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INTRODUCTION. When a group of transformations is semi-
simple, it is well known that we can treat the group-space as a
Riemannian space being defined the fundamental tensor g,, by
S0 A2 AL where g.=—clc.. It is impossible however to assign
a Riemannian metric to the group-space when the group considered
is not semi-simple because the rank of the matrix l|c2 ¢, || is less
than ». However, g.,.,=g.,A2A} in which g, are any constants
such that the determinat |g,| is not zero, may be used to assign
a Riemannian metric to the group-space ([1]* p. 206). In this
paper, we shall show that defining the funbamental tensor by
1 A2 Af we can treat the group-space of any transformation group
aas a Riemannian space under the transformations of the parameters.
That is, although for different sets of symbols A.f of the same
first parmeter-group there correspond different Riemannian spaces
in general, for different choices of the parameters there correspond
a same Riemannian space. Principally we shall study the properties
of these Riemannian spaces concerning with those of the original
first parameter-groups, and give an example as an application of
this theory.

We shall make use mainly of the notations of L. P. Eisenhart
in his work ‘ Continuous Group of Transformotions [1].”

1. PRELIMINARIES.
Let

xi=fi(x, a) (i=1, ---, n)

Numbers in brackets refer to the references at the end of the paper.
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be the equations of a continuous transformation group G, with =
independent variables x° and 7 essential parameters @*, and

1-1) af=¢"(a, ,a,) (=1, -, 7)

be the equations of the parameter-group of G,. That is, the groups
defined by (1-1) when @ and af are considered as the parameters
are called respectively the first and second parameter-groups of G,,
and we denote them by &f" and &f. Hereafter when we say

merely ‘ parameter-group ®,”, we mean “first parameter-group
(SIGRS

Let
s=5 () As ’ i=1, - n >’
% b, a=1, -, 7
3L = Ar@) @) b @, =1, . 7
and
%c:fl‘= #(a;) At (a) b, a, f=1, -, 7)

be the fundamental equations of G, G and G respectively,
where the determinant | 4| is not zero and the matrix |42 is the

inverse one of ||Ag, and Ag, A? are the ones of G corresponding
to A;, A: of & respectively. Hence we have the relations
Al A3=0P and A? A*=4". Of course A? and A* satisfy the similar
relations. When the parameters are changed A¢(a) and Al(a) are
transformed as components of a contravariant and a covariant
vector respectively.

Let S be the group-space of a parameter-group. There exist
three kinds of affine connections ([1]. p. 199) named (+)-connection,
(—)-connection and (0)-connection, and the spaces with these
connections have been denoted by S, S and S“ respectively
in the paper '[2]. The coefficients of the connections are given by

o _ pe OAL _ 40 OA7
=i = A

(1-2) .
e __ Aa aA‘! aAm
sy b aa Ag aa:ﬁ

and
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(1-3) Ii= (Lt L5
respectively. Since
lﬁa*r = L:u ,
we have also
(1-4) Ig= L+ L),

The curvature tensor of S and S“ are zero, hence both of them
are the spaces of affine connections without curvatures. The co-
efficients [,¢ are the symmetric parts of the coefficients L.
Furthermore let the skew-symmetric parts of L,; be £, then we
have

(1-5) !26:=§<L;,—L:ﬂ>=§c.,zAzA:;A:,

where c,; are the constants of structure of &%,

2. THE FUNDAMENTAL TENSOR.

In the papers [2] and [3] we have used a set of repéres

R, (a—/—f,--~ﬁ,) at every point in S, where /I,, are the vectors whose
components are A;, -, A;. A%a) and A2(a) are transformed
contravariantly and covariantly respectively when the parameters
are changed. Accordingly, if we define g,; by the relations

@-1) Bu=ALA (=3 Az4D),
then the quantity
ds’=g,da’da’

is'an invariant under any transformation of parameters. We shall
define this set of g,, as the fundamental tensor with respect to a
set of repéres R,. The geometrical meaning of this definition is
cleared as follows. By this definition, as

