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In connection with the theorem of the base' we can propose
the followlhg problem: Let V" be a normal variety in a projective
space. Can we find a positive integer m depending on V such that
every subvariety C*' of V" is linearly equivalent to a “ reducible
variety ”’, when the degree of C is greatar than m? This seems to
be very plausible, but actually it is not true. In fact we shall show
later that on an Abelian variety A" we can find a subvariety C*~'
of degree greater than any preassigned positive integer m such that
every positive divisor X on A, which is “ numerically ”’ equivalent
to C; is irreducible at least when A is not “trivial” in a certamn
sense. We can give another expression of this statement: We
know in general® that the divisor class group modulo numerical
equivalence of any normal variety is a free Abelian group with a
finite set of generators. Let us say that a divisor class is positive
if it contains a positive divisor. They form a semigroup in the
group of all divisor classes. If we remember a result of Chow-van
der Waerden, our previous statement is shown to be a consequence
of the non-existence of a finite set of generators of this semi-group.

1. Abelian Varieties.—We take a square real matrix J satis-
fying J°=—1.,. Here 1,, is the unit matrix of degree 2n. Such a
matrix converts a real vector space R* into a complex vector space
C" by the definition (a+i3) -x=ax+ffx. Here «, f are real
numbers and x is an element of R*. If we consider the factor
group of this €" by its discrete subgroup of *integral points”, we
get a complex torus A*. We know* that A" is an Abelian variety if
and only if there exists a skew-symmetric infegral matrix E of
degree 2n such that EJ is symmetric and positive definite. We
say that A is a simple Abelian variety, if A does not contain any
Abelian subvariety except the trivial ones. We conclude from an
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elemetary part of the theory of complex tori that A is simple if
and only if a skew-symmetric integral matrix E such that EJ is
symmetric can not be positive semi-definite without being positive
definite.

Now we can attach to every divisor X" ' of A" a skew-
symmetric integral matrix E(X) in the following way: We denote
by e; a unit vector in I* whose i-th component is one. It is clear
that the image in A of a two-cell in R* with an oriented boundary
2, %,+e,—x,+ e+ e;—x,+e,—~x, defines a two cycle /'; of A, whose
homology class is independent of the point x, of R*. Moreover
n(2n—1) cycles I’ for i<j form a fundamental base of two cycles.
Therefore if we define n(2n—1) integrs e;(X) by intersection
numbers I(X, I7;), they determine a skew-symmetric integral matrix
E(X) of degree 2xn in an obvious manner. It is clear that the
mapping X—E (X) is a homomorphism of the group of all divisors on
A into the module of skew-symmetric integral matrices of degree
2n such that the kernel is the group of divisors which are homologous
to zero over rationals. On the other hand we know in general®
that this group is the same as the one which is defined by numerical
equivalence. Therefore the rank p of the module of E(X) is equal
to the Picard number of A. We can also determine -explicitly
the image of the above mapping in terms of our matrix J. A
skew-symmetric integral matrix E lies in the image if and only if
EJ is symmetric. Moreover E corresponds to a positive class if
and only if EJ is positive semi-definite. These two assertions are
substantially equivalent to the existence theorem of théta functions.®

In the following we shall assume that A is simple.

If we consider a real vector space R, its discrete subgroup
of integral points can be identified with the module of matrices
E(X). On the other hand the totality 4 of skew-symmetric real
matrices E such that EJ is positive definite is an open subset of
of R* satisfying the following properties: (i) If E is in 4, and if
a is a positive real number, aFE is also in 4. (ii) If E, and E,
are in 4, then E,+E, is in 4. A point set in I* satisfying the
property (i) is called a cone. If it also satisfies (ii), it is called
a convex come. Thus our 4 is an open convex cone in Rf, More-
over the semi-group of integral points in 4 is the same as the
semi-group of positive divisor classes. We shall now state the
following elementary lemma :
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LEMMA. Any non-empty open cone in R' contains at least one
integral point.

It is now a simple matter to prove the following :

THEOREM 1. If A" is a simple Abelian variety whose Picard
number p is at least equal to two, the semi-group of positive divisor
classes modulo numerical equivalence has no finile set of genervators.

Pyroof: Assume semi-group has a finite set of generators
E,E, -, E. Consider the smallest convex cone 4’ in I* contain-
ing them. Since E, E,, -+, E, are points of 4, we see that 4" is
contained in 4. Since the dimension of the boundary of 4 is equal
to p—1, if p is at least equal to two, 4—4’' is a non-empty open
cone in R*. Hence 4—4' contains at least one integral point
according to the previous lemma. However this contradicts to the
difinition of .

