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Preliminaries

In a previous paper [1] we treated spaces with an analytic
distance, in which an analytic distance-function d(x, ) was given
and a fundamental tensor g,;(x, ) was introduced by means of
the distance such that

— 9°g(x, y) __1
8ip = éFay(jj , &= 9 d(x, ).

From this we got the curvature tensor and some of the geometric
notions. But it is clear that these can be derived from any
function which is not necessarily the function as above given,
and hence we can not expect many geometric notions enough to
discuss the properties of the space. On the other hand we are
under the consideration of the geometric interpretation of a
system of integral equations

Vi (x) = wi(x)— S Ey (x, D’ (9)dy” - dy”,

where the # and v are vectors and the kernel k% (x, y) is the
tensor with respect to a pair of points (x, ). Further we should
assume from the geometric stand-point that the kernel is of
weight one with respect to (y). Thus we meet also with a notion
of a tensor with respect to a pair of points.

From these view-points we shall introduce in this paper a
notion of a relative affine comnection of a pair of manifolds (M, N).
The connection in M is determined in relation to so-called observ-
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ing point in N. This situation is similar to the theory given by
E. Cartan for Finsler spaces [2], in which the connection depends
not only on a point, but also on a supporting element. For
Finsler spaces we have an useful condition that the coefficients
% of the connection-forms o} are of degree zero with respect to
a supporting element [2, the equation (5)], while there is not
such a condition in our case. Instead of this condition we shall
give a mapping g from the tangent vector space at a point of
M to the one at a point of N, and impose the condition that the
mapping g has its inverse. Hence we have to assume that the
dimension of M is equal to the one of N and that the determinant
of the tensor g¥(x, y), defining the mapping g, does not vanish.
Further we require that the tensor g is covariant constant.
Under these considerations we shall define a covariant differe-
ntiation and develope the theories, following to the ordinal affine
connections. Various curvature tensors are derived according as
an observing point displaces or not. In Finsler spaces it is
essential that a point displaces to the direction of the supporting
element. On the other hand, it will play a role in our case that
a point of M displaces to the direction corresponding to the dis-
placement of an observing point by the mapping g. From this
idea we shall introduce another covariant differentiation and new
curvature tensor. These will be thought to be important for the
theory of the metric connections, which will be developed in the
following papers. Finally we shall define a path with respect to
an observing point and a remarkable class of connections.

1. The affine connection and the mapping g

Let M and N be the differentiable manifolds of dimension #,
where the differentiable classes are assumed to be C* throughout
the paper. We consider points P(¥) in M and Q(3) in N, the
local coordinates of which are given by (x) and ( y7) respectively.
If a set of functions A;‘I’J‘; ’2,:::’;;, (x, ») is given and obeys the
law of transformation

Ty e fen) gm N Adyeipky e R
Appr g @) =AY (% )
—_— —_— r H - 1/ - r/ 11/ ls/
XX?: X;’: X{,j X{,: Ygl, Y,ﬁr, Yj Y4,
ox®

(X‘:=a—xi’ Xé:%g;’ etc.),
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under a change of the local coordinates (x,y) — (%, 5), then we
shall call A;llj’: '}iﬁ]::i’f components of a tensor A of (x)-order (p, q)
and (y)-order (r, s). It is easily seen that the partial derivatives
of components of a tensor of (x)-order (p, ¢) and (y)-order (0, 0)
define a tensor of the same (x)-order and (y)-order (0, I).

We shall define the affine connection at a point P(x) in M with
respect to an observing point Q(y) in N by the following equations
in terms of the natural frame ¢;:

(1. 1) dP =dxie;,
1.2 de; = wie;

: 7
where the connection-forms o] are linear forms of dx and dy,
which are expressed by
(1.3) ol =Th(x, y)dx*+Cly(x, 9)dy".
We should suppose that the coefficients I'}, satisfy the law of
transformation

oX!
oz

%, 5) = Dlx, ) XeX3XE+ 222 X3,

while the coefficients C!, are components of a tensor of (x)-order
(Z, I) and (y)-order (0, I). For the fixed observing point @Q()
we have

w{ = Fijk(x; y)dxk .

