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A Steenrod algebra A* will mean a stable Eilenberg-MacLane
cohomology group A*(Z,, Z,)) =lim H¥*(Z,, n; Z,) in which the
multiplication is defined by the composition of the squaring oper-
ations S¢’. The formula ¢,(b) =ba associates for each element
a of A* an (additive) homomorphism ¢,: A* - A*. We write
p,=@, if a=Sq’, then A*(Z, Z,) = A*/p, A*. We shall give an
elementary proof of the following

Theorem 1. The following two sequences of homomorphisms are
exact.

A* i A¥
T : l :
Ps
A¥ [ p A¥ «—— A*|p A*

Several exact sequences are known experimentally for lower
dimensions. For example, it seems that the sequence

ax 27 px (5 P2, ax (5 a9

is exact. More generally we propose
Problem. Let a,b,, --,b, € A*. Is the kernel of ¢,: A*—
A*/(i} P, A¥) finitely generated (as a left ideal)?

In place of ®,, take a homomorphism @} defined by the
formula @¥*(®)=ab, then the exactness of analogous sequences
is proved by T. Yamanoshita and A. Negishi (¢f. [5])).
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Theorem II. Let B*=3) B be one of the five kernel-images in
the exact sequences of Theovem I, then in the sequence

* *
Bi! (pl,Bi q)l,BiH

Z y 1=\ (mod4), i=2,
we have (¢ik)_1(0)/(P’1l<(Bi—') ~ 172 f0 7 . (m )
0 otherwise,

where N takes the following values :

when B* =1image of | ¢, P, Ps Py P

=kernel of | ¢, P P, P, P

then A= | 0 1 1 3 1or 3.

The above two theorems are proved in §2 under some pre-
parations in §1. In §3, we see some partial exact sequences,
which are applied in §4 to study the cohomology of fibre spaces
over a sphere and to calculate the following values of 2-compo-
nents of the stable homotopy groups =, =lim =,,,(S”) of the sphere:

k= ‘1234567 8 9 10 11 12 13

2-comp. of | Z, Z, Z,0 O Z, ZZs+Z, Zo+Zs+Z, 2, Z, 0 0.

We have also a partial result on =,, which will be useful for
determining the groups =, and 7.

§1. Steenrod algebra A*=A*(Z,, Z,).

Consider a sequence X={X,, f,; k=N, N+1, N+2, ---} which
satisfies the conditions
1.1). 1) X, are (k—1)—connected spaces.
il) f, are mappings of the suspensions S(X,) of X, in X,,,.
i) For each integer i, there exists an integer \(i) such that
Sox: i (S(X)) =7, (Xy) are isomorphisms for k=),

Then it is verified that the condition iii) may be replaced by
the same condition for homology groups. Denote that
G;(%) = Dir. lim {7, (X4), fix"S},
A;(X) = Dir. lim {H;1,(X)), fix-Sx} ,
Ai (%) = Inv. lim {H**(X,), S* f¥},
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where S, Sy and S* denote the suspension homomorphisms. Remark
that these groups can be defined without the condition iii). By
the condition iii), we may regard that

G:(%) = 7.1 (X})
(1.2 A;(®) = H (X)),

1

Ai(X) = H* X)) ,

for sufficiently large k. Cohomological operations which commute
with f¥ and S* are naturally defined in A/(¥). For example, the
squaring operation S¢’: A/(%, Z,) —Ai*"(X, Z,) is defined. The groups
G;(®), A,(X) and A/(X) are called the stable homotopy, homology and
cohomology groups of X respectively.

The i-th stable homotopy group =; of the sphere is defined by

7ti — Gz(®)

where &= {S*, 7,} is a sequence consists of the k-spheres S* and
the identities of S**'=S5(S*). It is well known that =; ==, \(SM)
for N_>i+1 under the convension (1. 2).

The i-th stable Eilenbrg-MacLane homology group A;(=) and
cohomology group Ai(w, Z,) of an abelian group = are defined by

Am) = A,R() and Ai(m, Z) = AR(), Z)),

where (=) consists of Eilenberg-MacLane spaces K(=, k) and
mappings f,: S(K(=, k)) — K(=, k+1) which induce isomorphisms
of (k+1)-th homotopy groups. It is well known that A=
=H, y(#z, N) and Ai(z, Z)=Hi*N=, N; Z,) for N=i+1 under
the convension (1. 2).

A symbol I will denote a finite sequence I=(i,, ---,1,) of
positive integers. It is convenient to introduce the empty sequence
I=(¢). We use the following notations :

deg I =1i,+ -+ +i, (degree of 1), deg(p) =0,
() =7 (length of I), lip) =0,
t,(I) =1, (j-th element) ,
HI) =1, =1t,,, (last element) .
A sequence I= (i, -+, 4,) is called to be admissible if i,=2i,,,

for j=1, .-+, r—1.
By Serre’s work [4], the stable Eilenberg-MacLane cohomology
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group Ai(Z,, Z,) has its Z,-base {Sq'u}, where Sq’=Sg‘1c -:- oSq‘r,
I is admissible, deg /=i and « is the fundamental class of A%(Z,,
Z,). For an arbitrary sequence I, S¢'u belongs to Ai(Z,, Z)), i=
degl. Thus Sgx is a sum of admissible squares Sg’su. The
result Sq'u =3 Sq’wu is obviously unique and is called the normali-
zation of Sq'u.

For the simplicity, we set

(1.3) Squ=1I1, AiZ,,Z)=A" and A*=321A'.

Then A* is a graded Z,-module generated by the sequences I
with the relation determined by the normalization I=3"1,. Set

I]= (iw "ty i,, jl’ ttty ]s)
for I=(@,, +-,i,) and J=(j, ---, j), then a multiplication is
defined in A*, since the product IJ corresponds to the composition
Sq'oSq’ of the squaring operations. Now A* becomes a graded

algebra over Z,, namely Steenrod algebra mod 2.

When /(I) =2, the normalization process is given precisely by
the Adem’s relations [1], [2]:

1.4  Ch—m )= 3 ("Zf—tfl) ©@h—t, h—m+1) ,
h 2

-m+t=0

where m >0, (Z) =(ai b) is the binomial coefficient mod 2 with
2 2

the convension Z =0 if <0 and we omit the term A—m+¢ if
2

h—m+t=0. The coefficient (mt—_tl— 1> =<”ﬁn—_t5t1) vanishes if
2 2

t—1<0 or m—2¢t< 0. Therefore the summation of (1.4) is valid
for the following values of ¢:

1.5 Max. (1, m—h) <t <m/2.

Since t<m({2< 2m/3, we have 2h—t>2(h—m+1t). Thus the re-
lation (1.4) gives the normalization of (2k—m, k).

Lemma 1.1. FEach sequence I is normalized by use of the Adem’s
relations. The normalization preserves the degree and does not
augument the length.

