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Introduction

In the theory of connexions on differentiable principal bundles,
the term * Induced Connexion” may be used in several different
significances. What we shall introduce in the present paper is,
however, one of the essential generalizations of the classical process
of induction in the theory of submanifolds. It can be shown that
a connexion is naturally induced on a certain principal bundle,
whose bundle space and base space are both associated bundles
of a given principal bundle with connexion.

In §2, we give the definition and expositions of induced con-
nexion, and derive generalizations of the equations of Gauss-Codazzi-
Ricci. The structure of induced connexion appears not only in the
theory of submanifolds, but also in the theories of various categories,
for instance, canonical connexions on universal bundles, the Stiefel-
Whitney characteristic classes, and reductive Cartan connexions.
In the last four sections, we describe their applications.

§1. Survey of tensor calculus

We denote by T(M) the tangent vector bundle over any C=-
manifold M, and by 7T.(M) the tangent vector space at xe M. Let
T*(M) denote the space of all ordered sets (¢, ---, t,) of tangent
vectors such that ¢, -, t,eT.(M), xeM. Then T*(M) can be
regarded as an associated bundle of T'(M). Let V be a vector
space over the field of real numbers R. A V-valued k-form on M
is, by definition, a C*-map

0.T*M)->V,
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such that #(%,, -+, ;) € V is multilinear and skew-symmetric with
respect to the variables ¢,, -, t, e T.(M).

Let U, V and W be vector spaces. We consider a W-valued
bilinear function F(u, v), uelU, ve V, and take two forms on M

0:T*M)—>U and ¢:T'(M)->V.
Then, # and ¢ may be substituted into F, and we have a form
F@, ¢): T (M)>W,
which is defined as follows: for ¢, -, t,., ¢ T.(M), xe M,
F@, ), -, tr10)

:(kA"i];_l)rg 5(0')F(ﬁ(tau), Tt to(l.-)). ?’(to(l;n), R ta(lc+z)))a
where the summation is extended over all permutations o of the
set {1, -, k+l}, and &€(s) denotes the sign of ¢. Such substitu-
tion can be generalized for any multilinear function of vector spaces.
In this paper, any concrete s-llinear function F(4,, ---, 0,), 1<s,
into which forms f; are substituted will be understood in the above
sense, without any mention. For instance, if F(x, y) =xy, x, yeR,
and if 0, ¢ are real-valued forms on M, f¢ expresses the exterior
product of # and ¢.

We suppose that the exterior differentiation for real-valued
forms is known in usual way. Let V* be the dual space of V,
and let # be a V-valued kform on M. The inner product (v*, #),
v*e V*, gives a real-valued k-form, and there exists a unique V-
valued (k+1)-form df, called the exterior derivative of f#, such
that

d{v*, 0)={_v*, d), for any v*e V*,
The operation d is an antiderivation, that is, for a bilinear function
F, it holds that

We consider now a differentiable principal bundle P(M, G)
over M with group G. The Lie algebra of G and the linear ad-
joint group of G are denoted by q and «ad(G) respectively.

Let » : G>GL(V) be a representation of G, where GL(V)
denotes the group of all automorphisms of a vector space V. A
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V-valued k-form @ on the bundle space P is called a pseudo-tensorial
k-form of type (v, V), if 0p(g)=r(g~")f for any geG, where p(g)
is the right translation of the bundle P(M, G) and is considered
to operate on T#(P). A kform 6 on P is said to be horizontal
provided that if # is a vertical vector of P(M, G) then 6(t,, -, &)
=0. A horizontal pseudo-tensorial form is called a fensorial form.
A connexion form o on P(M, G) is a pseudo-tensorial 1-form of
type (ad, g) and for every fundamental vector field A*, w(A4*)
=A(=const.)eq. Cf. [7], p. 26.

Taking a kform ¢ on the base space M, we have a kform
¢m on the bundle space P, where 7 denotes the projection of the
bundle structure and is considered to operate on T*(P). For
simplicity, we express the form ¢m on P also as ¢, and call it
merely a form on the base space M.

PROPOSITION 1. Let P(M, G) be a differentiable principal bundle
and let (r,, V) be a trivial representation of G, i.e. v,(G)=(E):
the unit element. A form 0 on P reduces to a form on the base
space M, if and only if ¥ is a temsorial form of type (v,, V) ; in
other words, 0 is a horizontal form which is invariant under the
right translations of P(M, G).

