (x )'s , then f  is expressible as a symmetric
form on  (x )'s. 1 )

Pro o f . We denote by o ( i) the ring k [ x ]  for each i. Then
there exists an isomorphism a i from ow and LP)  which mapps (x '")
to (x ( " )  for each i. Let Itt»1  be a linearly independent base of
ow over k and set u i ( ') =0 -

1 (u i " ) ). Since o may be regarded as the
m-plc tensor product of o w ,  f  is expressible uniquely in the form

i t  (1 ) • •  U ) , ( " .3  A j k ) .  Then the uniqueness of this re-
presentation and the invariance of f  under permutations of (x"))'s
shows that the above expression is a symmetric form and we see
our assertion.

Proposition 1 .  L et V  be a norm al affine variety defined over
a f ield k .  T hen there ex ists a n  affine variety  V ' def ined over k

'1) In general, there are relations among xi ( iPs. Therefore that f  is invariant
does not mean that the expression of f  is a symmetric form (formally).

2 )  When k  is of characteristic zero, the proof is easy : Let be the symmetric
group of degree nt which operates to the superscripts of (x ( O r s .  Since f----cr(f) for
any o-E, 0-(f)1(m!) and the right hand of this equality is a symmetric form.
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which is biregularly equivalent to V  such that V ' (m ) is normal.
Pro o f . We will use the same notations as in Lamma 2. By

Lemma 1, the ring o is a normal ring in this case. L e t ,t f, be the
co-ordinate ring of V (m ) .  If is not normal, then there exists an
element f  of the derived norm al ring o f which is not t. Since
o is noraml, f  is in o. Since f  is in f  is invariant under any
automorphisms induced by permutations o f (x ( i) )'s. Therefore by
Lemma 2 there exist elements tti

( "'s of o( " 's  ( u p  =0 -,(u i
(" ) )  such

that f  is the sum of fundamental symmetric forms on (zt( ') )'s. Let
V " be the affine variety defined over k  with the generic point
(x('), u" ) ). Then V " is biregularly equivalent to V  and the co-
ordinate ring of V "(m ) contains f  and Repeating the same
procedure, we see the existence of the required variety V ' by the
finiteness of over

Next, we will consider projective varieties. Let V  be a pro-
jective variety defined over a field k and contained in a projective
space P "  of dimension n .  Then

L E M M A  3. There exist hyperplanes H„ •••, H, in P "  defined
over k  such that for any n i points Q„ •••, Q„, o f V  (m  being a
given integer), there exists one i such that H. does not contain any
of Qj 's.3 )

Proof. 4 ) L e t  t  be an integer greater than m n and let H„ • • • , H,
be hyperplanes of P "  such that any o f n + 1  o f them have no
common point ; since k  contains infinitely many elements, we can
choose them so that they are defined over k .  For any point Q,,
there exist at most n  of H i 's which contain Q „ . Since t > mn, we
see that there exists one H , which does not contain any of Qls
and we complete the proof.

Now we will prove
Theorem 1 .  I f  V  is a  normal projective variety defined over a

field k , then there exists a projective variety V ' defined over k which
is biregularly equivalent to V  such that V ' (in) is normal.

Pro o f . Let Ej be the homogeneous co-ordinate ring of V .  By
Lemma 3, there exist linear forms 0„ • • 0 ,  in fj such that for any
m  points (21, • Q„, there exists one i  such that 0, at any of
Q's. L e t  (z ) be the homogeneous co-ordinate of the generic point

3) In  this lemma, the assumtion that k contains infinitely many elements cannot
be omitted.

4) The writer owes th e  present proof to Mr. H. Hironaka.



170 M asay oshi N agata

of V  such that 1)— k [z ]. Then the projective variety with the generic
point (z , 0 ) is a  linear transform of V .  Therefore we may assume
that the affine representatives A ,, A „  of V defined by z0 =1, • • • ,
z „=1 ((z ) = (4, • •-, z „)) satisfies the condition that for any m  points
Q„ •••,Q,., of V, there exists one i  such that A, contains all of Q's.
For each A ,  there exists an affine variety A ', which is biregularly
equivalent to A, such that A ', ( n )  is normal by Proposition 1. Let
(y ( ') ) be a  generic p o in t o f A ', ;  we may regard that y ( 's  are
rational functions of z ,/ z ,• •, z„/z,. Then there exists a  natural
number N  such that z i Ny7) 80 for all i  and j. Let m a, •-•, m . (m ,=z iN
for i n) be a set of generators of the forms of degree N  in  I) and
le t  V ' be the projective variety with the generic point (m )= (m ,,
•• • , m „) (defined over k ) .  We shall show that V ' ( m )  is normal.
By the invariance of V '(m ) under linear transformations, we may
assume that z1Ny.,6 ) 's are contained among mk 's. Let V ', be the affine
representative of V '(m ) defined by n i,=1  and let oi be the co-ordinate
ring  o f V ', for each i =0, •-•, n .  Then o, contains th e  coordinate
ring o', of A ',(m ) and therefore o,=o', because o', is norm al. Thus
we see that V ', is n o rm a l. By our construction, for any points
Q „ ••• ,Q ,, o f  V ', there exists one i ( n )  such that the affine
representative of V ' defined by nt, =1  contains all of Q .4's. There-
fore any p o in t in  V' (m )  has a  representative in  at least one V ',.
Thus we see that V ' (m )  is normal.