Proof. By (1.4), the lemma is true for /(/)=2. Put I=

(¢, -+, 2,), r>2 and assume that the lemma is true for /(/)<r
and for t,(I)>i, (and [(I)=r). Then (i, ---,,) is normalized.
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Thus we may assume that (i,, --+, 7,) is admissible. If 7, >2i,, I
is already admissible. If 7,<72i,, (i,, i,) is normalized to 3 (a,, b,)
where a,+b,=i,+1¢, and a,>2b,. Then a, >i, and I=3(a,, b,,
i;, **+, 4,), and each term of the summation is normalized by the
assumption. Obviously these processes preserve the degree and
do not augument the length. The lemma is proved inductively
since t,(I) <deg L.

Lemma 1.2, Let I=(,, -+, i,) be an admissible sequence and
let i be a positive integer less than 2i,. Let X 1I; be the normali-
zation of ()=, 1, +,1,). Then t () <2i,—1 for all j. If
t() =2i,—1, then I,= (2i,—1,i—1i,+1,1,, -+, 1,) or I;=(2(,—1, i,,
w,0,). Theterm I;= (2i,—1, i—i,+1, i,, ---, 1,) exists if and only if
2(,—1)=i=i,—1 and i—i,+1=2i,. The term I,= 2i,—1,1,, -+, 1,)
exists if and only if i=1,—1.

Proof. First consider the case r=1. By (1.4) and (1.5), each
term I; has a form (2i,—¢, i—i,+¢) for Max.(1, i, —4) <t <i,—i/2.
Then ¢,(/)=2{,—t<2i,—1. If t,(I;)=2i{,—1 then {=1 and whence
the condition 7,—7<¢<i,—7/2 implies that 2(@,—1)>i>7,—1.
Conversely, if 2(,—1)>i>i,—1 then the coefficient (211_0’_2>
of (2¢,—1, i—i,+1) equals to 1. Therefore the lemma is true for2
r=1.

Now let »”>1 and assume that the lemma is true for /(I)<r
and for /(I)=vr and ¢,(I)<i,. Applying the lemma of the case
r=1, we have that (i, --,4,) is a sum of some J,=(2i,—¢,
i—1i,+t,1,, -, 4,) and the term J, appears if and only if 2(;,—1)
>i>i,—1. The term J, is admissible if /—¢,+1>=2/, and also
if i—i,+1=0 since 2{,—1>=7,>2i,. In the case 0<7i—17,+1<2i,,
applying the lemma to (f—i,+1)(,, -+, ¢,), (—i,+1,1,, --,1,) is
normalized to >} a,, b,, ---) such as a, <2i,—1. Since a, <2i,—1
<i,—1<i,, we may apply the lemma to (2{,—1)(a,, b,, ---) by the
assumption. Then J,= (2i,—1, i—i,+1, i,, .-+, 7,) is normalized to
221; such as ¢t,(I}) <2a;—1<_2i,—1. Therefore, when 0<7i—17,+1
< 21,, the normalization of J, has no term I, of ¢,(I,)=2i,—1.
Next consider the term J, for t<1. If J, is not admissible, by
similar arguments to the case f{=1, we have that the normali-
zation of J, consists of /; such as ¢,(I;)< 2:,—1. If J, is admissible,
t,(J;) =2i,—t< 2i,—1. Consequently we see that the lemma is
proved by the induction since ¢,(/) =2%P",
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Lemma 1.3. Let I=(i,, -+, i,) be admissible and s=0. If
27 L, KT for j=1, -+, 7, then the normalization of P,s.I
= ({,, *=+, 1,, 2°+1) is 241, ;=27 §,—2°V72 e [ [ —2°)+
23 (@, by, ++2) where a, <2° and i,—2°""77 are omitted if i;=2""""/.

Proof. Then lemma is obvious for »=0. Suppose that the
lemma is true for /(I)=r—1. Then @, I=() (i,, -+, 1, 2°+1)
=(i,, 2" +1,{,—2""2 e [, —2)+>3(,, @), b, -+) and @/, K2°V77,
By Lemma 1.2, each term I, of the normalization >}, of
(,, a,’, b, +-) satisfies #,(,,) <2°*"—1. Next the term (¢,) (2" ' +1,
i,—2°t77% ... {,—2° satisfies the conditions 2@2°""'+1—-1) =1,
=>2""'4+1—1 and ,— @ '+1)+1=2(,—2""Y) = 2{,—2""" of
Lemma 1.2, by the assumption of this lemma. Then the normali-
zation of (f,, 27 1, 1,—27777% -, {,-2°) is (277741, §,—27F"7Y
0,—2°772 v [ =2+ (ay, b, --+) where a, <27*". Therefore the
lemma is proved by the induction on /().

For the convenience, we note some relations obtained directly
from (1.4).

1,2)=@i+1), (@,2—1)=0,
2,2 =31, (3,2=0,

2,3 =G +141), 33=061, 43=052, 5 3)=0,
2,4 =0 +6,1), B 4H=D, @44)=(7,1)+62), -,
2,5) =6,1), (3,5 =0, 4,5 =9 +@® 1)+(7,2), --.

1.6)

§2. Proof of Theorems.

The formula @,(b) =ba defines a homomorphism @, of the left
A*-modules. In particular, for an integer ¢ the homomorphism
@y, denoted by @,, is defined by o,(,, -+, 1) =(,, -+, i,, §).

By (1.6), o.6,,-,i)=0if i,=1. If i,°>1, then ¢,@,, -+, 1,)

=(,, -, i,, 1) is admissible. Thus the sequence

@.1) Ax T a5 P, g

is exact. The kernel-image @,(A*) =@7'(0) of the sequence has
the admissible sequences I of the last element #(/)=1 as its
Z,-base. The factor group A*/@ A* has a Z,-base {I|admissible,
tl) =2}.

For an odd ¢, @,-®,=®,,»,=0 by (1.6). Then @, defines an
A*-homomorphism of A*/@p A* into A* which will be denoted by
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the same symbol
P, A¥/p A* — A* .
We denote the composition of @, and the natural homomor-
phism of A* onto A*/@,A* by
Py A% —> A*[,A*
@, A*¥/p A* — A*/p A*,  t: odd.
Now the first theorem is stated as follows.

Theorem 1. The following sequences are exact.

i) A% -T2 A%/ T ax)p A%
) A%/ pax 75 4% ax D0 ax
iv) Arjpar 2o ax P ax
v) A*/p A% —@a A*[p, A* —@» A*[p A* .
We introduce the following notations :
o, = (the rank of A?) = (the number of the admissible sequen-

ces of a degree i),

a,= (the rank of Ai/p,Ai"") = (the number of the admissible
sequences I of a degree i such that t(I) =2),”

B;() = (the rank of the image P, Ai™") in Af),

B,(t) = (the rank of the image $,\Ai™Y) in Ai/@ Ai™).