This proposition can be easily proved, according to the following
lemma: if t, t,e T(P) are tangent vectors such that nt,=nt,eT (M),
then there exist uniquely an element ge G and a vertical vector t, of
P(M, G) such that

L=0(g)t,+t,.

Assume that a connexion o is defined on P(M, G). Then,
each tangent space 7,(P), peP, is decomposed in a direct sum:

TP(P) =9,+93,,

where 9, and ¥, denote respectively the horziontal space and the
vertical space at p. Cf. |7], p. 25. Let us denote by

h:T,(P)>%,, peP,

the projection with respect to the decomposition. The covariant
derivative DV of a form ¢ on P is defined by D= (d0)h.

PROPOSITION 2. For the connexion form o, it holds that wh
=0, and a form 0 on P is horizontal if and only if ¢=0h.
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This proposition is obvious by definition. Furthermore we
have :

PRrROPOSITION 3. If 0 is a pseudo-tensorial k-form of type (r,
V), then

(i) Oh is a tensorial kform of type (v, V),

(ii) df is a pseudo-tensorial (k+1)-form of type (», V),

(iii) D# is a tensorial (k+1)-form of type (v, V).

Proof. The relation p(g) h=hp(g) implies (i). Taking account
that a right translation is a differentiable homeomorphism of P and
that 4 is a linear operator, we have (ii). Moreover, (iii) follows
from (i) and (ii).

PROPOSITION 4. For the connexion form o,

Dm':.(!:dw—l—é—{m, ] (the equation of structure) ;

and if 0 is a tensorial form of type (v, V),

Dﬁzdﬂ'*‘;(m)ﬁ ,
where v : §—gl(V) is the induced representation of v, and gl(V)
denotes the Lie algebra of all endomorphisms of V.

The form & is called the curvature form of the connexion w,
and is a tensorial 2-form of type (ad, q). To prove these formulas,
it is sufficient to show that their right hand sides are horizontal
forms. By direct calculations we obtain them. Cf. [1], [12]. In
particular, we have :

PROPOSITION 5. If ¢ is a form on the base space M,

Di=dt
and if 0 is a tensorial form of type (ad, g),
Dl =dbil+|w, #].

These relations follows from #,(q) =(0) and ad(x)y=[x, y],

X, y€q.
PROPOSITION 6. For the connexion form o,

DPw=D2=0 (the Bianchi identity) ;
and if ! is a temsorial form of type (v, V),
D=y (L2)0 (the Ricci identity). Cf. [5], p. 30.

Proof. (dDw)h=|dw, o]h=0, since wh=0; and (dD/)h=
(7 (dw)—r(w)di) h=7(£)0, since (do)h=4¢ and th=0.
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PROPOSITION 7. For horizontal forms, D is an antiderivation.

Since d is an antiderivation and fh=6¢ for a horizontal form
6, this proposition holds obvionsly.

A finite sum of W-valued multilinear functions

EF((,I; Ty 01’ 021 Tty 02; Tty ﬁs,"'ﬁs)

into which forms ¢,, .-, #, are substituted is called a W-valued
polynomial of 0,, -, .

PROPOSITION 8. Let w and £ be a connexion form and its
curvature form respectively, and let 0,(i=1, ---, s) be tensorial forms.
The covariant dervivative of any polynomial of v, £, 0., DO, is a
polynomial of £, 0,, D0,.

Taking account of Proposition 6 and the relation wh 0, we
have Proposition 8.

§2. The induced connexions

Let P(M, G) be a differentiable principal bundle. We take
a closed subgroup Hc G, and assume that the homogeneous space
G/H is reductive, that is, there exists a canonical decomposition
of the Lie algebra g :g=b+{ such that ad(H)fc |, where § is the
Lie algebra of H. The representation (ad, f) of H is called the
linear isotropy vepresentation. Let us denote by @, and a5 respec-
tively the [)- and f-components of an element aeg. Now we de-
compose H by a direct product H=H,X H,. In this case, H, may
reduce to the unit element (&) alone, and so the assumption is
quite general. We have then a decomposition of g:

=bl+f+r)2 ’

where 0, ), are the Lie algebras of H,, H, respectively.
By the natural projection v : G/H,—>
G/H, we get a principal bundle G/H,

(G/H, H,). Let E,, E be the associated Goommm P

bundles of P(M, G) with fibres G/H,, ' l l\

G/H respectively. Then v induces a G/H,----- E, E,

projection GI | /
v E—>F, /o T

and we get a principal bundle E,(E, H,). M

When H,= (&), E,(E, H,) coincides with
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P(E, H). In the above considerations, if we exchange the groups
H, and H, mutually, we get a bundle E,(E, H,).

