On exact sequences in Steenrod algebra mod. 2

By

Hirosi Toda

(Received December 10, 1957)

A Steenrod algebra A^* will mean a stable Eilenberg-MacLane cohomology group $A^*(Z_2, Z_2) = \lim H^*(Z_2, n; Z_2)$ in which the multiplication is defined by the composition of the squaring operations Sq^t . The formula $\varphi_a(b) = ba$ associates for each element a of A^* an (additive) homomorphism $\varphi_a \colon A^* \to A^*$. We write $\varphi_a = \varphi_t$ if $a = Sq^t$, then $A^*(Z, Z_2) = A^*/\varphi_1 A^*$. We shall give an elementary proof of the following

Theorem I. The following two sequences of homomorphisms are exact.

$$A^* \xrightarrow{\varphi_2} A^*$$

$$\uparrow \varphi_3 \qquad \downarrow \varphi_2$$

$$A^*/\varphi_1 A^* \xleftarrow{\varphi_5} A^*/\varphi_1 A^* ,$$

$$A^*/\varphi_1 A^* \xrightarrow{\varphi_3} A^*/\varphi_1 A^* \xrightarrow{\varphi_3} A^*/\varphi_1 A^* .$$

Several exact sequences are known experimentally for lower dimensions. For example, it seems that the sequence

$$A^* \xrightarrow{\varphi_2 r} A^* / (\sum_{i=0}^{r-2} \varphi_2 i A^*) \xrightarrow{\varphi_2 r} A^* / (\sum_{i=0}^{r-1} \varphi_2 i A^*)$$

is exact. More generally we propose

Problem. Let $a, b_1, \dots, b_r \in A^*$. Is the kernel of $\varphi_a : A^* \to A^*/(\sum_{i=1}^r \varphi_{b_i}A^*)$ finitely generated (as a left ideal)?

In place of φ_a , take a homomorphism φ_a^* defined by the formula $\varphi_a^*(b) = ab$, then the exactness of analogous sequences is proved by T. Yamanoshita and A. Negishi $(cf. \lceil 5 \rceil)$.

Theorem II. Let $B^* = \sum B^i$ be one of the five kernel-images in the exact sequences of Theorem I, then in the sequence

$$B^{i^{-1}} \xrightarrow{\varphi_1^*} B^i \xrightarrow{\varphi_1^*} B^{i^{+1}}$$

$$(\varphi_1^*)^{-1}(0)/\varphi_1^*(B^{i^{-1}}) \approx \begin{cases} Z_2 & \text{for } i \equiv \lambda \pmod{4}, & i \geq 2, \\ 0 & \text{otherwise,} \end{cases}$$

we have

where λ takes the following values:

when
$$B^* = image$$
 of φ_2 φ_2 φ_5 φ_3 φ_3 φ_3 $= kernel$ of φ_2 φ_5 φ_3 φ_2 φ_3 then $\lambda = \begin{bmatrix} 0 & 1 & 1 & 3 & 1 \text{ or } 3. \end{bmatrix}$

The above two theorems are proved in § 2 under some preparations in § 1. In § 3, we see some partial exact sequences, which are applied in § 4 to study the cohomology of fibre spaces over a sphere and to calculate the following values of 2-components of the stable homotopy groups $\pi_k = \lim_{k \to n} \pi_{k+n}(S^n)$ of the sphere:

We have also a partial result on π_{14} which will be useful for determining the groups π_{14} and π_{15} .

§ 1. Steenrod algebra $A^*=A^*(Z_2, Z_2)$.

Consider a sequence $\mathfrak{X} = \{X_k, f_k; k = N, N+1, N+2, \cdots\}$ which satisfies the conditions

- (1.1). i) X_k are (k-1)-connected spaces.
 - ii) f_k are mappings of the suspensions $S(X_k)$ of X_k in X_{k+1} .
- iii) For each integer i, there exists an integer $\lambda(i)$ such that $f_{k*}: \pi_{i+k+1}(S(X_k)) \rightarrow \pi_{i+k+1}(X_{k+1})$ are isomorphisms for $k \geq \lambda(i)$.

Then it is verified that the condition iii) may be replaced by the same condition for homology groups. Denote that

$$G_i(\mathfrak{X}) = \text{Dir. lim } \{\pi_{i+k}(X_k), f_{k*} S\},$$

 $A_i(\mathfrak{X}) = \text{Dir. lim } \{H_{i+k}(X_k), f_{k*} S_*\},$
 $A^i(\mathfrak{X}) = \text{Iny. lim } \{H^{i+k}(X_k), S^* f_k^*\},$

where S, S_* and S^* denote the suspension homomorphisms. Remark that these groups can be defined without the condition iii). By the condition iii), we may regard that

$$\begin{aligned} G_i(\mathfrak{X}) &= \pi_{i+k}(X_k) \;, \\ A_i(\mathfrak{X}) &= H_{i+k}(X_k) \;, \\ A^i(\mathfrak{X}) &= H^{i+k}(X_k) \;, \end{aligned}$$

for sufficiently large k. Cohomological operations which commute with f_k^* and S^* are naturally defined in $A^i(\mathfrak{X})$. For example, the squaring operation $Sq^i \colon A^i(\mathfrak{X}, Z_2) \to A^{i+t}(\mathfrak{X}, Z_2)$ is defined. The groups $G_i(\mathfrak{X})$, $A_i(\mathfrak{X})$ and $A^i(\mathfrak{X})$ are called the stable homotopy, homology and cohomology groups of \mathfrak{X} respectively.

The *i-th stable homotopy group* π_i of the sphere is defined by

$$\pi_i = G_i(\mathfrak{S})$$

where $\mathfrak{S} = \{S^k, i_k\}$ is a sequence consists of the k-spheres S^k and the identities of $S^{k+1} = S(S^k)$. It is well known that $\pi_i = \pi_{i+N}(S^N)$ for N > i+1 under the convension (1.2).

The *i-th stable Eilenbrg-MacLane homology group* $A_i(\pi)$ and cohomology group $A^i(\pi, Z_2)$ of an abelian group π are defined by

$$A_i(\pi) = A_i(\Re(\pi))$$
 and $A^i(\pi, Z_2) = A^i(\Re(\pi), Z_2)$,

where $\Re(\pi)$ consists of Eilenberg-MacLane spaces $K(\pi, k)$ and mappings $f_k: S(K(\pi, k)) \to K(\pi, k+1)$ which induce isomorphisms of (k+1)-th homotopy groups. It is well known that $A_i(\pi) = H_{i+N}(\pi, N)$ and $A^i(\pi, Z_2) = H^{i+N}(\pi, N; Z_2)$ for $N \ge i+1$ under the convension (1.2).

A symbol I will denote a finite sequence $I = (i_1, \dots, i_r)$ of positive integers. It is convenient to introduce the empty sequence $I = (\phi)$. We use the following notations:

$$\deg I=i_1+\cdots+i_r$$
 (degree of I), $\deg (\phi)=0$, $l(I)=r$ (length of I), $l(\phi)=0$, $t_j(I)=i_j$ (j-th element), $t(I)=i_r=t_{I(I)}$ (last element).

A sequence $I = (i_1, \dots, i_r)$ is called to be *admissible* if $i_j \ge 2i_{j+1}$ for $j = 1, \dots, r-1$.

By Serre's work [4], the stable Eilenberg-MacLane cohomology

group $A^i(Z_2, Z_2)$ has its Z_2 -base $\{Sq^Iu\}$, where $Sq^I = Sq^{i_1o} \cdots \circ Sq^ir$, I is admissible, $\deg I = i$ and u is the fundamental class of $A^o(Z_2, Z_2)$. For an arbitrary sequence I, Sq^Iu belongs to $A^i(Z_2, Z_2)$, $i = \deg I$. Thus Sq^Iu is a sum of admissible squares Sq^Iku . The result $Sq^Iu = \sum Sq^Iku$ is obviously unique and is called the *normalization* of Sq^Iu .

For the simplicity, we set

(1.3)
$$Sq^{I}u = I$$
, $A^{i}(Z_{2}, Z_{2}) = A^{i}$ and $A^{*} = \sum A^{i}$.

Then A^* is a graded Z_2 -module generated by the sequences I with the relation determined by the normalization $I = \sum I_k$. Set

$$IJ = (i_1, \dots, i_r, j_1, \dots, j_s)$$

for $I = (i_1, \dots, i_r)$ and $J = (j_1, \dots, j_s)$, then a multiplication is defined in A^* , since the product IJ corresponds to the composition $Sq^I \circ Sq^J$ of the squaring operations. Now A^* becomes a graded algebra over Z_2 , namely Steenrod algebra mod 2.

When l(I) = 2, the normalization process is given precisely by the Adem's relations $\lceil 1 \rceil$, $\lceil 2 \rceil$:

$$(1.4) (2h-m, h) = \sum_{h-m+t\geq 0} {m-t-1 \choose t-1}_2 (2h-t, h-m+t),$$

where m>0, $\binom{a}{b}_2 = \binom{a}{a-b}_2$ is the binomial coefficient mod 2 with the convension $\binom{a}{b}_2 = 0$ if b < 0 and we omit the term h-m+t if h-m+t=0. The coefficient $\binom{m-t-1}{t-1}_2 = \binom{m-t-1}{m-2t}_2$ vanishes if t-1<0 or m-2t<0. Therefore the summation of (1.4) is valid for the following values of t:

(1.5) Max.
$$(1, m-h) \le t \le m/2$$
.

Since $t \le m/2 < 2m/3$, we have 2h-t > 2(h-m+t). Thus the relation (1.4) gives the normalization of (2h-m, h).

Lemma 1.1. Each sequence I is normalized by use of the Adem's relations. The normalization preserves the degree and does not augument the length.

Proof. By (1.4), the lemma is true for l(I) = 2. Put $I = (i_1, \dots, i_r)$, r > 2 and assume that the lemma is true for l(I) < r and for $l(I) > i_1$ (and l(I) = r). Then (i_2, \dots, i_r) is normalized.

Thus we may assume that (i_2, \dots, i_r) is admissible. If $i_1 \ge 2i_2$, I is already admissible. If $i_1 < 2i_2$, (i_1, i_2) is normalized to $\sum (a_k, b_k)$ where $a_k + b_k = i_1 + i_2$ and $a_k \ge 2b_k$. Then $a_k > i_1$ and $I = \sum (a_k, b_k, i_3, \dots, i_r)$, and each term of the summation is normalized by the assumption. Obviously these processes preserve the degree and do not augument the length. The lemma is proved inductively since $t_1(I) \le \deg I$.

Lemma 1.2. Let $I=(i_1,\cdots,i_r)$ be an admissible sequence and let i be a positive integer less than $2i_1$. Let $\sum I_j$ be the normalization of $(i)I=(i,i_1,\cdots,i_r)$. Then $t_1(I_j)\leq 2i_1-1$ for all j. If $t_1(I_j)=2i_1-1$, then $I_j=(2i_1-1,i-i_1+1,i_2,\cdots,i_r)$ or $I_j=(2i_1-1,i_2,\cdots,i_r)$. The term $I_j=(2i_1-1,i-i_1+1,i_2,\cdots,i_r)$ exists if and only if $2(i_1-1)\geq i\geq i_1-1$ and $i-i_1+1\geq 2i_2$. The term $I_j=(2i_1-1,i_2,\cdots,i_r)$ exists if and only if $i=i_1-1$.

Proof. First consider the case r=1. By (1.4) and (1.5), each term I_j has a form $(2i_1-t,\ i-i_1+t)$ for Max. $(1,\ i_1-i)\leq t\leq i_1-i/2$. Then $t_1(I_j)=2i_1-t\leq 2i_1-1$. If $t_1(I_j)=2i_1-1$ then t=1 and whence the condition $i_1-i\leq t\leq i_1-i/2$ implies that $2(i_1-1)\geq i\geq i_1-1$. Conversely, if $2(i_1-1)\geq i\geq i_1-1$ then the coefficient $\binom{2i_1-i-2}{0}_2$ of $(2i_1-1,\ i-i_1+1)$ equals to 1. Therefore the lemma is true for r=1.

Now let r > 1 and assume that the lemma is true for l(I) < rand for l(I) = r and $t_1(I) < i_1$. Applying the lemma of the case r=1, we have that (i, i_1, \dots, i_r) is a sum of some $J_t=(2i_1-t,$ $i-i_1+t, i_2, \dots, i_r$) and the term J_1 appears if and only if $2(i_1-1)$ $\geq i \geq i_1 - 1$. The term J_1 is admissible if $i - i_1 + 1 \geq 2i_2$ and also if $i-i_1+1=0$ since $2i_1-1 \ge i_1 \ge 2i_2$. In the case $0 < i-i_1+1 < 2i_2$, applying the lemma to $(i-i_1+1)(i_2, \dots, i_r)$, $(i-i_1+1, i_2, \dots, i_r)$ is normalized to $\sum (a_k, b_k, \cdots)$ such as $a_k \leq 2i_2 - 1$. Since $a_k \leq 2i_2 - 1$ $\leq i_1 - 1 < i_1$, we may apply the lemma to $(2i_1 - 1)(a_k, b_k, \cdots)$ by the assumption. Then $J_1 = (2i_1 - 1, i - i_1 + 1, i_2, \dots, i_r)$ is normalized to $\sum I_j$ such as $t_1(I_j) \leq 2a_j - 1 < 2i_1 - 1$. Therefore, when $0 < i - i_1 + 1$ $\langle 2i_2 \rangle$, the normalization of J_1 has no term I_m of $t_1(I_m) = 2i_1 - 1$. Next consider the term J_t for t < 1. If J_t is not admissible, by similar arguments to the case t=1, we have that the normalization of J_t consists of I_j such as $t_1(I_j) < 2i_1 - 1$. If J_t is admissible, $t_1(J_t) = 2i_1 - t < 2i_1 - 1$. Consequently we see that the lemma is proved by the induction since $t_1(I) \ge 2^{l(I)-1}$.

Lemma 1.3. Let $I = (i_1, \dots, i_r)$ be admissible and $s \ge 0$. If $2^{s+r-j} \le i_j \le i^{s+r-j+1}$ for $j = 1, \dots, r$, then the normalization of $\varphi_{2^{s+1}}I = (i_1, \dots, i_r, 2^s + 1)$ is $(2^{s+r} + 1, i_1 - 2^{s+r-1}, i_2 - 2^{s+r-2}, \dots, i_r - 2^s) + \sum (a_k, b_k, \dots)$ where $a_k \le 2^{s+r}$ and $i_r - 2^{s+r-j}$ are omitted if $i_j = 2^{s+r-j}$.

