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In  th e  previous papers I' )  and  II ) the author established, by
means of the Kelvin minimum energy principle and a variant of
this principle, various inequalities which may be reduced to the
statements regarding th e  properties of harmonic functions with a
vanishing normal derivative on some o f boundary components of
a  given domain.

It is the aim of this paper to derive several inequalities which
may be reduced to statements regarding the properties of harmonic
functions considered as the solutions of some mixed boundary value
problems. Here we mean by the mixed boundary value problem
to find a  function u (z) satisfying the following conditions :

( i ) u (z ) is bounded and harmonic in  a  domain D,
(ii) u (C) =f ( : )  on the open boundary arcs a  of D,
(iii) au

 ( C)  — f ( C )  on  the  open  boundary arcs p of D,an
where f  (C ) and J., (C) are the functions defined on arcs a  and d on
the boundary C  of D, respectively, and C=a-l-/9+ (end-points of a
or f9), a n d  n  denotes the  d irec tion  o f the  outer normal at each
point on t9.

1 .  Preliminary considerations. Let H  b e  a  half-circle :
< r , I m  z  0 ,  in the z-plane and let u (z) be a  function satisfying

the following conditions :
( i ) u (z ) is bounded and harmonic in  H„
(ii) u (z) =0 on the segment 0 < z < r,
(iii) (z) = 0  on the segment — r <  z <  0, 11(z) denoting a

conjugate harmonic function of u (z) .
Moreover let f (z) = u (z) fit (z) . Then it is easily confirmed that
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the function If (z) } = ti2 —  +2ittii is regular in H . and takes real
values on the diameter — r< z< r of H , except at z = 0 . Therefore,
by the principle of reflection, {f(z)} 2 must be regular in 121 < r,
except at z = 0 . Since the real part o f { f (z )}  is bounded from
above by the condition ( i) ,  the point z = 0  must be a  removable
singular point of { f (z )}  and { f(0 ){ '= 0 . Accordingly, it holds
that in the vicinity of z=0

{ f (z)} = a„,z- (1+ a,z+ . . . .) (a„, 0, 1 )  is an integer),

f (z )=A z 7  (1-0,z+

Therefore If' (z)I 0 (z= re°, . FIence, for the Diri-
chlet integral of the function u (z ) over a half circular ring H(r„
r2): r 1 < 1z1 < r, 1m z > 0, we obtain the following inequality,

tt) I f ' (z )rdr A' — 1 dr—
(dz- =dxdy, z= re"),

for sufficiently small r, and r 1, A' being a positive constant. Hence
we can assert that the harmonic function u(z ) surely possesses a
finite Dirichlet integral over a half ,circle H , (0 < r' < r) in the sense
of improper integral.

Since a Dirichlet integral is invariant under any conformal
mapping of the domain o f reference, the above result remains to
hold also in the case of any domain D bounded by a finite number
of analytic curves and for harmonic function satisfying the same
boundary condition of mixed type with that of u(z ) on the boundary
of

Let u(z ) be a harmonic function in D  satisfying the boundary
condition of mixed type above described and let w (z ) be any
harmonic function in the closure of D .  From the above assertion
and the triangle inequality for Dirichlet integrals

1 I 1
( U  W , u + W) 2  ( u ,  u )  2  ( W , 2 ,

it is easily confirmed that the function u+ w also possesses a finite
Dirichlet integral.

2 .  Decreasing domain functional. In  the following, for the
simplicity, we restrict ourselves to the case of finite plane domains
bounded by a finite number of analytic curves. Let D be a domain
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(of multiple-connectivity, in general,) in the z-plane, a  and p be
two sets of finite number of open arcs on the outer boundary com-
ponent o f D  such that the outer boundary component= a+/9+
end-points of a  or f3, and 7 be a totality o f inner boundary com-
ponents. By extending D  outward beyond a  (or some parts of a)
and remaining fixed p and r, we obtain a  new domain D, whose
outer boundary component consists of open arcs a ', fi, and end-
points of a' or p. For the shorter formulation we denote by C and
C, the total boundaries of D  and D„ respectively. Then we obtain
the following

THEOREM V. Let D and D, (DC D) be two domains as descri-
bed above and S (z ) be a singularity function having the same meaning
as  in  Theorem I. L et p(z ) denote the function satisfying the fol-
low ing conditions: (i) p (z ) = 0  o n  a  an d  p(z) =const. o n  each
component belonging to r,  (ii) ap(z)7an----0 on p, (iii) p(z)+S(z) is
bounded and harmonic in  D , (iv) (p+ S ) / dn] ds=0 f or every

6

closed path a in  D , d s  denoting line element of  a. I f  p,(z) is the
corresponding function associated with D „ then there holds the fol-
lowing inequality

S 4 ' d s—  p as  ds.+T an a a n

S ds—j. pi

as ds,
a' + T  an 3 an

j. e., the value of the left-hand side o f  (1) is a monotone decreasing
domain functional, when the domain D increases, remaining fixed 0
and r.