The I'i, are called the translation-components of the connection.
On the other hand, for the fixed P(x) we obtain

ol = Cly(x, Ndy*’,

and hence the Ci, are called the rotation-components of the con-
nection. The connection in N is also defined similar to the above
equations and the connection-forms o}’ are written as

(1.3) ol =Tl (y, 1)dy" +Cl.(x, y)dx* .

Next, we shall define the g-mapping, which carries the tangent
vector space at P in M to the one at @ in N. Let gi(x, ») be
components of a tensor of (x)-order (0, I) and (y)-order (I, 0).
For any vector Vi at P, we obtain a vector V¥ at @ such that
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. 4) Vi =Vigl(x .

Hence the tensor g defines a linear mapping g: Tp— To, Where
the T, and T, are the tangent vector spaces at P and @ respec-
tively. If there exists such a relation (1.4) for two vectors Vi
and V¥ at P and Q respectively, then these vectors are said to
be g-related. In particular infinitesimal displacements dx and dy
are g-related if and only if the equations

1.5) dy’ =dxi gl (x, y)

are satisfied. We should like to deal with the manifold N equal
to the manifold M, so that we assume that the mapping g has
its inverse and hence the det. |g!| does not vanish. The inverse
&' is clearly the tensor of (x)-order (I, 0O) and (y)-order (0, 1),
and we get the inverse mapping g ': To—Tp.

The notion of g-related vectors may be extended to tensors
of any type. For an example, a tensor A%(x, y) is said to be g-
related to a tensor A¥(x, y) if

k,_. i k’ j/
Ay = Ay gi gl

The mapping g may be expressed in terms of the natural
frames. In fact, from (1.4) we get

eqv’’ =e;glvi,
and hence the mapping g is thought of as
g:ie,—gle;.

On the other hand, we take a point P’=P(x+dx) and the con-
nection in M defines the mapping @, : Tp— Tp as follows:

Pr: e;(x+dx) —e;(x) +de; .

Now we require that the condition @, g'=gpy holds for the
connection and the g-mapping. We have immediately

Pug es(y+dy) =gle;+ gl ole;+dgle;,
gPnles(y+dy) =ghe;+o¥ gle;,

and hence the above condition is expressible by the equations:
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og} i i On
1.6 ?g_.x% = —g’JL’]' we 8w C’j’k ,

og’y W
(1.7) ai;, = —gh Chu+gL

Since the g3 are the inverse of the g/, it follows from the above
equations that

a ,./ 2/ 1
(1.6) 28 = —ghCilu+el Vs,

a i N7 i
(L.7) £l = gy +gi Chu.

o y"/

Now we gave all of the suppositions in order to develop our
theories. We shall call by the theories of the relative affine con-
nection of the pair (M, N) the objects derived from the connection-
forms o), o) and the g-tensors g¥, g} which satisfy the above
four equations.

We shall introduce in this place a covariant differentiations
(,) with respect to x' or . For a tensor Aj¥, the rule of the
operation with respect to 2™ is given by the equation

ik :8 ZJ’zc
Jjt'vm axm

ax’ ik’ Na ia’ K ix’ Ha’
+A1z’l am—Aaz’l ]m+A]l' Ca’m_ Ja’ Cz’m .

The one with respect to y7" is defined by the similar rule to the
above, where the coefficients 1'%, and Cj, are used instead of the
%, and Cjﬁk. The covariant derivatives of a tensor of (x)-order
(p, 9 and (y)-order (r, s) with respect to x’ define a tensor of
(x)-order (p, g+1) and the same (y)-order. This is easily verified
from the law of transformation of the coefficients of the connection-
forms. Then the four equations (1.6), (1.7), (1.6’) and (1.7)
imply that the g-tensors are covariant constant with respect to
both of the variables x' and y7'.

2. The torsion and curvature tensors.

We shall define in this section a torsion tensor and three
kinds of curvature tensors. We put

@.1) Q= —oindy,

. where the sign (A) denotes the operation of exterior product.
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These 2-forms are called the {forsion-forms and expressed as
follows :

2.2 Qi = T.dx’ Ndx*+Chdx’ ndy” .

where the T}, is given by

(2. 3) _‘115 = "]2-_ FE.”CJ* .