(2-2) 8 Al= A

* Throughout this paper, when the same index aprears twice in a term this
term stands for the sum of the terms cbtained by giving the index each of its values.
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we have
gaB A: A: :abc-

Hence A, of R, is a unit vector and any two different vectors are
orthogonal. Consequently every R, can be treated as a system of
orthogonal ennuples, and the metric induced here when it is re-
presented by “ composants relatives «;,” used by E. Cartan coincides
with the metric given by ds’=3](w,)’.

Since '

gaﬂA;"- g=3g

we can define A% A7 as the contravariant components of the funda-
mental tensor, that is

go =A% AL

From (2-2) and g** A7=A%, A% and A? where « is fixed and a=
1, ---, » are regarded as the contravariant and covariant components
of the same vector A.,. '

On the other hand when we choose another set of symbols

A.f instead of the set A.f, being related by

A (a) =ch Ai(a),
that is,

Al (a)=ct Ai(a),
where ¢} are constants and the determinant |c?| is not zero, and

&zl is the inverse matrix of [|c%]. The corresponding set of g, are
represented by

(2-3) Zas=0;ct A Aj.

Consequently ds” is not equal to ds’ in general. Thus the metric
induced by the above method is useful when we do not change
the set of repéres. However when the repére, considered an
orthogonal ennuples as mentioned above, is subjected to an orthogonal
transformation, then ¢f¢? in (2-3) is equal to d,,. In this case we
have g,;=g,. Hereafter we denote by S the group-space in which
the metric is induced by the fundamental tensor (2-1), and call
it the group-space concerned with the repére R,. Then we have:
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THEOREM : The group-space S™ concerned with the repere R,
is not different to S'® concerned with ithe repeve R, which is ot-
tained from R, by an orthogonal transformation.

Furthermore, let |lg..]l be a regular matrix where g, are the
coefficients of any positive definite quadratic form. When we assign
a metric to the group-space by using g,,=g. A:A} as the funda-
mental tensor, we can choose a set of symbols A/f, A.f, -, A)f
which are related by A¢=c" A2 where ¢, are suitable constants and
the determinant |c’| is not zero, so as to have

gah Au Ah A/a A/a
Consequently, the metric induced by g.,A: A; as the fundamental
tensor is coincident with the metric concerned with the repére R,/
whose vectors are Zi,,’.
The Christoffel symbols of the second kind {;7} of the space

are calculated by
@ :_1_ ad agﬂ& agrs _ agfw
{é} 2g{807+8a" aaﬂ}'

By (2-1) and (1-2) we have the relations

(2-4) %“ =g Lot +8ur Lot .
oa¥
Using (2:4) the Christoffel symbols of the first kind [fr, 6] are
expressed by

1 (og g ag,
W i 5 i3
[6r, )= (e + laaa)

§ (gm L«T + g5 La )+ (g)us LT; + g Lm) (gn L +Zea Lré) {

{@xs (Lyx+Ls) +8a (Lox— L) + 80 (Les— Lgd) |

l\J[r—A YN

=g ['s1 + 8 Yot +ga Y.

Hence

{ﬂ } =l3+g° gmgm +8%°gn ¥ ~~m .
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From (1-5) we have

(2:5) (=S eirad azasar.
If we put |
(2:6) _' ;,:={“;r}—l’;;(=%(caz+ca2)AzA§A¢),

these quantities form a tensor in S*® symmetric with respect to f
and y. We can verify these symbols {gz} satisfy the equations

0L, {1 } A }
3a" =& ay +ga,\{‘g7, .

Of course it is verified that the Christoffel symbols satisfy the re-
lations

’a* +{a} 0a® Oda’ Z{X }’ oa®
3a'*dg™ Br 3a™ da™ ) ag

when the parameters a* are replaced by a'*.