§  3 .  A preliminary on symmetric forms.

• We will u se  th e  same notations as in § 1, (1) We assume
that the field k  is of characteristic zero. Then

LEMMA 4. Any symmetric form !  on  vectors ( x ) ' s  over the
field k  (of characteristic zero) is expressible as a polynomial in the
fundamental symmetric forms over k .  (Weyl [11])

Proof  (1) (x ," 1•• ,c, w ) , is expressible as a polynomial in the
fundamental symmetric forms s„ • ••, s, o n  (x ( ') )'s :

Indeed : When r=1 , our assertion is obvious because (x," ) ),—
s,1 . Therefore we will prove our assertion by induction on r. We
assum e that, fo r  any i„ •  , i ( h > 1 )  ,  ( x ," ) • • • ,") • • • xa."' • • x Y 1 is
expressible as a polynom ial in si 's. O n  th e  other h a n d , (x,h"
•• • x ," ') ,=1 /r• ( x , " )  •  • x, ( 1 )  — 1 ,j ,j l (x,'" • • •

5 )  The symbol A  means that the indicated places are dropped. For example,
x i • • • i • • • x , .  denotes x i . ••x i _ l x , i . • -x , .
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( - r i " ) ••• z .1 )-1 - ,`" )8  = 1 / r  — 1 . (E ,,,(x ,( 1 ) . . . i , ( 1 ) . . . ik ( 1 ) ..-x , ( 1 ) ) 3 .s ie
(x ,m • • •i,( ')"  • ik ( 1 ) • • •x r ( i ) x , (1 ''x k ( k ' ' ) b )  (when m =2 , this

last sum vanishes), and so o n .  Thus we see that, repeating the
similar as above, (x 1( 1 ) •••x;' ) )3  is expressible as a polynomial in se's.

(2) (4 "  •  4 1?) , is expressible as a polynomial in se's.
Indeed :  ( x , ' " • • • x , m ) ,  is expressible as a polynomial in se's (with

respect to vectors (x ( i ) ) = (x » ) •• • , z ( 1 ') (i=1, • • • , m ) ) .  The expression
is an identical relation and therefore the subscripts 1, r  may be
replaced by i,, • •• ,i„ which proves (2).

(3) Now we prove the lemma. We may assume that f  is of
the form f =  ( H), with a  monomial M =x „" ) •••xi -M * , where M *
is a  monomial whose superscripts are greater than 1 .  We remark
here that we can choose M  so that r >  1  because (M ),-- (0 - (M )) 3

f o r  any perm ution 0 -  o f  superscripts. W h e n  M * = 1 , we have
already proved our assertion by (2) and we will prove our assertion
by in  induction on the degree of M * .  Let f *  be the symmetric
form generated by M * .  Then f * =(x ,," ) •••,x,„ ( 1 ) •M * * ) ,  (with t > 1
and with a monomial M ** whose superscripts are greater than 1).
Since M ** is of less degree than M * , we see that f *  is expressible
as a polynom ial in se's by our induction assumption. Therefore
f **---(z ," ) •••x„" ) ), 1 *  is expressible as a polynomial in se's. On the
other hand, every term of f — f **  is of the form a'11 ") • • •x,„") - M ' with
u > r  ( fo r  any term o f  t h e  form x „ " ) • • -xi, " ) - M '  (M '  being a
monomial whose superscripts are different from 1), which appears
in f  or f * * ,  appears in  both of them and therefore such term does
not appear in  f - f * * ) .  Since M ' is o f  less degree than M * , we
see that f— f** and therefore also f  are expressible as a polynomial
in  se's. Thus the proof is completed.

§ 4 . Normality o f I r ( m )  (II).
Theorem 2 . L et V  be an a ff in e  or a projective variety defined

over a fled k .  If  k  is of characteristic zero and if  V  is  normal, then
V (m ) is also a norm al variety.

