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Introduction.

The theory of Abelian differentials of the first kind on abstract
open Riemann surfaces was first developped in 1940 by R. Nevan-
linna [13). This theory was established for parabolic Riemann
surfaces by considering the complete orthogonal system of such
differentials, and was completed by Virtanen[23] in 1950 for
general Riemann surfaces. On the other hand, in view of period
relations Ahlfors [1], Virtanen [22] treated this theory for parabolic
Riemann surfaces, where Riemann’s bilinear relation plays a funda-
mental role. For the case of hyperelliptic surfaces of infinite
genus this relation was investigated in detail by Hornich [6], P. J.
Myrberg [12] and recently Pfluger [17].

In the present paper also the problem on the periods of Abelian
integrals on an abstract open Riemann surface will be treated.”
Ahlfors[1] proved the existence of an exhaustion and corresponding
canonical homology basis of ReO, (class of parabolic Riemann
surfaces) such that for any two harmonic differentials du,, du,
with finite Dirichlet integrals the mixed Dirichlet integral D,(u,,
u,) is equal to

En o0 L .
D (o, ) =lim 3 (j dﬁ,jdug*— jdu._,* jd&,) ,

n»o f=1
A; B; A; n;

where du, and du,* are the modified quantities of du, resp. du,*
(conjugate harmonic differential of du,) which depend on the ex-
haustion.

To obtain the corresponding formula which is expressed by

1) The principal results in this paper have been announced and partly proved
in my notes [8], [9].
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the periods of du, and du,* 1 have to impose further some condi-
tions, that is, for certain restricted class O’ of O, Riemann’s first
and second (bilinear) relations with an infinite number of their
periods will be obtained (§2, 3).

In connexion with O’ we shall consider another subclass O
of O’. These classes are defined by the extremal length. In §1
we shall study their properties, above all, those concern with the
problem of limit (at ideal boundary) of bounded harmonic func-
tions.

Finally I shall extend Riemann’s second relation to the ultimate
form when du, (or du,*) has only a finite number of non vanish-
ing periods, that is, it will be established for Riemann surfaces R
of class Oyp (on which no harmonic function with finite Dirichlet
integral exists). On the other hand, it will be also obtained when
du, and du,* have only a finite number of non vanishing A-
periods, if we impose some conditions on the structure of ReO,,,.

(§ 3).

§1. Two classes of Riemann suarfaces.

1. Extremal length——To define the subclasses of class O,
we shall start with preliminaries on the extremal length on
Riemann surfaces (cf. Ahlfors, Beurling [3], Hersch [5], Ohtsuka
[16]). Now let R be an arbitrary Riemann surface and G be a
domain on R. We consider a system of curves jc{=¢ (¢: empty
set) on G each curve of which consists of a finite or a countable
number of curves on G. Let (P) be the set of non-negative
covariants p defined on G, i.e. p(z)|dz| is non-negative invariant
metric under the transformations of local parameter z at p, such
that

L(p, 3c&)=ir(1f} r(2)ldz|

(1. 1) — _
Ap)= }w“’dxdy, z=%x+1y

are not simultaneously 0 or «.” Then the extremal length with

2) S is the lower integral, H is the upper integral in Darboux’s sense.
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respect to )¢t is defined by
_ Lp,te)’ >
(1. 2) 2(,)2c§—Ps(L(1113 AA(p) = 0.

We take A, ici=0 if (P) is empty.
Next we consider another class (@) of non-negative covariants p
such that, for any curve ce€!ci,

(1. 3) Lo(z)ldzlg 1.

Then another simple definition of the extremal length is

(1. 4) =inf A(p).

Agpict @

We say that p is admissible for jct when (1. 3) is satisfied. If
there is no admissible covariant, i.e. (@) =9, 4.,}ct{=0.
PROPOSITION 1.——

(1. 5) Ayiet =g ict.

In the following therefore we denote this common value by 4ici.

Proof. First we suppose (P) 4.

(I) The case where L(p, c{) <co for all pe(P).

(i) When there exists at least one pe (P) such that 0< L(p, }ct)
< oo, we choose a constant k2 such that L(Y/, ic}) =1, ¢/ =kpe(Q).
Then it follows easily '

(1. 6) 0= 4pnici=sup 1/A() =< Ay ic.
oL

Now in general (@) =P, uP,u P, where P,='p; 1< L{p, ict) <oof,
P,=1p,; L(p, ct) =00, A(n) <ot and P,=1py; L(p,, tct) =A(ps)
=owf{, P,c(P),P,c(P), but since P.=¢ in the present case, we
have conversely

; L@p; ct)? _ 1
LD dmieizap WU 2 4= A

(i) If L(p, tct)=0 for all pe(P), then (Q)=¢ or for any
0e(Q) L(p)=A(p)=0c0, hence A, ici =2, ci=0 by definition.