3. GEODESICS.

In a group-space S, the trajectory of one-parameter sub-group
with a symbol e¢* A.f, where (¢, ---, ¢) are constants and one of
them at least is-not zero, is expressed by

da® _ . 4s
3-1) ”&,T—e Ai(a)

where t is a suitable parameter. This trajectory is always a path
in S, S and S®. However it is impossible in general that a
trajectory is a geodesic in S®. It was proved by E. Cartan and
J. A. Schouten that, in order that the Riemannian geodesics for
any group coincide with the trajectory of one-parameter sub-groups,
cs=0 for b=1, ---,» must hold ([1] p. 207, [4]). This result is
however a necessary condition. Let us now study the necessary and
sufficient conditions under which a trajectory coincide with a
geodesic in S*».  When the arc-length s along the curve (3:1) from
a certain point on it is used as a parameter in stead of ¢, the curve
is expressed by
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—df=e"¢(s)AZ.

As %’a— are the components of the unit tangent vector, >1{e"¢(s) |*
s

is equal to 1. Consequently ¢ (s) is constant. Denoting e®¢’(s) by
¢*, we have the equations of the curve

(3-3) 4T _ e p2(a)
ds

where 3'(e")?’=1. A necessary and sufficient condition that the
curve (3-2) is a geodesic in S, is that the relations

d’a® a | dad® da*
3.3 aa aa aa
3-3) ds* +{ﬂr} ds ds
are to be satisfied by (3-2). As
A2

da* A da* , oA
=¢* 2 =" A] ——t=—e"e A A} L,
ds* da" ds " dar P

replacing these results into (3-3), we have
(3-4) [ {gr} —Lﬂ:] e ¢ A% A7 =0.

Furthermore, exchanging 8 and 7, and @ and b in the above equ-
ations and regarding that {Er} are symmetric with respect to 3
and 7, we have also

(3-5) [{gf}—m] e'e A® AT=0.
Adding (3 4) and (3:5), we have from (1.4) and (2-5)

(3-6) e'e’ AL A Dy3=0.

As (3-4) and (3-6) are equivalent, we have:
THEOREM : A necessary and sufficient condition that the trajectory
of a one-parameter sub-group which is generated by a wunit-vector

e /L where ¢ are constants satisfying > (e*)*=1 coincides with a

geodesic is that the contracted tensor (e"(:/l,‘i) (" A})D,% is zero.
Moreover, (3:6) is deformed to
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(Carmn+Caitr) At Ay AY -e"e” Al AT =0.
Consequently
(€t Caa)ee” A% =0.
As |A%]#0, we have
(Cart+Ca)ete"=0,
that is
3-7 €' ¢ cis=0.

Hence we have:

THEOREM: A mnecessary and sufficient condition that the
trajectory of a one-parameter sub-group which is generated by a
symbol e* A.J coincides with a geodesic is that e'e’c; (a=1, ---, 7)
vanish.

Furthermore, when the rank of the matrix ||c.i|| where a de-
notes the columns and b and d the rows is s(<7), the system of
linear equations

e ci=0,

as e" are considered as unknowns, has m(=7—s) sets of independent
solutions (e}, -, €;), where i=1, ---, m. Every e!A.f generates an
exceptional sub-group. Hence we have:

THEOREM : When the rank of the matrix |\c.)|l where a denotes
the columns and b and d the rows is s, in S there exist r—s inde-
pendent geodesics at least through every point which are the trajectories
generated by r—s independent exceptional one-parameter sub-groups.

If the original parameter-group &, has a set of m exceptional
one-parameter sub-groups, they form an Abelian sub-group of mth
order. When the original group is an Abelian, the corresponding
group-space is euclidean because g,; are constant. It will be shown
also after the time when we calculate the curvature tensor of SV
in §5. Accordingly the result of the above theorem is understood
on a point of this view.

