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IN TRO D U CTIO N . When a  group of transformations is semi-
simple, it is well known that we can treat the group-space as a
Riemannian space being defined the fundamental tensor g ,  by
ga A A  w here  g a 5 =  — c : c .  It is impossible however to assign
a Riemannian metric to the group-space when the group considered
is not semi-simple because the rank of the matrix II c b „fil is less
than r. However, g o  =g,„ A : in  in which g a ,  are any constants
such that the determinat Igab I is not zero, may be used to assign
a  Riemannian metric to the group-space O r  p. 206). In this
paper, we shall show that defining the funbamental tensor by

Aac, Alf we can treat the group-space of any transformation group
as a Riemannian space under the transformations of the parameters.
That is, although for different sets of symbols A a f  of the same
first parmeter-group there correspond different Riemannian spaces
in general, for different choices of the parameters there correspond
a same Riemannian space. Principally we shall study the properties
of these Riemannian spaces concerning with those of the original
first parameter-groups, and give an example as an application of
this theory.

We shall make use mainly of the notations of L. P. Eisenhart
in his work "Continuous Group of Transformotions [1]."

1. PRELIM INARIES.

Let

x '"=f '(x , a) (1 =1 , •  •  •  ,  n )

*  Numbers in  brackets refer to th e  references at the end of the paper.
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be the equations of a continuous transformation group G,. with n
independent variables x i and r  essential parameters aŒ, and

(1 .1) a:=Fa (a, ,a2) r)
be the equations of the parameter-group of G , .  That is, the groups
defined by (1-1) when and ar are considered as the parameters
are called respectively the first and second parameter-groups of G,.,
and we denote them by 6;+) and 03,ç- '. Hereafter when we say
merely "parameter-group 63,.", we mean "first parameter-group
M+ ) ".

Let

 

A:(a )

= A : (a„) ( a 2 )

(b. a l ;  1
•

2••

(h, a, [3=1, • • • , r)

aa".

and
361 '1' =  A : (a„) iff,' (a) (b„ [3=1, •• • , r)
dal

be the fundamental equations o f G ,, 63;.+' and MT' respectively,
where the determinant I A:I is not zero and the matrix IIA:11 is the
inverse one of If  and Ag, A: are the ones of63,.( - )  corresponding
to  Ag, A : of CsS,Ç+)  respectively. Hence we have the relations

Ag=8: and A : Of course M  and A : satisfy the similar
relations. When the parameters are changed, Ag (a) and A ( a )  are
transformed as components of a contravariant and a covariant
vector respectively.

Let S  be the group-space of a parameter-group. There exist
three kinds of affine connections ([1]. p. 199) named ( )-connection,
(— )-connection and (0)-connection, and the spaces with these
connections have been denoted by S+ ) , Y - )  and S" ) respectively
in the paper [2]. The coefficients of the connections are given by

ay-lb a Ac'
i r  Ag —

aaT aar

{L,Tr = Ag  (
3

. `
4

''— —Ag  ail̀ ;'

(1-2)

and
ace aar
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(1.3) 1 (LA- +

respectively. Since

14T=L;-1„

we have also

(1.4) 1r5Z-=-
2

(4 + 1 ,;(0

The curvature tensor of S (+) and S ( - )  are zero, hence both of them
are the spaces of affine connections without curvatures. The co-
efficients r4  are the symmetric parts of the coefficients 47..
Furthermore let the skew-symmetric parts of 4; be ‘14, then we
have

(1.5) -(24=-
1  

(L„fir — L10 )  =1  e ,
2 2

where cag are the constants of structure of IN + ) .

2. THE FUNDAMENTAL TENSOR.

In the papers [2] and [3] w e have used a set of repères
R a (a— • • at every point in S, where A,, are the vectors whose
components are 11.„ • • , A .  A ( a )  and A ( a )  are transformed
contravariantly and covariantly respectively when the parameters
are changed. Accordingly, if we define go  by the relations

(2.1) g =  A : A l* (= A A ) ,

then the quantity

ds= = gc o daa

is an invariant under any transformation of parameters. We shall
define this set of ga ,, as the fundamental tensor with respect to a
set of repères R a . The geometrical meaning of this definition is
cleared as follows. By this definition, as

(2.2)g a i  A l =  A :

*  Throughout this paper, when the same index appears twice in  a  term this
term stands for the sum of the terms cbtained by giving the index each of its values.
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we have

go, Ag JU=8 b c .