It is clear that the 7%, are the components of a tensor of (x)-
order (I, 2) and (y)-order (0, 0). Next we have from (1. 3)

(2. 4) do} = 0¥\ 0l+ Q]

where the sign (d), operating to a form, denotes the exterior
differentiation, and the Q] are the 2-forms expressed by

@.5) Q= — % Rl dx A dx'— Rl dx* Ady”

~ % Riwpdy” ndy .

These coefficients are given in terms of the coefficients of the
connection-forms ! as follows :

ary, .
(2.6) Rl = ax‘,ﬁ’f + % D s
ary, acl,
@17 Rbwy = = aC;,g’J,l';,cc,{l,_cgz,r,{k,
a J 7
@.8) Rlwy = acy*g_ +Clo -

The fact that these quantities R}.,, R}.,» and R}.., define tensors
will be verified later on.

We consider two infinitesimal parallel circuits in M and N
consisting of the four vertices P(x), P,(x+dx), P,(x+dx+5(x+dx)),
P/(x+8x) and of the Q(y), Q.(y+dy), Q,(y+dy+8(y+dy), Q/(y+3y)
respectively. We develope the tangent affine space at P, along
the infinitesimal side P,P, and then PP on the tangent affine
space at P by means of the usual process, using (1.1) and (1.2),

* We use for brevity the sign [7j] throughout the paper, which means
i i i
Ttpo=Ty—Tks-
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and then we get the point P’ and the vectors ¢/ as the images
of P, and the frame vectors e¢; at P, respectively. By the same
process using the point P, instead of P,, we have then the point
P” and the vectors e/’ as the images. The differences AP=P’'—
P” and Ae;=e;/—e; are given by

AP = (6d—dd)P, Ae,= (8d—dd)e;.
By the direct calculation we obtain their expressions:
2.9 AP = 2T%.dx 8x* +Ciyy da? 8y — Cl 827 dy*e;

(2.10) Ae; = (R}, dx*8x' + R .., dx* 8y"
—‘Rtj.kl/ ox* dy" +R£.k/,/ dyklsyll)ej .

We see from (2.9) that the AP is equal to zero for the fixed
observing point @ if and only if the tensor 7% vanishes, and
hence we denote this tensor by the forsion tensor.

Next we consider the latter equation (2.10). In the first
place, for the fixed @(y) we have

J— k 4
Ae; = R, dx*dx’e; .

The tensor Rj}.., is expressed in terms of the translation-parts of
the connection alone and has the similar geometric meaning to
the curvature tensor in Riemannian spaces. We call that the
translation-curvature. On the other hand, if the point P(x) in M
is fixed, then we get

Ae; = R}y dy” 8y’ e; .

which expresses the difference between the two rotations of the
frame vectors e; at P(x) according as the observing point @, displ-
aces along the sides Q,—Q,—Q and Q,—Q,/—Q. The tensor
R}..,» constitutes of the rotation-parts of the connection, and
hence we call this the rotation-curvature. Finally we take dx=0
and dy=0, and then we get

Ae; = Rl dx*8y"e; .

In this case the frame vectors e¢; at P, enjoy first the rotation
according to the displacement @, —@ of the observing point, and
then the vectors as thus obtained are carried into the vectors e/
of the tangent space at the origin P for the fixed @. Next, the
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frame vectors at P, are carried first into the vectors of the tangent
space at P with respect to the fixed observing point @,’, and then
the images enjoy a rotation according to the displacement @, —Q
and become the vectors e¢;”. The above equations give the differ-
ence Ae¢;—e/—e;/” of the vectors as thus obtained. We shall refer
to the tensor Rj..,, as the mixed curvature.

In terms of the covariant differentiations (,) the mixed
curvature and the rotation-curvature are written in the forms
respectively

2.7 Riwy =2t —ChoCt
( .1 ikl — 8y1/ (228 ih'cl/k ’
(2 8 R{.k/l, = C{Ek/,Z/,—CQ‘(kr C",Wj+2C{h, Tl?::l’ .

The second equation shows that the Rj..., is a tensor of (x)-order
(Z, I) and (y)-order (0,2). And, since it is easily seen that the
or',/0y” are components of a tensor, it follows from the first
equation that the Rl.., is a tensor of (x)-order (I, 2) and (y)-order
(0, 1).