(II) The case where there exists at least one g,e (P) for which
L(‘“o, 3(:%) =00,

Then A(n) <o and 4y,!c{=co. Since the covariants p,=p,/z
(n=1, 2, ....) are admissible for (Q),

=2((_))%C§.
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0< dyict'=inf A(p) < 11m A(p,) /n*=

pe(w)
Therefore Apmict=Ag ct=0c0

Now if (P)=¢, then /,,ici=0 and for any non-negative
covariant p L(p, ict)and A(e¢) are simultaneously zero or co.
Hence it is proved that 4 ici=4ylci=0, q.e.d.

We shall use the following properties of the extremal length.

PROPOSITION 2.——(@) If {¢t Cict, then 2ict = et

(i) AlaiulaiiT S Aol e

(i) IffcicG,cG, {eicG,cG and G, nNG,=¢, then
Miciuieti =i+t

(iv) If every curve ceicy contains at least one c,€ic,{ and one

‘c,€i¢,t where $¢,{ CG,CG, ¢t cG,CcG and G,NG,=9, then
Het+iet < iley.

2. In the following we take G=R without loss of generality.
Let B be a union of a finite number of disjoint ring domains B,
on R each of which has boundaries a; and §8; which consist of a
finite number of disjoint analytic Jordan closed curves respectively.
Let ic{ be the set of closed curves ¢ on B such that ¢=3c, ¢ is
homologous to «,, ie. ¢,~a,~f. Now let ic*{ be a subset of fet
which consist of analytic Jordan closed curves. Suppose {¢{ and
{c*{ denote the corresponding sets for the union of curves in B,
which connect «; to 8. By Prop. 2 (i) Afct < Aic*y, ¢y S A5c*y,
but we have

PROPOSITION 3.——

(1. 8) Aei=4c* =D p(w)=- 1—: 1

BTy AcHy

where D, (w) stands for the Dirichlet integral over B of the harmonic
measure v (in B) with resp. to f,i.e. w=w, in B, w, is harmonic
measure of B; with resp. to B.

Proof. Let L, be the level curve w=1, 0 <1< 1 except a
finite number of /4 for which L, contain the points where grad
w=0. Obviously L,eicx{C!c{. Suppose p is admissible for jc*{.
Since ¢=w+iw* is considered as a uniformizer at B with a ﬁnlte
number of suitable slits /': w*=const.,
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1< por, 0<i<1.
J L

Since jdw*: ‘dw*:D,,(w), by using Schwarz’s inequality and
R A

La
integrating we have

1< D, (w) ” Fdodo*.

Therefore

(1.9) Du(w)" < inf ” (fdwdo* < inf A(p) =21t~ < Aci.
P P

On the other hand,

~ D3 (w df/de , B/’ B=B-1TI
(1. 10) {’(P(C))={ () |d/dt], p() €

0, p(©) eR—-B
is admissible for {c{>{c*{. Hence we have conversely
(1. 11) Mexi" SAei ' KA =Da(0) ™,

We can prove analogously that D, (w)=2ic/ —1;2§c~*;".

3. In the following we say that K is a cuompact domain with
analytic boundaries when K is a compact domain and its boundary
3K consists of a finite number of disjoint analytic Jordan closed
curves. Now we consider the system of curves {C{cR—R, (R,
is the image of a parameter disc), such that Ce {C{ consists of a
finite number of disjoint analytic Jordan closed curves which is
homologous to 0R,, i.e. C~9R,. Let {I'} be a system of analytic
curves in R—R, each of which extends from 9R, to the ideal
boundary § of R. This means as follows. The ideal boundary
 of R is the set of ideal boundary elements « which is defined
as follows (Stoilow [21]) : Let {£,} be a sequence of domains on
R such that

(1) The relative boundary C, of ¥, consists of an analytic

Jordan closed curve on R.

(2) £,282,0--28,0-, 2,xR?

(3) NQ,=9.

n=1
Then we say £, defines an ideal boundary element «. We find
that ¥, are non-compact by (3) and C, divides R into two disjoint

3) The barred letter stands for the closure of set.
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parts £, and R—£2, (we shall frequently write such a curve or
cycle as ~0 (mod ) i.e. when it is the boundary of an infinite
2-dimensional chain). Two such sequences {£,t{ and {2,’{ are call-
ed equivalent each other if for given ¢, j there exist k, [ such that

Q/589,, 259

We understand that two equivalent sequences determine the same
boundary element. Next we say that a sequence of points {P,t
or curves i7,{ on R tend to a (or §) resp. to & according as all
P, or r, except a finite number of points or curves belong to every
2, (or R—R,) resp. to R—PR, and that a curve I’ extends to &
‘if there exists a sequence of points {P,t on I’ tending to .