Hence -A , of Ra is a unit vector and any two different vectors are
orthogonal. Consequently every Ra  can be treated as a system of
orthogonal ennuples, and the metric induced here when it is re-
presented by "composants relatives w," used by E. Cartan coincides
with the metric given by ds2 ---- (00 2 .

Since

g" 111: 441 =8if

we can define Al, A .k as the contravariant components of the funda-
mental tensor, that is

= A7, A.

From (2.2) and er' Ag= Ac à , ./V, and Arc:  where a is fixed and cr=
1, •-•, r are regarded as the contravariant and covariant components
of the same vector A .

On the other hand when we choose another set of symbols
f  instead of the set A a  f , being related by

A'ag (a ) = .A;,` (a ) ,
that is,

A:: (a) =6; ,C(a) ,

where c : are constants and the determinant Ic. is not zero, and
11 el, II is the inverse matrix of II c.„' II. The corresponding set of g ,  are
represented by

(2.3) ga', = cgc' Ar

Consequently ds" is not equal to d e  in general. Thus the metric
induced by the above method is useful when we do not change
the set of repères. However when the repère, considered an
orthogonal ennuples as mentioned above, is subjected to an orthogonal
transformation, then eg eg in (2.3) is equal to 8,,. In this case we
have ga ;=-go . Hereafter we denote by .5( ' ) the group-space in which
the metric is induced by the fundamental tensor (2.1), and call
it the group-space concerned with the repère Ra. Then we have :
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THEOREM: T h e  group-space S ( " )  concerned w ith the repère R a

is not dif f erent to  S"R' concerned with the repère R a '  which is ob-
tained from  R„ by an orthogonal transformation.

Furthermore, let ligr,b11 be a regular matrix where g„,, are the
coefficients of any positive definite quadratic form . When we assign
a metric to the group-space by using g c„ — g A : in  as the funda-
mental tensor, we can choose a set of symbols A,'f, A 2 f,•••, A r f
which are related by A "=  A ; ;  where cr,',  are suitable constants and
the determinant Id is not zero, so as to have

g r,,, = A ': .

Consequently, the metric induced by Ar,; as the fundamental
tensor is coincident with the metric concerned with the repère R a '
whose vectors are 11,1.

The Christoffel symbols of the second kind 
{
i8
a

r }  of the space
are calculated by

a
{P1- } = 1 g a ' agar': 3agaT: aga("6' } •

By (2.1) and (1 .2 ) w e have the relations

(2-4) ag  + g o , Lo ;: .aar

Using (2.4) the Christoffel symbols o f the first kind [pr , al are
expressed by

(3] _  1 3 g -36V T 6

2 \ aar aad  I

= - - (g, 6 L.r js +g r ,L )— (g , T L,),-FgrA L TD2

1= — +LTD + LTD +g
2

gÂ6 Pg= g„ F g o , f24,

I-Ience

a 6  g 'À f  2  6 ))'' g a 6  gTA
{iav 

= F g S d
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From (1 •5) we have

(2-5) 1
{73r } raT + caD .

If we put

(2.6) D,4= ic
i; r 1 —  P4- (= +

these quantities form a tensor in S ( R)  symmetric with respect to
aand r . We can verify these symbols 

{ i 9 r }
 satisfy the equations

P

3gc"
 ( À  -1 + g"{PÀ r} •ace 2

Of course it is verified that the Christoffel symbols satisfy the re-
lations

a'ac̀ _L. la 1  a d  ad'. (2
aan•aaili• 1197

.

1 (I")

when the parameters e  are replaced by d".