It is more interesting to notice from the form of (3:7) that
there may exists another geodeseic curve being a trajectory of a
one- parameter sub-group which is not exceptional. For an example,
let @, be a direct product of its two invariant sub-groups &,, and
®,_,, and let their symbol be A,f, -+, A.f and A,..f, -, A.f
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respectively. Furthermore in this case let &,, be Abelian, then c,;

=0 for a,b=1, -, and d=1, ---, m. Consequently when we
choose as a set of constants (é, ---,¢) a set (¢, -, ¢" 0, -, 0),
the equations e’e‘c.=0 for a=1, ---, . Hence the trajectory of

the one-parameter sub-group which is generated by this symbol
e*A.f is a geodesic of S, _

THEOREM : When the rank of the matrix ||c.;| where e denotes
the columnes and a and b rows is p(<r), that is, when the order of
the derived group of the original group is p, in S there exist r—p
independent geodesics at least through every point which are the
trajectories generated by independ r—p one-parameter sub-groups.

ExampLE. Let us consider the group of motion in 2-dimentional
euclidean space ‘

{x" =x' cos a’*—4’sin & +d’,
x”=x'sin @’ +4* cos @’ +d’.
The parameter-group is given by

ai=al cos a;—a’ sin ai+a}

as=aj sin di+a; cos ai+ad

ai=ai+a ,

Ay
and both of the matrices (A} A% A% and (A.,) are determined as
follows : A

Al AL AL ‘1 0 @
A A3 A= 01—
ArAz A Jo o 1

Consequently the constants of structure are

011’:013261;:0; Cl_};=61§=0; Clgz'—l; c=1; cs=cs=0.

As the rank of the matrix ||¢,;/l where a denotes the columns is 3,
the group has no exceptional sub-group. On the other hand, as
the rank of the matrix |l¢c,;|| where e denotes the columns is 2, we
can choose a set of constants (¢, ¢/, 0) as (¢, ¢ ¢®) where one of
¢ and ¢’ is not zero at least, so as to have the relations e"e’c,;=0.
Consequently the trajectory of the one-parameter sub-group ©,
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generated by the symbol cA,f+c' A.f is a geodesic: This @, is a
group of translations and a sub-group of the translation group ®,
in euclidean plane.

4. GEODESIC CURVATURES.

In general the trajectory of a one-parameter sub-group ®, is
not a geodesic in S”. Let the symbol of &, be ¢*A.f where e°
are constants satisfying >1(e*)*=1, then the trajectory generated by
@, is given by the equatior;s (3:2). Let ¢ and K, be the curvature
vector and the geodesic curvature of this curve. Then we have
from (3-2), (2-5), (1-5) and (1-2) v

@ d T Aa @ b AB .o AT
Koe=2-( 4 +{g o ar-e a:

_ 1 1 e\ ph pt Ao

—E(Cuc—*_cnh)e e Al

=e"e°c,i A® .

From the property of the curvature vector, #* must be perpendicular
to the tangent vector of the curve. It is verified as follows.

(e A=A A3 (" A2) - e'c; AY /K,
=ed e /K,

:'—é‘ ec'eueh(calcn_i_chfl;)/K(!l) =0

The square of the length of the vector K, /* is given by
gu(e e i A7) (€ € cuir Ad)
=(e"e°cy) (e’ c.p) =e"ee’e’csc, .

Accordingly we have:

THEOREM : At every point in S'®, the geodesic curvature of
the trajectory through this point which is generated by the one-
parameter sub-group whose symbol is e* A.f is constant.

Consequently, through in each one of the spaces S, S and
S® the trajectory of a one-parameter sub-group is always a
geodesic, in the space S*® all the trajectories which are generated
by a same symbol are the curves with a constant geodesic curvature.

The geodesic properties in S*® mentioned in this section and



On the group-space of the continuous transformation group 33

the previous one are held when the orthogonal repéere R, is trans-
formed by any similar transformation. Hence we have:

THEOREM : When the repere R, is transformed by any similar
transformation, the geodesic properties in the corresponding S is
not altered.