An admissible sequence I=,, -+, ¢,) is called to be of a type®
(¢, s) if deglI=: and if there exist integers j and ¢ such that
i;=2'+1, 1<j<7 and t=s+((r—j). Obviously an admissible
sequences of a type (Z, s) is of a type (i, s') for s’ <s. Denote that

v:2°+1) = (the number of the admissible sequnces of a type
@ ),

7:(2°+1) = (the number of the admissible sequences I of a type
(¢, 8) such that t(I) =2).”

1) We consider that the empty sequence (¢) satisties the condition #(/) =2 and
has a type (0, s) for arbitrary s.



40 Hirosi Toda

For an admissible sequence I=(,, ---, 7,) of a type (i, s), we
define an admissible sequence o,s,,/ as follows. Let j be the least
integer such that #; has a form 2+1. Then {—(r—j) =s. For,
there are # and j'>j such that iy=2"+1 and #'—(r—j)=s,
then 2'+1=¢,>2""7,>2"*/"7+1 implies t— (r—j=t'—(r—j)=s.
Then we set

(2 2) g'25+1I:: (iu H) ij—n ij+1+21_1, ) ir“‘zt- (r_j), 2#(,_1')71, °tt 25)

It is easily verified that the sequence o,,,/ is admissible.

For an admissible sequence I=(i,, ---, Z,) such that 7,>2°, we
define a sequence 7,.,/ as follows. Let k be the largest integer
such that ¢, >2"*""*", We set k=0 if 7; <2°""7/* for 1<j<r.
Now we set

(2- 3) Tzs+1I: (in °tty ik) 2S+’—k+1a ik+1—2$+r—(k+l)’ °cy ir_zs) ’

where we omit 7,,,— 2%t if 4, =2%""G+m Tt {5 easily seen
that 7,s,,/ is admissible if and only if 7, ==2""""%*141,

Lemma 2.1. i) Let I be an admissible sequence of a type
(G+2°+1,5). Then Howd) =2°, Tpsiilops ) =1 and o,s,,1 is not a
type (i, s+1). If t(I)=2, then o,,,I isnot atype (i,1). If t()=2
and s==1, then o,s,.I is not a type (i, 0).

il) Let I be an admissible sequence of a degree i which is not
a type (i, s+1) and which has a last element t(I)=2°. Then Ty,
is an admissible sequence of a type ((+2°+1,s) and we have
051 (T [)=1. Furthermore t(r,s,.I)=2 if I is not a type (1, s).

Proof. i) Let o,,,I be defined by (2.2). Obviously #(c.s,./)
>2. We set loy, [V=t—s+j—1=r". Since < @24+1)/2"=
2077427 n=1, -, r—j, we have t;,, (o5, ])=1;,,+27" K270
___23+r/—(j+n-1)+l. Also tj—l(azs%-l I)Zl.jdng(Zt—{-l) >2t+1:25+r/—(j*1)+1_
Then it is verified directly from (2.3), where k=j—1, that 7.,
(0354, /) =1. Next consider the type of o,,,/. For 1<n<j—1,
i, is not a form 2?+1. Since 7;,,<27"+27" n=1, -+, r—j, if
ljyu+27"=2?+1, then i;,,=i,=1 and p=t—n=I—(r—j). In
this case, however, the condition of the type (7, s+1) is not satis-
fied, since p=s+ (' —(r—1) < s+1+(#'—(r—1)). The elements
2-=p=1 ... 2° are not forms 2?+1 except for 2'=2"+1 whence
s=0 or 1. When s=0, we have 2°+1=t¢,/_,(0,s,,/) and this does
not satisfy the condition of the type (i, 0) since 0< 0+ (»'— (»'—1))
=1. When s=1, we have 2°+1={,(0,s,, /) and this does not
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satisfy the condition of the type (;, 1) since O< 1+ (r'—7")=1.
Consequently o,s,,/ is not a type (i, s+1). In the case {([)=i,=2,
the only element of a form 2?+1 is 2'=2°+1. Then o,/ is
not a type (7, 1) and further not a type (;, 0) if s==1.

i) Let 7,/ be defined by (2.3). Since I is not a type
(¢, s+1), i,=2?+1 implies p<s+1+(r—n)=s+r—n+1 and i, <
27t7-mh - RFrom i, >2°777F1 we have 7,>2F""i, >2"""""*" for n <k.
Therefore 7, is not a form 22+1 for 1<n<k. In particular,
1,==2""""F"1 11 and this shows that 7,s,,/ is admissible. Since /(7,s,,])
<r+1, we have f,,,(7,5, )=2""""%+1 and s+r—k=s+ (I(Ty,.])
—(k+1)). Thus 7,,,] has a type ((+2°+1,s). Since k+1 is the
least integer such that f,,,(7,s,,/) is of a form 2?+1, it is verified
directly from (2. 2) that o,s,,(T,s,,/)=1. Next suppose that #(r.s,,[)
=1, then i,,,=2"""%*"41 4, . =20 =27 for some
n, and this indicates that 7 has a type (i, s). Therefore Herps ) =2
if I is not a type (i, 9). q.e.d.

Lemma 2. 2. 1) 7,2 +7;,,02) =
1i) 7:(2) +7,.50)
iil)  7,0) +7:,,3)
iv)  7:3)+7:4.(2) =
V) 7:3)+7:4.0) = “i .

(o

II

Il

Proof. 1) 7;,,(2) is the number of the admissible sequences
I of a type ({+2, 0) such that #(/)>2. «;—v;(2) is the number
of the admissible sequences J of the degree i which is not a type
(7, 0). By Lemma 2.1, i), o,/ is not a type (¢, 0) and 7,(c,[)=1.
By Lemma 2.1, ii), 7,/ is an admissible sequence of a type (i +2, 0)
such that o,(r,J)=/ and t(r,J)=2. Therefore o, and 7, are the
inverses of the others, and we have 7;,,(2)=«a;—v;(2).

ii) Let I be an admissible sequence of a type ({+5,2) such
that {(/)>=2. Let J be an admissible sequence of the degree ¢
which is not a type (7, 0) and which satisfies #(/)=2. By Lemma
2.1, 1), o/ is not a type (i, 0), 75(cs])=1 and t(cs])=2°=2. Since
J is not a type (i, 0), we have #(J)=+=2=2+1 and #(J)==3=2"+1.
Thus J is not a type (5, 2) and #(/)>4=2% Then, by Lemma
2.1, ii), 7./ is an admissible sequence of a type (+5, 2), o5(t.J)=]
and #(r,J)=2. o, and 7, shows the equality 7,,,5)=&;—7;(2).

iii) Let I be an admissible sequence of a type ({+3,1). Let
J be an admissible sequence of a degree i which is not a type
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(4, 2) and which satisfies #(/)2>2. By Lemma 2.1, we have that
ol is not a type (i, 2), 7,(c.[V=1I and #(s,])>=2 and that =,J is an
admissible sequence of a type (+3,1) and o,(m,J)=J. Then
7i-k3(3):ai_'7i(5)'

The proofs of iv) and v) are similar to the above one and
omitted. q.e.d.

Lemma 2.3. 2 +1)<B,2°+1) and 7,.2°+1)<B,2 +1).