3. GEODESICS.

In a group-space S, the trajectory of one-parameter sub-group
with a symbol e A cg f ,  where (e', • • • , e') are constants and one of
them at least is not zero, is expressed by

dal =  A ( a )

where t  is a suitable parameter. This trajectory is always a path
in S ,  S "  and Sm  . However it is impossible in general that a
trajectory is a  geodesic in S .  It was proved by E. Cartan and
J. A . Schouten that, in order that the Riemannian geodesics for
any group coincide with the trajectory of one-parameter sub-groups,
ca = 0  for b=1, •••, r must hold ([1] p. 207, [4]). This result is
however a necessary condition. Let us now study the necessary and
sufficient conditions under which a  trajectory coincide with a
geodesic in S .  W hen the arc-length s along the curve (3.1) from
a certain point on it is used as a parameter in stead of t, the curve
is expressed by

(3.1)
dt
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dag — (s) .

dag As  are the components of the unit tangent vector, e ' (s)
ds

is equal to 1. Consequently 0 (s )  is constant. Denoting eg 0(s) by
e", we have the equations of the curve

dag — ea 41:(a)

where E (e") 2 = 1 . A  necessary and sufficient condition that the
curve (3 .2 )  is a  geodesic in Sy°, is that the relations

(3.3) &a' la da' dar ,   =0
de Pr ds d s

are to be satisfied by ( 3 .2 ) .  As

c12 a  e   ax; dar  _ e„ e,, _
ea eb

A;r, 
L t i f ;  ,ds2 aaT ds aar

replacing these results into (3-3), we have

(3.4)
[ Tf X iA ;f=0.

Furthermore, exchanging '9 and r, and a and b in the above equ-
ations and regarding that la

 } -  are symmetric with respect to ig
and r, we have also

(3 . 5) — en eb A,1 AT, =O.

Adding (3  4 ) and (3 .5 ) , we have from (1.4) and (2.5)

(3.6) ea eb A: AT, = 0 .

As (3 .4 ) and (3 .6 )  are equivalent, we have :
THEOREM: A  necessary and sufficient condition that the trajectory

o f  a  one-param eter sub-group w hich is generated by  a  unit-vector
eg A  w here eg are constants satisfy ing E (eg) 2 =1 coincides w ith a
geodesic is that the contracted tensor (e" it) (eb A T)D4 is zero.

Moreover, (3 .6 )  is deformed to

ds

(3.3)
ds
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ca ) it; M .; ea e A.j: AT= 0.
Consequently

(c e )  eb =0.

A s  À,̀ ,1 0, we have

(c,j, c) ee e' =0,

that is

(3.7)e '  c a =0.

Hence we have :
THEOREM: A  necessary an d  suf f icient condition that the

trajectory o f  a  one-parameter sub-group which is generated by a
symbol ea A a f  coincides with a geodesic is that ee e c (a=1, -••, r)
vanish.

Furthermore, when the rank of the matrix caI j where a  de-
notes the columns and b and d  the rows is s( <r), the system of
linear equations

ea ca = 0,

as e4 are considered as unknowns, has m (= r — s) sets of independent
solutions ( e li ,  •  •  •  ,  6 . ) ,  where 1=1, • • • , nt. Every e7 Aa f  generates an
exceptional sub-group. Hence we have :

THEOREM: W h e n  the rank of the matrix !I ca 11 where a  denotes
the columns and b and  d  the  rows is s, in  S there exist r —s inde-
pendent geodesics at least through every point which are the trajectories
generated by r—s independent exceptional one-parameter sub-groups.

If the original parameter-group 63,. has a set of nt exceptional
one-parameter sub-groups, they form an Abelian sub-group of mth
order. When the original group is an Abelian, the corresponding
group-space is euclidean because gaf t are constant. It will be shown
also after the time when we calculate the curvature tensor of Sv`)

in § 5. Accordingly the result of the above theorem is understood
on a point of this view.

It is more interesting to notice from the form o f  (3 .7 )  that
there may exists another geodeseic curve being a trajectory of a
one- parameter sub-group which is not exceptional. For an example,
let 0 , be a direct product of its two invariant sub-groups 03„, and
Or _,„ and let their symbol be A,t; •••, A,,f and A ,  f,-•-, A, f
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respectively. Furthermore in this case let 6„, be Abelian, then car,:
= 0  fo r  a, b=1, • • • , r  and d=1, • • • , m .  Consequently when we
choose as a set of constants  (e', • • • , e ) a set (cl, • • •, 0 , ••-, 0 ),
the equations eb c a g = 0  for a=1, • • • , r. Hence the trajectory of
the one-parameter sub-group which is generated by this symbol
ea A r, f  is a geodesic of S .