Proof. Then lemma is obvious for r = 0. Suppose that the lemma is true for l(I) = r - 1. Then $\varphi_{2^{s}+1}I = (i_1)(i_2, \cdots, i_r, 2^s + 1) = (i_1, 2^{s+r-1} + 1, i_2 - 2^{s+r-2}, \cdots, i_r - 2^s) + \sum (i_1, a_k', b_k', \cdots)$ and $a'_k \le 2^{s+r-1}$. By Lemma 1.2, each term $I_{m'}$ of the normalization $\sum I_{m'}$ of $(i_1, a_k', b_k', \cdots)$ satisfies $t_1(I_{m'}) \le 2^{s+r} - 1$. Next the term $(i_1)(2^{s+r-1} + 1, i_2 - 2^{s+r-2}, \cdots, i_r - 2^s)$ satisfies the conditions $2(2^{s+r-1} + 1 - 1) \ge i_1 \ge 2^{s+r-1} + 1 - 1$ and $i_1 - (2^{s+r-1} + 1) + 1 \ge 2(i_2 - 2^{s+r-2}) = 2i_2 - 2^{s+r-1}$ of Lemma 1.2, by the assumption of this lemma. Then the normalization of $(i_1, 2^{s+r-1} + 1, i_2 - 2^{s+r-2}, \cdots, i_r - 2^s)$ is $(2^{s+r} + 1, i_1 - 2^{s+r-1}, i_2 - 2^{s+r-2}, \cdots, i_r - 2^s) + \sum (a_l, b_l, \cdots)$ where $a_l \le 2^{s+r}$. Therefore the lemma is proved by the induction on l(I).

For the convenience, we note some relations obtained directly from (1.4).

$$(1, 2i) = (2i + 1),$$
 $(1, 2i - 1) = 0,$
 $(2, 2) = (3, 1),$ $(3, 2) = 0,$

(1.6)
$$(2,3) = (5) + (4,1), (3,3) = (5,1), (4,3) = (5,2), (5,3) = 0,$$

 $(2,4) = (6) + (5,1), (3,4) = (7), (4,4) = (7,1) + (6,2), \cdots,$
 $(2,5) = (6,1), (3,5) = 0, (4,5) = (9) + (8,1) + (7,2), \cdots.$

§ 2. Proof of Theorems.

The formula $\varphi_a(b) = ba$ defines a homomorphism φ_a of the left A^* -modules. In particular, for an integer t the homomorphism $\varphi_{(t)}$, denoted by φ_t , is defined by $\varphi_t(i_1, \dots, i_r) = (i_1, \dots, i_r, t)$.

By (1.6), $\varphi_1(i_1, \dots, i_r) = 0$ if $i_r = 1$. If $i_r > 1$, then $\varphi_1(i_1, \dots, i_r) = (i_1, \dots, i_r, 1)$ is admissible. Thus the sequence

$$(2.1) A^* \xrightarrow{\varphi_1} A^* \xrightarrow{\varphi_1} A^*$$

is exact. The kernel-image $\varphi_1(A^*) = \varphi_1^{-1}(0)$ of the sequence has the admissible sequences I of the last element t(I) = 1 as its Z_2 -base. The factor group A^*/φ_1A^* has a Z_2 -base $\{I \mid \text{admissible}, t(I) \geq 2\}$.

For an odd t, $\varphi_t \circ \varphi_1 = \varphi_{(1,t)} = 0$ by (1.6). Then φ_t defines an A^* -homomorphism of A^*/φ_1A^* into A^* which will be denoted by

the same symbol

$$\varphi_t: A^*/\varphi_1 A^* \to A^*$$
.

We denote the composition of φ_t and the natural homomorphism of A^* onto A^*/φ_1A^* by

$$\bar{\varphi}_t \colon A^* \to A^*/\varphi_1 A^*,$$

 $\bar{\varphi}_t \colon A^*/\varphi_1 A^* \to A^*/\varphi_1 A^*, \quad t \colon odd.$

Now the first theorem is stated as follows.

Theorem 1. The following sequences are exact.

i)
$$A^* \xrightarrow{\varphi_2} A^* \xrightarrow{\bar{\varphi}_2} A^*/\varphi_1 A_*$$
,

ii)
$$A^* \xrightarrow{\bar{\varphi}_2} A^*/\varphi_1 A^* \xrightarrow{\bar{\varphi}_5} A^*/\varphi_1 A^*$$
,

iii)
$$A^*/\varphi_1 A^* \xrightarrow{\bar{\varphi}_5} A^*/\varphi_1 A^* \xrightarrow{\varphi_3} A^*$$
,

iv)
$$A^*/\varphi_1 A^* \xrightarrow{\varphi_3} A^* \xrightarrow{\varphi_2} A^*$$
,

v)
$$A^*/\varphi_1 A^* \xrightarrow{\bar{\varphi}_3} A^*/\varphi_1 A^* \xrightarrow{\bar{\varphi}_3} A^*/\varphi_1 A^*$$
.

We introduce the following notations:

 $\alpha_i = (the \ rank \ of \ A^i) = (the \ number \ of \ the \ admissible \ sequences \ of \ a \ degree \ i),$

 $\bar{\alpha}_i = (the \ rank \ of \ A^i/\varphi_1A^{i-1}) = (the \ number \ of \ the \ admissible \ sequences \ I \ of \ a \ degree \ i \ such \ that \ t(I) \geq 2),^{1)}$

 $\beta_i(t) = (the \ rank \ of \ the \ image \ \varphi_t(A^{i-t}) \ in \ A^i),$

 $\bar{\beta}_i(t) = (the \ rank \ of \ the \ image \ \bar{\varphi}_t(A^{i^{-1}}) \ in \ A^i/\varphi_1A^{i^{-1}}).$

An admissible sequence $I = (i_1, \dots, i_r)$ is called to be of a $type^{ij}$ (i, s) if $\deg I = i$ and if there exist integers j and t such that $i_j = 2^t + 1$, $1 \le j \le r$ and $t \ge s + (r - j)$. Obviously an admissible sequences of a type (i, s) is of a type (i, s') for $s' \le s$. Denote that

 $\gamma_i(2^s+1) = (the number of the admissible sequences of a type (i, s)),$

 $\bar{\gamma}_i(2^s+1) = (the number of the admissible sequences I of a type (i, s) such that <math>t(I) \ge 2$).

¹⁾ We consider that the empty sequence (ϕ) satisfies the condition $t(I) \ge 2$ and has a type (0, s) for arbitrary s.

For an admissible sequence $I=(i_1,\cdots,i_r)$ of a type (i,s), we define an admissible sequence $\sigma_{2^s+1}I$ as follows. Let j be the least integer such that i_j has a form 2^t+1 . Then $t-(r-j)\geq s$. For, there are t' and $j'\geq j$ such that $i_{j'}=2^{t'}+1$ and $t'-(r-j')\geq s$, then $2^t+1=i_j\geq 2^{j'-j}i_{j'}\geq 2^{t'+j'-j}+1$ implies $t-(r-j)\geq t'-(r-j')\geq s$. Then we set

$$(2.2) \quad \sigma_{2^{s+1}}I = (i_1, \dots, i_{i-1}, i_{i+1} + 2^{t-1}, \dots, i_r + 2^{t-(r-j)}, 2^{t-(r-j)-1}, \dots, 2^s).$$

It is easily verified that the sequence $\sigma_{2^{s}+1}I$ is admissible.

For an admissible sequence $I=(i_1,\cdots,i_r)$ such that $i_r\geq 2^s$, we define a sequence $\tau_{2^{s+1}}I$ as follows. Let k be the largest integer such that $i_k>2^{s+r-k+1}$. We set k=0 if $i_j\leq 2^{s+r-j+1}$ for $1\leq j\leq r$. Now we set

$$(2.3) \quad \tau_{2^{s+1}}I = (i_1, \dots, i_k, 2^{s+r-k}+1, i_{k+1}-2^{s+r-(k+1)}, \dots, i_r-2^s),$$

where we omit $i_{k+n}-2^{s+r-(k+n)}$ if $i_{k+n}=2^{s+r-(k+n)}$. It is easily seen that $\tau_{2^{s+1}}I$ is admissible if and only if $i_k+2^{s+r-k+1}+1$.

Lemma 2.1. i) Let I be an admissible sequence of a type $(i+2^s+1, s)$. Then $t(\sigma_{z^s+1}I) \geq 2^s$, $\tau_{z^s+1}(\sigma_{z^s+1}I) = I$ and $\sigma_{z^s+1}I$ is not a type (i, s+1). If $t(I) \geq 2$, then $\sigma_{z^s+1}I$ is not a type (i, 1). If $t(I) \geq 2$ and $s \neq 1$, then $\sigma_{z^s+1}I$ is not a type (i, 0).

ii) Let I be an admissible sequence of a degree i which is not a type (i, s+1) and which has a last element $t(I) \ge 2^s$. Then $\tau_{2^s+1}I$ is an admissible sequence of a type $(i+2^s+1, s)$ and we have $\sigma_{2^s+1}(\tau_{2^s+1}I) = I$. Furthermore $t(\tau_{2^s+1}I) \ge 2$ if I is not a type (i, s).

Proof. i) Let $\sigma_{2^{s+1}}I$ be defined by (2.2). Obviously $t(\sigma_{2^{s+1}}I) \geq 2^{s}$. We set $l(\sigma_{2^{s+1}}I) = t - s + j - 1 = r'$. Since $i_{j+n} \leq (2^{t}+1)/2^{n} = 2^{t-n} + 2^{-n}$, $n = 1, \dots, r-j$, we have $t_{j+n-1}(\sigma_{2^{s+1}}I) = i_{j+n} + 2^{t-n} \leq 2^{t-n+1} = 2^{s+r'-(j+n-1)+1}$. Also $t_{j-1}(\sigma_{2^{s+1}}I) = i_{j-1} \geq 2(2^{t}+1) > 2^{t+1} = 2^{s+r'-(j-1)+1}$. Then it is verified directly from (2.3), where k=j-1, that $\tau_{2^{s+1}}I = I$. Next consider the type of $\sigma_{2^{s+1}}I$. For $1 \leq n \leq j-1$, i_n is not a form $2^{p}+1$. Since $i_{j+n} \leq 2^{t-n}+2^{-n}$, $n=1, \dots, r-j$, if $i_{j+n}+2^{t-n}=2^{p}+1$, then $i_{j+n}=i_r=1$ and p=t-n=t-(r-j). In this case, however, the condition of the type (i, s+1) is not satisfied, since p=s+(r'-(r-1)) < s+1+(r'-(r-1)). The elements $2^{t-(r-j)-1}$, \dots , 2^{s} are not forms $2^{p}+1$ except for $2^{1}=2^{0}+1$ whence s=0 or 1. When s=0, we have $2^{0}+1=t_{r'-1}(\sigma_{2^{s+1}}I)$ and this does not satisfy the condition of the type (i, 0) since 0 < 0 + (r'-(r'-1)) = 1. When s=1, we have $2^{0}+1=t_{r'}(\sigma_{2^{s+1}}I)$ and this does not

satisfy the condition of the type (i, 1) since 0 < 1 + (r' - r') = 1. Consequently $\sigma_{2^s+1}I$ is not a type (i, s+1). In the case $t(I) = i_r \ge 2$, the only element of a form $2^p + 1$ is $2^1 = 2^0 + 1$. Then $\sigma_{2^s+1}I$ is not a type (i, 1) and further not a type (i, 0) if $s \ne 1$.

ii) Let $\tau_{z^{s+1}}I$ be defined by (2,3). Since I is not a type $(i,s+1),\ i_n=2^p+1$ implies $p\leqslant s+1+(r-n)=s+r-n+1$ and $i_n\leqq 2^{s+r-n+1}$. From $i_k\geqslant 2^{s+r-k+1}$ we have $i_n\geqq 2^{k-n}i_k\geqslant 2^{s+r-n+1}$ for $n\leqq k$. Therefore i_n is not a form 2^p+1 for $1\leqq n\leqq k$. In particular, $i_k\ne 2^{s+r-k+1}+1$ and this shows that $\tau_{z^{s+1}}I$ is admissible. Since $l(\tau_{z^{s+1}}I)\leqq r+1$, we have $t_{k+1}(\tau_{z^{s+1}}I)=2^{s+r-k}+1$ and $s+r-k\geqq s+(l(\tau_{z^{s+1}}I)-(k+1))$. Thus $\tau_{z^{s+1}}I$ has a type $(i+2^s+1,s)$. Since k+1 is the least integer such that $t_{k+1}(\tau_{z^{s+1}}I)=I$. Next suppose that $t(\tau_{z^{s+1}}I)=1$, then $t_{k+n}=2^{s+r-(k+n)}+1$, $t_{k+n+1}=2^{s+r-(k+n+1)}$, \cdots , $t_r=2^s$ for some n, and this indicates that I has a type (i,s). Therefore $t(\tau_{z^{s+1}}I)\ge 2$ if I is not a type (i,s). q. e. d.

- *Proof.* i) $\bar{\gamma}_{i+2}(2)$ is the number of the admissible sequences I of a type (i+2,0) such that $t(I) \geq 2$. $\alpha_i \gamma_i(2)$ is the number of the admissible sequences J of the degree i which is not a type (i,0). By Lemma 2.1, i), $\sigma_2 I$ is not a type (i,0) and $\tau_2(\sigma_2 I) = I$. By Lemma 2.1, ii), $\tau_2 J$ is an admissible sequence of a type (i+2,0) such that $\sigma_2(\tau_2 J) = J$ and $t(\tau_2 J) \geq 2$. Therefore σ_2 and σ_3 are the inverses of the others, and we have $\bar{\gamma}_{i+2}(2) = \alpha_i \gamma_i(2)$.
- ii) Let I be an admissible sequence of a type (i+5,2) such that $t(I) \ge 2$. Let J be an admissible sequence of the degree i which is not a type (i,0) and which satisfies $t(J) \ge 2$. By Lemma 2.1, i), $\sigma_5 I$ is not a type (i,0), $\tau_5(\sigma_5 I) = I$ and $t(\sigma_5 I) \ge 2^2 \ge 2$. Since J is not a type (i,0), we have $t(J) + 2 = 2^0 + 1$ and $t(J) + 3 = 2^1 + 1$. Thus J is not a type (i,2) and $t(J) \ge 4 = 2^2$. Then, by Lemma 2.1, ii), $\tau_5 J$ is an admissible sequence of a type (i+5,2), $\sigma_5(\tau_5 J) = J$ and $t(\tau_5 J) \ge 2$. σ_5 and τ_5 shows the equality $\bar{\gamma}_{i+5}(5) = \bar{\alpha}_i \bar{\gamma}_i(2)$.
- iii) Let I be an admissible sequence of a type (i+3, 1). Let J be an admissible sequence of a degree i which is not a type

(i,2) and which satisfies $t(J) \ge 2$. By Lemma 2.1, we have that $\sigma_3 I$ is not a type $(i,2), \ \tau_3(\sigma_3 I) = I$ and $t(\sigma_3 I) \ge 2$ and that $\tau_3 J$ is an admissible sequence of a type (i+3,1) and $\sigma_3(\tau_3 J) = J$. Then $\gamma_{i+3}(3) = \bar{\alpha}_i - \bar{\gamma}_i(5)$.

The proofs of iv) and v) are similar to the above one and omitted. q. e. d.