Proof. We order the sequences of A‘ by the following rule.
Iz(iu "ty zr)>]:(.7n Tty ]b) if il'__'—jl) "ty ip—xsz~1 and ip>jp for
some p. First we prove that for an admissible sequence of a
type (, s) the following formula holds:

2. 4) Pos o) =1+ 231, for some I,<I.

Let o,,,/ be given by (2.2), then its subsequence (Z,,,+2"",
..., 2°) satisfies the condition of Lemma 1.3. By Lemma 1.3,

¢25+1(0'25+1I) = (in Tty ij—l) (])23+1(ij+1+2’_‘, "ty 25)
:I+Z (ily "'yij—l,aky bk: '")y akgzt)

for some I,=(i,, **-, i;_,, @, b, -)<I. Now assume that there
is a relation @,s, (o5, i+ +++ +03s,.0,)=0 for some I, >1,>--->I,.
Then by (2.4), [,+>)],,=0 for some J,< I, and this implies a
contradiction I,=0. Therefore ®,s,,(s,s,,]) are linearly independent
for all sequences I of the type (7, s). Thus «;2°+1) <B;(2°+1).
Another inequality 7,(2°+1)</3,(2°+1) is proved similarly.

Proof. of Theorem I. By (1.6), we have that @,ocp,=@ 0@,
=@ Pe=P, 0P, =P,0P,=0. From P,00,=0, we have @,(A?)
C #374(0). Thus B;2 <a;—B;,,(2). By Lemma 2.3 and 2.2,
B:2) =7,2)=a;—7,,,(2) =a;,— B;,,(2). Therefore B;(2)=a;—B,,,(2)
and this implies that @,(A*=®;!(0). Then the exactness of the
sequence i) of Theorem I is proved. The exactness of the other
sequences ii)-v) is proved similarly. g.e.d.

Corollary. v,(2)=28,(2), 7.(=5,2), v,3)=8:03), 7,3=8@3)
and 7,5)=B,(5).

Define a homomorphism @¥: A*—A* by the formula @X(,,
s, 0,)=(u, i,, -, 1,). Then

(2.5) ¢:‘.¢t:¢toq)f.
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By (1. 6), we have @¥(i,, -+, 7,)=0 for odd 7, and @¥(,, ---, 7,)
=(,+1,1,, -,4,) for even i,. Then it is easy to see that the
sequence

an 2 4 P g

in exact. Also we have an exact sequence

2 P .
AT p ATt —— Aifp ATt — At p A
for i=1. Define subgroups B: and B by setting
Bi = @A) A' and Bi= @A) Ai[pAi.

By 2.5), ¢¥BiHC Bi*' and @¥(Bi) Bi**. Since ¢Ff ¢F=0,
A*¥, A*¥|p A* B¥=3"Bi and B¥f=3B} are cochain complexes
with respect to the coboundary operator 6 =¢%¥. From the exact-
ness of the above two sequences, we have

(2. 6) H(A) =0 for i=0,
HAi /9 A™)y =0  for i=1.
From Theorem I and (2.5), we have an exact sequence
0 — Bf —> Ai — Bj*? -0

which is compatible with @¥. This induces the following cohomo-
logy exact sequence:

-+ — H(A’) — H(B}*?) —E*—>H(B§“) — H(A) — .
Then, from (2.6), we have an isomorphism
2.7, i 8 : H(By*YY ~ HBY)  for all i.
Similarly we have the following isomorphisms :

i) 8 . H(Bi*Y) H(E‘) for i =2,

iii) & : H(Bi*®) ~ H(BY)  for i =2,
iv) 8*: HBy*Y) ~ H(BY)  for all i,
v) 8 : H(Bi*?) ~ HBY)  for i =2.

From (1.6), we calculate easily that Bi~Bi~Bi~Z, and

3=B}=B}{=B}=B!=B}=Bi{=B{=Bl=B{=0. Then we
obtain the following theorem by the isomorphisms of (2.7).

Theorem II. Let Bi be one of Bi, Bi, Bt, Bt and Bi. Then

J’Z2 for i=X\ (mod 4) and 1 =2,

H(Bi) ~
(B) lO otherwise,
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where \ takes the following values:

Bi=| B BY B Bj Bj
|
[

A= 0 1 1 3 lor3 .

We note here the following representatives of the generator
of H(B).

H(BY) H(B$) and HB&) HBE™)  HBE)
k=1 | @1 ) @) @)
k=2 5,2,1) 9 +(7,2) 5, 2) )
k=3 9,2,1) 9, 4) 9,2)+(7,3,1) 5, 2)
k=4 9,4,2,1) (17)+(15,2)+ (13, 4) 9,4, 2) 9)+(7,2)

+(11, 4, 2).

§3. Some tables.and lemmas.
In the following, several practical values of ¢,-images are
calculated by (1.4).

The table indicated at the end of the previous § follows from
the following diagram :

* *
@ 2@ @ 26

\P. \Ps
N N
\P. \P:
Ny N
\Ps \P:
N N

8 +(6,2) —> 9 +(7,2) 8)+(6,2) —> 9)+(7,2)
3.1) NPs \(}\)i

8,2)+(6,3,1) —> (9,2 +(7,3,1) (8,4) — (9, 4)
NP, \Ps
N Ny
(8’ 2, 1) - (9> 2, 1) (8’ 4) 2) - (9) 4, 2)

NP2 \P.
N N

(8) 4) — (9) 4) (8; 4) 2) 1) — (9: 47 2; 1)
\Ps AN

N AN
(16) + -+ — (17) + -+~ (16) + =+ —> (17) + -
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The image of the homomorphism ¢,: A*—A*/p A* contains
the following linearly independent elements :

4), (@, 4) for i =8; (5), (¢,5) for i=10; (6), (7, 6) for 1 =12;
(M, ¢ 7 for i=14; (6,2), (,6,2) for i =12;

), (7,2); 10)+(8,2), (7,3); (11)+(9,2), (9,2)+(8,3);

(10, 2), 9,3); (13)+(10,3), (11,2); (13,2)+(12,3);

(13,3), (10,4, 2); (17)+(15,2), (11,4,2);

(18) + (16, 2) + (12, 4, 2), (11,5, 2);

(19)+ (16, 3), (17,2)+(16,3)+(12,5,2), (13,4,2)+(12,5,2);

(18, 2) + (14, 4, 2), (17,3), (13,5,2);

(21)+(18,3) + (14,5, 2), (19,2)+(15,4,2); ---.

Consider a homomorphism @, : A*— A*/(p,A*+p,A*) defined
by @,. For the degrees less than 22, @, is given from @, by
adding the following relations generated by (2)=0; (x, %, 2)=
(*,2)=1(2)=0, (x,3)=(3)=0, (x,5)=()=0, (9)=0, (9, 4)=0,
(17)+(13,4) =0, (17,4)+(15,6)=0. Therefore the image of &,
contains the following linearly independent elements (representa-
tives) :

4), (8,4), (z,4) for 10<i <16 (6), (7,6) for 12<7i<15;
(7), (14,7); (10), (11), (13), (18), (19), (21).