THEOREM: W h e n  the rank of the matrix lIca ;;II where e denotes
the columnes and a and b row s is P( <r), that is, when the order of
the derived group of the original group is p, in  S m  there exist r— p
independent geodesics at least through every  point which are the
trajectories generated by independ r— p one-parameter sub-groups.

EXAMPLE. Let us consider the group of motion in 2-dimentional
euclidean space

xn =xi cos a' — x' sin a' + al ,{

x" = xi sin a' - k x' cos a' + a' .

The parameter-group is given by

c4= al cos c4— (4 sin (4 +a

a;1 =al sin (4+ di cos (4 ± di

A.
and both of the matrices A2.̀  A )  and A : are determined as
follows :

1 0 a'
A I A l A l 0 1 —a'

.(V  Al 0 0 1

Consequently the constants of structure are

cl =c1F2=c1:1-=0 ; = 0 ; —1 ; ; c A = c 2:1=0.

As the rank of the matrix II ca a  where a denotes the columns is 3,
the group has no exceptional sub-group. On the other hand, as
the rank of the matrix I! c11 where e  denotes the columns is 2, we
can choose a set of constants (c, c', 0 ) as (e ', e ', e ')  where one of
c and c ' is not zero at least, so as to have the relations e"ec„g=0.
Consequently the trajectory of the one-parameter sub-group 6,
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generated by the symbol cA ,f+c' 24 2f  is a geodesic. This OS, is a
group of translations and a sub-group of the translation group 6,
in euclidean plane.

4. GEODESIC CURVATURES.
In general the trajectory of a one-parameter sub-group 6 , is

not a geodesic in S .  Let the symbol of 6 , be el A f  where e4

are constants satisfying E (el= =1, then the trajectory generated by
a

6St is given by the equations (3 •2 ) .  Let i f  and K ( 7 )  be the curvature
vector and the geodesic curvature of this curve. Then we have
from (3 .2 ), (2 .5 ), (1 .5 ) and (1.2)

K (0) —   d
d

s  (e" + 119a 74 e' 24.1;, • e°

(c,;;+ ea ) eh e° A:
2

= e be ec ,, A ,.

From the property of the curvature vector, do  must be perpendicular
to the tangent vector of the curve. It is verified as follows.

(e" An p' = A cr (e" An • eh e° A ; K

= e" e' e° cag /

= —

1  

e° • ea eb (Cag C )  / = 0
2

The square of the length of the vector K (,,) p" is given by

go (e" è  c“;', An (e' e°' cg: A2)

= (e' e° c ag) (e' e' ' c ) = eh e° e 'ef .
Accordingly we have :

THEOREM: A t  e v e r y  point in  S ' ,  the geod es ic cu rva tu re of
th e  tra je c to r y  th rou gh  th is  point w h ich  is  g en e ra ted  b y  the one-
param eter sub-group whose sym bol is e" A„ f is  constant.

Consequently, through in each one of the spaces S ( +), S ( - )  and
S "  the trajectory o f  a  one-parameter sub-group is always a
geodesic, in the space S (R) all the trajectories which are generated
by a same symbol are the curves with a constant geodesic curvature.

The geodesic properties in S ( R) mentioned in this section and
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the previous one are held when the orthogonal repère R„ is trans-
formed by any similar transformation. Hence we have :

THEOREM: W h e n  the repère R„ is transformed by any sim ilar
transformation, the geodesic properties in  the corresponding S'") is
not altered.