P ro o f  (1) When V  is an affine variety :  We will make use
o f  th e  same notations as in Lemma 2  and Proposition 1. If f  is
in  the derived normal ring o f  t h e  co-ordinate ring o f  V (m ),
then f  is expressible a s  a  symmetric form o n  (x ( ') )'s. Since k  is
of characteristic zero, f  is expressible as a polynom ial in the fun-
damental symmentric forms on (x ( ') ) 's , hence f  is in Thus
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a n d  is normal, which shows that V (m ) is a normal variety.
(2) When V is a projective variety : By the invariance of

V (m ) under linear transformations (see § 1, (5)) and by Lemma
3, we may assume that for any m  points of V, there exists one i
such that the affine representative A i  of V defined by zi =1 (where
(zo,•••,z„) -is the homogeneous co-ordinate of a generic point of V
o'ver k ) contains all of the ni points (see the proof of Theorem 1).
Then any point of V (m ) has a representative in one of A (m ).
By (1), each A ,(m ) is a normal variety and therefore V (m ) is
also a normal variety. Thus the proof is completed.

§ 5. Biregular invariance of V (m ).
Theorem 3. L et V be an affine or a projective variety defined

over a field k .  I f  a variety V ' is biregularly equivalent to V  and
if  k  is of characteristic zero, then V(m) and  V' (m ) are biregularly
equivalent to each other.

P ro o f  By the same way as in the proofs of Theorems 1 and
2, we can reduce the projective case to the . affine case. Therefore
we will treat the affine case. Let L  be the function field of V, let
L (m ) be the function field o f V (m ) and let L *  be the function
field of the m-pie product V* of V . Then we see that L (m ) is a
subfield of L* and L * is a normal extension of L (m ) with Galois
group S which is the symmetric group of degree m  (which operates
as permutations of independent generic points (x" ) ), • ,  ( P )  o f  V
over k ) . "  Now we have only to prove the following.

Proposition 2 .  The co-ordinate ring o(ni) of V(m) is the inter-
section of L (m ) with the co-oridinate ring 0* of V*.

Proof of the proposition. Obviously 0(m ) is a  subring of 0*.
An element f  of o* is in L (m ) if and only if it is invariant under
any permutations of S. Then by Lemma 2, f  is in L (m ) if and
only if f  is expressible as a symmetric form on (x)'s ; since k  is
of characteristic zero, it is equivalent to say that f  is expressible
as a polynomial in the fundamental symmetric forms on  (x )'s  by
Lemma 4, that is, f  is in o (m). Thus the proof is completed.

§ 6. Examples.
We first show an example which shows that 1) Lemma 4 does

not hold in general, 2) Theorem 2 (and therefore also Theorem 3)

6 )  See W eil ROL
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does not hold in  general and 3 )  even when V  is  free from
singularities, V (m )  may not normal.

Example 1. Let k  be a field of characteristic 2  and let (x`")
(x,v) , (i=-1, 2) be independent generic points of the affine

space S of dimension 3  over k .  Then there exist homogeneous
symmetric forms of degree 3  which are not expressible as poly-
nomials in the fundamental symmetric forms on (x(1 ) )  and (x (").

Indeed, fundamental symmetric forms are

(x1(1) ) . (i= 1 , 2,3)

s1„12 =x i wx, ( 2 ) ( i= 1 ,  2 ,  3 )

s 2 = (xi" )  xi m), i=1, 2, 3 ; j=1 , 2, ) .

Therefore homogeneous symmetric forms o f degree 3  which
can be expressible as polynomials in s 's  such that each of their
terms has all subscripts 1 , 2 , 3  are generated by

(1) s11s21s31, s,1s2," , s21s2,12 ,  s31s12''.

On the other hand, homogeneous symmetric forms of degree
3 , such that each o f their terms has all subscripts 1, 2 , 3 , are
generated by

==fxl w x2m x.P )8 , 6 2==fx, ( f l x2m xn s ,

E.,==(x,mx, (2 )x.P ) ,

If we express each of forms in (1 )  as the linear combination
of &1's, then the matrix of the coefficients is of the form

I l  1  1  i \
0 1 1 0
0 1 0 1 ,

\ 0 0  1  1 /

and its determinant is zero, because k is of characteristic 2. There-
fore the forms in (1) cannot generates all of forms in ( 2 ) .  Thus
the .proof is completed.

REMARK 1. It will be not hard to construct similar examples
for any field of non-zero characteristic.

Next we will show an example which shows that even when
V  is an affine or a projective variety defined over a field of
characteristic zero and when V  is free from singularities, V (m )
may have singularities.