Lemma 2.3.
$$\gamma_i(2^s+1) \leq \beta_i(2^s+1)$$
 and $\bar{\gamma}_i(2^s+1) \leq \bar{\beta}_i(2^s+1)$.

Proof. We order the sequences of A^i by the following rule. $I=(i_1, \dots, i_r) > J=(j_1, \dots, j_s)$ if $i_1=j_1, \dots, i_{p-1}=j_{p-1}$ and $i_p>j_p$ for some p. First we prove that for an admissible sequence of a type (i, s) the following formula holds:

(2.4)
$$\varphi_{s_{+1}}(\sigma_{s_{+1}}I) = I + \sum I_b$$
 for some $I_b < I$.

Let $\sigma_{2^{s}+1}I$ be given by (2.2), then its subsequence $(i_{j+1}+2^{t-1}, \dots, 2^{s})$ satisfies the condition of Lemma 1.3. By Lemma 1.3,

$$\begin{split} \varphi_{2^{s}+1}(\sigma_{2^{s}+1}I) &= (i_1, \, \cdots, \, i_{j-1}) \, \varphi_{2^{s}+1}(i_{j+1} + 2^{t-1}, \, \cdots, \, 2^s) \\ &= I + \sum \, (i_1, \, \cdots, \, i_{j-1}, \, a_k, \, b_k, \, \cdots) \, , \quad a_k \leq 2^t \, , \\ &= I + \sum \, I_k \end{split}$$

for some $I_k = (i_1, \dots, i_{j-1}, a_k, b_k, \dots) < I$. Now assume that there is a relation $\varphi_{2^s+1}(\sigma_{2^s+1}I_1 + \dots + \sigma_{2^s+1}I_n) = 0$ for some $I_1 > I_2 > \dots > I_n$. Then by (2.4), $I_1 + \sum J_m = 0$ for some $J_m < I_1$ and this implies a contradiction $I_1 = 0$. Therefore $\varphi_{2^s+1}(\sigma_{2^s+1}I)$ are linearly independent for all sequences I of the type (i, s). Thus $\gamma_i(2^s+1) \le \beta_i(2^s+1)$. Another inequality $\bar{\gamma}_i(2^s+1) \le \bar{\beta}_i(2^s+1)$ is proved similarly.

Proof. of Theorem I. By (1.6), we have that $\bar{\varphi}_2 \circ \varphi_2 = \bar{\varphi}_5 \circ \bar{\varphi}_2 = \varphi_3 \circ \bar{\varphi}_5 = \varphi_2 \circ \varphi_3 = \bar{\varphi}_3 \circ \bar{\varphi}_3 = 0$. From $\bar{\varphi}_2 \circ \varphi_2 = 0$, we have $\varphi_2(A^{i-2}) \subset \bar{\varphi}_2^{-1}(0)$. Thus $\beta_i(2) \leq \alpha_i - \bar{\beta}_{i+2}(2)$. By Lemma 2.3 and 2.2, $\beta_i(2) \geq \gamma_i(2) = \alpha_i - \bar{\gamma}_{i+2}(2) \geq \alpha_i - \bar{\beta}_{i+2}(2)$. Therefore $\beta_i(2) = \alpha_i - \bar{\beta}_{i+2}(2)$ and this implies that $\varphi_2(A^{i-2}) = \bar{\varphi}_2^{-1}(0)$. Then the exactness of the sequence i) of Theorem I is proved. The exactness of the other sequences ii) –v) is proved similarly. q. e. d.

Corollary. $\gamma_i(2) = \beta_i(2)$, $\bar{\gamma}_i(2) = \bar{\beta}_i(2)$, $\gamma_i(3) = \beta_i(3)$, $\bar{\gamma}_i(3) = \bar{\beta}_i(3)$ and $\bar{\gamma}_i(5) = \bar{\beta}_i(5)$.

Define a homomorphism $\varphi_u^*: A^* \to A^*$ by the formula $\varphi_u^*(i_1, \dots, i_r) = (u, i_1, \dots, i_r)$. Then

$$(2.5) \varphi_u^* \cdot \varphi_t = \varphi_t \circ \varphi_u^*.$$

By (1.6), we have $\mathcal{P}_1^*(i_1, \dots, i_r) = 0$ for odd i_1 and $\mathcal{P}_1^*(i_1, \dots, i_r) = (i_1 + 1, i_2, \dots, i_r)$ for even i_1 . Then it is easy to see that the sequence

 $A^{i^{-1}} \xrightarrow{\varphi_1^*} A^i \xrightarrow{\varphi_1^*} A^{i^{+1}}$

in exact. Also we have an exact sequence

$$A^{i^{-1}}/\varphi_1 A^{i^{-2}} \xrightarrow{\varphi_1^*} A^i/\varphi_1 A^{i^{-1}} \xrightarrow{\varphi_1^*} A^{i^{+1}}/\varphi_1 A^i$$

for $i \ge 1$. Define subgroups B_t^i and \bar{B}_t^i by setting

$$B_t^i = \varphi_t(A^{i-t}) \subset A^i$$
 and $\bar{B}_t^i = \bar{\varphi}_t(A^{i-t}) \subset A^i/\varphi_1A^{i-1}$.

By (2.5), $\varphi_1^*(B_t^i) \subset B_t^{i+1}$ and $\varphi_1^*(\bar{B}_t^i) \subset \bar{B}_t^{i+1}$. Since $\varphi_1^* : \varphi_1^* = 0$, A^* , $A^*/\varphi_1 A^*$, $B_t^* = \sum B_t^i$ and $\bar{B}_t^* = \sum \bar{B}_t^i$ are cochain complexes with respect to the coboundary operator $\delta = \varphi_1^*$. From the exactness of the above two sequences, we have

(2.6)
$$H(A^{i}) = 0 \quad \text{for } i \ge 0,$$

 $H(A^{i}/\varphi_{1}A^{i-1}) = 0 \quad \text{for } i \ge 1.$

From Theorem I and (2.5), we have an exact sequence

$$0 \to B_2^i \to A^i \to \bar{B}_2^{i+2} \to 0$$

which is compatible with φ_1^* . This induces the following cohomology exact sequence:

$$\cdots \to H(A^i) \to H(\bar{B}_2^{i+2}) \xrightarrow{\delta^*} H(B_2^{i+1}) \to H(A^{i+1}) \to \cdots$$

Then, from (2.6), we have an isomorphism

(2.7), i)
$$\delta^*: H(\bar{B}_2^{i+1}) \approx H(B_2^i)$$
 for all i.

Similarly we have the following isomorphisms:

ii)
$$\delta^*: H(\bar{B}_5^{i+4}) \approx H(\bar{B}_2^i) \quad \text{for } i \geq 2,$$

iii)
$$\delta^*: H(B_3^{i+2}) \approx H(\bar{B}_5^i) \quad \text{for } i \geq 2$$
,

iv)
$$\delta^*: H(B_2^{i+1}) \approx H(B_3^i)$$
 for all i ,

v)
$$\delta^*: H(\bar{B}_3^{i+2}) \approx H(\bar{B}_3^i) \quad \text{for } i \geq 2.$$

From (1.6), we calculate easily that $\bar{B}_3^2 \approx \bar{B}_3^5 \approx \bar{B}_5^5 \approx Z_2$ and $B_3^2 = \bar{B}_3^2 = B_3^4 = \bar{B}_3^4 = \bar{B}_5^2 = \bar{B}_5^3 = \bar{B}_5^4 = \bar{B}_5^6 = \bar{B}_5^7 = \bar{B}_5^8 = 0$. Then we obtain the following theorem by the isomorphisms of (2.7).

Theorem II. Let B^i be one of B_2^i , \bar{B}_2^i , \bar{B}_5^i , B_3^i and \bar{B}_3^i . Then

$$H(B^i) pprox \begin{cases} Z_2 & \textit{for } i \equiv \lambda \pmod{4} \textit{ and } i \geq 2, \\ 0 & \textit{otherwise}, \end{cases}$$

where λ takes the following values:

We note here the following representatives of the generator of $H(B^i)$.

	$H(B_1^{4k})$	$H(\bar{B}_2^{4k+1})$ and $H(\bar{B}_5^{4k+1})$	$H(B_3^{4k-1})$	$H(\bar{B}_3^{2k+1})$
k = 1	(3, 1)	(5)	(3)	(3)
k = 2	(5, 2, 1)	(9) + (7, 2)	(5, 2)	(5)
k = 3	(9, 2, 1)	(9, 4)	(9, 2) + (7, 3, 1)	(5, 2)
k=4	(9, 4, 2, 1)	(3, 4) (17) + (15, 2) + (13, 4) + (11, 4, 2).	(9, 4, 2)	(9) + (7, 2)

§ 3. Some tables and lemmas.

In the following, several practical values of φ_a -images are calculated by (1.4).

The table indicated at the end of the previous § follows from the following diagram:

the following diagram:

(2)
$$\frac{\varphi_1^*}{\varphi_2}$$
 (3) (4) $\frac{\varphi_1^*}{\varphi_3}$ (5)

(2, 1) $\frac{\varphi_2}{\varphi_2}$ (3, 1) (4, 2) $\frac{\varphi_2}{\varphi_2}$ (5, 2)

(4) $\frac{\varphi_2}{\varphi_5}$ (5) (4, 2, 1) $\frac{\varphi_2}{\varphi_2}$ (5, 2, 1)

(8) + (6, 2) $\frac{\varphi_3}{\varphi_3}$ (9) + (7, 2) (8) + (6, 2) $\frac{\varphi_2}{\varphi_5}$ (9) + (7, 2)

(8, 2) + (6, 3, 1) $\frac{\varphi_2}{\varphi_2}$ (9, 2) + (7, 3, 1) (8, 4) $\frac{\varphi_3}{\varphi_3}$ (9, 4)

(8, 2, 1) $\frac{\varphi_2}{\varphi_2}$ (9, 2, 1) (8, 4, 2, 1) $\frac{\varphi_2}{\varphi_2}$ (9, 4, 2, 1)

(16) + $\frac{\varphi_2}{\varphi_2}$ (17) + $\frac{\varphi_2}{\varphi_2}$ (18) + $\frac{\varphi_2}{\varphi_2}$ (19) + $\frac{\varphi_2}{\varphi_2}$ (19)

The image of the homomorphism $\bar{\varphi}_4: A^* \to A^*/\varphi_1 A^*$ contains the following linearly independent elements:

(4),
$$(i, 4)$$
 for $i \ge 8$; (5), $(i, 5)$ for $i \ge 10$; (6), $(i, 6)$ for $i \ge 12$;

(7),
$$(i, 7)$$
 for $i \ge 14$; $(6, 2)$, $(i, 6, 2)$ for $i \ge 12$;

$$(9)$$
, $(7, 2)$; $(10) + (8, 2)$, $(7, 3)$; $(11) + (9, 2)$, $(9, 2) + (8, 3)$;

$$(10, 2), (9, 3); (13) + (10, 3), (11, 2); (13, 2) + (12, 3);$$

$$(13, 3), (10, 4, 2); (17) + (15, 2), (11, 4, 2);$$

$$(18) + (16, 2) + (12, 4, 2), (11, 5, 2);$$

$$(19) + (16, 3), (17, 2) + (16, 3) + (12, 5, 2), (13, 4, 2) + (12, 5, 2);$$

$$(18, 2) + (14, 4, 2), (17, 3), (13, 5, 2);$$

$$(21) + (18, 3) + (14, 5, 2), (19, 2) + (15, 4, 2); \cdots$$

Consider a homomorphism $\tilde{\varphi}_4: A^* \to A^*/(\varphi_1 A^* + \varphi_2 A^*)$ defined by φ_4 . For the degrees less than 22, $\tilde{\varphi}_4$ is given from $\bar{\varphi}_4$ by adding the following relations generated by (2)=0; (*,*,*,2)=(*,2)=(2)=0, (*,3)=(3)=0, (*,5)=(5)=0, (9)=0, (9,4)=0, (17)+(13,4)=0, (17,4)+(15,6)=0. Therefore the image of $\tilde{\varphi}_4$ contains the following linearly independent elements (representatives):

(4), (8, 4), (i, 4) for
$$10 \le i \le 16$$
; (6), (i, 6) for $12 \le i \le 15$;

$$(7)$$
, $(14, 7)$; (10) , (11) , (13) , (18) , (19) , (21) .

Next consider the kernel of $\bar{\varphi}_4$: $A^* \to A^*/\varphi_1 A^*$. Since $\bar{\varphi}_4(2, 1) = (2, 1, 4) = (2, 5) = 0$, $\bar{\varphi}_4(7) = (7, 4) = 0$ and $\bar{\varphi}_4((10) + (8, 2) + (7, 3)) = (10, 4) + (8, 6) + (7, 7) = 0$, the kernel contains $\varphi_{(2,1)}A^* + \varphi_7 A^* + \varphi_{(10)+(8,2)+(7,3)}A^*$. Since $\varphi_1: A^*/\varphi_1 A^* \to A^*$ is an isomorphism into and since $\varphi_{(t,1)} = \varphi_1 \circ \bar{\varphi}_t: A^* \to A^*$, we have from Theorem I (3.2). The sequences

$$A^* \xrightarrow{\varphi_2} A^* \xrightarrow{\varphi_{(2,1)}} A^*,$$

$$A^* \xrightarrow{\bar{\varphi}_2} A^*/\varphi_1 A^* \xrightarrow{\varphi_{(5,1)}} A^*,$$

$$A^* \xrightarrow{\bar{\varphi}_3} A^*/\varphi_1 A^* \xrightarrow{\varphi_{(3,1)}} A^*$$

and

are exact. The rank of the image $\varphi_{(t,1)}(A^{i-t})$ equals to $\bar{\beta}_i(t)$.

In $A^*/\varphi_{\scriptscriptstyle 1}A^*$ we have the following linearly independent elements:

$$\varphi_{7}(2) = (9), \quad \varphi_{7}(4) = (11) + (9, 2), \quad \varphi_{7}(6) = (13) + (10, 3),
\varphi_{7}(4, 2) = (11, 2); \quad \varphi_{(10)+(8, 2)+(7, 3)}(2) = (10, 2).$$

Since $\varphi_{(2.1)}A^* \subset \varphi_1A^*$, the above images of φ_7 and $\varphi_{(10)+(8,2)+(7,3)}$ are independent of $\varphi_{(2.1)}A^*$. Let $\tilde{\beta}_i(4)$ and ε_i be the ranks of the image $\tilde{\varphi}_4A^{i^{-4}}$ and the kernel of $\bar{\varphi}_4$ respectively. Then the following table follows from the above results.

i	=	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\tilde{\beta}_{i}$ (4	!) ≥	1	0	1	1	0	0	1	1	1	1	1	1	1	1	3	3	2	3
$\bar{\alpha}_{i}$	_4 =	: 1	0	1	1	1	1	2	2	2	3	3	3	4	4	5	6	6	7
\bar{eta}_{i-4} (4						1	1	1	1	1	2	2	2	3	3	2	3	4	4
α_{i}	-8 =	:				1	1	1	2	2	2	3	4	4	5	6	6	7	8
$\bar{\beta}_{i-9}$ (2	2) =								1	1	0	1	1	1	1	3	2	2	2
ε_{i-8} —	$ar{eta}_{i-1}$	₉ (2)	\geq										1	0	1	1	1	1	2.