5. CURVATURE TENSORS.

Let 12,1.0  b e  the curvature tensor of the second kind of S .
As the Christoffel symbols ia  = r - + D  we have19r f t i T

_  a it:ar}
& jp1j 1OE a I ti

firs — da' da'
4 _

 O a ) (Œr) —  ii9crr) v,-a r)

a ( / '0 7 -F D 4 ) +(ro+D,)(P4+D.-7)
daT da

—(1 +D5-7)( roc: +f)0).
Hence we have

(5 • 1) R;:r d — ;fa + 4%- S /  M .,—  DA +A g D67-

where

' daTd a 6
ar4 3 1

'
4  

(5.2)
DcA.6 apcè  3 , 0,4 + N  Da 7 —

dar da6

Let LA-6 and L T a be the curvature tensors of the spaces ...5( +)  and
S ( - )  respectively. They are zero  tensors, a s  mentioned before,
hence

 dz!- "   +L,igLarl--1,4LA  =0 ,- dar ()a'

and

LAS a "  L 6 7   +.4:, L0 7 —44LA=o.
dar aa6

By these relations, (1 .6 ) and (1 .7 ) we have
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PÉTT . —  ( L I, — LA! LA) — I  ( -LfA — 4,7 LA) + 1'07 —  Pft72 2 •

1
-=—# 1.4 (L.7 —  L +  (L.% — LA)

— LA (LOT — L o!;) +  (LA — LA)
1

1.67,124+ 1.,;4

Hence we have

(5.3) rrr 94+91414%

On the other hand from (2-6)

b it' A '  a j i . ` ‘}_  1  (c. 0j+ hi- Ac:  a a s  A + A A  5  da aaa' 2 *76

1 — A: IV, A!„!
2

+  A:; LA+ À:, ;  LA

— + + L4DA

From these results and (5 .2 ) we have

M s= + Lft7- + L67 D11̀,̀ ,+ LA DA! — LA D 0 7.

—LT gD + p ft2D —  D  A .

Consequently

(5.4) M s -F (4 1 )4 —  Dosi +DA r  D  1,7 ran
fl0c!,Dri7—.Q01D,7,-F fd,; D0  — fd,g D c,7

+29 DA + D4 D G7 — D ,7 D 0 c,‘, .

From (5 .1), (5-3) and (5 •4), we have

(5.5) Mrs= ( — Q1,73-fdo7+ 9,7 -(4%) + (S2 0 6̀̀  D  — SdOID,°6)

+ (124-D0 — 475134-) +2f2 6 7DA 4- (D  D 0 ° — D D
As

4
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1 A: A: A7 c„,; c„;, a it', A  A  Ag
4 4

we have, using the Jacobi relations,

(5.6) —PA 12 g c.,‘ ff,c; À„̀ A.,e-  A l .

Using (2 .6 )  we have

(57) 9„W;;.— -(2.W375- 1  c,3 W +c,g) — G7, (c,'; + ; A: A.f; A-̀ ,' .7U
4

(5.8) S ? ,D o cA — 1 ch'e(ca + c„;',) — A,Œ, A: Af, ,
4

(5.9) 2967D
1
-
2  

c,,g(c„'; +ca 0 A A  4; ,

and

(5-10) D :15 D —  D o 7 D 0 =
1

= 1  {(c + ce
,

 (c +  c )
4

— (c + c ) (c+  c )}  A .`, A: .

Replacing the terms of the second members o f (5 .5 )  by the results
obtained from (5 .6 ) to (5 .10), we have

1:40 =
 I

 C'„„„ A;̀ , A: .21.
4

and consequently the curvature tensor of the first kind Ra n ,  is
given by

(5.11) 1?„„5= —

1
Afr

4

where

(5.12) + + + c,::(cafi+

+ cdg(ca+ cr.̀ )c )

+ (c.1; + (c:c + + (c, + c,,) (c .

From the type of 1?1- 05 and the fact that the constants of structure
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of any Abelian group are zero, it is evident that the group-space
for an Abelian group is euclidean. Conversely, if Sm is euclidean,
go  are constant everywhere, hence .,21-.„ constant. Consequently we
have :

THEOREM: T h e  group-space Sm is euclidean w hen and only
w hen the group is A belian.

It is verified that the quantities C 1 are skew-symmetric with
respect to the first pair of indices a and b and to the last pair c
and d, accordingly, as a mater of course, R o r ,  are skew-symmetric
with respect to  a  and g, and also y and a. It is convenient to
separate Ca ,„„, into three groups of sums, that is, the sum of
types, c.!ce :-types and ce :c„:-types as follows.