ProrosITION 4 (Ohtsuka [16]) R is of parabolic type (Nul-
lrand) if and only if

ACi=limAC*=1/2{"{=lim1/A{ "™}

o n-»om

is equal to zero, where (C"; is the subset of {C| lying inside of
G,=R,—R,, here {R,} is the usual exhaustion of R, and {I'"}{ is
the set of analytic curves in G, connecting R, 1o OR,.

Proof. Since {C"{c{C**'ic{C!, by Prop. 2 (i), 3 we have

(1. 12) lim2;C*{ =limd,=d=>4C{ =0

n»co n-»o

where d,=Dg (w,) and o, is the harmonic measure of G,. Hence
if d=0, d=41C{=0. 1If d>0, since o, converge uniformly to a
non-constant harmonic function » on every compact set in R—R,,
hence we have for any Ce{C}

‘dm*zlimgd«un*:‘limdn:d.

c

n-»o n-»o
hed

Therefore the covariant

d-'\de/de|, p() eR—R—1I', L=ow+io*

0, pO)eR+T

where I" denotes a countable number of suitable slits *=const.

through the points where £'=0, is admissible with respect to }C}
and

ii(p(o)={

HCITS ”ﬁgdxdyzd—‘-’ ”d"’dﬂ)*gd—z .
R

.
R—-Ro
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therefore together with (1.12) we obtain
(1. 13) d=4C}=limi{C";.

n»o

We can also prove easily that A{I"{=d"'. On the other hand,
according to R. Nevanlinna’s theorem [13], R is of parabolic type
if and only if d=0, q.e.d.

4. Now we shall consider a subset {7{ of {C{ which contains
an infinite number of curves € {C{ tending to . Let {7*{ be the
complementary set of {r{ with respect to {C{. Since

MC{T ST A
OSHCI=4irt, 0SACi<Air*y,
we have

PROPOSITION 5.——R is of parabolic type if and only if at least
Mre=0 or Aiy*{=0 holds.

PROPOSITION 6.——Let K D R, be a compact domain with analylic
boundaries. Let {7xt=1rx;rx€iri, TN K=0{" and i1%} be the com-
Dlementary set of {rxi with rvespect to {r{. In order that i)y{=0
it is mnecessary and sufficient that Ayt =0.

Proof. Since 0= 1{y{ <127k, it is sufficient. Therefore it is
enough to prove 2A{r%{>0, since Ajy{~' <Ay ' +4ir%i". Let K|
be a compact domain with analytic boundaries containing K com-
pletely and K,—R,=K,*. Let w(p) be the harmonic measure of
K,*. Put *

1. 14) 0<maxo(p) =m<1, fdw*=d>0.
R0

The covariant .
d'|d?/d¢|, d=1/min(d, 2(1—-m)), p(C) eK*—1I"
0, p(OeR—K*+TI"

where Y=w+iw* and I" denotes slits (cf. (1.10)), is admissible
for {7%{ because

Z<p<c>>={

N {=d'{|d.@|gd'| fd(u*|=d'dg1, if rEC K.
jpldz|:d’ S ae| -

< T*;( T§
—r LN K )
> [ ldo|>d'2(1—m) >1, if 1t K*.
T’f(ﬂi(o*

4) In the following we shall use also such a notation.
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Therefore we have

Ak < W}zxdy=d"-'d<oo . qed.
R
PROPOSITION 7.——Suppose that ¢, and ¢. are any two non-
negative covarianis sequare integrable over R—K (K is a compact
domain with analytic boundaries). If +{r;=0, then there exists a
sequence of curves r,€iri (.0 K=¢) tending to the ideal boundary
I of R such that

| wldel | gldel—0 for noco.

- Tn iy £

Proof. Now we assume that for any yxe€{yx!

(. 15) | elazl | ildel =7>0.
" "

Since ¢, and ¢,=>0, we have g oldz| = V;y—orJ ¢,|dz2| = ~7. Let
TA'

: TI\'

%rK”§=§rK”;j gldz| 2> V7, rd €irxl § (=1, 2), theniyxf =i74'f U irAS,
TL

— K
hence Ay 'S Uyt~ +4784" Since 27, =0 (Prop. 6), it follows
that 2{7x't=0 or Ai7,°t=0, e.g. ir4't=0. Then the covariant ¢=
¢./vy for peR—K and =0 for peK is admissible for {74} and

uy i~ < || grawdy=1/1 ([ g drdy< o
rn R—-K

which is absurd. That is, for any given 7>0 there exists a curve
7x€i7xt such that the inverse inequality of (1. 15) holds. Therefore
we can prove this proi)osition at once, q.ed.