Consider now a connexion @ on P(M, G), and denote by Q
its curvature form.

PROPOSITION 9. Let @ be a connexion on P(M, G). Then the
form

o= (TJ[)I

reduces to a form on E,, and becomes a connexion on E,(E, H,).
We call w, the induced connexion on E,(E, H,) of the con-
nexion @ on P(M, G).
Proof. Since any right translation p(k), heH, of P(E, H)
can be also regarded as a right translation of P(M, G), we have
ayo(h) = (@o(h))y= (ad(h™")@)y=ad(h™") @y ;

and, since a fundamental vector field A*, Ae€l), of P(E, H) can
be also regarded as a fundamental vector field of P(M, G), we have

@y (A*) = (@(A*))y=Ap=A.
Hence, @y is a connexion on P(E, H). The natural projection

p:H—H, given by H=H,X H, is an onto homomorphism, and so it
induces a bundle homomorphism

*. P(E,H)—>E,(E, H).

Consequently, the connexion @, is mapped by p* to a connexion
o* on E,(E, H,), whose horizontal vectors are given by the images
of horizontal vectors of P(E, H). Since @y, =w*, @ is a conne-
xion on E,(E, H)). This completes the proof.

The induced connexion depends on the choice of canonical
decomposition of the Lie algebra g.

Setting ¢=a@; and w,=a,,, we have:

PROPOSITION 10. The connexion @ is decomposed as follows :

o=+ +w,,
where
(i) o, is the induced connexion on E,(E, H)),
(ii) ¢ is a tensorial form on P(E, H) of type (ad, ),
(ili) o, s the induced connexion on E,(E, H,),
(iv) w=w,+w, is the induced connexion on P(E, H).
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Substituting this decomposition into the equation of structure

of @:

dao=—

; [, #]+8,

we obtain the following formula.
ProrosiTION 11.

.Q,+D¢+.QQ=—%[¢, ¢+ 2,

where

(i) &, is the curvature form of w,,

(ii) D¢ is the covariant derivative of ¢ with respect to o=
w4+ w,,

(iii) 8, is the curvature form of w,,

(iv) 2=0,+9, is the curvature form of w=w,+w,.

The forms £,, D¢, £, have their values in 0, f, ), respective-
ly, and so we get the equations.

PROPOSITION 12.

Q= ———;——[(/J, sb]f)x+§‘)1 (the Gauss equation),
D¢=__%_[(,b, <,b]f+§f (the Codazzi equation),

.Qo=—%[</l, Py, + 9y, (the Ricci equation).

Cf., for instance, |8].
When H, is discrete, the Ricci equation vanishes since @,=0,
and the Gauss-Codazzi equation assumes the form

Q+Dy=——1[9,41+¥.

If the homogeneous space G/H is symmetric, i.e. ad(H)fC|
and [f, f]c b, the Codazzi equation reduces to

D(/J=§f .

We take a local cross-section @ of the bundle P(E,, H,) and
denote by ¢, the dual image of any form ¢ on P by the map a.
Then ¢, is a local tensorial form on E,(E, H,) of type (ad, f)
and o,, reduce to a local §-valued form on E. The Codazzi equa-
tion takes now the form
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Dl ba'*’[wi,a’ S’Ja]=—%[¢’m ¢a]f+§af ,

where D, denotes the covariant differentiation with respect to ;.
In the classical theory, the Codazzi equation was written as the
above form. Cf. [8], p. 278, or [5], p. 162.

§ 3. The deformation of a connexion

By a similar consideration to the preceding section, we can
introduce the deformation of a connexion. Let » be a connexion
on a principal bundle P(M, G) and ¢ be a tensorial 1-form on
P(M, G) of type (ad, g). A deformation of the connexion o is
defined by the 1-form

w,=w+te, te[0, 1] : parameter.
Then w, is a connexion on P(M, G) for each t€[0,1]. For two
connexion w, o, on P(M, G), there exists a deformation », which
joins @ to w,; precisely, it is furnished by o, =w-+t(w,—w).
Let o,=w+ty be a deformation of w. The curvature form
2, of w,, te[0, 1], is given by

!2,=9+tD¢+t—£[¢, ¢l,

where £ is the curvature form of w=w, and D denotes the covari-
ant differentiation with respect to . Denoting by D, the covariant
differentiation with respect to o, and by “dot” the differentiation
by the parameter #, we have the formulas:
D,¢=Dso+t[so,9o]=!§,, i.e. D,w,=(D,w,)",

D, 2,=0 (the Bianchi identity).
Now we take a real-valued k-linear function F(x,, ---, %), %,
-+, 5, €q, which is invariant under ad(G). Since F(¢, £2,, ---, 2,)
reduces to a form on the base space M, we have

dF(soy 'Qt, tty '(")t)=DtF(SD) 'Qty Tty ‘gt)
=F(, 2, -, 2).