Next consider the kernel of @,: A*— A*/p A*. Since ¢,(2,1)
=(2,1,4)=2,5=0, ¢,(7)=(7,4=0 and @,((10)+ (8, 2) + (7, 3))
= (10, 4)+(8, 6)+(7, 7)= 0, the kernel contains @ A*+@, A*
+ Py i A¥.  Since @, : A¥/@p, A¥— A* is an isomorphism into
and since @y ,,=@,0P;: A¥*— A* we have from Theorem I
(3.2). The sequences

P, 77(2.1)

A¥ — A* — A*,

P, 1)

A*——>A*/r,D,A* A%

and ax 22, pxypax T2 px
are exact. The rank of the image Py ,(Ai™") eqals to B,(t).

In A*/p,A* we have the following linearly independent
elements :
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?,(2) =), @,@)=01)+(9,2), ¢,6)=~13)+10,3),
¢7(4) 2) = (11; 2) > ¢(1o)+(s.2)+(7,3)(2) = (10, 2)

Since @, ,,A* A%, the above images of @, and Pqgyic.p+crsy Are
independent of @, A*. Let B,4) and & be the ranks of the
image ¢,A‘"* and the kernel of @, respectively. Then the following
table follows from the above results.

i =4 5 6 7 8 9101112131415 16 17 18 19 20 21
BM4=101100111111113323
@,=10111122 23334456617
B;_.4) = 111112 22332344
@, , = 11122 23445¢66 78
B, o(2) = 11011113222
€ s—Bio(2) = 101111 2.

Since (4,4)=1(6,2)+(7,1), we have @,op,=0. By a similar
argument to the proof of Theorem I, we have

Lemma 3.1. The sequence
e P s P - -
A7 A A A (A 4, AT
is exact for i< 22 and the kernel of ¢, is generated by (2,1), (7),
(10)+(8,2) + (7, 3) for i< 22. In the above table the equalities hold.
It seems that this lemma is true for all i.

The image of a homomorphism @, : A* — A*/ (9, A* +@,A%), de-
fined by @,, contains the following linearly independent elements :

@), 10), 1), (12), (13), (14), 15), (12,4), (13,4), (18),
(14,4), 19), (15, 4), (20)+(16, 4), (14,6), (21), (15, 6).

By adding relations generated by (4)=0, we see that the image
of a homomorphism @, : A* — A*/(p A* +@,A* + @, A%), defined by
@,, contains the following linearly independent elements :

@), (12), (14), (15), (20),

Let 3,(8) and /3,(8) be the ranks of the images @,(A*) and
P,(Ai7®) respectively, then we have the following table:
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¢ =8 9 1011 12 13 14 15 16 17 18 19 20 21

A~

BB=10 00101 10O0O0O010O0
& ,—B;,2=B,,6)=100 01011101121
C_zi—m'ZBi-s(S) = 1 01 11 1.
Since @,(1) = (9) =,((4, 2, 1) + (7)) +P,((8) + (6, 2)), #4(2)=(10)
+9, 1) =9,4, 2) +9,(8) +9,(7, 2) and since @,(8)=(15, 1) +(14, 2)
+(12, 4) =9,(12) +9,(14) +9,(15), we have
¢s (¢1A*) = é\)s (q)lA* +¢2A*) = (/)ﬁs ((:T)s (A*)) =0,
Then we have the following lemma by a similar argument to
the proof of Theorem I.
Lemma 3.2. The sequence

i—16 i—17 Ps ;-8 i =9 ;—10 Ps i -1
0—>A""|P AT — AT (P AT+, ATTY) — Al (P, A
+P, A7+ P, AT
is exact for i< 22. In the above table the equality holds.
Remark that the kernal of @, contains non-zero elements (4, 2),

(15), etc..
We introduce a Bockstein homomorphism

5 3
5 2,—_1—kernel 5= -cokernel, r=1,
as follows. A cohomology class @ € H(X| A, Z,) is in the %—kernel

if there exist integral cochains a €Ci(X, A) and a’ €Cit'(X, A)
such that 8¢ =2"¢’ and a represents @. A cohomology class
BeH™X, A, Z,) is in the %—image if there exist integral cochains
beCi(X, A) and ¥ e Ci**(X, A) such that 66=2""'0" and b’ represents
B. The %—cokernel is the factor group H*'(X, A, Z,)/ <%—image>.

Let a and @’ be integral cochains as above, then —2704 is defined
as the class represented by a’. Let @, be another integral cochain
such that 8a,=2"a,’ for some a,’ and a, represents «. Then a—a,
=2b+06c for some integral cochains b and ¢. 2'(@’—a’,))=8(a—a,)

=26b implies that 2" '(a’—a,’)=06b. Thus a’ and a,’ represent the

same class of %—cokernel, and a Bockstein homomorphism —g—, is

defined uniquely. The following properties are well known.
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3.3) 1) ~kernel =the kernel of 2,.

27‘
ii) 8 —~ima e/( J —ima e>—the image of 8
1 2r g 2r- g - g 27 .

iii) =Sq¢': H(X, 4, Zz)—>H"“(X A Z).

_2'
iv) The naturality f *o~ = ° f* holds for homomorphisms
f* of cohomology groups znduced by a mapping f: (X, A)—(Y, B).
V) 3*07—70 8* for coboundary homomorphisms &*: Hi(A,
Z)—>H*(X, A, Z).
. & 8
Vl) 70 73 - 0 .

vil) Let H/(X) be finitely generated. Then the rank of the
image of % is the number of direct factors of H,(X) which are
isomorphic to the cyclic group Z,» of the order 2,

Denote by H¥,(X, A, Z,) the factor group 2, —kernel | < zmage>
By (3.3), g defines a homomorphism of H¥_,,(X, A, Z,) which
will be denoted by the same symbol (HE,= H*)

B.o) o Hon(X, A Z) > HM (X, A,2) C 2—(,S_—1—cokenral.

By regarding 2§+1 as a cobundary operator in H#,(X, A, Z,),

we see that %, ,,(X, 4, Z,) is the cohomology group of H¥,(X, A, Z,).
Consider the cohomology exact sequence for a pair (X, A):

j* ¥ o%
'"_)Hi(X, A) Zz) —’H"(X’ Zz)'—)Hi(Ay Zz)—_‘)Hi-H(X) A’ ZZ)_)

The following lemma is a modification of theorems in [6], §3.