If, in place of the manifold M, we consider the manifold N
and M is regarded as the observing manifold, we obtain similarly
the torsion temsor T, and the curvature tensors Rl , Ri'.,
and R{., of N, which are given by the similar equations to (2. 3),
(2.6), (2.7) and (2. 8).

The condition of integrability of the covariant differentiation
(,) is immediately obtained as follows:

1H _ /i ik’ ia’ PE’
(2- 11) A;,;’.[h,m] - AT;/ ll’hm_AzIIZC' {Jl'hm+AJLZl’ a’*hm
- A?;,’R?’.hm—‘ ZA?ZCI-aTZm ’
’ ’ ; ’ . 7 7
2.12) A ooty = ATy Roy o — Adir Rt + A3 R
— ARy — 248 s T
’ 7’ 1.7 t 4 4
(2.13) A?tc',rh.m'l = ch”zc tlt'hm’_AZl]Zc'Rl;'hm’— J?’Rg/'m’h
+ ATI;; R?:°m'h—A§,{:-a gm’ +A§’;:,a’ Cg;t,’h .
(We should remark that the algebraic sign of the third term in

the right hand member of the last equation is minus) If we
apply the rule (2.11) to a vector V¢, then we get

i i
V,B(J,k) - Va fl.ﬂc—ZV,aT?k y
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from which we see that the RY.,, is a tensor of (x)-order (I, 3)
and vanishing (y)-order.

3. Various identities satisfied by the torsion
and curvature tensors
We shall find the identities satisfied by the torsion tensor, the

curvature tensors and their covariant derivatives. First of all we
have directly from definitions

(3. 1) Rg-(kl) - 0 , R{.(kll/) - O*

Next, applying to the g-tensor g* the equations (2.11), (2.12) and
(2.13), and making use of the fact that the tensor is covariant
constant, we get

! i i/ — ! D’ v/ —
g? o’ k; " 8a (.;'kl =0 ’ g!; Ra’-k’z’—'ga ?-k’z’ =0 ’
/ 2/ i’ J—
—g7 ;’-k’z_ga 7-:7:’ =0 ’

and further we have also the similar equations for the inverse
g%. Hence we can define the tensors such that

i’ gt P — gt/ Pa
RJ ar — &5 Karwy = La Loy s
i’ . 4 i’ . 1/
R'j wy =85 Ra’-k/z/ = ga Rf;-k’l/ ,
i — i — gt 4
RJ’-kl - g(fl'Ra-kl = 8w R(jt’-kz ’

i — i — ot ,
le.k/l/ = g‘;/ Rn.klll =G R?’-k’z’ ,

(3.2

and moreover

l/ S / i’ _— i’
RJ xr — gljl R«’z’-k'z — _gr’z (.;'lk’ >

(3‘ 3) R o0 i . 1 a’ '
Sy =8y Rewyr = — 8w Ry
from which we see

Riw, = Riu, gl gy,
(3 4) f Jokl b/ & igj,,/

Rj.k/lf = Rgx.k/,/ga/g, s
(3.9) —Rﬁ-”c/ == Rg:-k'zg;'g?;/ .

The equation (3.4) shows that, in so far as the contravariant

* The sign (i) is used to mean
R%’-(kz)=Rg°kl+R{'lk‘
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index and the first covariant index, the translation-curvature of
M(N) is g-related to the rotation-curvature of N(M).

In order to find the identities satisfied by the covariant
derivatives of the torsion tensor, we operate to (2.1) the exterior
differentiation and then we get as a consequence of (2. 4)

(3. 6) . dY+ QAdy = — i Nwfndx? .

Comparing the coefficients of the both sides we obtain the
following two equations:

(3.7 Ry =2Tu, »—4T;Ti*
(B.8) Ryt = 2Tk ;1 —Cliyyryay— 2T Clyr— 2T} Clyy— Cliin Cli iy
Further, by means of the same process from (2.4), we have
3.9 dQl = i N A—-D N o,
and the following four equations:
(3.10) Rler.m> = 2R} Th >
B.11) Rl — Ricimiin=2Rp Tty + R4 Ctrpr + Ricuin Cloiis
B.12) Ry i+ Riscr.ms=—2Rl TV — Rl yrClhtr,— Rl 11130 Clivi
(3.13) Ricwrirm = 2R T > .
These equations are the generalizations of the Bianchi’s identities
in Riemannian geometry.