It is known that the form F(&, ---, £) on M represents a charac-
teristic class of the bundle structure P(M, G). Cf. [2], p. b7.

§4. The induced Riemann connexion

Let M™ be an m-dimensional differentiable submanifold of a given
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Riemann manifold (M™*", g), where g denotes the metric tensor
of M™*" The injection: M”—>M"*" induces a unique Riemann
metric g* of M.

Let @ be the Riemann connexion on R™*"* determined by the
metric g. . Then @ is a connexion on the bundle P(M™*", O(m
+n)) of all orthonormal tangent (m-+n)-frames on M"*", where
O(m+n) denotes the orthogonal group of degree m-+n.

Let E, and E be the associated bundle of P with fibres O(m
+n)/0(n) and O(m+n)/O(m) X O(n) respectively. Then E, is
the bundle of all orthonormal tangent m-frames on M™**, and E
is the bundle of all tangent m-planes on M™*". Since the homo-
geneous space O(m+n)/O(m) X O(n) is symmetric, there exists
a canonical decomposition of the Lie algebra of O(m+#) :

fo(m~+n)={o(m) +f+jo(n).
Therefore, by the natural projections
Po>E —>E—->M,

we get an induced connexion w=d, () on the bundle E,(E, O(m)).
To each point pe M™, assigning the tangent space T, of M at p,
we have a map T : M"—E. Then a bundle structure P*(M",
O(m)) and a connexion w* on it are induced by 7T, from the
bundle E,(E, O(m)) and the connexion o on it. It is notable that
P*(M™ O(m)) becomes the bundle of all orthonormal tangent -
frames on M” and * gives the Riemann connexion determined
by the induced metric g*.

In this case, the Gauss-Codazzi-Ricci equations assume the well-
known forms. Cf., for instance, [5], p. 162.

§5. The canonical connexions on universal bundles

Let G be a compact Lie group. We can suppose that G is a
subgroup of a special orthogonal group SO(m) for m sufficient
large. Setting

P,=SO(m+n)/SOn), My=SO(m+n)/GXSO#n), GCSO(m),
by the natural projection: P,—M,, we get a principal bundle
P,(M,, G), which is n-universal. Cf. |9].

The Grassmann manifold MzSO(m—l—n)/SO(m)XSO(n) is
a symmetric homogeneous space, and so we have a canonical
decomposition of the Lie algebra of SO(m+#n) :
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fo(m+n) =jo(m) +m-+jo(n).

By the natural projection: R,—)M , we get an #-universal bundle

P,(M, SO(m)).

Let @ : T(SO(m+n)) >io(m+n) be the Maurer-Cartan form
of the group SO(m+n), that is, by regarding any element A e€fo
(m+mn) as a left invariant vector field on SO(m+n), w(A)=A
(=const) ejo(m+n). Then & becomes a connexion on the trivial
bundle SO(m+#n) X (x,), and its equation of structure is given by

~ 1 -~ -~
do=——[a, a|.
w 5 [, @]
Cf., for instance, [3], pp. 152 ~155. Accordingly, by the natural
projections
SO(m+n) - Py~ M~ (%),
we obtain an induced connexion w,=dj,,y On R,([lZ SO(m)),
and have the decomposition
o=w,+¢+ao’,
where ¢=a,, and o'=aj,¢y. We call o, the canonical connexion

on the universal bundle P,(M, SO(m)). The curvature form 2,
of w, is given by the Gauss equation

Q,= ——%—[sb, lioom) -

Let P0—>M,%AT be the natural projections. Since the homo-
geneous space SO(m)/G is reductive, we have a canonical decom-
position of the Lie algebra {o(m) :

fo(m)=g+u.

Furthermore, a connexion w=w,, on P,(M,, G) is induced, and is
called the canonical connexion on the universal bundle P,(M,, G).
Setting r=w,,, we have the decomposition

w,=w+7,
and get the Gauss-Codazzi equation

.QO=.Q+Dr+%[-:, e,

where £ is the curvature form of « and D denotes the covariant
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differentiation with respect to @. The form = is a tensorial form
on P,(M,, G) of type (ad, n). Setting Dr=T, we have

DT=[2,7] and D£=0,

which are respectively Ricci’s and Bianchi's identities.
The canonical connexions on universal bundles may be empioy-
ed in studies of characteristic classes. Cf. |2], pp. b9~64.