Since (4, 4) = (6, 2) + (7, 1), we have $\tilde{\varphi}_4 \circ \bar{\varphi}_4 = 0$. By a similar argument to the proof of Theorem I, we have

Lemma 3.1. The sequence

$$A^{i^{-8}} \xrightarrow{\bar{\varphi}_4} A^{i^{-4}}/\varphi_1 A^{i^{-5}} \xrightarrow{\tilde{\varphi}_4} A^{i}/(\varphi_1 A^{i^{-1}} + \varphi_2 A^{i^{-2}})$$

is exact for i < 22 and the kernel of $\bar{\varphi}_4$ is generated by (2,1), (7), (10) + (8, 2) + (7, 3) for i < 22. In the above table the equalities hold.

It seems that this lemma is true for all i.

The image of a homomorphism $\tilde{\varphi}_8: A^* \to A^*/(\varphi_1 A^* + \varphi_2 A^*)$, defined by φ_8 , contains the following linearly independent elements:

By adding relations generated by (4)=0, we see that the image of a homomorphism $\hat{\varphi}_8: A^* \to A^*/(\varphi_1 A^* + \varphi_2 A^* + \varphi_4 A^*)$, defined by φ_8 , contains the following linearly independent elements:

Let $\tilde{\beta}_i(8)$ and $\hat{\beta}_i(8)$ be the ranks of the images $\tilde{\varphi}_s(A^{i^{-8}})$ and $\hat{\varphi}_s(A^{i^{-8}})$ respectively, then we have the following table:

$i = 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \ 21$

Since $\varphi_{8}(1) = (9) = \varphi_{2}((4, 2, 1) + (7)) + \varphi_{1}((8) + (6, 2)), \ \varphi_{8}(2) = (10) + (9, 1) = \varphi_{4}(4, 2) + \varphi_{2}(8) + \varphi_{1}(7, 2)$ and since $\varphi_{8}(8) = (15, 1) + (14, 2) + (12, 4) = \varphi_{4}(12) + \varphi_{2}(14) + \varphi_{1}(15)$, we have

$$\tilde{\varphi}_{8}(\varphi_{1}A^{*}) = \hat{\varphi}_{8}(\varphi_{1}A^{*} + \varphi_{2}A^{*}) = \hat{\varphi}_{8}(\tilde{\varphi}_{8}(A^{*})) = 0$$
.

Then we have the following lemma by a similar argument to the proof of Theorem I.

Lemma 3.2. The sequence

$$0 \to A^{i^{-16}}/\varphi_1 A^{i^{-17}} \xrightarrow{\tilde{\varphi}_8} A^{i^{-8}}/(\varphi_1 A^{i^{-9}} + \varphi_2 A^{i^{-10}}) \xrightarrow{\hat{\varphi}_8} A^{i}/(\varphi_1 A^{i^{-1}} + \varphi_2 A^{i^{-2}} + \varphi_4 A^{i^{-4}})$$

is exact for i < 22. In the above table the equality holds.

Remark that the kernal of $\tilde{\varphi}_{8}$ contains non-zero elements (4, 2), (15), etc..

We introduce a Bockstein homomorphism

$$\frac{\delta}{2^r}$$
: $\frac{\delta}{2^{r-1}}$ -kernel $\rightarrow \frac{\delta}{2^{r-1}}$ -cokernel, $r \ge 1$,

as follows. A cohomology class $\alpha \in H^i(X,A,Z_2)$ is in the $\frac{\delta}{2^{r-1}}$ -kernel if there exist integral cochains $a \in C^i(X,A)$ and $a' \in C^{i+1}(X,A)$ such that $\delta a = 2^r a'$ and a represents α . A cohomology class $\beta \in H^{i+1}(X,A,Z_2)$ is in the $\frac{\delta}{2^{r-1}}$ -image if there exist integral cochains $b \in C^i(X,A)$ and $b' \in C^{i+1}(X,A)$ such that $\delta b = 2^{r-1}b'$ and b' represents β . The $\frac{\delta}{2^{r-1}}$ -cokernel is the factor group $H^{i+1}(X,A,Z_2)/\left(\frac{\delta}{2^{r-1}}$ -image). Let a and a' be integral cochains as above, then $\frac{\delta}{2^r}\alpha$ is defined as the class represented by a'. Let a_1 be another integral cochain such that $\delta a_1 = 2^r a_1'$ for some a_1' and a_1 represents α . Then $a-a_1 = 2b + \delta c$ for some integral cochains b and c. $2^r (a' - a'_1) = \delta (a - a_1) = 2\delta b$ implies that $2^{r-1}(a' - a_1') = \delta b$. Thus a' and a_1' represent the same class of $\frac{\delta}{2^{r-1}}$ -cokernel, and a Bockstein homomorphism $\frac{\delta}{2^r}$ is defined uniquely. The following properties are well known.

(3.3) i)
$$\frac{\delta}{2r}$$
-kernel = the kernel of $\frac{\delta}{2r}$.

ii)
$$\frac{\delta}{2^r}$$
-image/ $\left(\frac{\delta}{2^{r-1}}$ -image $\right)$ = the image of $\frac{\delta}{2^r}$.

iii)
$$\frac{\delta}{2} = Sq^1$$
: $H^i(X, A, Z_2) \to H^{i+1}(X, A, Z_2)$.

iv) The naturality $f^* \circ \frac{\delta}{2^r} = \frac{\delta}{2^r} \circ f^*$ holds for homomorphisms f^* of cohomology groups induced by a mapping $f: (X, A) \to (Y, B)$.

v) $\delta^* \circ \frac{\delta}{2^r} = \frac{\delta}{2^r} \circ \delta^*$ for coboundary homomorphisms $\delta^* : H^i(A, Z_2) \to H^{i+1}(X, A, Z_2)$.

vi)
$$\frac{\delta}{2^r} \circ \frac{\delta}{2^s} = 0$$
.

vii) Let $H_i(X)$ be finitely generated. Then the rank of the image of $\frac{\delta}{2^r}$ is the number of direct factors of $H_i(X)$ which are isomorphic to the cyclic group Z_{2^r} of the order 2^r .

Denote by $H^*_{(r)}(X, A, Z_2)$ the factor group $\frac{\delta}{2^r}$ -kernel/ $\left(\frac{\delta}{2^r}$ -image). By (3.3), $\frac{\delta}{2^r}$ defines a homomorphism of $H^*_{(r-1)}(X, A, Z_2)$ which will be denoted by the same symbol $(H^*_{(0)} = H^*)$

(3. 4)
$$\frac{\delta}{2^r}$$
: $H^i_{(r-1)}(X, A, Z_2) \to H^{i+1}_{(r-1)}(X, A, Z_2) \subset \frac{\delta}{2^{r-1}}$ -cokenral.

By regarding $\frac{\delta}{2^{r+1}}$ as a cobundary operator in $H^*_{(r)}(X, A, Z_2)$, we see that $H^*_{(r+1)}(X, A, Z_2)$ is the cohomology group of $H^*_{(r)}(X, A, Z_2)$. Consider the cohomology exact sequence for a pair (X, A):

$$\cdots \to H^{i}(X, A, Z_{2}) \xrightarrow{j^{*}} H^{i}(X, Z_{2}) \xrightarrow{i^{*}} H^{i}(A, Z_{2}) \xrightarrow{\delta^{*}} H^{i+1}(X, A, Z_{2}) \to \cdots.$$

The following lemma is a modification of theorems in [6], §3. **Lemma 3.3.** i) For $\alpha \in H^i(A, Z_2)$ and $\beta \in H^i(X, A, Z_2)$, assume that $\frac{\delta}{2^r}\beta = \{\delta^*\alpha\}$. Then there is an element $\tilde{\alpha} \in H^{i+1}(X, Z_2)$ such that $i^*\tilde{\alpha} = Sq^1\alpha$ and $\frac{\delta}{2^{r+1}}(j^*\beta) = \{\tilde{\alpha}\}$ $(r \ge 1)$.

ii) For $\alpha \in H^i(\overline{A}, Z_2)$ and $\beta \in H^{i+1}(X, A, Z_2)$, assume that $\delta * \alpha = \beta$ and $\beta \in \frac{\delta}{2^{r-1}}$ -kernel. Then there are elements $\widetilde{\alpha} \in H^{i+1}(X, Z_2)$ and $\gamma \in H^{i+2}(X, A, Z_2)$ such that $i*\widetilde{\alpha} = Sq^1\alpha$, $\frac{\delta}{2^r}\beta = \{\gamma\}$ and $\frac{\delta}{2^{r-1}}\widetilde{\alpha} = \{j*\gamma\}$ $(r \ge 2)$.

- iii) For $\alpha \in H^i(A, \mathbb{Z}_2)$ and $\beta \in H^{i+1}(A, \mathbb{Z}_2)$, assume that $\frac{\delta}{2^r}(\delta^*\alpha)$ = $\{\delta^*\alpha\}$. Then there are elements $\tilde{\alpha} \in H^{i+1}(X, \mathbb{Z}_2)$ and $\tilde{\beta} \in H^{i+2}(X, \mathbb{Z}_2)$ such that $i^*\tilde{\alpha} = Sq^1\alpha + 2^{r-1}\beta$, $i^*\tilde{\beta} = Sq^1\beta$ and $\frac{\delta}{2^r}\tilde{\alpha} = \{\tilde{\beta}\}$ $(r \ge 1)$.
- *Proof.* i) Let $a \in C^i(A)$ and $b \in C^i(X, A)$ be representatives of α and β respectively such that $\delta a = 2a' + b_1$ and $\delta b = 2^r b'$ for some $a' \in C^{i+1}(A)$ and $b_1, b' \in C^{i+1}(X, A)$, then a', b_1 and b' represent $Sq^1\alpha$, $\delta^*\alpha$ and $\frac{\delta}{2^r}\beta$ respectively. From the assumption $\frac{\delta}{2^r}\beta = \{\delta^*\alpha\}$, we have $b_1 b' = 2b_2 + c' + \delta c_1$ and $\delta c = 2^{r-1}c'$ for some $c, c_1 \in C^i(X, A)$ and $b_2, c' \in C^{i+1}(X, A)$. The element $b + 2(c 2^{r-1}a + 2^{r-1}c_1)$ represents $j^*\beta$. From $\delta(b + 2(c 2^{r-1}a + 2^{r-1}c_1)) = 2^rb' + 2\delta c 2^r\delta a + 2^r\delta c_1 = 2^r(b_1 2b_2 c' \delta c_1) + 2^rc' 2^r(2a' + b_1) + 2^r\delta c_1 = -2^{r+1}(b_2 + a')$, we see that $\frac{\delta}{2^{r+1}}(j^*\beta) = \{\tilde{\alpha}\}$ for an element $\tilde{\alpha}$ represented by $-(b_2 + a')$. Obviously $i^*\tilde{\alpha} = Sq^1(-\alpha) = Sq^1\alpha$.
- ii) Let $a \in C^i(A)$ and $b \in C^{i+1}(X,A)$ be representatives of α and β respectively such that $\delta a = 2a' + b_1$ and $\delta b = 2'b'$ for some $a' \in C^{i+1}(A)$, $b_1 \in C^{i+1}(X,A)$ and $b' \in C^{i+2}(X,A)$, then a', b_1 and b' represent $Sq^1\alpha$, $\delta*\alpha$ and $\frac{\delta}{2^r}\beta$ respectively. From the assumption $\delta*\alpha = \beta$, we have $b_1 b = 2b_2 + \delta c$ for some $b_2 \in C^{i+1}(X,A)$ and $c \in C^i(X,A)$. From $2\delta(b_2 + a') = \delta(b_1 b \delta c) + \delta(\delta a b_1) = -\delta b = 2^r(-b')$, we have $\delta(b_2 + a') = 2^{r-1}(-b')$. Let $\tilde{\alpha}$ and γ be represented by $b_2 + a'$ and b' respectively, then we see that $i*\tilde{\alpha} = Sq^1\alpha$, $\frac{\delta}{2^r}\beta = \{\gamma\}$ and $\frac{\delta}{2^{r-1}}\tilde{\alpha} = \{-j*\gamma\} = \{j*\gamma\}$.
- iii) Let $a \in C^i(A)$ and $b \in C^{i+1}(A)$ be representatives of α and β respectively such that $\delta a = 2a' + a_1$ and $\delta b = 2b' + b_1$ for some $a' \in C^{i+1}(A)$, $b' \in C^{i+2}(A)$, $a_1 \in C^{i+1}(X,A)$ and $b_1 \in C^{i+2}(X,A)$. Then a', b', a_1 and b_1 represent $Sq^1\alpha$, $Sq^1\beta$, $\delta^*\alpha$ and $\delta^*\beta$ respectively. From the assumption $\frac{\delta}{2^r}(\delta^*\alpha) = \{\delta^*\beta\}$, we have $\delta a_2 = 2^rb_2$, $a_2 a_1 = 2c + \delta c_1$, $b_2 b_1 = 2d_1 + d' + \delta d_2$ and $2^{r-1}d' = \delta d$ for some a_2 , $c, d_2, d \in C^{i+1}(X,A)$, $c_1 \in C^i(X,A)$ and d', $d_1 \in C^{i+2}(X,A)$. From $2\delta(a' + 2^{r-1}b + d + 2^{r-1}d_2 c) = \delta(\delta a a_1) + 2^r(2b' + b_1) + 2^rd' 2^r(2d_1 + d' + b_1 b_2) \delta(a_2 a_1 \delta c_1) = 2^{r+1}(b' d_1) + (2^rb_2 \delta a_2) = 2^{r+1}(b' d_1)$, we have $\delta(a' + 2^{r-1}b + (d + 2^{r+1}d_2 c)) = 2^r(b' d_1)$. Let $\tilde{\alpha}$ and $\tilde{\beta}$ be represented by $a' + 2^{r-1}b + (d + 2^{r-1}d_2 c)$ and $b' d_1$ respectively, then we see that $i^*\tilde{\alpha} = Sq^1\alpha + 2^{r-1}\beta$, $i^*\tilde{\beta} = Sq^1\beta$ and $\frac{\delta}{2^r}\tilde{\alpha} = \{\tilde{\beta}\}$. q. e. d.

Remark that the above lemma is valid for a fibre space in the following manner. Let X be a fibre space over an m-connected space B having an n-connected fibre F. Then, for $i \leq m+n+1$, we have isomorphisms

$$p^*: H^i(B, Z_2) \approx H^i(X, F, Z_2)$$
.

By the above isomorphisms, Lemma 3.1. is valid for the exact sequence of the fibering:

$$\cdots \to H^{i^{-1}}(F, Z_2) \xrightarrow{\Delta^*} H^i(B, Z_2) \xrightarrow{p^*} H^i(X, Z_2) \xrightarrow{i^*} H^i(F, Z_2) \to \cdots,$$
 replacing $H^i(X, A, Z_2)$ by $H^i(B, Z_2)$, j^* by p^* and δ^* by Δ^* .