COROLLARY——If R€O; and df is an Abelian differential on
R with finite Dirichlet integral taken over R— K. Then for any cycle
C~0 (mod &), CcR—K

fdf:O.
¢
Proof. Since ReO,, iiC{=0 (Prop. 4), hence by Prop. 7
t|here exists a sequence of curves C,¢{C{ tending to & such that
j|df|——>0 (n— ). Since C is homologous to a cycle C,/ on C,
Cn
with bounded (X K) coefficients and df has no pole on R—K
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[ari=1[ar1<K[1an-0, qed
C C’, Cn

5. Now we shall consider two subsets { '}, {L}; of {C}.

(I) {r'y: {ry is the set of I'e {C{ such that in the decom-
position of /" into components, i.e. I'=3>11", I'nI";)=¢ (i#j), each
curve ['; divides R into two disjoint pa{rts.

(II)  §{L{x: This is the system of curves of {/"{ depending on
an exhaustion E={R,} such that L,=0R,e{['{. That is, {L{,=

u1§L,,§ where {L,! is the set of curves of {/'{ contained in annuli
fncluding LJ>

First of all we note {I'}{ and {L}{; contain an infinite number
of curves tending to & (cf. Sario [18], p. 466).

DEFINITION——We shall denote by O or O’ the classes of
Riemann surfaces for which 2{I'{=0 resp. A L{,=0 for certain
exhaustion E.

Since {Liycil’ic{C{ and 2{C}{=0 is equivalent to ReO,
we have O"c O'c O,. In the following of this paragraph we study
on the properties of classes O’ and O”.

6. The single-valued harmonic function outside of a compact
set.——Let K be a compact domain on ReO, with analytic
boundaries and # be a single-valued harmonic function defined on
R—K,” and bounded to one side (e.g. bounded or positive harmonic
function). Then it holds for instance the following properties.

PROPOSITION 8.——(a) If u is bounded, then the maximum and
minimum principle hold.

@) Maximum principle also holds even if lim n}ia;ex u(p) /M

’ —>o00 PEOI,
=0. That is, if u is unbounded, then mgx Tu(p)plg‘/,/1§1"‘§(77> 0)
(Kusunoki [7]). pe ot

(b) u is bounded if and only if u has a finite Dirichlet inte-

gral. Moreover then gdu*ZO (R. Nevanlinna [13], [14]).

)¢

(b') u is bounded if and only if ‘.du*=0.

oK

5) By annulus including /e {I"'} we mean the union of doubly connected ring
domains each of which includes a component of /.

6) This is not necessarily connected, but we mean hereby R—K a component
of it.
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Here we prove only the sufficient condition of (b'). We
assume e.g. u>—M. Let v, be a harmonic function such that
v,=u on 0K and =—M on 9R,. Then a suitable subsequence,
say {v,} tend to a bounded harmonic function » which is equal
to » on dK. Suppose # is unbounded, then U=u—v=lim(z—v,) =0

n-» 0

is non-constant and =0 on dK. Since de*=0 by (b), we have
)¢

(dU*zj(aU/au)ds=0. It follows U*=const. on 0K, because

?)KU/Buza(S( on 3K. Now since the curve 9K is analytic, the function
U+:U* is also analytic on 3K by the principle of reflection, there-
fore U==const. =0 which is absurd, g.e.d.

Now the problem of limits (at ideal boundary) of bounded
harmonic function is more complicated. Let f be a real or complex
valued continuous function defined on R—K and S,” be the set of
limit values at a€(y, ie. S;/={7; imf(p,) =8, p.—a}, then for

n-»
any two equivalent sequences {2, and {£,’{ determining «

»

(1. 16) S/=nf@)=nfE@n.

This is a closed set. Now if f is a bounded analytic function, it
has always the limit, i.e. for any «€¢Q, S,/ consists of a single
point. (Heins [4], A. Mori [10]). But in case of a bounded
harmonic function there exists an example of Riemann surface
€0, of infinite genus for which it does not have a limit (Heins
[4]). For this problem we have the following

THEOREM 1.——Suppose Re¢O' and u(p) be a single-valued
bounded harmonic function on R—K. Then u(p) has always a
limit when p tends to any ideal boundary element «.

Proof. Since ReO c Og, by Prop. 8 (b) « has a finite Dirichlet
integral over R—K. Therefore by Prop. 7 there exists a sequence
of curves I',e{l'{, n=1, 2, -~ tending to & such that

1. 17) [1w'1|dz|= [|dw|—>o for n— oo
}1'" }17’

where w=u+iu* in R—K, =0 unless # is defined. Now let {£,t
be a determining sequence of a. Since I, ~9K tends to I, there
exists a number m, such that 2, (=£,) U, * ¢, then there exists
also a number #, such that I’ n&£,,=¢, since £,—-F. Now let
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I''~0 (mod &) be a component of /%, which divides C,, from
C.. We write by £/ the non-compact domain which is bounded
by the relative boundary 7% and contains the domain #., By
the same way we determine the £, such that £,,0%/>%,. And
so on. Thus we have a sequence of domains {£,/{ which is
equivalent to {£,{. Because for given i, j there exist p, q such

that €,594,29,, Q/582n,, =%, Therefore by (1.16) S;'=n

n=!

u(£,)). Now by Prop. 8 (a) u(p) attains to sup u(p) and

CR—K

inf #(p) at the relative boundary K. If S,“ contams two different

pe R—K
values ¢ and b, then a, beu(¥,’) for all » and

|a—b| < max u(p) —min u(p)
pe L, pe L,

where LnEI“"';: denotes the relative boundary of £,/. Since L,~0
(mod &) and consists of a single component, it follows

max % (p) —min u(;b)_—<:§|du|§ { |dw! ,
pelL, pelL, I l;

hence 0<|a—b| = S |dw| for all », which contradicts with (1.17),
rmn
q.e.d.