Sum of c.'.c.e.-types : .

Sum of c.:ce:-types : c,1 ce7,+ceîice";+ ch:; ceri+ c,j,e;!C .
(where the Jacobi relations have been used)

Sum of c,:c,:-types : c,3cè:,+c,'.;c';+c„ ,̀; G̀;

+c„L car; + + + .
When we put d =a  we have the next results.

/from the sum of c. e. c. ':-types : 3c„;,c„', .

(5.13) from the sum of c.".c6:-types :

from the sum of c,: G :-types : 2c„7,(c,;:+ GO ± ce,ç C„';

+ ce:', Gi
e
b  + G:: c„e; + c.,, Ge„ .

Denoting C „  by C„,, we have the Ricci tensor as follows.

RI ,= 1  Al4 A.e,C,,,
4 '

where C,„. are expressed by adding the results o f (5.13) as follows.

C„, =2 l c„;,c -l-c.::0,+c,,,lc:,' +cer,:c..g l +cc,,ee .
It is verified that the Ricci tensor is symmetric with respect to its
indices from the fact that C,„ is symmetric.

Furthermore the scalar curvature is obtained as follows.

(5.14) R=g - ftT R, T = —1  C,,,,
''''
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= —

1  

# +4G: +2c„g ce7, .
4

Accordingly we have :
THEOREM: T h e  sca la r cu rva tu re R  is  constant a t ev ery  point

in  S (R) and the v alue of  i t  i s  —
1

(c„gc,,g+ 4c,:ce;:±2c„;,c,7,).
4

When the group is integrable we can choose the symbols A, f,
• • • , A ,f so as to have the relations cj,=-0 for e> a  or b, consequently
cj,c = 0  (a, b, e=1, • • • , r). From (5.14)

1R
4

1=— E(c„0 2+ E (G ■ + •••+ ce ;:) .0 .
4  ..b ,e

Hence we have :
THEOREM: W hen  th e  grou p  is  n on -A b elia n  an d  integrable,

the repére can  b e ch osen  so  tha t the sca la r cu rva tu re is positive.
Let e a A,. and f a i l„  be different vectors at a same point al, and

let K  be Gaussian curvature of the surface generated by the geo-
desics which pass the point aœ and are tangent to the plane spaned
by the two vectors e' i t ,  and fa i f a . Then we have

—
1  

C„,,,,,e't
4 K -
8:; — 33 an ec

Consequently we have the next theorem.
THEOREM: I n  S'" ) T he Gaussian curvature which is determ ined

by two vectors ea :4 a  and  f  A. i s  constant.

6. EXAMPLE.

Let us consider the group of linear substitutions

x '= a x + b  (a> 0).

The parameter-group of this group is given by

fa" =a' a

lb" = a' b +b' ,
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and the matrices of the vectors of repère by

( A 7  4 ,2 ,) =
I A1 A!,
AT. A -1

= a 0
b 1

(6-1)

a
b— —a

where we used the parameters, a, b instead of a 1, a2 respectively.
As (A„ 24.2)f=— A J, the constants of structure are given by

(6 - 2) cti = —1, c.g = 1 ,  el', = 0, c2T = O.

As the space Sm o f this group is 2-dimensional, it can be
represented as a surface in 3-dimentional euclidean space.

The fundamental tensor of this surface is given by

   

1±b2  

a
1

a

  

!g,, g 1 2

g 2 1  g 2 2

          

and

    

1
g =_7 ;

a-
From (1 . 3)

= 0 , L21 — 0 ,1 2 = 0 ,a
1L4=0 , — I , L-4 =0 12 = 0 ,

a

and from (1-5)

{P,;= —1  , n=r21-0.,a

From (2 . 6) and (6 .2 ) w e have

1DA! = 1 1 Ag A;- Ag +  —
2

± 2V A;_
2

(6-3)
r1=o, ri:j=rg= -  1

2a
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it` (in +  A ) .
2

Consequently

(6.4)
D1=D21=b2 + 2a

1 ,  D21,1= —b .
a2 a 2a  

From (2-5), (6.3) and (6.4) we have the Christoffel symbols as
follows.