§ 6. The Stiefel-Whitney characteristic classes

Let P(M, SO(m)) be a differentiable principal bundle over a
compact manifold M with structure group SO(m). We take its
associated bundle E*(M, Y* SO(m)), whose fibre is the Stiefel
manifold

Y =SO(m)/SOk), 1<k<m.

The obstruction class W**' of the bundle E* is a (k+1)-dimensional
cohomology class of M with coefficients in the homotopy group
7, (Y*), and is called the (k2+1)-th Stiefel-Whitney characteristic
class of P(M, SO(m)).

We suppose that the group SO(q) operates on a g-dimensional
vector space V? Denoting by

9

A=S1F

=
the exterior algebra generated byV”, we have the identifications
H#=jo(gq) and A4'=R: the real numbers.
We take a .-valued k-linear function F defined by
FQx, . xm)=x " ANx, %, -, %€,
and set
F=F@, -, 0),

for any .-valued form ¢ on a manifold.
Assume that a connexion o is given on P(M, SO(m)). By
the natural projections

P>E'->M,

we get a bundle P(E7, SO(q)). Since Y” is reductive, there exists
a canonical decomposition
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fo(m) =fo(q) +y,

and we have an induced connexion o?=uwy,, on P(E", SO(q)).
Let 2% denote the curvature form of @, and set

O'=c, ()7, if q is even,
=0, if ¢ is odd,

where ¢,= (—1)7?/27a7*(q/2)!. Then #” reduces to a real-valued
gform on E”’. Moreover, we consider the natural projections

P—>E™">E",

Since (¢—1)-sphere SO(q)/SO(q—1) is symmetric, there exists a
canonical decomposition

jo(g) =jo(g—1) +v,

where v is a (¢—1)-dimensional vector space. Taking the decom-
position

0P ="+ h=0

we obtain the Gauss-Codazzi equations :
.‘f.)ﬂ)(q_ n= QUL hadd,
D=0

where D denotes the covariant differentiation with respect to the
connexion »“" on P(E’', SO(¢g—1)). Now, we set

17" =a, 3 bu(Lfs 1)) 1 !

where a,= (—1)/2'7%""%, b=(—1)"/k! I'((q—2k+1)/2). Then
/""" reduces to a real-valued (¢—1)-form on E’"', and we can
easily show that

—dll*"'=—DJl"'=#"

taking account of the Bianchi identity for the connexion %",
The obstruction cocycles of the bundles E?' can be expressed in
terms of the forms #” and //*~'. Cf. [10], [11].

§ 7. The reductive Cartan connexion

We consider now a differentiable fibre bundle E(M, F, G*)
satisfying the following conditions.
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(i) The fibre F is a rveductive homogeneous space F=G*/G,
Gc G* and dim F=dim M.

(ii) There exists a differentiable cross-section a« : M—E.

We take a canonical decomposition of the Lie algebra of G*:

g*=g+f.
Let »* be a connexion on the associated principal bundle P*
(M, G*) of E(M, F, G*). Then, by the natural projections
P*>E—->M,

we have an induced connexion o *=w* on P*(E, G) and the de-
composition

w¥=n ¥+ 5!!*=(r)f*.
Moreover, we have the Gauss-Codazzi equation

'Ql* +D]*‘/,*: _%[(’/}*’ (,/)*]+!2*,

where £*, Q.* are curvature forms of w*, o* respectively, and D*
denotes the covariant differentiation with respect to w,;*. The in-
jection @« : M— E induces a bundle structure P(M, G) over M from
the bundle P*(E, G). Denoting by », o,, ¢ the restrictions on
P(M, G) of w*, w* ¢* respectively, we have

o=uw,+¢.

Properly, o, becomes a connexion on P(M, G), and ¢ is a tensorial
form on P(M, G) of type (ad, f). In the case that ¢» maps T, (P)
onto f for each p€P, ¢ defines a soldered structure of E(M, F, G*)
and o* becomes a reductive Cartan conmexion. The form ¢ is
called the basic form of soldered structure. The torsion form
is given by the Codazzi equation :

1
O=Di¢=— [, ¢+ 27,

where £ is the restricted curvature form of w* and D, denotes
the covariant differentiation with respect to w,. If Fis a symmetric
homogeneous space, # coincides with &;. Cf. [4], [6], [12].
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