Lemma 3.3. i) For a €¢Hi(A,Z,) and B e HI(X, A, Z,), assume
that %,B={8*a}. Then there is an element & € H'(X, Z,) such
that i*a=Sq'a and 2,“(]*6) {a} r=1).

ii) For aeH(A Z) and BeH*™X, A, Z,), assume that &*a
=8 and B € 2,_ ~kernel. Then there are elegzents aeH'“(X Z)_
and v e H*(X, A, Z)) such that i*@=Sq'a, —2—,,6’—{7} and 2,_
= {j*v} (r=2).
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iii) For a € H (A, Z,) and B € H+' (A, Z,), assume that %(S*a)
={8*a}. Then there are elements & € H*'(X, Z,) and B € H+*(X, Z,)
such that i*& =Sq'a+2""'f, i*8=S¢'B and rg—,—c"z::{é} (r=1).

Proof. i) Let a€Ci(A) and b €Ci(X, A) be representatives of

« and B respectively such that da=2a’+b, and 6b=2"0' for some
a’ €Ci**(A) and b,, b’ € Ci*'(X, A), then a/, b, and ¥’ represent Sq¢',

&*a and %B respectively. From the assumption %B: {8*a}, we

have b,—b0' =2b,+c’+38c, and 8c=2""'¢’ for some ¢, ¢, € Ci(X, A)
and b,, ¢’ €eCi*'(X, A). The element b+2(c—2"'a+2""'c,) represents
7*B. From 8(b+2(c—2a+2"c,)) =2V +25¢—28a+2"8c, = 2 (b,
—2b,—c¢'—06¢) +27¢'—2"(2a' + b)) +26¢c, = — 2" (b,+a’), we see that
ously i*& =Sq¢'(—a)=_Sq'«.

i) Let a€Ci(4) and beCi*'(X, A) be representatives of «
and B respectively such that 8a=2a’+b, and 6b=2"0" for some
a €Cit*(A), b, eCi*(X, A) and b’ €Ci**(X, A), then «’, b, and ¥’

represent Sq'«, &*a and —S,—,B respectively. From the assumption

S*a=p, we have b,—b=2b,+6c for some b,eCi*'(X, A) and ce€
Ci(X, A). From 26(b,+a’)=08(b,—b—38c)+6(@Ba—b,)= —8b=2"(—b),
we have 8(b,+a’) =2""'(—0b’). Let & and v be represented by b,+a’

(7#B) = {a@} for an element & represented by —(b,+a’). Obvi-

and b’ respectively, then we see that i*@& =Sq¢'«, %,B = {v} and

o= {— %7} = {*}.

iii) Let a€Ci(A4) and beCi*'(A) be representatives of « and
B respectively such that 8a=2a’+a, and 8b=2b"+b, for some
a e Cit'(4), bV e€Ci**(A), a,€C™(X, A) and b, €Ci**(X, A). Then
@, b, a, and b, represent Sqg'®, S¢'8, &« and &*B respectively.
From the assumption %(S*a) = {6*8}, we have 6a,=2'b,, a,—a,
=2¢+6c,, b,—b,=2d,+d’+6d, and 2"'d’=0d for some a,, ¢, d,, d
cCit™Y(X, A), ¢, €Ci(X, A) and d’, d, eC**(X, A). From 26(a’+2"7'b
+d+27d,—c)=060a—a)+ 272 +b)+2d'—2"(2d, +d + b —b,)
—8(a,—a,—8¢)=2"""—d)+ (2b,— 8a,) = 2" (b'—d,), we have
8@ +2 b+ (d+2+d,—c))=2"(b’—d,). Let @ and B be represented
by @’ +27'%b+(d+2"'d,—c) and b'—d, respectively, then we see

that i*@&=_Sq'a¢+2"'8, i*8=S¢'B and %a: {B}. q.e.d.
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Remark that the above lemma is valid for a fibre space in
the following manner. Let X be a fibre space over an m-connected
space B having an n-connected fibre F. Then, for i <m+n+1,
we have isomorphisms

p*: H(B,Z)~H!(X,F,Z).

By the above isomorphisms, Lemma 3.1. is valid for the exact
sequence of the fibering :

A% P* i
«e > Hi"F, Z,)—> H(B, Z)) — Hi(X, Z,) —> H/(F, Z,) — -+ ’

replacing Hi(X, A, Z,) by H!(B, Z,), j* by p* and 6* by A¥*,

§4. Application to the stable homotopy groups of the sphere.

Let S¥ be an N-sphere. Consider a CW-complex K,, k=2,
whose (N+k)-skeleton KY¥** is SN, By attaching cells of dim.
>N+Fk to K,, we can construct a CW-complex K,_, such that
K, . DK,, KN '=8V and =;(K,_,)=0 for i=N+k—1. Repeating
this construction from Ky=S?", we have a sequence of complexes

KDOK>DDK.,. DK D DKy,
such that KY**=S» and =;(K,)=0 for i>=N-+k. It is easy to
see that the injection 7 : S¥YC K|, induces isomorphisms

Let Y, be a space of the paths in K, starting in S S¥ is
naturally imbedded in Y, as its deformation retract. We have a
retraction (fibering)

p: Y, =SV

by associating to each path the starting point. Also associating
the end point, we have a fibering

b Y= K,

in the sense of Serre [3], a fibre X, of which is a space of the
paths in K, starting in S¥ and ending at a point. The restriction

P X, —>SY

of p, on X, is also a fibering. Consider a diagram
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/ ”i(Yk) \\Px*
/ Ny A
o= 7w (K — mi(X) N U lpo* Y 7 (K,) —> -+
p/*\ 7t',-(SN) /i*

then it is easily verified from the conditions on 7;(K,) and iy that
i =0 for i< N+k,
7i(Xe) 1 ple :
(= =,(SM) for i = N+k.

This indicates that X, is an (N+k—1)—connective fibre space
over SV,

Since X, and K, are (N+k—1)- and (N—1)-connected respec-
tively, we have the following homology exact sequence for
1 <2N+k—1:

- — Hi(X}) - H,(Y,) > H{(K,) &’ H;_(X;) — -

Since H(Y,)=H;(S")=0 for i==0, N, we have isomorphisms
(4.1)  94: H(K,) ~H;_ (X,) for N==i<2N+k—1.

Similarly we have isomorphisms
4.1y o*: HYX,, Z)~Hi(K,, Z,) for N==i<2N+k—1.