1+1,2i i 1 2 }  { 21 1 } = b , { 1  }
{ 11 1}  = —  a 2 2
{ 21  1 1 = _ b (1 al;b2)

 1 212} — { 22 1 } = 1 2  }2  2  =  b  •

From (5.11), (5-12) and (6.2) we have

1
R1212 AI C„b „

4

Al A; Cl2124

1
a2 .

Consequently the Gaussian curvature of this surface is given by

K—  R 1 2 '2 - - 1  .

It is verified another calculation as follows.

K _  1  la g agi 1   ag -22 .

2 V g g11 abV aa

2g  g g  a gb"  g  Igo /P 2 g  aaganV  a   )1
a f a —2b,\ +  a 2 b  2 b  2 b \ ) —  1 .

t aa 1  +b'
)

 a b  a a a

 D I=D 2;=b, D 2 12=  —a ,{
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Hence the Gaussian curvature of the surface is negative constant
and its value is  —1.

From Fig. 1 a t the end of the paper we can imagine that a
family of curves b=ma where m is a parameter is seemed to be
a family of geodesic on the surface. It will be verified as follows.

When we change the parameters, the metric is not altered.
Hence the intrinsic properties of the surface is not altered. Let
us take new parameters u, y which are given by the relations

(6.5)
fa=e",

(b=ce'v (c> 0).

The fundamental tensor with respect to these parameters is given
by

  

g i t

- -g 2 1  g 2 2

 

10 j 1
0 c2 e '

hence ds2 is expressed by

  

ds2 =du 2 -Pc2 edv 2 .

Furthermore we know that a surface with negative constant
Gaussian curvature is applicable to a one kind of pseudo-spheres.
Let this pseudo-sphere be given by

{ X =  I' cos O,
y=r sin O,

z=s0(r),

ds2 = [1+ ; 99' (r) 2] dr2 +
Putting

(6.7) 0= y
we have the relations

f
r=ce",

(6 . 8)
t (r)dr1 2 =(1—c2 e2")du 2 ,

(6.6)

then

hence
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so (r) = I Ç -V1 —c2 e2 ' dui .

Calculating this equation, we have

(6 . 9) io (r) = log 1 ± -V1 — C 2  e 2 ' — 'V  1 — C2 e"̀  .
ce

By the equations from (6 . 5) to (6- 9) , w e have

x=ca cos y ,.1 y=ca sin y,

z=log  1 + V 1 — " 2 — 1 — c a .
ca

The intersection of this rotational surface and zx-plane is given by

z=log  1 + V 1  — X 2   —

w hich is a t r a c tr ix . Accordingly the surface is applicable to  the
pseudo spherical surface of revolution of the parabolic type as
shown at Fig. 2. It is observed that a family of curves b=ma is
the one of geodesics and a family o f curves a = const. the one
orthogonal to it. This surface corresponds to  one of the separated
part of Sm with respect to  a certain modulus of the parameter b.

From  (6 .1 ), (6 .2 ) and (4 -2) the geodesic curvature of a family
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of the curves a =const. of which differential equations are 
ds

, is given by

IC (5) = A:= — A; .

Hence the length of the vector K ( o te  is unit and its sense of direc-
tion is opposite to A . F rom  the property of the tractrix (6.10),
the end point of this curvature vector —141*

1 at every point on the
surface is situated on z-axis. These vectors are represented by 71
in Fig. 2.

REFERENCES

[1] L. P. Eisenhart : Continuous groups of transformations : Princeton Univ. Press.
1933.

[2] N. Hone: The holonom y groups o f th e group-spaces : These memoirs, Vol,
28. pp. 163-168, 1953.

[3] N. Hone: O n  cyclic points of the group-spaces : These memoirs, Vol. 29. pp.
35-41, 1955.

[4] E . Cartan and J. A .  Schouten : On the geometry of the group-manifold of
simple and semi-simple group : Akad. van Wetens., Amsterdam, Proc.,
Vol. 29, pp. 803-815, 1926.