§ 4. Application to the stable homotopy groups of the sphere.

Let S^N be an N-sphere. Consider a CW-complex K_k , $k \ge 2$, whose (N+k)-skeleton K_k^{N+k} is S^N . By attaching cells of dim. $\ge N+k$ to K_k , we can construct a CW-complex K_{k-1} such that $K_{k-1} \supset K_k$, $K_{k-1}^{N+k-1} = S^N$ and $\pi_i(K_{k-1}) = 0$ for $i \ge N+k-1$. Repeating this construction from $K_N = S^N$, we have a sequence of complexes

$$K_1 \supset K_2 \supset \cdots \supset K_{k-1} \supset K_k \supset \cdots \supset K_{N-1} \supset S^N$$

such that $K_k^{N+k} = S^N$ and $\pi_i(K_k) = 0$ for $i \ge N+k$. It is easy to see that the injection $i: S^N \subset K_k$ induces isomorphisms

$$i_*: \pi_i(S^N) \approx \pi_i(K_k)$$
 for $i < N+k$.

Let Y_k be a space of the paths in K_k starting in S^N . S^N is naturally imbedded in Y_k as its deformation retract. We have a retraction (fibering)

$$p_0: Y_k \to S^N$$

by associating to each path the starting point. Also associating the end point, we have a fibering

$$p_1: Y_k \to K_k$$

in the sense of Serre [3], a fibre X_k of which is a space of the paths in K_k starting in S^N and ending at a point. The restriction

$$p': X_k \to S^N$$

of p_0 on X_k is also a fibering. Consider a diagram

then it is easily verified from the conditions on $\pi_i(K_k)$ and i_* that

$$\pi_i(X_k) \left\{ \begin{matrix} =0 & \text{for } i < N+k \,, \\ p'_* \approx \pi_i(S^N) & \text{for } i \geq N+k \,. \end{matrix} \right.$$

This indicates that X_k is an (N+k-1)-connective fibre space over S^N .

Since X_k and K_k are (N+k-1)- and (N-1)-connected respectively, we have the following homology exact sequence for $i \le 2N+k-1$:

$$\cdots \to H_i(X_k) \to H_i(Y_k) \to H_i(K_k) \xrightarrow{\partial_*} H_{i-1}(X_k) \to \cdots$$

Since $H_i(Y_k) = H_i(S^N) = 0$ for $i \neq 0$, N, we have isomorphisms

$$(4.1) \qquad \partial_*: H_i(K_k) \approx H_{i-1}(X_k) \qquad \text{for} \quad N \neq i \leq 2N + k - 1.$$

Similarly we have isomorphisms

(4.1)'
$$\delta^*: H^{i-1}(X_k, Z_2) \approx H^i(K_k, Z_2)$$
 for $N \neq i \leq 2N + k - 1$.

Combining (4.1) to the Hurewicz isomorphism, we have

(4.2)
$$\pi_{N+k}(S^N) \approx \pi_{N+k}(X_k) \approx H_{N+k}(X_k) \approx H_{N+k+1}(K_k)$$
 for $1 \le k < N-1$.

Remark that (4.2) is proved directly as follows:

$$H_{N+k+1}(K_k) \stackrel{j_*}{\approx} H_{N+k+1}(K_k, S^N) \approx \pi_{N+k+1}(K_k, S^N) \stackrel{\partial}{\approx} \pi_{N+k}(S^N) .$$

Let \tilde{K}_{k+1} be a space of the paths in K_k which start in K_{k+1} . Then \tilde{K}_{k+1} is a fibre space over K_k containing K_{k+1} as its deformation retract. Let F_k be a fibre of this fibering and consider a diagram

$$\begin{split} \cdots \to \pi_{i+1}(K_k) \to \pi_i(F_k) \to \pi_i(\tilde{K}_{k+1}) & \longrightarrow \pi_i(K_k) \to \cdots \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ \pi_i(K_{k+1}) & \longleftarrow \pi_i(S^N) \quad . \end{split}$$

Then it is verified easily from the conditions of $\pi_i(K_k)$, $\pi_i(K_{k+1})$ and i_* that

$$\pi_i(F_k) pprox \left\{egin{array}{ll} \pi_{N+k}(S^N) & & ext{for} \quad i=N+k \ 0 & & ext{for} \quad i \neq N+k \ . \end{array}
ight.$$

Therefore F_k is an Eilenberg-MacLane space of the type $(\pi_{N+k}(S^N), N+k)$ and $H^i(F_k, Z_2) \approx H^i(\pi_{N+k}(S^N), N+k, Z_2)$. Since K_k and F_k are (N-1)- and (N+k-1)-connected respectively, we have the following exact sequence for $i \leq 2N+k-1$:

$$(4.3) \quad \cdots \to H^{i}(K_{k}, Z_{2}) \to H^{i}(K_{k+1}, Z_{2}) \to H^{i}(\pi_{N+k}(S^{N}), N+k, Z_{2}) \to \cdots.$$

Now we write $K_k = K_k(N)$ and consider $K_k(N+1)$. The suspension $S(K_k(N))$ of $K_k(N)$ is a CW-complex whose (N+k+1)-skeleton is S^{N+1} . Since $\pi_i(K_k(N+1)) = 0$ for $i \ge N+k+1$, we can construct a mapping

$$f_k^{(N)}: S(K_k(N)) \to K_k(N+1)$$

such that $f_k^{(N)}$ is identical on the (N+k+1)-skeletons. It is easy to see that the sequence

$$\Re_{b} = \{K_{b}(N), f_{k}^{(N)}\}$$

satisfies the conditions of (1.1). Then the stable groups

$$A_i(\Re_b)$$
 and $A^i(\Re_b, Z_2)$

are defined. By the convension (1.2), we may regard that for sufficiently large N,

$$A_i(\Re_k) = H_{i+N}(K_k(N)) = H_{i+N}(K_k),$$

 $A^i(\Re_k, Z_2) = H^{i+N}(K_k(N), Z_2) = H^{i+N}(K_k, Z_2).$

Then from (4.2) and (4.3), we have

$$(4.4)$$
 i) $\pi_k \approx A_{k+1}(\Re_k)$.

ii) The following sequence is exact.

$$\cdots \to A^{i}(\widehat{\mathbb{R}}_{k}, Z_{2}) \xrightarrow{p^{*}} A^{i}(\widehat{\mathbb{R}}_{k+1}, Z_{2}) \xrightarrow{i^{*}} A^{i-k}(\pi_{k}, Z_{2}) \xrightarrow{\Delta^{*}} A^{i+1}(\widehat{\mathbb{R}}_{k}, Z_{2}) \to \cdots .$$

The squaring operations in $A^*(\Re_k, Z_2) = \sum A^i(\Re_k, Z_2)$ and $A^*(\pi_k, Z_2) = \sum A^i(\pi_k, Z_2)$ define naturally a (left) A^* -module structure of $A^*(\Re_k, Z_2)$ and $A^*(\pi_k, Z_2)$. Then the above exact sequence is one of A^* -homomorphisms, since the squaring operation commutes with the homomorphisms of the sequence.

The Bockstein homomorphism $\frac{\delta}{2^r}$ is also defined naturally in $A^*(\mathfrak{R}_k, Z_2)$ and $A^*(\pi_k, Z_2)$ and it satisfies the properties of (3.3), i)-vii) by replacing H^i by A^i , H_i by A_i and δ^* by Δ^* . Then the following lemma follows from Lemma 3.3.

- $\begin{array}{lll} \textbf{Lemma 4.1.} & \textbf{i)} & \textit{For } \alpha \in A^{i-k}(\pi_k, Z_2) \textit{ and } \beta \in A^i(\Re_k, Z_2), \textit{ assume} \\ \textit{that } \frac{\delta}{2^r}\beta = \{\Delta^*\alpha\}. & \textit{Then there is an element } \tilde{\alpha} \textit{ of } A^{i+1}(\Re_{k+1}, Z_2) \\ \textit{such that } i^*\tilde{\alpha} = Sq^1\alpha \textit{ and } \frac{\delta}{2^{r+1}}(p^*\beta) = \{\tilde{\alpha}\}. \end{array}$
- ii) For $\alpha \in A^{i^{-k}}(\pi_k, Z_2)$ and $\beta \in A^{i^{+1}}(\Re_k, Z_2)$, assume that $\Delta^*\alpha = \beta$, r > 1 and $\beta \in \frac{\delta}{2^{r-1}}$ -kernel. Then there are elements $\tilde{\alpha} \in A^{i^{+1}}(\Re_{k+1}, Z_2)$ and $\gamma \in A^{i^{+2}}(\Re_k, Z_2)$ such that $i^*\tilde{\alpha} = Sq^1\alpha$, $\frac{\delta}{2^r}\beta = \{\gamma\}$ and $\frac{\delta}{2^{r-1}}\tilde{\alpha} = \{p^*\gamma\}$.
- $\begin{array}{lll} & \text{iii)} & \textit{For} & \alpha \in A^{i-k}(\pi_k,\ Z_2) & \textit{and} & \beta \in A^{i-k+1}(\pi_k,\ Z_2), & \textit{assume that} \\ & \frac{\delta}{2^r}(\Delta^*\alpha) = \{\Delta^*\beta\}. & \textit{Then there are elements} & \tilde{\alpha} \in A^{i+1}(\Re_{k+1},\ Z_2) & \textit{and} \\ & \tilde{\beta} \in A^{i+2}(\Re_{k+1},\ Z_2) & \textit{such that} & i^*\tilde{\alpha} = Sq^1\alpha + 2^{r-1}\beta, & i^*\tilde{\beta} = Sq^1\beta & \textit{and} \\ & \frac{\delta}{2^r}\tilde{\alpha} = \{\tilde{\beta}\}. \end{array}$

By [3], π_k is a finite group for $k \neq 0$. Then by [4], $A^i(\pi_k, Z_2)$ is isomorphic to the sum of some A^i and $A^i/\varphi_1A^{i-1} + A^{i-1}/\varphi_1A^{i-2}$.

In the following lemma, we denote by u, $u_0 \in A^0(\pi_k, Z_2)$ and $u_1 \in A^1(\pi_k, Z_2)$ the fundamental elements which generate direct summands A^* and A^*/φ_1A^* . Note that $Sq^1u_0 = Sq^1u_1 = 0$. Consider the exact sequence of (4.4), ii).

- **Lemma 4.2.** i) Assume that $\Delta *Sq^2u = 0$ and that $Sq^1: p^*A^{k+5}$ $(\Re_k, Z_2) \to p^*A^{k+6}(\Re_k, Z_2)$ is an isomorphism into. Then there is an element v of $A^{k+2}(\Re_{k+1}, Z_2)$ such that $i^*v = Sq^2u$, $Sq^3v = 0$ and that the A^* -submodule generated by v and by the image of p^* is isomorphic to $A^*/\varphi_3A^* + p^*A^*(\Re_k, Z_2)$ (direct sum of A^* -modules).
- ii) Assume that $\Delta *Sq^3u = 0$ and that $Sq^1: p*A^{k+i}(\Re_k, Z_2) \rightarrow p*A^{k+i+1}(\Re_k, Z_2)$, i = 4, 8, are isomorphisms into. Then there is an element v of $A^{k+3}(\Re_{k+1}, Z_2)$ such that $i*v = Sq^3u$, $Sq^1v = Sq^5v = 0$ and that the A*-submodule generated by v and by the image of p* is isomorphic to $A*/(\varphi_1A*+\varphi_5A*)+p*A*(\Re_k, Z_2)$.
- iii) Assume that $\Delta *Sq^5u_0 = 0$ (resp. $\Delta *Sq^5u_1 = 0$) and $p*A^{k+6}$ (\Re_k, Z_2) = $p*A^{k+7}(\Re_k, Z_2) = 0$. (resp. $p*A^{k+7}(\Re_k, Z_2) = p*A^{k+8}(\Re_k, Z_2) = 0$). Then there is an element v of $A^{k+5}(\Re_{k+1}, Z_2)$ (resp. $A^{k+6}(\Re_{k+1}, Z_2)$) such that $i*v = u_0$ (resp. u_1), $Sq^1v = Sq^2v = 0$ and that the A^*-

submodule generated by v and by the image of p^* is isomorphic to $A^*/(\varphi, A^* + \varphi_2 A^*) + p^*A^*(\Re_k, \mathbb{Z}_2)$.

- iv) Assume that $\Delta *Sq^2u_0 = 0$ (resp. $\Delta *Sq^2u_1 = 0$ or $\Delta *Sq^2Sq^1u = 0$) and that $p*A^{k+4}(\Re_k, Z_2) = 0$ (resp. $p*A^{k+5}(\Re_k, Z_2) = 0$). Then there is an element v of $A^{k+2}(\Re_{k+1}, Z_2)$ (resp. $A^{k+3}(\Re_{k+1}, Z_2)$) such that $i*v = Sq^2u_0$ (resp. Sq^2u_1 or Sq^2Sq^1u), $Sq^2v = 0$ and that the $A^*-submodule$ generated by v and by the imag of p* is isomorphic to $A*/\varphi_2A*+p*A*(\Re_k, Z_2)$.
- v) Assume that $\Delta *Sq^4u_0 = 0$, $p*A^{k+1}(\Re_k, Z_2) = p*A^{k+14}(\Re_k, Z_2) = 0$ and that $Sq^1: p*A^{k+11}(\Re_k, Z_2) \rightarrow p*A^{k+12}(\Re_k, Z_2)$ is an isomorphism into. Then there is an element v of $A^{k+4}(\Re_{k+1}, Z_2)$ such that $i*v = Sq^4u_0$, $Sq^2Sq^1v = Sq^7v = (Sq^{10} + Sq^8Sq^2 + Sq^7Sq^3)v = 0$ and that the A^* -submodule generated by v and by the imag of p^* is isomorphic to $A^*/(\varphi_{(2,1)}A^* + \varphi_{7}A^* + \varphi_{(10)+(8,2)+(7,3)}A^*) + p*A^*(\Re_k, Z_2)$ for dimensions less than 21.
- Proof. i) From the exactness of the sequence (4.4), ii), $\Delta^*Sq^2u=0$ implies the existence of an element v such that $i^*v=Sq^2u$. Also from $i^*(Sq^3v)=Sq^3Sq^2u=0$, we have that there is an element w of $A^{k+5}(\Re_k,Z_2)$ such that $p^*w=Sq^3v$. Since $0=Sq^1Sq^3v=Sq^1p^*w$, p^*w is in the kernel of $Sq^1:p^*A^{k+5}(\Re_k,Z_2)\to p^*A^{k+6}(\Re_k,Z_2)$. Thus $Sq^3v=p^*w=0$. Let A_0^* be the A^* -submodule generated by v and the image of p^* . The formula $f'(\alpha u)=\alpha v$, $\alpha\in A^*$, defines an A^* -homomorphism f' of A^* into A_0^* . Since $f'(\varphi_3(\alpha u))=\alpha Sq^3v=0$, f' defines an A^* -homomorphism f of A^*/φ_3A^* into A_0^* . Obviously the composition $i^*\circ f:A^*/\varphi_3A^*\to A^*$ equals to φ_2 . By Theorem I, $i^*\circ f$ is an isomorphism into. Therefore A^*/φ_3A^* is isomorphic to $f(A^*/\varphi_3A^*)$ which is a direct summand of A_0^* . Since $A_0^*/p^*A^*(\Re_k,Z_2)\approx i^*(f(A^*/\varphi_3A^*))$, we have $A_0^*=f(A^*/\varphi_3A^*)+p^*A^*(\Re_k,Z_2)$.