7. Now we shall prove a sufficient condition for which R
should belong to class O” therefore to O’. Let D, n=1, 2, --- be
a sequence of annuli which are disjoint each other and include
the curves L, of {I'{ and let jc.{ be the set of curves of {/'}

lying in D,, then we have by Prop. 3
(1. 18) Ac.j=2r/logp,
where f, denotes the Sario-Pfluger’'s ring modul of D,. Since
D,nD,=¢(nxm) by Prop. 2 (ili) we have
N N

AU et ii=2141c, i7"

n=1 n=1
and by Prop. 2 (i)
N
MIYSMLy ;<2 Ufc,f}t for any N.
n=1

Hence

1 1 1
1. 19 — > > 1 //
19 YRl AP Rt iy
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Therefore we have '

THEOREM 2.——Let D,, n=1, 2, - be a sequence of annuli
which are disjoint each other and include the curves of {1’} and
let p, be the Sario-Pfluger’s modul of D,. If

1l =0,

n=1

then ReO'cO.

CORrROLLARY (Heins [4]).——Let R be a parabolic Riemann
surface which has only one ideal boundary element «. Let {D,}| be
a sequence of doubly connected domains with analytic Jordan bounda-
ries which are disjoint each other and D, separate D,_, from a. If
the product of modul of D, diverges, then every single-valued bounded
harmonic function on an end (ie. R—K) has a limit at a.

8. Let ReOy; be of finite genus. Then we can take a compact
domain K so large that each component B; of R—K is of planar
character (schlichtartig). Therefore we can construct the (Evans)
potential U; on B; such that U,(p)— for p—3, peB; and U=0
on 3K, de*zzn, where U=U, in B, Let

oK

be all values of U for which U=/, contain the points where grad
U=0, then each component of D, :

Dn: ; p; Xn.-—l< U(p) <1'n,%

is a doubly connected ring domain (cf. Ahlfors [1], p. 16), more-
over e.g. the level curve L,: U=4, (4,_1<4,/<4,) belong to {I'{,
because each B; is of planar character. Since g,=exp. (4,—4,-1),

it follows ]A} p—00 (N—o) therefore by Theorem 2 we have
ReO'cC O',"_ife. 0,=0"=0'. But if R is of infinite genus, there
exists a Riemann surface which belongs to O, but not O (cf.
sec. 6).

THEOREM 3.——If R is of finite genus, then O;=0'=0". If
R is of infinite genus, we have O"CO’EO,,..

THEOREM 4.——Let R, R’ be two Riemann surfaces, and K, K'
be compact domains with analytic boundavies on R, R'. Suppose
that there exists a ome to one conformal tlransformation p<—p’

7) Take Ay+1=o0 if the number of A's is finite N.
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between the (not necessarily connected) complements R— K and R —
K. Then ReO' or O" if and only if R' €O or O" respectively.

This shows that O’ or O’-property of Riemann surface
depends only on its ideal boundary.

Proof. Under our assumption any curve ["x€!l'}, LxeiLi{zon
R—K are transformed to I'x€{l"}{, resp. Ly€eil'{;, on R —K'.
Now if ReO (or O”), then A{ 'k} =0 (A{Lx{z=0) (Prop. 6). Since
the extremal length is invariant under the conformal transforma-
tion, we have 4%} =0 (4}Lg{»=0). Therefore R'eO (or O")
by Prop. 6, q.ed.

§2. Riemann’s first period relation

1. Canonical homology basis.——Let R be an arbitrary Riemann
surface and Y, 2’ denotes respectively the cell-division of R and
its dual subdivision. There exists a canonical homology basis A,,
B, -, A,, B, ---on R where A, belong to &, B, to 3" and satisfy
the following condition; (Ahlfors [1]).

(1) Any cycle C on R is expressed as

N
C~> (pnAutq.B)  (mod ).

(2) The intersection numbers N between them are charac-
terized by '

N(A., A,)=N(B., B,)=0. N(A., B,)=¢d," (Kronecker).

Now let !R,} be an exhaustion of R. Then there exists a canonical
homology basis satisfying moreover the following condition:
(Ahlfors [1]).