Proof. We define two functions u (z) and y (z ) as follows :

u (z) = p , ( 0 + s ( z )  in D„
and

p (z) + s (z) in D
v(z) =

S(z) in D,—D.

Both functions u (z) and v(z) are, of course, continuously differen-
tiable (or stepwisely so) in the domain D , and further, by the
preliminary considerations of Sec. 1, have finite Dirichlet integrals.
Hence, applying the Green's theorem, we have the following re-
lations,

(1)
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(u, u)D1=-1(PH- S) 
 a (P

i
+ S )  

 dsan

(2) I S  ( P1
-
4

-
S )   ds+1 (p,+s) aS ds+ a (A + S )   ds

co an P an an
(by (i), (ii) and (iv))

=  Ç S aA ds+f  bi

as  ds+ f S aP1 ds 1  S a S   ds
TaJ ,  an rt an a n D I  an

and
(v, y) D i =  (y , ( y ,  y )

=  S ds+) . S  aP ds• an ;I an r an

S
as 

 d s + f  S
aS

 d s ..0 an ni-D an
And further, there holds the following equality for the Dirichlet
product :

(v, u— v) D i = (v , u— v),+ (v,

v a(u—v) v a( u—v)  ds
D an an

---j (P+s)  a(P '  P) d s +   SaP' ds
at-1-0+T an J ' - Œ  an

(4) = 1  S  c ) ( Pl — P)  ds- F f S ' ds
cc an T an

+i. S aPi ds — .S. S &P' ds (by (i) -- (iv))
., an . an

ap ab ap—  s  i d s —  S d s +  S aPids—  S  ds.
an a an J r an r

From th e  positive definiteness of the D irichlet integral (u—v,
u—v)D,, we easily obtain the inequality

(5) (u, 11) D i
—  ( y ,  y ) 2(v, u—v) O.

Inserting (2 ), (3 ) and (4 ) into (5), we have

Ç S aP' ds — f  S d s +  pi

as ds p  aS s
,c o  an an an

(3)
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+  SaP1 ds —  S ds — 2 S'  S aP' ds+ S aP ds
T .  T an . dnJ O E  an

—2  S aP' ds+21 S d s  O.
T T a n

Thus we obtain the  required inequality (1). Q. E. D.
Remark. It is easily confirmed that, if p(z) takes the constant

values zero on each inner boundary component belonging to r, the
conclusion of Theorem V will hold regardless of the condition
(iv).

3 .  Increasing domain functional. Under the same assumptions
with those o f  Theorem V concerning p (z ), S (z ) , a, ,8 and r, we
consider a  new domain D , by extending the domain D  outward
beyond [3 instead o f  a  and remaining fixed a and 7, and denote
the total boundary C, o f  D , b y  a +[3'+ r + end-points o f  a  or
Thus we obtain the following.

THEOREM VI. Let D and D, (Dc D 1)  be domains described above
and let p (z )  and S (z )  be functions satisfying the same assumptions
w ith those o f T heorem  V .  If  p 1 ( z )  is  the corresponding function
associated with D „ then there holds the following inequality

Ç S   aP  ds—  p aSd s
dn a an

SaP1 ds p, aS  ds,
0, -F T  an an

i.e., the value of the left-hand side o f (6) is  a monotone increasing
domain functional, when the domain D increases, remaining fixed a
and 7.

Proof. W e define two functions u  (z ) a n d  v (z )  in  th e  same
way as in  the proof o f  Theorem V a n d  then analogously obtain
the following relations :

(7) (u, saP,ds+f p i

aS  d s +  S aS ds,.+T ())1 11, anD i  an

(v, D ( y ,D  (v, v)13,-5

S aP  ds+f  P aS   d s +i  S  aS d s d i  S aS  ds.
.+T dn an D  an dn

And further we have

(6)

(8)
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(y, u—v) D i =  (y,14 —  D +  ( y ,  n —  1 h - 7 )

-1(n — v) ds+ f(u— y) ds
.1) an . an

(P
a
+
n

S )  d s  ds

as ass' as= (p,— p) — d s +  p, ds—  p, ds
an a' an a an

(because of p1—p=o on a, p1 —p= const. on- r, and (iv))

p1 -LS-ds— fIv an an
Inserting (7), (8) a n d  (9) into the inequality (5), we obtain