The proofs of ii)-v) are similar by use of Theorem I, (3.2) or Lemma 3.1. q. e. d.

In the following, we treat A^* -module structures of $A^*(\Re_k, Z_2)$ and some Bockstein operators in it. Then several results on the stable homotopy groups π_k of the sphere are clarified.

Since $K_k^{N+k} = S^N$, we have easily

$$(4.5) Ai(\Rek, Z2) = 0 for 0 < i \le k.$$

The complex K_1 has the only non-trivial homotopy group $\pi_N(K_1) \approx \pi_N(S^N) \approx Z$. Then K_1 is an Eilenberg-MacLane space of

a type (Z, N), and we have

Proposition 4.3. $A^*(\Re_1, Z_2)$ is an A^* -module generated by an element $a_1 \in A^0(\Re_1, Z_2)$. We have a relation $Sq^1a_1 = 0$ and an isomorphism $A^*(\Re_1, Z_2) \approx A^*/\varphi_1 A^*$. The Bockstein operators $\frac{\delta}{2^r}$ are trivial for r > 1.

The triviality follows from (2.6): $H(A^i/\varphi_1A^{i^{-1}}) = A^i_{(1)}(\Re_1, Z_2) = 0$ for i > 1. $A^2(\Re_1, Z_2) = \{Sq^2a_1\}$, $A^3(\Re_1, Z_2) = \{Sq^3a_1\}$ and $Sq^1Sq^2a_1 = Sq^3a_1$. Then from (3.3), vii) and (4.4), i), we have

Corollary. 2-component of $\pi_1 = Z_2$.

From the corollary, $A^*(\pi_1, Z_2)$ is isomorphic to A^* and is generated by an element $u \in A^0(\pi_1, Z_2)$. Consider the exact sequence of (4.4), ii) for k=1.

Proposition 4.4. There exists an element b_2 of $A^3(\Re_2, Z_2)$ such that $i^*b_2 = Sq^2u$. $A^*(\Re_2, Z_2)$ is an A^* -module generated by $a_2 = p^*a_1$ and b_2 . We have relations $Sq^1a_1 = Sq^2a_2 = Sq^3b_2 = 0$ and an isomorphism $A^i(\Re_2, Z_2) \approx A^i/(\varphi_1A^{i-1} + \varphi_2A^{i-2}) \oplus A^{i-3}/\varphi_3A^{i-6}$.\text{1) The Bockstein homomorphisms } $\frac{\delta}{2^r}$, r > 1, are trivial except for the case r = 2 and $\deg \equiv 0 \pmod{4}$, and in the case the rank of the image of $\frac{\delta}{4}$ is 1. In particular, $\frac{\delta}{4}Sq^4a_2 = \{Sq^2b_2\}, \frac{\delta}{4}Sq^8a_2 = \{Sq^4Sq^2b_2\}$ and $\frac{\delta}{4}Sq^8Sq^4a_2 = \{(Sq^8Sq^2 + Sq^6Sq^3Sq^1)b_2\}$.

Proof. By (4.5), $A^2(\Re_2, Z_2) = 0$. Then $\Delta^* : A^0(\pi_1, Z_2) \to A^2(\Re_1, Z_2) = \{Sq^2a_1\}$ is onto and $\Delta^*u = Sq^2a_1$. Since $\Delta^*\alpha u = \alpha Sq^2a_1$, Δ_* is equivalent to $\bar{\varphi}_2 : A^* \to A^*/\varphi_1A^*$. By Theorem I, the kernel of Δ^* is generated by Sq^2u . From the exactness of the sequence (4.4), ii), we have that $A^*(\Re_2, Z_2)$ is generated by $a_2 = p^*a_1$ and an element b_2 such that $i^*b_2 = Sq^2u$. We see that $p^*A^6(\Re_1, Z_2) = \{Sq^6a_2\}$ and $p^*A^7(\Re_1, Z_2) = \{Sq^7a_2\}$. Then $Sq^1 : p^*A^6(\Re_1, Z_2) \to p^*A^7(\Re_1, Z_2)$ is an isomorphism. By Lemma 4.2, i) we have an isomorphism $A^i(\Re_2, Z_2) \approx A^{i-3}/\varphi_3A^{i-6} \oplus p^*A^i(\Re_1, Z_2)$ and a relation $Sq^3b = 0$. Obviously $p^*A^i(\Re_1, Z_2) \approx A^i/(\varphi_1A^{i-1} + \varphi_2A^{i-2})$, $Sq^1a_2 = p^*Sq^1a_1 = 0$ and $Sq^2a_2 = p^*Sq^2a_1 = p^*\Delta^*u = 0$.

By Theorem I, A^*/φ_3A^* and $A^*/(\varphi_1A^*+\varphi_2A^*)$ are (A^*-) isomorphic to $\varphi_2A^*=B_2^*$ and $\bar{\varphi}_5A^*=\bar{B}_5^*$. Since $\frac{\delta}{2}=Sq^1=\varphi_1^*$, we have from Theorem II that

¹⁾ $B^i = C^j \oplus D^k$ means that $B^* = \sum B^i$ is a direct sum of A^* -moducles $C^* = \sum C^j$ and $D^* = \sum D^k$.

$$A_{(1)}^i(\mathfrak{R}_2, Z_2) \approx \begin{cases} Z_2 & i \equiv 0, 1 \pmod{4}, & i \geq 4, \\ 0 & i \equiv 2, 3 \pmod{4}. \end{cases}$$

By Lemma 4.1, i), we see that $\frac{\delta}{4}$: $A_{(1)}^{4k}(\Re_2, Z_2) \to A_{(1)}^{4k+1}(\Re_2, Z_2)$ is not trivial and hence an isomorphism. Then $A_{(r)}^*(\Re_2, Z_2) = 0$ for $r \ge 2$. The last assertion of the lemma follows from the diagram (3.1). q. e. d.

 $A^3(\Re_2, Z_2) = \{b_2\}$ and $A^4(\Re_2, Z_2) = \{Sq^1b_2, Sq^4a_2\}$, then from (3.3), vii) and (4.4), i), we have

Corollary. 2-component of $\pi_2 = Z_2$.

From the corollary, $A^*(\pi_2, Z_2)$ is isomorphic to A^* and generated by an element u of $A^0(\pi_2, Z_2)$. Consider the exact sequence of (4.4), ii) for k=2.

Proposition 4.5. There exists an element c_3 of $A^5(\Re_3, Z_2)$ such that $i^*c_3 = Sq^3u$. $A^*(\Re_3, Z_2)$ is generated by $a_3 = p^*a_2$ and c_3 . We have relations $Sq^1a_3 = Sq^2a_3 = Sq^1c_3 = Sq^5c_3 = 0$ and an isomorphism $A^i(\Re_3, Z_2) \approx A^i/(\varphi_1A^{i^{-1}} + \varphi_2A^{i^{-2}}) \oplus A^{i^{-5}}/(\varphi_1A^{i^{-6}} + \varphi_5A^{i^{-10}})$. The Bockstein homomorphisms $\frac{\delta}{2^r}$, r > 1, are trivial except for the case r = 3 and $\deg \equiv 0 \pmod{4}$, and in the case the rank of the image of $\frac{\delta}{8}$ is 1. In particular, $\frac{\delta}{8} Sq^4a_3 = \{c_3\}$, $\frac{\delta}{8} Sq^4a_3 = \{Sq^4c_3\}$, and $\frac{\delta}{8} Sq^8Sq^4a_3 = \{(Sq^8 + Sq^6Sq^2)c_3\}$.

Proof. $A^3(\Re_3, Z_2) = 0$ by (4.5), then $\Delta^*: A^0(\pi_2, Z_2) \to A^3(\Re_2, Z_2) = \{b_2\}$ is onto and $\Delta^*(\alpha u) = \alpha b_2$. From the exactness of the sequence (4.4), ii) and from Proposition 4.4, we have that $p^*A^*(\Re_2, Z_2)$ is generated by $a_3 = p^*a_2$ and isomorphic to $A^*/(\varphi_1 A^* + \varphi_2 A^*)$ and that the kernal of Δ^* , i.e. the image of i^* , is generated by Sq^3u . Therefore $A^*(\Re_3, Z_2)$ is generated by a_3 and an element a_3 such that $a_3 = Sq^3u$. We see that $a_3 = Sq^3u$ we see that $a_3 = Sq^3u$ for $a_3 = Sq^3u$ we see that $a_3 = Sq^3u$ is an isomorphism if $a_3 = Sq^3u$ and an isomorphism: $a_3 = Sq^3u$ is an isomorphism if $a_3 = Sq^3c_3 = 0$ and an isomorphism: $a_3 = Sq^3c_3 = 0$ and $a_3 = Sq^3c_3 = 0$ and

 $A^4(\Re_3, Z_2) = \{Sq^4a_3\}, A^5(\Re_3, Z_2) = \{c_3\} \text{ and } \frac{\delta}{8}Sq^4a_3 = c_3, \text{ then by } (3.3), \text{ vii) and } (4.4), \text{ i)},$

Corollary. 2-component of $\pi_3 = Z_8$.

From the corollary, $A^*(\pi_3, Z_2)$ is isomorphic to $A^*/\varphi_1 A^* + A^*/\varphi_1 A^*$ generated by elements $u_0 \in A^0(\pi_3, Z_2)$ and $u_1 \in A^1(\pi_3, Z_2)$ such that $\frac{\delta}{8}u_0 = u_1$. Consider the exact sequence (4.4), ii) for k=3. Denote that $p^*a_3 = a_4$.

Proposition 4.6. There exist elements $d_{4} \in A^{7}(\Re_{4}, Z_{2})$ and $e_{4} \in A^{9}(\Re_{4}, Z_{2})$ such that $i*d_{4} = Sq^{4}u_{0}$ and $i*e_{4} = Sq^{5}u_{1}$. We have relations $Sq^{1}a_{4} = Sq^{2}a_{4} = Sq^{4}a_{4} = Sq^{1}e_{4} = Sq^{2}e_{4} = Sq^{2}Sq^{1}d_{4} = Sq^{7}d_{4} = (Sq^{10} + Sq^{8}Sq^{2} + Sq^{7}Sq^{8})d_{4} = 0$, $\frac{\delta}{16}Sq^{8}a_{4} = \{e_{4}\}$, $\frac{\delta}{4}Sq^{12}a_{4} = \{Sq^{6}d_{4}\}$ and $\frac{\delta}{8}((Sq^{5} + Sq^{4}Sq^{1})d_{4} + \mathcal{E}Sq^{12}a_{4}) = \{Sq^{4}e_{4}\}$ for some $\mathcal{E}=0$ or 1. Let $A_{0}^{*} = \sum A_{0}^{i}$ be an A^{*} -submodule generated by a_{4} and a_{4} , then $a_{0}^{i} \approx A^{i}/(\varphi_{1}A^{i-1} + \varphi_{2}A^{i-2} + \varphi_{4}A^{i-4}) \oplus A^{i-9}/(\varphi_{1}A^{i-10} + \varphi_{2}A^{i-11})$. For i < 21, $A^{i}(\Re_{4}, Z_{2})$ is generated by a_{4} , a_{4} and a_{4} , and $a_{4}^{i}(\Re_{4}, Z_{2}) \approx A_{0}^{i} \oplus A^{i-7}/(\varphi_{(2.1)}A^{i-10} + \varphi_{7}A^{i-14} + \varphi_{(10)+(8.2)+(7.3)}A^{i-17})$.

Proof. $A^4(\Re_4, Z_2) = 0$ by (4.5), then $\Delta^*: A^0(\pi_3, Z_2) \to A^4(\Re_3, Z_2)$ $= \{Sq^4a_3\}$ is onto. Thus $\Delta *u_0 = Sq^4a_3$ and $\Delta *u_1 = c_3$ by (3.3), v). It follows from (4.4), ii) that $p^*A^*(\Re_3, Z_2)$ is generated by $a_4 = p^*a_3$ and isomorphic to $A^*/(\varphi_1A^*+\varphi_2A^*+\varphi_4A^*)$. Since $\Delta^*Sq^5u_1=Sq^5c_3=0$ and $\Delta *Sq^4u_0 = Sq^4Sq^4a_3 = Sq^6Sq^2a_3 + Sq^7Sq^1a_3 = 0$, there are elements e_4 and e_4 such that $i^*e_4 = Sq^5u_1$ and $i^*e_4 = Sq^4u_0$. Let A_e^* and A_a^* be A^* -submodules generated by e_4 and d_4 respectively. Since $p^*A^{10}(\Re_3, Z_2) = p^*A^{11}(\Re_3, Z_2) = 0$, we have from Lemma 4.2, iii) that $A^* = A_e^* + p^*A^*(\Re_3, Z_2)$ and $A_e^* \approx A^*/(\varphi_1 A^* + \varphi_2 A^*)$. $p^*A^{10}(\Re_3, Z_2) = p^*A^{17}(\Re_3, Z_2) = 0$ and $Sq^1: p^*A^{14}(\Re_3, Z_2) = \{Sq^{14}a_4\}$ $\approx p^*A^{15}(\Re_3, Z_2) = \{Sq^{15}a_4\},$ we have from Lemma 4.2, v) that $p*A*(\Re_3, Z_2) \cup A_a^{*1} = p*A*(\Re_3, Z_2) + A_a^* \text{ and } A_a^* \approx A*/(\varphi_{(2,1)}A* + \varphi_7A*)$ $+\varphi_{(10)+(8,2)+(7,3)}A^*$) for dimensions less than 21. From Lemma 3.1 and from (4.4), ii), we have $A^*(\Re_4, Z_2) = p^*A^*(\Re_3, Z_2) \cup A_a^* \cup A_e^*$ for dimensions less than 21. Since A_d^* and A_e^* are imbedded by i^* into direct factors, we have $A^*(\Re_4, Z_2) = p^*A^*(\Re_3, Z_2) + A_d^* + A_e^*$ for dimensions less than 21.