4. The notions of the g-torsion and g-curvature

We shall restrict our consideration in this section within the
case where the displacement dy of an observing point Q(3) in N
is g-related to the dx of a point P(x) in M. Then the connection-
forms o] and !’ are written in the forms

4.1) 0! = Aldx®, 00 = Aludy”,
where we put

4.2 Al (x, y) =T+ Cih/g’ré' » Ag:k'(y, %) =T+ Cg:ng%' .

* We use, for brevity, the sign (ijk) which means
TI‘;(JTﬁz)= TI‘LJT;GLZ_'- TliﬂcT?f‘“Tl‘u T’;k :
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By means of these coefficients A}, and A{, we can introduce
new operations (/) of covariant differentiations, the rule of which
are written, for a tensor A%/, in the forms

aA
?zc = Duh L +Al}’f Ai— A:[z'f AS,

4.3) . DA , o
St = 3 :Z/ + Ay Ay — A AL
J’
For a vector Vi we put

A
/3 _ayj/'

However, we have to remark that the g-tensors are nof covariant
constant with respect to these differentiations (/) and we get from
(1.6) and (1.7)

4. 4 gn=guvC¥y gﬁw = —ghCl,
gin=—8gYCt, giw=giCs,

where putting

(4.5) Cl =Clw+Cy.glhgygy. CH =Crogighgd.

We shall use at present this operation (/) to write simply the
following equations. The condition of integrability of the (/)-
differentiation is given by

ik’ — k()i 1134 ik’
(4- 6) A]l'/‘fh/m) — A?;’Qa-hm_Aaz’ Q‘j]'hm_ZA?lc’/a Zm .
z- 7 _ ’ 4 i s’ 4 P ’ 4
@7 A ims = A5 Qv — Al QF syt — 245131 St
ix’ — [ ik’
(4. 8) A}’{’/Eh/m’] — A”’Aa hm! AZ;’;’ Al}.hm A”(Ak /,,+A“” An

where we put

‘ 1 oA
(4. 9) §k - 2 Agjkj ’ j k! = aylj’k ’
oA,
4.10) Qhy = o T+ A Ay

— t n ) I3 "o i /T
— Rj-kl - CJh’,chz) + C.fa' Cnb’g?kgzl +2C1a/g'zzz xl >y

and further the S¥. , Q) ./,» and Al .., are defined by the similar
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equations in terms of the A}, instead of the A%
Now we set

4. 11) O = —0indx/, O = -0 ndy’ .

which are written in the forms

4.12) Oi = S%.dx’ Adx*, O = St dy’ A dy”

These coefficients S, and S), are clearly the components of
tensors, which are said the g-torsion of M and N respectively.
If we take generally a function f(x, y), then we obtain

df — gyfc_ﬁ dxi +§yfj_, dy? .

Hence, if we use the sign A for g-related dx’ and dy’ instead of
the d, then we get

3F OF Of N\, 4
a7 = (St et Jaxt = (ST S )’

Therefore if we put

Af _of  Of Af _ of _fg
Ax  oxt oy Ayi’ oy towd

then we have

Af = iy{,dx'— yj;,dy"/,

and

NS
(4.13) aw —ayr

Let o be a p-form of g-related dx and dy”, and then it follows
by direct calculation that

4.14) Ao = (—1)9——/\dx’ = (—1)"—/\dy7
Ay’

where the A/Axi and A/Ay7 operating to a form denote the A-
differentiation of its coefficients alone.

Applying to (4.1) the A-differentiation and making use of
(4. 14), we obtain
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AG = 65 A 0} 4+ O

4.15 , b e
( ) A9§/ = 0% /\0;6/—{-@3/ ,

where we put

®) = — 1 Pl dr* ndx,

(4. 16)

N

@i: — —E— P;:.k/l/dyk/ N dyl/,

and the coefficients are given by

AA!
4.17) Pl =5

ik 1 i . i i n’
) + A Ay = Qi + A €0,

and the P%..,, are defined by the similar equations in terms of
the A%, instead of the A’.. The coefficients Pi.,, define a tensor
which is called the g-curvature tensor of M.