(2)
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Example 2. L et k  be a  f ie ld  o f  characteristic zero and let
(x (1 ) ) ( x ,1 2 . ( i ) ) (1=1, 2) be independent generic points of the affine
space St2 of dimension 2. Then the co-ordinate ring o(2) o f  52 (2)
is the ring ks,', s 1 2 ,  s2,1 2 ]. We denote by o the ring k [x ,
x(2 ) ]. Let p and p' be maximal ideals o f o and o (2) generated by
x ( r) 's and s's respectively (then p '= p n o (2 )).  Set P=op and P '=
0(2) p / . Then (p'P+ VP) /p2P is of rank 2 over k, because p' contains
n o  linear form in  P  other than those generated by s,' and s21 .
Therefore, for any system of parameters (y ) of P', the multiplicity' )

of the ideal of P generated by (y) is at least 4. Since o is a normal
extension of degree 2 over o(2), we see that th e  multiplicity of
the local ring P ' is at least 2, hence P ' is not a  regular local ring.

REMARK 2. Let Q„ • • , Q„, be simple points of an affine or a
projective variety V  defined over a field k  of characteristic zero.
L e t  Q * be the  po in t o f V(m ) which corresponds to  the cycle
Q ,+  + Q „ ,.  If  Qi (21 fo r  any i j , then Q* is a simple point.

The proof is easy by Proposition 2, observing that the maximal
ideal of the specialization ring o* of Q* decomposes completely in
the  integral closure of 0* in the function field of the m-ple product
o f  V.

REMARK 3. Similar fact as in Remark 2 holds good even when
the ground field is not of characteristic zero, under the assumption
that point Q* is normal.

The proof is quite similar as that of Remark 2.

§  7 .  Arithmetic normality o f V (1 )È  ).
LEMMA 5. L et V  a n d  V' be arithmetically normal varieties

defined over the same field k .  Then the projective product variety
V" of V and V' is also an arithmetically normal variety (over k).
(Nakai)

Proof . L et (z) = 4 )  and  (w ) (wo, •-, w .) be indepen-
dent generic poin ts of V and  V' respectively (over k) ; here we
assume that 20 and wo are algebraically independent over the function
field of V " .  Set 0 = 1 4  w ]. Then o is a norm al ring by Lemma
1. In  o, we can consider homogeneity and degree of homogeneity
with respect to (z ) a n d  (w ) .  Then th e  homogeneous co-ordinate
ring  4 o f  V " is the subring o f  o  generated by all elements of o
which a re  homogeneous with respect to both ( z )  a n d  (w ) and

7 )  For the notion of multiplicity, see [4 ] o r [5 , V ] (c f. [1 ] o r  [6]).
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whose degrees of homogeneity with respect to (z ) and (w ) are the
sam e. L et f  be any element of the derived normal ring 0' of f).
Then f  is expressible as the sum o f  homogeneous elements in  (Y.
Therefore in  order to show that f  is in  h, we may assume that f
is a  homogeneous element in h'. Since o is a normal ring, f  is in
o. Since f  is in  ty, the degrees of homogeneity of f  with respect
to ( z )  a n d  (w )  (in  o ) a re  th e  sa m e . Thus we see that f  is in
and .0 is normal, which shows that V " is arithmetically normal.

Proposition 3 .  L et k  be a  f ield o f  characteristic z ero. L et n
and m  be given integers and let P  be the projective space of  dimension
n  over k .  I f  P ( m )  is arithm etically  norm al, then f o r any  arith-
metically normal variety V  in P  defined over k , V (nz )is arithmetically
normal.

In  order to prove our proposition, we will introduce the notion
of homogeneously symmetric forms. Let (2( 7 ) ) = (20 ") , • • •, ,( i) ) ( i =

m )  be vectors with indeterminates and we denote by o
the ring Al zw, • • •, z( "') ]. An element f  of o is called a homogeneously
symmetric form on the vectors (z ( ° )  if  1 )  f  is a  symmetric form
o n  th e  vectors, 2) f  is a  homogeneous form (in  o ) a n d  3) f  is
homogeneous on each (zj " ) , z;

( 2 ), •-•, 2.1 ') )  and the degree is indepen-
dent of the subscript j ; this is called the degree of f .

If  we regard the vectors ( z ) 's  as independent generic points
o f P  over k ,  then obviously the  co-ordinate ring  0 (m ) of P(m )
is generated by homogeneously symmetric forms o f  degree one.
Therefore that f)(m ) is  norm al means that any homogeneously
symmetric form is expressible as a polynomial in those of degree
one. T h i s  fact can be applied f o r  any arithmetically normal
varieties in P  defined over k , by the same way a s  in  § 4 by virtue
of Lemma 5. Thus the proof is completed.

REMARK. In  the  above proposition, we need not assume that
the field k  is of characteristic z e ro . But, if k  is of characteristic
p4o, then P ( m )  is not arithmetically normal for any in which is
not less than p.

Here we will offer a  problem to decide whether P ( m ) ,  as in
the above proposition, is necessarily arithmetically normal or not.
(It seems to the writer very likely that the answer is affirmative.)
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