Since $\frac{\delta}{8}Sq^8a_3 = \{Sq^4c_3\} = \Delta^*Sq^4u_1$, we have from Lemma 4.1, i), an element $\tilde{\alpha} \in A^9(\Re_4, Z_2)$ such that $\frac{\delta}{16}(p^*Sq^8a_3) = \frac{\delta}{16}Sq^8a_4 = \{\tilde{\alpha}\}$ and $i^*\tilde{\alpha} = Sq^3Sq^4u_1 = Sq^5u_1 = i^*e_4$. Since $p^*A^9(\Re_3, Z_2) = 0$, $i^*\tilde{\alpha} = i^*e_4$

¹⁾ $B^* \cup C^*$ means the minimal A^* -submodule containing B^* and C^* .

implies $\tilde{\alpha} = e_4$ and $\frac{\delta}{16} Sq^8 a_4 = \{e_4\}$. Similarly from $\frac{\delta}{2} Sq^{12} a_3 = Sq^{13} a_3 = Sq^6 Sq^3 Sq^4 a_3 = \Delta * Sq^6 Sq^3 u_0$, $Sq^1 Sq^6 Sq^3 u_0 = Sq^6 Sq^4 u_0 = i * Sq^6 d_4$ and from $p*A^{13}(\Re_3, Z_2) = 0$, we have $\frac{\delta}{A} Sq^{12} a_4 = \{Sq^6 a_4\}$.

$$\begin{split} p*A^{_{13}}(\Re_3,\,Z_2) &= 0, \text{ we have } \frac{\delta}{4}Sq^{_{12}}a_4 = \{Sq^6a_4\}.\\ &\quad \text{Since } \frac{\delta}{8}Sq^8Sq^4a_3 = \frac{\delta}{8}\Delta^*Sq^8u_0 = (Sq^8 + Sq^6Sq^2)c_3 = \Delta^*(Sq^8 + Sq^6Sq^2)u_1,\\ \text{we have, from Lemma 4.1, iii), elements } \tilde{\alpha} \in A^{_{12}}(\Re_4,\,Z_2) \text{ and } \tilde{\beta} \in A^{_{13}}(\Re_4,\,Z_2) \text{ such that } \frac{\delta}{8}\tilde{\alpha} = \{\hat{\beta}\}, \ i*\tilde{\alpha} = Sq^1Sq^8u_0 = (Sq^5 + Sq^4Sq^1)Sq^4u_0\\ &= i*(Sq^5 + Sq^4Sq^1)d_4 \text{ and } i*\tilde{\beta} = Sq^1(Sq^8 + Sq^6Sq^2)u_1 = Sq^4Sq^5u_1 = i*Sq^4e_4.\\ \text{From } p*A^{_{13}}(\Re_3,\,Z_2) = 0 \text{ and } p*A^{_{12}}(\Re_3,\,Z_2) = \{Sq^{_{12}}a_4\}, \text{ we have that } \tilde{\beta} = Sq^4e_4 \text{ and } \tilde{\alpha} = (Sq^5 + Sq^4Sq^1)d_4 + \mathcal{E}Sq^{_{12}}a_4 \text{ for some } \mathcal{E} = 0 \text{ or } 1.\\ \text{Then } \frac{\delta}{8}\left((Sq^5 + Sq^4Sq^1)d_4 + \mathcal{E}Sq^{_{12}}a_4\right) = \{Sq^4e_4\}. \quad \text{q. e. d.} \end{split}$$

 $A^{5}(\Re_{4}, Z_{2}) = A^{6}(\Re_{4}, Z_{2}) = 0$, $A^{7}(\Re_{4}, Z_{2}) = \{d_{4}\}$ and $A^{8}(\Re_{4}, Z_{2}) = \{Sq^{1}d_{4}, Sq^{8}a_{4}\}$. By (3.3), vii), and (4.4), i), the 2-component of π_{4} vanishes. Then $A^{*}(\pi_{4}, Z_{2}) = 0$. From the exact sequence (4.4), ii), we have an isomorphism

$$p^*: A^*(\Re_4, Z_2) \approx A^*(\Re_5, Z_2)$$
.

Similarly we have an isomorphism

$$p^*: A^*(\Re_5, Z_2) \approx A^*(\Re_6, Z_2)$$
.

Again from (3.3), vii) and (4.4), i),

Corollary. 2-component of $\pi_4 = 2$ -component of $\pi_5 = 0$, 2-component of $\pi_6 = \mathbb{Z}_2$.

From the corollary, $A^*(\pi_6, Z_2)$ is isomorphic to A^* and is generated by an element u of $A^0(\pi_6, Z_2)$. Consider the exact sequence of (4.4), ii) for k=6, where we identify $A^*(\Re_6, Z_2)$ with $A^*(\Re_4, Z_2)$ by the above two isomorphisms p^* . Denote that $a_7 = p^*a_4 \in A^0(\Re_7, Z_2)$ and $a_7 = p^*e_4 \in A^0(\Re_7, Z_2)$.

Proposition 4.7. There exists elements $f_{7} \in A^{9}(\Re_{7}, Z_{2})$, $f_{7}' \in A^{13}(\Re_{7}, Z_{2})$ and $f_{7}'' \in A^{16}(\Re_{7}, Z_{2})$ such that $i^{*}f_{7} = Sq^{2}Sq^{1}u$, $i^{*}f_{7}' = Sq^{7}u$ and $i^{*}f_{7}'' = (Sq^{10} + Sq^{8}Sq^{2} + Sq^{7}Sq^{3})u$. Let A_{0}^{*} be an A^{*} -submodule generated by a_{7} , e_{7} and f_{7} . We have relations $Sq^{1}a_{7} = Sq^{2}a_{7} = Sq^{4}a_{7} = Sq^{1}e_{7} = Sq^{2}f_{7} = 0$ and an isomorphism $A_{0}^{*} \approx A^{i}/(\varphi_{1}A^{i-1} + \varphi_{2}A^{i-2} + \varphi_{4}A^{i-4}) \oplus A^{i-9}/(\varphi_{1}A^{i-10} + \varphi_{2}A^{i-11}) \oplus A^{i-9}/\varphi_{2}A^{i-11}$. $A^{*}(\Re_{7}, Z_{2})/A_{0}^{*}$ has a linearly independent base $\{f_{7}', Sq^{2}f_{7}', f_{7}'', Sq^{4}f_{7}', Sq^{2}f_{7}''; Sq^{6}f_{7}', Sq^{4}Sq^{2}f_{7}''; \cdots\}$.

Proof. The existence of f_7 , f_7' and f_7'' follows from (4.4), ii) and the previous proposition. The second assertion follows from Lemma 4.2, iv) since $p^*A^{11}(\Re_4, Z_2)=0$. The last assertion follows from (4.4), ii) and from the calculation in the proof of Lemma 3.1. q. e. d.

We see $A^{8}(\Re_{7}, Z_{2}) = \{Sq^{8}a_{7}\}$ and $A^{9}(\Re_{7}, Z_{2}) = \{e_{7}, f_{7}\}$. By proposition 4.6 and (3.3), iv), $\frac{\delta}{16}Sq^{8}a_{7} = p^{*}\frac{\delta}{16}Sq^{8}a_{4} = \{p^{*}e_{4}\} = \{e_{7}\}$. Then by (3.3), vii) and (4.4), i),

Corollary. 2-component of $\pi_7 = Z_{16}$.

 $A^*(\pi_7, Z_2)$ is isomorphic to $A^*/\varphi_1A^* + A^*/\varphi_1A^*$ and generated $u_0 \in A^0(\pi_7, Z_2)$ and $u_1 \in A^1(\pi_7, Z_2)$ such that $\frac{\delta}{16}u_0 = u_1$. Consider the exact sequence (4.4), ii) for k = 7. Denote that $p^*a_7 = a_8$, $p^*f_7 = f_8$, $p^*f_7' = f_8'$ and $p^*f_7'' = f_8''$.

Porposition 4.8. There exist elements $g_8 \in A^9(\Re_8, Z_2)$, $g_8' \in A^{15}(\Re_8, Z_2)$ and $h_8 \in A^{10}(\Re_8, Z_2)$ such that $i*g_8 = Sq^2u_0$, $i*g_8' = Sq^8u_0$, $i*h_8 = Sq^2u_1$ and $Sq^2h_8 = 0$. Let A_0^* be an A^* -submodule generated by a_8 , f_8 , g_8 and h_8 , then we have relations $Sq^1a_8 = Sq^2a_8 = Sq^4a_8 = Sq^8a_8 = Sq^2f_8 = Sq^2g_8 = 0$ and an isomorphism $A_0^i \approx A^i/(\varphi_1A^{i-1} + \varphi_2A^{i-2} + \varphi_4A^{i-4} + \varphi_8A^{i-8}) \oplus A^{i-9}/\varphi_2A^{i-11} \oplus A^{i-9}/\varphi_2A^{i-11} \oplus A^{i-10}/\varphi_2A^{i-12}$. $A^*(\Re_8, Z_2)/A_0^*$ has a linearly independent base $\{f_8'; Sq^2f_8', g_8'; f_8'': Sq^4f_8', Sq^2g_8'; Sq^2f_8'', Sq^3g_8'; Sq^6f_8', Sq^4Sq^2f_8', Sq^4g_8'; \cdots\}$.

Proof. As is seen in the proof of Proposition 4. 6, $\Delta^*u_0 = Sq^8a_7$ and $\Delta^*u_1 = e_7$. From Proposition 4. 8, Lemma 3. 2 and from (4. 4), ii), there are elements g_8 , g_8 and h_8 such that $i^*g_8 = Sq^2u_0$, i^*g_8 $= Sq^8u_0$ and $i^*h_8' = Sq^2u_1$. Since $i^*Sq^2h_8' = Sq^2Sq^2u_1 = 0$ and since $p^*A^{12}(\Re_7, Z_2) = \{Sq^2Sq^1f_8\}$, we have $Sq^2h_8' = \varepsilon Sq^2Sq^1f_8$ for some $\varepsilon = 0$ or 1. Setting $h_8 = h_8' + \varepsilon Sq^1f_8$ we have that $i^*h_8 = Sq^2u_1$ and $Sq^2h_8 = 0$. Remark that the condition $p^*A^{k+5}(\Re_k, Z_2) = 0$ of Lemma 4. 2, iv) may be replaced by the condition $Sq^2v = 0$. Then the proposition is proved by Lemma 4. 2, iv), the exact sequence (4. 4), ii) and by Lemma 3. 2. q. e. d.

We see $A^{9}(\Re_{8}, Z_{2}) = \{f_{8}, g_{8}\}$ and $A^{10}(\Re_{8}, Z_{2}) = \{Sq^{1}f_{8}, Sq^{1}g_{8}, h_{8}\}$. By (3.3), vii) and (4.4), i),

Corollary. 2-component of $\pi_8 = Z_2 + Z_2$.

Then $A^*(\pi_8, Z_2) \approx A^* + A^*$. We may chose generators u and u' of $A^*(\pi_8, Z_2)$ such that, in the exact sequence (4.4), ii) for

k=8, the relations $\Delta^* u = f_8$ and $\Delta^* u' = g_8$ hold. Denote that $p^* a_8 = a_9$, $p^* f_8' = f_9'$, $p^* f_8'' = f_9''$, $p^* g_8' = g_9'$ and $p^* h_8 = h_9$.

Since $\Delta *Sq^2u = Sq^2f_8 = 0$ and $\Delta *Sq^2u' = Sq^2g_8 = 0$, there exist elements i_9 ' and j_9 ' of $A^{10}(\Re_9, Z_2)$ such that

$$i*i_{9}' = Sq^{2}u$$
 and $i*j_{9}' = Sq^{2}u'$.

To determine Sq^3i_{9}' and Sq^3j_{9}' , we shall consider the Bockstein operators in $A^i(\Re_k, Z_2)$ for i = 12, 13 and k = 7, 8, 9.

 $A^{12}(\Re_{7}, Z_{2}) = \{Sq^{12}a_{7}, Sq^{2}Sq^{1}f_{7}\}$ and $A^{13}(\Re_{7}, Z_{2}) = \{Sq^{4}e_{7}, Sq^{4}f_{7}, f_{7}'\}$. Then the following three possibilities are considered.

(4.6) i)
$$\frac{\delta}{8} Sq^{12}a_7 = \{f_7'\}$$
 and $\frac{\delta}{4} Sq^2 Sq^1 f_7 = \{Sq^4e_7\}$;

ii)
$$\frac{\delta}{8} Sq^{12}a_{7} = \{Sq^{4}e_{7}\}$$
 and $\frac{\delta}{4} Sq^{2}Sq^{1}f_{7} = \{f_{7}'\}$;

iii)
$$\frac{\delta}{8} Sq^{12}a_{7} = \{Sq^{4}e_{7}\}$$
 and $\frac{\delta}{4} Sq^{2}Sq^{1}f_{7} = \{f_{7}' + Sq^{4}e_{7}\}$.

Proof. First we remark that $p*A^{12}(\Re_4, Z_2) = \{Sq^{12}a_7\}$ and $p*A^{13}$ $(\Re_4, Z_2) = \{Sq^4e_7\}.$ By Proposition 4.6, $\frac{\delta}{4}Sq^{12}a_4 = \{Sq^6d_4\} = \{\Delta_2^*Sq^6u\}.$ Since $i*f_7' = Sq^7u = Sq^1Sq^6u$, we have by Lemma 4.1, i), $\frac{\delta}{8}Sq^{12}a_4$ $=\{f_7'+\lambda Sq^4e_7\}$ for some $\lambda=0$ or 1. By Proposition 4.6, $\frac{\delta}{8}((Sq^5)^2+\delta Sq^4e_7)$ $+Sq^4Sq^1$ $d_4 + \varepsilon Sq^{12}a_4$ $= \{Sq^4e_4\} = \{Sq^4e_4 + Sq^6d_4\}$. In the case $\varepsilon = 0$, applying Lemma 4.1, ii), we have from $Sq^2Sq^1Sq^2Sq^1u = Sq^1(Sq^5)$ $+Sq^4Sq^1$) u that $\frac{\delta}{4}(Sq^2Sq^1f_7 + \nu Sq^{12}a_7) = \{Sq^4e_7\}$ for some ν . Since $Sq^{12}a_7 \in \frac{\delta}{4}$ -kernel, we have $\frac{\delta}{4}(Sq^2Sq^1f_7) = \{Sq^4e_7\}$. Since $Sq^4e_7 \in \frac{\delta}{4}$ image, $\frac{\delta}{8}Sq^{12}a_7 = \{f_7' + \lambda Sq^4e_7\} = \{f_7'\}$. Then we have the case i). Next consider the case $\varepsilon = 1$. By (3.3), iv), $\frac{\delta}{8}((Sq^5 + Sq^4Sq^1)d_4)$ $+Sq^{12}a_4) = \{Sq^4e_4\} \text{ implies } \frac{\delta}{8}Sq^{12}a_7 = \{Sq^4e_7\}. \text{ Since } (Sq^5 + Sq^4Sq^1)d_4 + Sq^{12}a_4 \in \frac{\delta}{4} - kernel, \text{ we have } \frac{\delta}{4}Sq^{12}a_4 = \frac{\delta}{4}(Sq^5 + Sq^4Sq^1)d_4 = \{Sq^6d_4\}.$ Then we have from Lemma 4.2, iii), $\frac{\delta}{4}(Sq^2Sq^1f_7 + \lambda Sq^{12}a_7) = \{f_7' + g_7'\}$ νSq^4e_7 } for some λ , $\nu=0$ or 1. Since $Sq^{12}a_7 \in \frac{\delta}{4}$ -kernel, $\frac{\delta}{4}(Sq^2Sq^1f_7)$ $= \{f_7' + \nu Sq^4e_7\}$. Then we have the cases ii) and iii). $A^{12}(\Re_8, Z_2) = \{Sq^2Sq^1f_8, Sq^2Sq^1g_8\} \text{ and } A^{13}(\Re_8, Z_2) = \{f_8', Sq^2Sq^1h_8, G_8'\}$ Sq^4f_8 , Sq^4g_8 . Then the following three possibilities are considered.