We can make this theorem slightly better by using the follow-
ing general theorem :

+ THEOREM 2. If A and B are isogenous Abeiian varieties such
that the semi-group of one of them has a finite set of generaiors,
then so is the other.

Proof: Since A and B arc isogenous, there are two homo-
morphisms « and 8 from A onto B and from B onto A such that
Ba=d, i.e., d-times the identity automorphism of A. Since the
situation is symmetric, we may assume that the semi-group of B
has a finite set of generators. Let Y, ---, Y be positive divisors
on B which represent these generators, and define X; by «~'(Y}) for
i=1, -, N. If X is any positive divisor on A, we can find N
non-negative integers ¢; such that 87'(X) is numerically equivalent
to >\Yc.Y.. Therefore °X is numerically equivalent to 3.*¢.X;
with the same ¢, Now let X;* be a positive divisor on A such
that d°X;* is numerically equivalent to a certain integer combination
She/ X, of X, satisfying the conditions d*>¢>0 for i=1, ---, N.
If we apply the mapping E( ) to X;* and X,, we conclude that
the number of inequivalent X,* is at most equal to d*¥. Since the
¢, are non-negative integers, we can write them as ¢;=c¢/+d¢/”,
d*>c/>0, ¢/'>0 for i=1, ---, N. Then by applying the mapping
E( ) againto Xand X,, we conclude that X— 3%/ X; is numeri-
cally equivalent to one of the X,;*. In other words the classes of
X, and X;* form a set of generators of the semi-group.

Now if the semi-group of an Abelian variety has no finite set
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of generators, any product of this variety with another Abelian
variety inherits the same property. Therefore the above theorems
imply the following corollary :

COROLLARY. If an Abelian variety A™ contains at least one
simple Abelian variety with p=2, the semi-group of A has no finite
set of gemeratoys.

Finally we add also a simple remark about the ¢ equation ”’ of the
convex cone 4. Let E be a point of R* with coordinates x,, x,, -+, %,.
Then we can find a homogeneous polynomial P(X) of degree »
such that det (E)=P(x)°. It is clear that 4 is one of cones into
which R is divided by a real hypersurface with the equation
P(X)=0. This polynomial P(X) has also the following meaning.’
If our E corresponds to a divisor X"~ of A", the »n-fold intersection
number I(X, X, ---, X) is equal to »n!P(x).

2. A General Theorem.—Let V" be a normal variety in a pro-
jective space. We say that V has the property (F), if the semi-group
of positive divisor classes has a finite set of generators. We say
also that V has the property (Z), if we can find a positive integer
m such that every subvariety C*~' of V" of degree greater than
m is numerically equivalent to a reducible variety. It is clear
that the property (F) implies the property (Z). We shall prove
the converse. Assume that V has the property (Z) but not the
property (F). The set of positive divisors of V of degree not
greater than m forms a finite set of maximal algebraic families by
a result of Chow-van der Waerden.® Since the numerical equiva-
lence is “broader” than the algebraic equivalence, the set of
classes corresponding to such divisors is finite. Therefore this set
can not generate the whole semi-group, which brings a contradic-
tion. It would be interesting to investigate whether the property
(F) is birationally invariant or not.

3. Examples.—First of all our theorem 1 has no meaning unless
we can prove the existence of a simple Abelian variety A" whose
Picard number p is at least equal to two. We can construct many
such varieties and the following may be one of the simplest:
Consider a hyperelliptic curve with an equation y°=1—2°. The
ring of endomorphisms of its Jacobian variety J* is the * principal
order ” of the cyclotomic field of the fifth root of unity. There-
fore J* is simple and p=2.

In the next place we take as V* a quadratic transform of a



A remark on the theory of the base 143

projective plane. Every divisor X on V is numerically equivalent
to a divisor of the form aD+bS. Here D is the transform of a
straight line on the original plane not passing through the center
of the quadratic transformation and S is the image of the center.
It follows from the theorem of Riemann-Roch for surfaces that
D—S is linearly equivalent to a positive divisor C. Moreover we
can show that every divisor X on V is numerically equivalent to
a divisor of the form aC+bS. Moreover the class of X is positive
if and only if both @ and b are non-negative and a+5>0. It must
be remarked that the classes of D and S do not form a set of
generators of the semi-group. We note also that the one half of
the domain I(X, X)>0, which is restricted by deg (X)>0, is
properly contained in the angular domain of our semi-group. Such
a case does not happen, if V* is an Abelian variety.
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