3) A,B, -, Ar,, Br, are the relative homology basis of R,
mod dR,, i.e. any cycle CC R, is expressed as

k7l
C~21| (p:A;+q;B;) (mod 9R,).

We shall call such basis a canonical homology basis of A-type
with respect to {R,{. For instance let S be a two sheeted Riemann
surface of hyperelliptic type whose branch points lie on the real
positive axis g and accumulate only at c. Then Fig. 1 shows a
canonical basis of A-type on S with respect to E={R,{ such that
R, (e.g. |z|=7,) pass through I, Let {L{ be the set of analytic
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Fig. 1

Jordan closed curves on z-plane which separate the circle |z|=7,
from o and meet once with g at slits I, Then it is easily seen
that 2{L} =0 implies 2{L},=0. Now when 4{L{ =0, the canonical
basis of A-type is useful. (cf. Pfluger [17] and Th. 5, 6).

2. Riemann’s first period relation.——In this section we shall
always consider Abelian differentials each of which has finite
Dirichlet integral taken over R except the neighbourhoods of a
finite number of singularities. Now let R €', then there exists a
sequence of curves /,€{/'{ tending to  such that they are disjoint
each other and for two Abelian differentials df,, df,

@1 [idrifidri—0, s—o (Prop. 7).

I i,
If we choose A,, B, ---, A,, B,, --- as a canonical homology basis
of 2A-type with respect to this exhaustion }R*¢{ (dR*=l,), then we
can prove the following Riemann’s relation. While, if ReQ”, ie.

MLiy=0, {Liy=UIL,| for certain exhaustion E—{R,{(3R,=L,),

n=1

then under the canonical basis of 3A-fype with respect to E
Riemann’s relation holds for any two differentials. Here we shall
prove for this case. The former case is proved analogously, rather
more simply.

Let A,, B, -+, A,, B,, --- be the canonical basis of UA-type with
respect to E. Now we consider two arbitrary Abelian differentials
df, (Ist or 2nd kind) and df, which have a finite number of
singularities P,, where they have locally the expansions

df1=[—(‘ba,"]" +-+ a:, )+a,+2czgz+---sz
P z
(2. 2)

P IS W P
2 2

Then we can find a sequence of curves /, €{Ly,{ tending to & such
that they are disjoint each other and relation (2.1) holds. Let
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A, B, -, Arv, Bpr (B*=kn,) be its relative basis on Ry, (mod
L»n,), then we note that it is possible to replace A, B; by A/, B/
which are homologous to A, B, respectively, moreover A/, B/ (¢
=1, 2, ---, k*) are contained in the compact domain R* bounded by
I,(e!Ln,4CciI't). For instance in an annulus including L», and
I, we replace the parts of A, B, lying outside of R* by its
homologous counterparts in R*. Now we may assume that the
canomcal basis are realized on the 1-dimensional elements and

Za =R where «a; denotes i-dimensional element, moreover that

a are all analytic curves not containing any pole of df; and df..
We take R* so large that R*DR,, where R, contains all singu-
larities P, of df, and df,., Now consider the sum of line integrals

Ay
(2 3) 1=% |14
= aa;’.
where the branch of f, is defined as follows (cf. Ahlfors [1]), i.e.
for a chain (curve) L($ P,) connecting a fixed point b,(3=P,) on
R,, to a point b,(xP,) in a/ we define by

. kv
@D 1,0) = [dh+2-NAL D [ df +NBL D | df).
L i=1 ) A:

Thus defined value is independent of the choice of L, because the
difference of two such chains forms a cycle C and the difference
of corresponding values of f; is equal to the period of df, along
the cycle C+>[—-N(A/, C)B/+N (B/, C) A/], which vanishes
since df, is of first or second kind and C~>[N(A/, C)B/—N(B/,
C)A/] (mod I,) (Cor. of Prop. 7). Now each g;' inside of R*

appears twice in these integrals (2.3) and the corresponding dif-
ference of f, is equal to

S(-NCAL b)) [ df NGB b)) | dr)

B A

I3

i

where b} is the dual element of @;/. On the other hand

SIN(AY, b)) Sdf._,: Sdf_., SIN(BL, b)) j df,— j dr, .

a' A’ al B’
2 J i

i

Since A/=A, B/=B,(i=1, -, k,) and df, has no pole outside of
R’Ilﬂ)
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§dfj= fdf,, j df,= j'df,., i=1, - kv, j=1,2,

A4 B

i

hence we obtain

I=§|(j df, sdf.z— jdf;, j dar) + }f df,.
A; ]

B; A; B i,

Now Il e{I't, I,=311, Iy)~0 (mod ), therefore j df,=0 (Cor. of
, .
Prop. 7). Hence for fixed points p, €l

I AR KO R AT AES NE AR NEAR
i h Lo
therefore

lzj'f,df2|._,<__j|df‘|j|df2)—»0 for v— w.

i i, i,

While, I=2n7 > (residues of f,df, on R*), hence we have
THEOREM b.——For each Riemann surface ReQ' there exists
an exhaustion and corresponding canonical basis of N-type such that
Jor two Abelian differentials df, (Ist or 2nd kind) and df, with
finite Dirichlet integrals over R except the neighbourhoods of a finite
number of singularities P, where they have locally the expansions

(2-2), we have
kv . .