5. CURVATURE TENSORS.

Let R%s be the curvature tensor of the second kind of S*”.
As the Christoffel symbols {/‘;T»}= W+ D, we have

S AT ITY

d P‘a Dﬂg a 1 D’! a
~ SUEEDD (C;*; D4 (I3 + D) (124D

— ('3 4+ D) (I's3+D.3).

Hence we have

(5'1) Rmo—] 8716 +Dﬁr5+]‘a “ Iﬁb o‘;+D;tg ra?‘Dng‘ 10‘;

where
1'5’?1'5: adl;:s_alﬁr +1"‘tg['a 1‘3? ‘a(;)
(5-2)
« _ 0D 9D,
816 — ‘dD;o 2” +Dﬁo DoT DBT

Let L3, and L%, be the curvature tensors of the spaces S and
S respectively. They are zero tensors, as mentioned before
hence

’

« . OLg oL
676:'0—;:‘“‘ 5 ? +Ln La‘r LarLoa—-

and

Ag 8= aL‘Rg
=
oa’

- a,LBT +Lm Lo: LBT Lm; =

By these relations, (1-6) and (1-7) we have
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M= = (LaLi—LaLd) =L (LE L= LA LD + T = [ 1
=%3 — L2 (Lot — L) + L3(Log— Lo%)

— L3 (Lo —Ls3) + Lt (Lo —La3) |
=L L0+ L 0 - La2a+ L e,
Hence we have
(5-3) Igs=—78254+939:%.
On the other hand from (2-6)
o

DAL 40 pe pc DAL
o A A4 da;}

0Dq; 0A% A gvy pa
84? = P A AL+ A

%(cch,.ﬁ {

=L (cit+e) | - ATAGALLS
+ALAS AT LS+ AT A A LG
=—L3Dyi+L5Doi+ L3 DS
From these results and (5-2) we have
Dgrs=— LoDy + Lyt Do + Ls7 Dy 4 Lo§ Dy — Ls3 Do
—L.3Dy3+Dys Doy — Dy Dsi .
Consequently
(5-4) Divs+ (153 Doy — I3 Do + Dy Lot — D3 05)
=83 Dy — 203 Dys + 243 Dos — 35 Doy
42463 Dy + Dy Dot — Dy3 Do .
From (5-1), (5-3) and (5-4), we have
(5-5) Rirs= (— Y393+ 23 90%) + (L5 Do — Yo Di)

+ (-‘(Jpg n?S—'Qﬂl;Dﬂ:) +2.Q§$D‘,‘§+ (D[;KD(,:—‘D,,{;D,,%) .
As
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05 0= i AT AL A cuis AT AY A= cicil AT ATAY AL,
we have, using the Jacobi relations,
(656)  —La0st050i=Tclici AT ALAL AL,
Using (2-6) we have

(5:7) £3Dyg— ’JoADw—%ac”(aHCJ —ca(e,+en) § AR AL AL A,

(5 : 8) !JR:DO% - 'Qﬂg Da?r :%‘ ; I'Z(Cus +cu,:l7) - Cb:rl(ca: +cn2) % A: A.!; A; Ag )
(5-9) 20,7 ﬂ:=% cilcited) ASAL AT AL,

and
(5'10) D(thor DBT 06—— {(cn’;'*'c;l{) ((‘a:'+cuﬁ)

—(ch+es) (cstea) AS AL AT AS .

Replacing the terms of the second members of (5:5) by the results
obtained from (5-6) to (5-10), we have

1 :
BaTﬁ - Caln:d A;.l A”i‘ A"r Alb{

and consequently the curvature tensor of the first kind R,us i
given by

(5-11) Ra;,,.;:% Conea A2 Al AL AL
where
(5:12)  Caw=cscqtcalchtcd) +ci(ci+ca) +cn(CasCa
+ Car (Cai - Cag) +2¢4(C+Cut)
+ (CotFCi) (CagA€al) + (CreA60i) (CatCac) .