As a consequence of (1.6), (1.7), (1.6) and (1.7) we get

A il ’
S = gy Mg A,

‘ ’
‘Zgy g A gl A

and the similar equations for g%, where we set
’ ’ /7
Afy =AYy g%, A = ANy gir .

Therefore if we introduce the covariant g-differentiation (;) such
that, for a tensor A}

. AAikj
(4.18) A, =0

ax’ A & ik’ Aa ta’ A K ik’ Aa’
+AJz’Aah_Aal’Ajh+Ajz’Au’h_ Ja’Az’h’

and the similar equation for A%’.,,, then these derivatives define
clearly tensors and that we have

gvx=0, gyw=0,

g4x=0, giw=0,
Moreover the covariant g-differentiation has a useful property :
(4.19) A =AY 8%,

which is the direct consequence of (4.13). And we get also from:
4. 3)
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(4. 20) ?zc:;h = A;’zc;/h +A§’ZC;/m'g;zn,-
If we put

. Dy =Si—Sv.gigygs,

’ D.‘fjk’ZS;:k'—Sgcgli,gI;/g;/’

then we have

7
DY = —Ds g gy gir,
and

P>

i
Aol = 2D (= —2Diuggi)

4.22)

A
Aig__zp (= '—2Da,b’g.1 gk)-

Making use of these equations we have the conditions of integra-
bility of A-differentiation as follows :

Af of
A—Jc”;(Axf’) ~2 g5 Dl
4.23)
A [ Af af " Dy
Ay \Ayi) e

We get immediately, in virtue of (4.23), for a vector V¢

Vi = VoL —2Vi, 55, aV

4.29

’
V?[J/;k’] = Vapff.iyk/-— 2V;‘a,S‘}/k/—

where the Pi.,, are components of the g-curvature, while the
P¥t., are given by

’
x*

1 p—
P¥hne = + AL Al

The first of (4.24) shows that the PL.; is certainly a tensor,
because the 9Vi/9y” =Vi, is a tensor. We see, however, from
the second of (4.24) that the P¥%,, is not a tensor, because

the OVi/ox" is not a tensor. Making use of the covariant (/)-
differentiation we may rewrite the second of (4.24) in the form
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= VPl —2ViwSSu— (Vie— VAL) DS
= VPEYy s+ 20 D) =2V ST —2V 2 D
which shows that the quantities
Pty = PEery+20M5, Dy
define a tensor. However we get
4. 25) Pl =Plugiigh,

which is the immediate result from the equations (4.19) and
(4. 24). Consequently we establish the condition of integrability
of the covariant g-differentiation as follows:

4.26) A% oim = A Plpm— Ay P+ A5y Pl — Ay P ym
_ZA?ZC; ;ang_ZA?;;/a’ Dz;n .
If we want to get the expressions for the A%, .y and A, g m,
JE 5 (" ym”) ALY

they are easily established by means of (4.19) and (4.26). Apply-
ing (4.26) to the g-tensors and making use of (4.4), we obtain

@2 g Pl —gh P, = —2g% Cxl, DY |
' gt Ph,— g% Pia, = —2g1 C3u DY .

Remembering the definition of the D%, , C¥’ and (4.25), the above
equations give that, if the g-torsion of M is g-related to the one
of N, or if the rotation parts of the connection of M is different
from the tensor g-related to the one of N in a point of algebraic
sign alone, then the g-curvature of M is g-related to the one of N,

Finally we shall find the identities satisfied by the covariant
g-derivatives of the g-torsion and g-curvature. Operating A to
(4. 11) and making use of (4.15), we get

(4. 28) AOi = — O ANOLADX — O\ Adx7 .
Comparing the coefficients of the both sides we have
(4.29) P(t].kl) - ZS(ijk;z)_4S;(jS%[).

This is of the same form as (3.7). Next, if we operate A to
(4.14) and substitute from (4.23), then we have the general
formula

(4. 30) Al = 8“’,, AD7
ayf
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where we put D =D} ,dx*Adx’. Applying this formula to the
form (4.15), we get

1
(4.3 NG =9§A®£—®§AG,€+%ADV.