25 lim3>(|dr|ar.—|dr.ar)
A; B; A; B;

n=1

=211 S (0, by—ayby— Sina,b_) =1,
Pll- n=1

where a, is the constant term of f, at P, defined by (2-4). We
have I=0 if both df, and df, ave of first kind. If ReO", i.e.
A L{,=0, then for the canonical basis of U-type with respect to E
(2-5) holds always for any two such differentials® If R is of
finite genus, it is valid for any canonical basis on R €O,

Remark. 1°) On ReO, there exist Abelian differentials dw;
(1st kind), dt,;; (2nd kind, r=>2) with finite Dirichlet integrals

8) If necessary, we should remove A;, B; a little so as to avoid P,.
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except a neighbourhood of singularity ¢ where dt,=(—7/2""'+
regular term) dz, such that fdw,-:c?", ‘dt;’=0 (Virtanen [22]).

o

Aj A
We write here A,, B, -+, as K,, K,, ---. iIf we take in Theorem
5'e.g. df\=dw,, df,=dw, ; df,=dl;, df,=dw,, then

|-dw,= [ dw,, {ar;= ‘2’1”" dr‘;ufq) L pv=1,2,
' K, o (r—1! q

In connexion with elementary integrals on general surface (e.g.
Sario [19]) we have corresponding formulas. (cf. Schiffer-Spencer
[20] p. 74-76). j '

2°) Riemann’s relation (2.5) holds also for certain restricted
class of Abelian differentials having an infinite number of periods and
singularities. For instance let { U, { be a sequence of disjoint compact

domains on R and U=GU,,. We consider a class of Abelian

n=1

differentials which are of first or second kind and have finite
Dirichlet integrals over R—U. Now if the extremal length vanishes
for subsets of {/'{ or {L{; lying on R—U, then by modifying
Prop. 7 and its Cor. we can obtain the corresponding formula
(2.5) for differentials of this class. Although it gives a relation
between an infinite number of periods and singularities, there is
no gurantee for the convergency of the infinite series in (2.5),
but it will converge for instance under further restriction such as
(3.13).

§ 3. Riemann’s second (bilinear) relation

1. By the same way as the proof of Theorem 5 we have

THEOREM 6.——For each Riemann surface ReQ' there exists
an exhaustion and corresponding canonical homology basis of A-type
on R such that for two Abelian differentials df,=du,+idv; (j=1, 2)
of the first kind with finite Dirichlet integrals we have

kv . N
(3.1)  Du(m, ) =lim z(j du, jva— jdu, | ava.
A B B, A
If ReO", ie. 2} L{,=0, then for the canonical basis éf A-type with
vespect to E (3.1) holds for any two such differentials.
2. For another extension of Riemann’s second relation we
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shall use the Ahlfors’ theory of Schottky differentials under the
same notations as Ahlfors [2].

THEOREM 7.——Let ReOy, and A, B, -, A., B,, --- be an
arbitrary canonical homology basis on R and let df;=du;+idv; (j=
1, 2) be any two Abelian differentials of the first kind with finite
Dirichlet integrals. If u, (or v;) has only a finite number of non-
vanishing periods, then we have

(3.2)  Dulu, ) =§(j du, j dv,— Sdul g dv,).
A; B; B; A;

Movreover, this theorem does not hold for R & Opnp.
Proof. Since £,=du; (i=1, 2) are harmonic differentials with
finite (Dirichlet) norm, for any cycle C~0 (mod )

3. 3) SQFO (=1, 2).
C
Suppose e.g.
3. 4) S!z.= j.%:o, n>N+1.
A7l Bn

Now let {R,{ be an arbitrary exhaustion of R. We take R, so
large that it contains completely the cycles A,, B, -+, Ay, Bx». We
define the branch in R,(%>#n,) of u, as before (2.4), i.e.

(b)) = [ du+ [~ N(A, D) [du+ N(B,, I) et
L B, A,

Under (3.3), (3.4) we find that this value is independent of the
choice of L connecting b, to b; as before. Now let 7,*€S*(R,)
be the Schottky harmonic differential on R,(»>n,) with the same
periods as (£,*)*=—%, on R, then —#,—<,* becomes an exact
differentials, say dV.,.