From the type of RS and the fact that the constants of structure
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of any Abelian group are zero, it is evident that the group-space
for an Abelian group is euclidean. Conversely, if S is euclidean,

g.s are constant everywhere, hence /fa constant. Consequently we
have :

THEOREM : The group-space S is euclidean when and only
when the group is Abelian.

It is verified that the quantities C,., are skew-symmetric with
respect to the first pair of indices @ and & and to the last pair ¢
and d, accordingly, as a mater of course, R, are skew-symmetric
with respect to a and f, and also y and 4. It is convenient to
separate C,,, into three groups of sums, that is, the sum of c.fc.¢-
types, c.°c..-types and c..c,-types as follows.

Sum of c.2¢c.tyPes: € CaitCuf Cat +2C45 Ca -

Sum of c.2¢types: CuCatCoiCotCriCui+CaCll .
(where the Jacobi relations have been used)

Sum of c..c.types: ciCatcCicCitCiCatcCacs

+ Cott Cap €t Cae+Cir Car - Cre Ca
When we put d=a we have the next results.

from the sum of c.Cc..-types: 3c4Ca: .
“(5-13) {from the sum of c.ic.types: 2c¢.cCh—+CoiCon+CriCes -
from the sum of ¢ ¢ -types: 2ci(ch+cs) +cocs
+CraCar - Cott Cat +Coi ey -
Denoting C,.. by C,., we have the Ricci tensor as follows.
RM:% A} A:C,
where C,. are expressed by adding the results of (5:13) as follows.
G =28 Copy Cut 4 Cat Cit A Cor Cot F Co €t § HCotiC

It is verified that the Ricci tensor is symmetric with respect to its
indices from the fact that C,. is symmetric.
Furthermore the scalar curvature is obtained as follows.

(514) R=g’”RM=% b
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=%%cazcaf.+4cczcc’b'+2ca;c£% .

Accordingly we have:
THEOREM : The scalar curvature R is constant at every point

in S® and the value of it is %(caf,c,.;2+4cc;‘c£+20a;c;;).
When the group is integrable we can choose the symbols A, f,

.+, A.f so as to have the relations c,;=0 for e>a or b, consequently
chc2=0 (a, b, e=1, ---, 7). From (5-14)

R=7}‘—;cazcn;+4ce:c;:%

=%2b(c,lﬁ>f+z(ca:+-~-+c;>20.

Hence we have:
THEOREM : When the group is non-Abelian and integrable,
the repére can be chosen so that the scalar curvature is positive.
Let ¢*A, and f“ff,, be different vectors at a same point ¢®, and
let K be Gaussian curvature of the surface generated by the geo-
desics which pass the point ¢* and are tangent to the plane spaned

by the two vectors e” /f,, and f“fi:,. Then we have

- Cui' S [

G- mmerert

Consequently we have the next theorem.
THEOREM : In S The Gaussian curvature which is determined

by two vectors e A, and A A, is constant.
6. EXAMPLE.
Let us consider the group of linear substitutions
¥=ax+b (a>0).

The parameter-group of this group is given by

a'=da,
{b”=a’b+b’,
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and the matrices of the vectors of repére by

o gy | Al ALl _la 0
AL AN = | —i
( ) IIA% HI

(6-1)

A,

1
(A; ”Ai A.'..“ 2z 0
) A A3

where we used the parameters, a, b instead of @', @® respectively.
As (A, A.)f=—A.f, the constants of structure are given by

(6-2) ai=—1, ci=1, ci=0, ci=0.