SaP' ds +1p, 
as ds—  S -V — dsj p

a-FT a+ T an it an
as asp, d s +2 1 P  d sa,  an a  a n  —

Thus we obtain the required Theorem. Q.E.D.
Remark. It is easily confirmed that, if p(z) takes the constant

values zero on each inner boundary component belonging to r, the
conclusion of Theorem VI will also hold regardless of the condition
(iv)

4 .  Green's functions fo r  mixed boundary value problems.
To illustrate the applications of Theorems V and VI, we concern
with the Green's function G (z , $) fo r  th e  mixed boundary value
problem, i.e. the function satisfying the following conditions :

( i ) G(z , $) is harmonic in  D, except at ,Z=e($ED),
(ii)) G(z, $) +loglz— $1 is harmonic at z=e-',
(iii) G(z, $) =0 on  a  and  r,
(iv) ac (z, E) /an = 0 on d.

F o r the  shorter formulation we call Robin's function and Robin's
constant the function h (z, .1̀ ) = G(z, $) + log Iz — El and the constant
h (6, $), respectively, in the same way as in the case of the ordinary
Green's function. And take in  Theorems V and V I the functions
with arbitrary real constants 2i  (j =1, . . . n t )

71t

p (z) = Ai  G ( z , 4),

(9)
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S (.0 = y ) ,  log I z — $.11 , j= 1, . . , m, arbitrary points in D)

N Z )  S (2) = Y, 2
.1 h(z .

1-1

Then we have

f S aPds—  P aS ds -A  (p+s)  aP  ds— f p  a ( P+s )   ds
Ja+, an Jr, an +T an an

= ih ( 2 ,  $ i ) ) ( )
G (z, $i )

+ 7  j an
 ) ds

(10)

(Y  A G  (z , 0)(y  2 ,   h (z , 
i

)(IS
an

=Y , 2014 h (z , $;) ( z ' E ')   ds j G (z , $ i)   a h ( z ' "   ds}
i , J a+T an an

Now, it is well known that, the harmonic function u (z ) which
is a solution of the mixed boundary value problem introduced in
the beginning of the present paper, can be represented by the
above described Green's function G(z, $) as follows :

2)
(11) ( $ ) 21  .L.f,(z)  aG a(2 ,d s +   2 7 r

1  .çi if,(z)G (z, $)ds ( ED).

Applying the formula (11) to  (10), there holds

apa sS ds—  p — d s= —2n- y 2,2 i h ($ Ed).
a +T (, an

Hence, from Theorems V, VI and Remarks in Sec. 2 and 3, we
obtain the following

COROLLARY 11. The real quadratic form

(12) y212ih(-$„ ($,ED, i=1, m)
I

concerning the R obin's constants and f unctions of  the dom ain D,
monotOnbusly increases or decreases according as D  increases beyond
a o r O.

Remark. We can easily verify that the Robin's function must
be symmetric in the same way as in the case of ordinary Green's
function, i.e. h ($ ,, j ) = h E .  T herefo re (12) i s  a symmetric
quadratic form.

Considering the two special cases where m =1 (2 ,=1 ) and m
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=2 (),=1 and ) 2 = —1), we obtain the following
COROLLARY 12. The Robin's constant h 0 , Oincreases or decreases

according a s  D  increases beyond a  o r i .  T h e  sam e result holds
good f o r th e  difference o f  the  R obin's constants and the R obin's
function, i.e.,

(13) h(E, $) + h (6, 7;) —2h ($ , ri ) (E, )2ED).

It should  be noticed that, using the Hadamard's variational
formula, Bergman' )  obtained the sam e result for (13) in the case
of ordinary Green's function which may be considered as a special
case of Corollary 12, the set of points being empty.

Especially consider a simply-connected domain D in the z-plane
and let a  and 19 b e  tw o  o pen  arcs on the boundary C o f D
which are mutually disjoint su ch  tha t C= a +0+ end-points of a.
And fu rth e r le t the function w =f (z , $ ) (f ($ ,:) =0, $ED) map D
conformally onto the unit circle I < 1 with. a rectilinear slit : 1

7 7 (>  0) on the positive real axis, in such a w ay that the unit
circumference and the s lit  correspond t o  a  and g, respectively.
Such mapping function w =f(z , E) and the value of r  are uniquely
determined for the domain D  and an arc a  or p, and there holds
the relation

1 "(14) G(z, $) —log
f (z , 01 •

Therefore
(15) If (E, E) I = e- h " . "

Then, by Corollary 12, w e have the following
COROLLARY 13. Let f(z , $) be a  bounded slit mapping function

described above of a given simply-connected domain D. Then I f '  ,
decreases or increases according as D  increases beyond a  or p.