(3. ) Q¥=7,—dV,*. ©,=0 on R, .
(3. 6) Dg.(u, u2)=s'j'leseg*:js'fz, ‘-,L_J’j'yldvu*zlwlg:.

n n n

By Schwarz’s inequality
I[P 19, II}gnlIdV;*H‘}g" .
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Since R€O,,, we have

3.7 1AV, i, =124k, —ll7ulfe =0 (2> o0),
therefore under the condition |l#,]l,< o
3. 8) I} -0 (n— o).

On the other hand, by Green’s formula and integration by parts
we have

3. 9) I;'=EJ ", .
I 0a§

Now each a; inside of R, appears twice in these line integrals
and the corresponding difference of #,.is equal to

G100 3[-NA, b)) j du,+N(B, b}") j’du.].
* Bl i

Since R,oR,, D A, B;(:=1, 2, ---, N), for i=1, .-\ N

3. 11) SIN(A, b;)s}FSr,,, SIN(B, b;)jﬂ-u 5
’ a} A; ? a; B;

Since 7,=0 on 38R, and r, converge uniformly to £,*=duv., on every
compact set on R, we obtain the desired result (3.2) by (3.6)~
(3.11) when n— . Especially if we take f,=f,=f, then

3. 12) . D,g(u)Z}li(jdujdv—jdquv).
- A; B; B; A;

Now if this theorem holds for R ¢ O, then for any single-valued
harmonic function # with finite Dirichlet integral we have D,(u«) =0
by (3.12), i.e. w=const., therefore R € O, which is absurd, q.e.d.

Remark.——This theorem includes the Virtanen’s result for
ReO, (Virtanen [22]). By Theorem 7 we can immediately extend
the Virtanen’s theory on A-periods to Riemann surface €O, :
The necessary and sufficient condition in order that there exists
an Abelian integral of the first kind with finite norm and having
the given A-periods. The existence of Abelian integral of the
second kind with finite norm (except the neighbourhood of singu-
larities) without any A-periods etc.

3. Let A, B,, -+, A,, B,, --- be a canonical homology basis of
A-type with respect to an exhaustion {R,{ of R. We denote
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fA™{, {Bm™t (1<i<k,) the set of cycles which are homologous
to A, resp. B; and are contained in R,. Then A{A®™¢{, 2{B®{=0"
are monotone decreasing for fixed i.

THEOREM 8.——Let ReO,, and A, B, ---, A,, B,, -~- be a
canonical homology basis of A-type with respect to an exhaustion
iR,} of R. If for any n

ky
3. 13) SV APITBP | <M< oo

where k, denotes the genus of R,, then we have for any differentials
df\, df., with finite normes

DCaty, 1) =lim 3 a’ulj dv,— jdvgjdul).

A, B A0 B
Hence if du, and dv, have only a finite number of non-vanishing
A-periods, (3. 2) holds. )

Proof. Suppose 4{ Af{ and 2{B"{>0, then by (1.2) there
exist the cycles A,*, B* in R, which are homologous to A, B;
respectively and for given -0<€,<min(v4} A{”{ldV.lg , VA B™ |
lidfllr,)

|l = [ < [lar| S VI BETlaf
B; Br B;‘

2

3. 14y TE<2YUBO{ldf e,

Javiri=1{av. < [law) < viraegiavi,
A; Ap A "

+&,<2V1 AP fHavaly,

where dw,=dV,+idV,* in R, and =0 in R—R,. These‘ inequalities
still hold even if 4§ A®{ (or 4{B®{)=0, because if dew,l|=;y>0,

A;
then ¢=|w,’|/n is admissible for { A™} and

AP j}oﬂ’dx@:l/yfﬂ|w,/|'-’dxdy<oo
R

n

9) The extremal length with respect to the set of cycles is analogously
defined by taking the line integral along the cycle. (cf. Hersch [5]). Or, from the
beginning we consider the canonical basis of U-type such that A,, By, - are all
Jordan closed curves. (cf. R. Nevanlinna [15]).
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ie. 4{A™{>0 which is absurd, hence ngn*—; den=(j,, etc. Now
A A I
by (3.5) we have analogously ‘ o

D (u,, U.) —2 (gdu.fdvq gdu,de )
A; B B@ A;

+§(jdu f Xan*Sdu)
A; A B;

=
-

Hence by (3.13), (3.14), (3. 7)

|z§du,§dv*|<4|ldf,n V| ng‘,Vl%A‘"’M%B‘””—»O (n—c0)

¢ A
and analogously

|k"SdV,,*sdu,|—>0 (n— o).

B; A;

Therefore we have the conclusion for #— o, q.ed.

On such a Riemann surface every Abelian integral of the first
kind with finite norm is therefore determined except a constant
by its A-periods. (cf. Ahlfors [1], L. Myrberg [11]). -

Finally we note that the conditions in Theorems 6 and 8 are
both concerned with the extremal length with respect to the set
of cycles; the one is the set of cycles dividing Riemann surface,
and the other the set of non dividing cycles. '

Mathematical Institute
Kyoto University
Revised July 15, 1956 '
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