As the space S of this group is 2-dimensional, it can be
represented as a surface in 3-dimentional euclidean space.
The fundamental tensor of this surface is given by

1+ _ b
‘!gn gm — 612 a
|8 & _b 4
a
and
g=1.
pe
From (1:3)
(L1:=—l, Li=0,  Li=0,  Li=0,
a
1Lﬁ~o, Li=—LY, 13=0, Li=0,
a
and from (1-5)
ri=-1, I'i=ri=0, =0,
6-3) ¢ 1 ,
ri=o0, [i=ri=—— I'i=0.
2a

From (2-6) and (6-2) we have

D,,‘;=%% AT AR AI— A3 A2 A% +%§A§‘A§A,’+A;’A,‘,Ai§
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=—A;’A§A$+% A3 (A A+ ALAD.

Consequently
N P 1
Du‘——;, Dy=Dy=b, Dp=-a,
(6-4) 3
pi=-Y-b  pi-pi=Pi L. Di=—s.
a’ a’ 2a

From (2-5), (6-3) and (6-4) we have the Christoffel symbols as

follows.
{}1}:'%1)2’ {}2} {;1}21” {;2}:_"’
{31}:% {;2}:—1;.

{2 }:_b(l-i-b"’)’ {2 }
From (5-11), (5-12) and (6-2) we have

i

11 a’ 12

R,mz% A7 AL A5 A Cog

:% Al A2A! A:Cny

Consequently the Gaussian curvature of this surface is given by

K=Buee 1
g

It is verified another calculation as follows.

1 0 ., 0 1 o ’
K= N N gl._ g _ oo
2\/g { gn‘/g ob \/g ad )

( 2 0gn _ og, _ & 98 )}
8b Vg oa Vg b g&Vg da

=5 ()t (=0 )h=-
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Hence the Gaussian curvature of the surface is negative constant
and its value is —1.

From Fig. 1 at the end of the paper we can imagine that a
family of curves b=ma where m is a parameter is seemed to be
a family of geodesic on the surface. It will be verified as follows.

When we change the parameters, the metric is not altered.
Hence the intrinsic properties of the surface is not altered. Let
us take new parameters #, v which are given by the relations

a=e",
(6-5) {
b=ce*v (c>0).

The fundamental tensor with respect to these parameters is given
by

gm

”g-aBH =

211 |’

i

hence ds® is expressed by
ds*=du*+cemdv’ .

Furthermore we know that a surface with negative constant
Gaussian curvature is applicable to a one kind of pseudo-spheres.
Let this pseudo-sphere be given by

x=rcost,
(6-6) y=rsinf,
2=¢(7),
then
ds*=[1+1{¢' () {*] dr’+r'diF.
Putting )
67 H=v
we have the relations
r=ce",
(6-8) { _
¢ (n)dr}:=(1—ce*)an’,

hence
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e(r)=|{vV1-ce*du|.

Calculating this equation, we have

6-9) o (r) =log Lt“_/.ge;ﬁ'e‘l— vIZéen.

By the equations from (6-5) to (6-9), we have
X=ca cosv ,
y=casinv,

z=log 1+Vi-c@ _ vi—gg.
ca

The intersection of this rotational surface and zx-plane is given by

z=log 1+ V1=% _ w15
X

which is a tractrix. Accordingly the surface is applicable to the
pseudo spherical surface of revolution of the parabolic type as
shown at Fig. 2. It is observed that a family of curves b=ma is
the one of geodesics and a family of curves a=const. the one
orthogonal to it. This surface corresponds to one of the separated
part of S with respect to a certain modulus of the parameter b.

e

From (6-1), (6-2) and (4-2) the geodesic curvature of a family
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of the curves a=const. of which differential equations are da” _
s

[+ 2

3, is given by
K p2=0305¢c, Ai=— At .

Hence the length of the vector K,/ is unit and its sense of direc-
tion is opposite to A%. From the property of the tractrix (6-10),

the end point of this curvature vector —ff, at every point on the

surface is situated on z-axis. These vectors are represented by 7
in Fig. 2.
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