5 .  Circular ring with a radial slit. As the second application
we consider a doubly-connected domain D  in the z-plane. For the
brevity let the outer boundary component consist of two open arcs
a, and end-points of a  (or 0), and let the inner boundary com-
p o n e n t  enclose the orig in  z=0. M oreover let the function w -
F(z )  map D  conformally onto a  circular ring q <Iw l <1 w ith a
rectilinear slit : 1 _ w__ 7 ( >q )  in such  a  w a y  th a t the circum-
ference I wl =1 and Iwi =q correspond to  a  and r, respectively, and
and the slit to O. Such mapping function and the. value of 9. and r
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a re  uniquely determined for the domain D  and a rc  a  (o r  P) .")
Thus we may assume in Theorems V and VI as follows :

p(z )=  log I F(z) I , S (z) —  loglz I .
It is obvious that all the assumptions of Theorems V and VI are
satisfied from the properties of the mapping function w=F(z).
Thus we have the following relations :

S ds—  (p+s) aP ds—  l o g  F ( z )   d  arg F(z)
3n an

(16) (by C. R. equations)

= Re { _ iJ log  F ( z )   d  log F(z)}

fr s:Pn ds—f l o g  F
z
z )  d  arg F(z) + f rlog d arg F(z)

(17)
= Re { — if log  F ( z )   d  log F(z)}  —27r log

T 2 q

pas ds1  p a ( P ± s )  ds
r, an an

=f  lo g  F(z)1 d  arg 
F ( z )

( b y  C.R. equations)
(18)

[log I F(z)1 arg F ( z )  1— t. arg  F ( z )   d  lo g  F(z)Iz Ji Jfi Z

= —  Re { — i ,Ç log  F ( 2 )   d  log F(z)}z
From (16) , (17) and (18) ,

Ç S_  ds— f p '9 .3  ds= Re log  F ( z )   d  log F(z)} —27r log  1
a+-i- an an • z

=-277- log —
1
— (by Cauchy theorem) .

From Theorems V and VI we obtain the following
COROLLARY 14. L et w = F(z) b e  a  slit-mapping function de-

scribed above o f  a  giv en doubly -connected dom ain D. T hen the
quantity  log  1  in c re as e s  o r  decreases according a s  D  increases

beyond a  or p.
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It sh o u ld  b e  n o ticed  th a t the well-known theorem' ) on the
monotonicity of modulus of any ring-domain can be deduced from
the above Corollary in the special case where the set of points
is empty.

6 . Variation of an inner boundary component. In this section
we consider the case where a given multiply-connected domoin D
extends outward beyond any one of the inner boundary components,
remaining fixed other boundary components. Let D , b e  a  new
domain and r ' be the totality of inner boundary components of D,.
Thus we obtain the following

THEOREM VII. L e t D  an d  D , (Dc DO be multiply-connected
dom ains described above an d  le t  p (z ) an d  S (z )  h av e  th e  same
meanings as  in  Theorem V .  If  p 1 (z) i s  the corresponding function
associated with D„ then there holds the following inequality

(19) SN-9- ds p aS  d s - - 1  SaP'ds - ff + T dn dn a + V  1.1 ri an
i.e., the value of  the left-hand side of  (19) is a  monotone decreasing
domain functional, when the dom ain D increases beyond any one of
the inner boundary components of  D.

Proof. W e define tw o functions u (z ) and v (z) in the same
way as in the proof of Theorem V .  Thus we obtain the following
relations

(20) (u, u) z =  S aPi ds+f  p, aS  d s +  S cIS   ds,
dn dnI  d n

(21) (v, v) D i 
= f S aP d s+ P- c2S- d s +  S t3 -S  d s + f  S - tS-dsan f, an D  dn dn

(u, u - v) D i =  (u, u - v) (u,

(74 —  v) a d s+ f  (u  - v ) ---ds
a 1- + T dn V - T an

J
= 4  (P1 &(P1+S) dsH 

T'-T
p ,  

 , i ( p ,+ S )   d s

aSp  -- d s -  p ds (aSp = c o n s t .  on 7 and ( i v ) ), 
an f, const. on y' and (iv)

Inserting (20), (21) and (22) into the inequality
(v, v) bi(u , u )  I ) , -2 (u, u- v) Di,

(22)
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we obtain the required result. Q.E.D.
Corresponding to Corollaries 1 1 -4 4 , some analogous results

are obtainable from Theorem VII, but these will be omitted here.

Kyoto University
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