$$\begin{aligned} \text{(4.7)} \quad &\text{i)} \quad \frac{\delta}{4} Sq^2 Sq^1 g_8 = \{f_8'\} \quad and \quad \frac{\delta}{8} Sq^2 Sq^1 f_8 = \{Sq^2 Sq^1 h_8\} \;; \\ &\text{ii)} \quad \frac{\delta}{4} Sq^2 Sq^1 f_8 = \{f_8'\} \quad and \quad \frac{\delta}{8} Sq^2 Sq^1 g_8 = \{Sq^2 Sq^1 h_8\} \;; \\ &\text{iii)} \quad \frac{\delta}{4} Sq^2 Sq^1 f_8 = \{f_8'\} \quad and \quad \frac{\delta}{8} Sq^2 Sq^1 (f_8 + g_8) = \{Sq^2 Sq^1 h_8\} \;. \end{aligned}$$

Proof. First we remark that the term Sq^4f_8 does not appear in any representatives of a $\frac{\delta}{2'}$ -image, because $Sq^1Sq^4f_8 = Sq^5f_8 = 0$. Applying the Lemma 4.1, i) and ii), we have from the case i) of (4.6) that $\frac{\delta}{4}Sq^2Sq^1(g_8 + \lambda f_8) = \{f_8'\}$ and $\frac{\delta}{8}Sq^2Sq^1f_8 = \{Sq^2Sq^1h_8 + \nu f_8'\}$ for some λ and ν . Then $\frac{\delta}{4}Sq^2Sq^1f_8 = 0$ and $\{Sq^2Sq^1h_8 + \nu f_8'\}$ = $\{Sq^2Sq^1h_8\}$. Therefore (4.6), i) implies (4.7), i).

Next consider the cases ii) and iii) of (4.6). By (3.3), $\frac{\delta}{4} Sq^2 Sq^1 f_7 = \{f_7' + \nu Sq^4 e_7\} \text{ implies } \frac{\delta}{4} Sq^2 Sq^1 f_8 = \{f_8'\} \text{.} \text{ Applying Lemma 4.1, iii) to } \frac{\delta}{8} Sq^{12} a_7 = \{Sq^4 e_7\}, \text{ we have that } \frac{\delta}{8} Sq^2 Sq^1 (g_8 + \lambda f_8) = \{Sq^2 Sq^1 h_8 + \nu f_8'\} = \{Sq^2 Sq^1 h_8\}. \text{ Then we have the case ii) and iii).} q. e. d.$

From (4.4), ii) for k=8 and from Theorem I, we have that $A^*(\Re_9, Z_2)/p^*A^*(\Re_8, Z_2)$ is isomorphic to $A^*/\varphi_3A^*+A^*/\varphi_3A^*$ and generated by i_9 and j_9 . In particular $A^{12}(\Re_9, Z_2) = \{Sq^2i_9, Sq^2j_9\}$ and $A^{13}(\Re_9, Z_2) = \{Sq^2Sq^1h_9, f_9, Sq^2Sq^1i_9, Sq^2Sq^1j_9\}$. Then the following three possibilities are considered.

(4.8) i)
$$Sq^{3}j_{9}' = \{f_{9}'\}$$
 and $\frac{\delta}{4}Sq^{2}i_{9}' = \{Sq^{2}Sq^{1}h_{9}\}$;
ii) $Sq^{3}i_{9}' = \{f_{9}'\}$ and $\frac{\delta}{4}Sq^{2}j_{9}' = \{Sq^{2}Sq^{1}h_{9}\}$;
iii) $Sq^{3}i_{9}' = \{f_{9}'\}$ and $\frac{\delta}{4}Sq^{2}(i_{9}' + j_{9}') = \{Sq^{2}Sq^{1}h_{9}\}$.

Proof. Consider the case i) of (4.7). From Lemma 4.1, ii), we have elements $\tilde{\alpha}$ and γ such that $i^*\tilde{\alpha} = Sq^1Sq^2Sq^1u' = Sq^2Sq^2u' = i^*Sq^2j_9'$, $\{\gamma\} = \{f_8'\}$ and $\frac{\delta}{2}\tilde{\alpha} = p^*\gamma$. Since $p^*A^{12}(\hat{\mathbb{R}}_8, Z_2) = 0$, $i^*\tilde{\alpha} = i^*Sq^2j_9'$ implies $\tilde{\alpha} = Sq^2j_9'$. Since $\frac{\delta}{2}$ -image = 0 in $A^{12}(\hat{\mathbb{R}}_8, Z_2)$, $\{\gamma\} = \{f_8'\}$ implies $\gamma = f_8'$ and $p^*\gamma = f_9'$. Therefore $Sq^3j_9' = \frac{\delta}{2}Sq^2j_9' = f_9'$. We have also, from Lemma 4.1, ii), $\frac{\delta}{4}Sq^2i_9' = \{Sq^2Sq^1h_9 + \mathcal{E}f_9'\} = \{Sq^2Sq^1h_9\}$.

Similarly (4.7), ii) implies (4.8), ii) and (4.7), iii) implies (4.8), iii). q. e. d.

Now we define elements i_9 and j_9 of $A^{10}(\Re_9, \mathbb{Z}_2)$ as follows corresponding for each cases of (4.8);

- $egin{array}{ll} i_{\scriptscriptstyle 9} = i_{\scriptscriptstyle 9}{}' & and & j_{\scriptscriptstyle 9} = j_{\scriptscriptstyle 9}{}' \,, \ i_{\scriptscriptstyle 9} = j_{\scriptscriptstyle 9}{}' & and & j_{\scriptscriptstyle 9} = i_{\scriptscriptstyle 9}{}' \,, \end{array}$
- iii) $i_0 = i_0' + j_0'$ and $j_0 = i_0'$.

Then $Sq^3j_9 = f_{9}'$, $\frac{\delta}{4}Sq^2i_9 = \{Sq^2Sq^1h_9\}$ and $Sq^3i_9 = \frac{\delta}{2}Sq^2i_9 = 0$. Obviously i_9 and j_9 generate $A^*(\Re_9, Z_2)/p^*A^*(\Re_8, Z_2)$. By making use of the condition $Sq^3i_9=0$, in place of the condition on Sq^1 in Lemma 4.2, i), we have

Proposition 4.9. Let A_0^* be an A^* -submodule generated by h_0 and i_9 , then we have relations $Sq^2h_9 = Sq^3i_9 = 0$ and an isomorphism $A_0^i \approx A^{i-10}/\varphi_2 A^{i-12} \oplus A^{i-10}/\varphi_3 A^{i-13}$. $A^*(\Re_9, \mathbb{Z}_2)/A_0^*$ has a linearly independent base $\{Sq^{16}a_9; g_9', Sq^ig_9', i=2, 3, 4; f_9'', Sq^2f_9''; Sq^Ij_9,$ $I \neq (5, 1)$, for dimensions less than 20.

Remark that $f_9' = Sq^3 j_9$, $Sq^2 f_9' = (Sq^5 + Sq^4 Sq^1) j_9$, $Sq^4 f_9' = Sq^5 Sq^2 j_9$, $Sq^{6}f_{9}' = Sq^{6}Sq^{3}j_{9}$ and $Sq^{4}Sq^{2}f_{9}' = (Sq^{9} + Sq^{8}Sq^{1} + Sq^{7}Sq^{2} + Sq^{6}Sq^{2}Sq^{1})j_{9}$.

Since $i*Sq^3f_7' = Sq^3Sq^7u = (Sq^4Sq^2Sq^1 + Sq^7)Sq^2Sq^1u = i*(Sq^4Sq^2Sq^1)$ $+Sq^{7}f_{7}$, we have $Sq^{3}f_{7}'-(Sq^{4}Sq^{2}Sq^{1}+Sq^{7})f_{7} \in p^{*}A^{16}(\Re_{4}, \mathbb{Z}_{2})=\{Sq^{16}a_{7},$ $Sq^{7}e_{7}$. By operating p^{*} , we have that $Sq^{3}f_{9}'=\varepsilon Sq^{16}a_{9}$ for some $\varepsilon = 0$ or 1. Thus we consider the following two cases:

A)
$$Sq^{5}Sq^{1}j_{9} = Sq^{3}f_{9}' = 0$$
,

B)
$$Sq^{5}Sq^{1}j_{9} = Sq^{3}f_{9}' = Sq^{16}a_{9}$$
.

By (3.3), vii) and (4.4), i), we have from $A^{10}(\Re_9, \mathbb{Z}_2) = \{h_9, e_1, \dots, e_n\}$ $\{i_9, j_9\}$ and $A^{11}(\Re_9, Z_2) = \{Sq^1h_9, Sq^1i_9, Sq^1j_9\},$

Corollary. 2-component of $\pi_9 = Z_2 + Z_2 + Z_2$.

 $A^*(\pi_9, \mathbb{Z}_2) \approx A^* + A^* + A^*$. We may chose generators u, u' and u'' such that the relations $\Delta^*u = h_g$, $\Delta^*u' = i_g$ and $\Delta^*u'' = j_g$ hold in the exact sequence (4.4), ii), k=9. Denote that $p^*a_9=a_{10}$, $p*f_9''=f_{10}''$ and $p*g_9'=g_{10}'$.

Proposition 4.10. There exist elements $k_{10} \in A^{11}(\Re_{10}, \mathbb{Z}_2)$ and $l_{10} \in A^{12}(\Re_{10}, \mathbb{Z}_2)$ such that $i * k_{10} = Sq^2u$ and $i * l_{10} = Sq^3u'$. Let A_0^* be an A^* -submodule generated by k_{10} and l_{10} , then we have relations $Sq^3k_{10} = Sq^1l_{10} = Sq^5l_{10} = 0$ and $\frac{\delta}{4}l_{10} = \{Sq^2k_{10}\}$ and an isomorphism $A_0^i \approx A^{i-10}/\varphi_3 A^{i-13} \oplus A^{i-11}/(\varphi_1 A^{i-12} + \varphi_5 A^{i-16}).$ For the case A), $A^*(\Re_{10}, Z_2)/A_0^* = \{g_{10}^{"}, m_{10}; Sq^{16}a_{10}, f_{10}^{"}; Sq^2g_{10}^{"}; Sq^2f_{10}^{"}, Sq^3g_{10}^{"}; \cdots\}$ where $i^*m_{10} = Sq^5Sq^1u''$. For the case B), $A^*(\Re_{10}, Z_2)/A_0^* = \{g_{10}^{"}; f_{10}^{"}; Sq^2g_{10}^{"}; Sq^2f_{10}^{"}, Sq^3g_{10}^{"}; \cdots\}.$

Proof. From the previous proposition, $\Delta^*Sq^2u = \Delta^*Sq^3u' = 0$, $p^*A^i(\Re_9, Z_2) = 0$, i = 12, 13, and $Sq^1 : p^*A^{17}(\Re_9, Z_2) = \{Sq^2g_{10}'\} \rightarrow p^*A(\Re_9, Z_2) = \{Sq^3g_{10}', Sq^2f_{10}''\}$ is an isomorphism into. Then we have, from i) and ii) of Lemma 4.2, the first two assertions of the proposition. Since $p^*A^{12}(\Re_9, Z_2) = p^*A^{13}(\Re_9, Z_2) = 0$, $\frac{\delta}{4}Sq^2i_9 = \{Sq^2Sq^1h_9\}$ implies $\frac{\delta}{4}l_{10} = \{Sq^2k_{10}\}$ by Lemma 4.1, iii). The last two assertions are verified directly. q. e. d.

From $A^{11}(\Re_{10}, Z_2) = \{k_{10}\}$ and $A^{12}(\Re_{10}, Z_2) = \{Sq^1k_{10}, l_{10}\},$

Corollary. 2-component of $\pi_{10} = Z_2$.

The $A^*(\pi_{10}, Z_2)$ is isomorphic to A^* and generated by an element u of $A^0(\pi_{10}, Z_2)$.

Continuing our calculation, we have the following results without difficulties:

$$A^*(\mathfrak{R}_{11}, Z_2) = \{a_{11}; l_{11}; n_{11}; Sq^2l_{11}; g'_{11}, Sq^3l_{11}, m_{11}, Sq^2n_{11}; Sq^{16}a_{11}, f''_{11}, Sq^4l_{11}, Sq^3n_{11}; Sq^2g'_{11}, Sq^4n_{11}; \cdots \}$$

where $i*n_{11} = Sq^2u$ and the elements m_{11} and $Sq^{16}a_{11}$ are omitted for the case B). $\frac{\delta}{8}l_{11} = \{n_{11}\}.$

$$A^*(\Re_{12}, Z_2) = \{a_{12}; g'_{12}, m_{12}; Sq^{16}a_{12}, f''_{12}, o_{12}; \cdots \}$$

where $i*o_{12} = Sq^5u_0$ and the elements m_{12} and $Sq^{16}a_{12}$ are omitted for the case B).

Therefore we have from (3.3), vii) and (4.4), i),

Proposition 4.11. i) 2-component of $\pi_{11} = Z_8$,

- ii) 2-component of $\pi_{12} = 2$ -component of $\pi_{13} = 0$,
- iii) the 2-component of π_{14} has at most two generators.

Remark. If $\pi_N(S^N)$, k_N , $\pi_{N+1}(S^N)$, k_{N+2} , \cdots are Postnikov's invariant system of S^N , then K_k has an invariant system $\pi_N(S^N)$, k_N , \cdots , $\pi_{N+k-1}(S^N)$, 0, 0, \cdots .

REFERENCES

- [1] J. Adem, The relations on Steenrod powers of Cohomology classes, Algebraic geometry and Topology, Princeton.
- [2] H. Cartan, Sur l'itération des opérations de Steenrod, Comm. Math. Helv., 29 (1955) 40-58.
- [3] J-P. Serre, *Homologie singulière des espaces fibrés*, Ann. of Math., 54 (1951) 425-505.
- [4] J-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comm. Math. Helv., 27 (1953) 198-231.
- [5] A. Negishi, Exact sequences in the Steenrod algebra, Jour. Math. Soc. Japan, 10 (1958) to appear.
- [6] T. Yamanoshita, On certain cohomology operations, Jour. Math. Soc. Japan, 8 (1956), 300-344.

١