Combining (4.1) to the Hurewicz isomorphism, we have
(4.2) Tnx(SY) = wn 1 (X,) =~ Hyh(Xe) =~ Hyy i (KG)

T for 1 <kE<N-1.
Remark that (4.2) is proved directly as follows:
iyl B oy S = gy, S% R gus(SY)

Let Rkﬂ be a space of the paths in K, which start in K,,,. -

Then K,,, is a fibre space over K, containning K,., as its defor-

mation retract. Let F, be a fibre of this fibering and consider a
diagram

= 7, (Ky) = mi(F) — ”i(Kkﬂ) —> (K,) — .-

/ ]‘
U Z
/S i *
7 (Kpiy) <— 7,(S™)
Then it is verified easily from the conditions of =;(K,), 7;(K,..)
and iy that
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”N+k(SN) fOI‘ i — N+k ,
7(F,) ~ .
1 0 for i==N+k.
Therefore F, is an Eilenberg-MacLane space of the type
(T nep(SY), N+k) and Hi(F,, Z,) =~ H (7, ,(SY), N+k, Z,)). Since K,
and F, are (N—1)- and (N+k—1)-connected respectively, we have
the following exact sequence for i <2N+k—1:

4. 3) e _)Hi(Kk) Zz)_)Hi(Kkﬂ; Zz)_’H[(”N+k(SN)’ N+k, Zz) -

Now we write K, = K,(N) and consider K,(N+1). The suspen-
sion S(K,(N)) of K,(N) is a CW-complex whose (N+k+1)-skeleton
is SM, Since 7 (K,(N+1))=0 for i=N+k+1, we can construct
a mapping

& S(K(N)) — Kk(N+1)

such that f{¥ is identical on the (N+k+1)-skeletons. It is easy
to see that the sequence
® = {K.(N), £V}
satisfies the conditions of (1.1). Then the stable groups
AR, and AIR,, Z)

are defined. By the convension (1.2), we may regard that for
sufficiently large N,

Ai(R) = Hi n(K,(N)) = Hiin(K,)
AR, Z) = H*"MK,(N), Z,) = H"NK,, Z,) .

Then from (4.2) and (4.3), we have

(4. 4) i) 7o~ A (R .
i) The following sequence is exact.
p* i* _ AX
> ARy, Z) = AR, Z) ——> A7y, Z,) —>
A'“(Rk, Z,) —> o

The squaring operations in A¥&,, Z,) = >} A(®,, Z,) and
A¥(z,, Z,) =) Ai(m,, Z,) define naturally a (left) A*-module struc-
ture of A*(®,, Z,) and A*(w,, Z,). Then the above exact sequence
is one of A*-homomorphisms, since the squaring operation com-
mutes with the homomorphisms of the sequence.
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The Bockstein homomorphism —g,
A¥R,, Z,) and A*(w,, Z,)) and it satisfies the properties of (3.3),
1)-vii) by replacing Hi by A, H; by A; and &% by A*, Then the
following lemma follows from Lemma 3. 3.

Lemma 4.1. i) For a€ A" *=,,Z) and B € A (R,, Z,), assume
)

is also defined naturally in

that 7B={A*a}, Then tshere is an element & of A (R, Z,)
such that i*&=Sq'a and 57 (p*B) = {a}.

ity For aeAi*mx,, Z,) and BeA"™R,, Z,), assume that
A*a=pR, r>1 and Bezf_,—kernel. Then there arve elements & €
AR, Z) and 7€ AR, Z) such that i*&=Sga, %Bz{fy}
S *

27—]a={p ‘Y}'

iiily For aeA*(m=,, Z,) and B € A" (=, Z,)), assume that

%(A*a):{A*B}. Then theve are elements & € A7 (R,,,, Z,) and

Be A (R,,,, Z) such that i*& =Sq'a+2"'B, i*B=Sq¢B and
S . ~
= {B}.
By [3], =, is a finite group for k==0. Then by [4], Ai(=,, Z,)
is isomorphic to the sum of some A’ and A//p, A+ A"/ p A2
In the following lemma, we denote by u, u, € A°(=,, Z,) and
u, € A'(w,, Z,) the fundamental elements which generate direct
summands A* and A*/p,A*. Note that Sq¢'u,=Sq'u,=0. Consider
the exact sequence of (4. 4), ii).

Lemma 4.2. i) Assume that A*Sq'u=0 and that Sq': p*A**®
(R,, Z,)—>p*A*(R,, Z,) is an isomorphism into. Then there is an
element v of A**(R,.., Z,) such that i*v=_Sq’u, S¢’v=0 and that
the A*—submodule generated by v and by the image of p* is isomorphic
to A*|p, A%+ p*AX(R,, Z,) (direct sum of A*-modules).

il) Assume that A*Sgu=0 and that Sq': p*A**(R,, Z,) —
prARN R, Z,), i=A4, 8, are isomorphisms into. Then there is an
element v of A**(&,.., Z,) such that i*v==Sq¢’u, Sq¢'v=Sq¢’v=0 and
that the A*-submodule generated by v and by the image of p* is iso-
morphic to A*[(p,A* + @ A¥) + p*AX(R,, Z,).

iii) Assume that A*Sq°u,=0 (resp. A*Sq*u,=0) and p*A***
(Re, Z) =p*A*"(R,, Z,)=0. (resp. p*A*" (R, Z) = PrAR,, Z)
=0). Then there is an element v of A***(R,.,,Z,) (resp. A*** (8., Z,))
such that i*v =u, (resp. u)), Sq¢v=_Sq’v =0 and that the A*-

and
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submodule generated by v and by the image of p* is isomorphic to
A*/ (p, A* + P, A*) + p*A¥(R,, Z,).

iv) Assume that A*Sq*u,=0 (resp. A*Sq°u,=0 or A*Sq¢*Sq'u
=0) and that p*A***(R,, Z,)=0 (resp. p*A***(R,, Z,)=0). Then
there is an element v of A***(R,.,, Z,) (resp. A**(R,.., Z,)) such that
i*v=_Sq%, (resp. Sq’u, or Sq’Sq'u), Sq’v=0 and that the A*-sub-
module generated by v and by the imag of p* is isomorphic to A*|p,A*
+p*AX(R,, Z,).

v) Assume that A*Sq'u,=0, p*A*(R,, Z,) = p*A*"(R,, Z,)
=0 and that Sq' : p*A*(R,, Z,) = p*A*"'%(R,, Z,) is an isomorphism
into. Then there is an element v of A**(R,.., Z,) such that i*v
= Sq'u,, Sq¢*Sq'v = Sq'v = (5¢"°+S¢*Sq*+Sq'Sq*)v =0 and that the
A*—submodule generated by v and by the imag of p* is isomorphic to
A*/ (¢(2,1)A* + (P.,A* + (p(lo)+(s'2)'$'(7'3)A*) + p*A* (Rk’ Zz) f07’ dimensions
less than 21.

Proof. i) From the exactness of the sequence (4.4), ii),
A*Sqfu =0 implies the existence of an element » such that *v
=Sq’u. Also from *(Sq¢’v) =S¢’Sq’u =0, we have that there is an
element w of A*™(8®,, Z,) such that p*w==Sq¢’. Since 0=_S¢'Sq%
=Sq'p*w, p*w is in the kernel of Sq': p*A**(®,, Z,)— p*A*(R,,
Z,). Thus S¢*v=p*w=0. Let A¥ be the A*-submodule generated
by v and the image of p*. The formula f/(au)=«av, a € A*, defines
an A*-homomorphism f’ of A* into A¥. Since f/(p,(au))=aSq¢’v
=0, f’ defines an A*-homomorphism f of A*/p,A* into Ag.
Obviously the composition i*cf: A¥/p A* — A* equals to @,. By
Theorem I, i*of is an isomorphism into. Therefore A*/p,A* is
isomorphic to f(A*/p,A¥) which is a direct summand of A¥.
Since A¥/p*A*(R,, Z,) =~ i*(f(A*/p,A*)), we have A¥=f(A*/p,A%)
+p*A*(R,, Z,).