Comparison of the coefficients of the both sides gives us
4.32) Picerimy = 2P 5w Sty — 20 S Ditns

This is of a little different form from (3.10). However, if the g-
torsions are g-related, then they has the same form.

5. The notion of paths

We shall define a parallelism of vectors. Let Vi(x,y) be a
vector field. It is natural from (1.2) that the V¢ is said to enjoy
the parallel displacement if the equations

(6.1) dVi4 Vi(li(x, y)da* +Clu(x, y)dy*) =0

are satisfied. If the displacement dy of the observing point Q(y)
is g-related to the dx of the origin P(x), then the above equation
is reducible to

5. 2) dVi+ ViNl(x, y)dx* =0.

We shall use this in order to define a path. That is, we consider
a curve C: xi=xi(f) in M and, if the equations

d*xi

dx’ dx* __
ar 0

(6.3) +A%(x, ¥) ar df =
are satisfied under the suitable choice of a parameter £, then the
C is denoted the path in M with respect to the observing point
Q(»). This definition is probably natural and useful, because the
displacement dy of the observing point Q(y) is not contained in
(5. 3).

On the other hand, we have a remarkable class of curves,
such that every tangent vector dxi/dt of a curve C: x'=xi(f) in
M is g-related to a constant vector V7 at an observing point
Q(y) in N. We differentiate the equations

dxi ; y
d—’; =gi(x, V7
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with respect to ¢ and make use of (1.6), and then it follows that

. , dx? dx*
(5. 4) dtz +(U(r, 9) — g5 Cinly, 018N % dt dt =0.

The curve C satisfying the above equations is called the central
path.

Now we see that the equation (5.4) does not generally coin-
cide with the equations (5.3) of a path. However, I think to
be natural from the stand-point of our geometry that the condition
of coincidence of (5.3) and (5.4) is imposed. The condition is
written by

Ay, = 1‘?;k>—-g?3 C'fc;/;x)gzt;' ,
that is
(5.5) g5 CELy =0

Thus we arrive at a connection such that the C¥%’ defined by
(4.5) vanish, that is

5.6) Ciw=—Cl.gugy gi.

In the following we show that such a connection may be defined.
If the translation-parts ch of the % are arbitrarily given,
then the rotation-parts C!, of the w! are uniquely determined
such that the equations (1.6) hold. While we have yet an
arbitrariness in order to take the Ci%, and Iy, satisfying (1.7).
Hence if the C%, are determined by (5.6) in terms of the C¥,,
then the I'Y,, are uniquely taken to satisfy (1.7). The pair (o,
w!’) as thus determined is called to be (—g)-connection.

In this case we see some interesting circumstances. First of
all, since (5.5) holds, a central path is always a path. Next, we
see from (4.4) that the g-tensors are covariant constant with
respect to the covariant (/)-differentiations. Hence, applying to
the g-tensor the formulae (4.6), (4.7) and (4.8), we have

(5 7) Qém == ng.k/l/ - 0 ,
(. 8) gL+ gAY =0,

As a consequence of (4.10) we have the expression of the transl-
ation-curvature as follows :
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©.9) Riw = Ciw,088— Clar Chor 8585 —2Cw g5 Thy

and from (4.17) we obtain for the g-curvature

(5.10) Pl = Agaw g?]'
and from (4.27)
5. 11) P, =Phagl gy .

It follows from (4.25) and (5.11) that the g-curvature tensor of
M is g-related to the one of N.

Finally, we give a simple example of a (—g)-connection. We
take a vector field p; and put

C.‘fk’ = Pjg:‘/ ’
and then the I'Y,, are uniquely determined such that the equations
(1.7) are satisfied. We define the C%, by
Cj;lc = —Pj'glf:, ’

where the vector p;s is g-related to the p;. It follows easily that
the equation (5.6) holds good. And further, if we determine the
1'%, by (1.6), then we get the special type of a (—g)-connection.
In this case by means of (5.9), we obtain the simple expression
of the translation-curvature

2

Riwi = pyadh—p;padh—2p; Tk,

and for the rotation-curvature we have from its definition (2.8
Riwy = —psw8in—p;ipwpin+20; Thugh .
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