The proofs of ii)-v) are similar by use of Theorem I, (3. 2)
or Lemma 3.1. q.e.d.

In the following, we treat A*-module structures of A*(&,, Z,)
and some Bockstein operators in it. Then several results on the
stable homotopy groups =, of the sphere are clarified.

Since K{¥**=_S%, we have easily

4.5) AR, Z) =0  for 0<i<Ek.

The complex K, has the only non-trivial homotopy group
Ty(K)=~mpy(SMY~Z. Then K, is an Eilenberg-MacLane space of
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a type (Z, N), and we have

Proposition 4.3. A*(®,, Z,) is an A*-module generated by an
element a, € A°(R,, Z,). We have a relation Sq'a,=0 and an iso-

morphism A*R,, Z,) ~ A*/p,A*. The Bockstein operators —g—, are
trivial for r>1.

The triviality follows from (2.6): H(A{/p,Ai™")=AL,(R,, Z,)
=0 for i >1. AR, Z,)={Sq¢%a}, A*R,, Z,)={S¢a,} and S¢'Sq’a,
=S¢%a,. Then from (3.3), vii) and (4. 4), i), we have

Corollary. 2-component of =, =72,.

From the corollary, A*(=,, Z,) is isomorphic to A* and is
generated by an element « € A°(=,, Z,). Consider the exact sequence
of (4.4), ii) for k=1.

Proposition 4.4. There exists an element b, of AXR,, Z,)
such that i*b,—=Squ. A*R,, Z,) is an A*-module generated by a,
=p*a, and b,, We have relations Sq¢'a,=Sq’a,=Sq¢’b,=0 and an
isomorphism Ai{(R,, Z,) =~ A/ (@, Ai '+, Ai YDA 3P, AT The

Bockstein homomor phisms 5 r>1, are trivial except for the case

r—2 and deg=0 (mod. 4) and in the case the rank of the image
of —1s 1. In particular, - Sq a,= {Sq¢’b,}, - Sq a,={Sq*Sq’b,} and
—Sq*’Sq a,= {(S¢°S¢* +SqGSthq b.}.

Proof. By (4.5), A%(&,, Z,)=0. Then A*: A%=,, Z,)—>A*R,, Z,)
= {Sq¢°a,} is onto and A*y=Sq¢’a,. Since A*au=aSq’a,, Ay is
equivalent to @,: A*— A*/p A*, By Theorem I, the kernel of A*
‘is generated by Sg¢’x. From the exactness of the sequence (4.4),
il), we have that A*(8®,, Z,) is generated by a,=p*ae, and an
element b, such that i*b,=Sq*u. We see that p*A*(R,, Z,)={Sq¢a,}
and p*A"(R,, Z,) = {Sq'a,}. Then S¢': p*A* (R, Z,) — p*A"(R,, Z,)
is an isomorphism. By Lemma 4.2, i) we have an isomorphism
AiR,, Zy=Ai?|p Ai P p*Ai(R,, Z,) and a relation Sg’b=0.
Obviously p*Ai(R,, Z,)=~ Ai/ (P, A +9,Ai™?), Sq¢'a,= p*Sq’'a, =0 and
S¢*a, = p*Sqta, = p*A*u =0,

By Theorem I, A*/p,A* and A*/(p,A*+@,A*) are (A*-)iso-
morphic to @,A* = B} and @,A* = B¥. Since %=Sq‘ =¥, we have
from Theorem II that

1) Bi =Ci@ Dt means that B* =SB/ is a direct sum of A¥*-moducles C* = 31Ci
and D*=3Dh,
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Z, i=0,1 (mod 4), =>4,

AR, Z) ~ i
(8, Z) {0 i=23 (mod 4).

By Lemma 4.1, i), we see that i—: AR, Z,) > AEUR,, Z,)

is not trivial and hence an isomorphism. Then A%,(8®,, Z,) =0
for »r=>2. The last assertion of the lemma follows from the
diagram (3. 1). q.e.d.

A(R,, Z,)=1{b,} and AYR,, Z,)={Sq'b,, Sq*a,}, then from (3. 3),
vii) and (4. 4), i), we have

Corollary. 2-component of n,=7Z,.

From the corollary, A*(=,, Z,) is isomorphic to A* and gene-
rated by an element # of A%=,, Z,). Consider the exact sequence
of (4.4), ii) for k=2.

Proposition 4.5. There exists an element c, of A*(R,, Z,) such
that i*c,=Sq'u. A*(R,, Z,) is generated by a,=p*a, and c,. We
have relations Sq¢'a,=Sq’a,=Sq'c,=Sq°c;=0 and an isomorphism
AR, Z) =~ A [ (@, AT +p,Ai")y P A~ (P, Ai *+p,Ai ). The Bock-
%, r >1, are trivial except for the case r=3
and deg=0 (mod 4), and in the case the rank of the image of

stein homomor phisms

—g— is 1. In particular, % Sq¢*a, = {c.}, %Sq‘asz {S¢*c,}, and
-g—SqBSq‘aF {(S¢°+5¢°5¢")c.} .

Proof. A*R,, Z,)=0 by (4.5), then A*: A%(=,, Z,)—>A*(R,, Z,)
={b,} is onto and A*(au)=ab,. From the exactness of the
sequence (4. 4), i) and from Proposition 4.4, we have that
Pp*A¥&,, Z,) is generated by a,= p*a, and isomorphic to A*/(p A*
+@,A%) and that the kernal of A*, i.e. the image of ¥, is generated
by Sq*u. Therefore A*(R,, Z,) is generated by a, and an element
¢, such that i*c,=Squ. We see that p*Ai{(R,Z,) = {S¢a,} for
i=6, 7,10 and 11. Then Sq': p*Ai(R,, Z,) —» p*Ai*(R,, Z,) is an
isomorphism if i=6 or 10. Applying Lemma 4.2, ii), we have
relations Sg'c,=Sg¢°%c,=0 and an isomorphism: A/ (&, Z,)~A"%/
(P, A+ P, A7) D p*ANR,, Z,) =~ AT (P AT +p,AT) D Al (P, AT
+9,Ai"?), For Bockstein operators, the proof is similar to the
previous proposition. q.e.d.

AR, Z,) = {Sq'a;}, AR, Z,) = {c;} and %844‘23:63’ then by
(3.3), vii) and (4. 4), 1),
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Corollary. 2-component of =,—=2Z,.

From the corollary, A*(z,, Z,) is isomorphic to A*/p A*
+A*/p, A* generated by elements u, € A°(7,, Z,) and u, € A (=,, Z,)

such that %uozu,. Consider the exact sequence (4.4), ii) for

k=3. Denote that p*a,—=a,.

Proposition 4.6. There exist elements d, € A'(R,, Z,) and e, €
AR, Z,) such that i*d,=Sq'u, and i*e,=Sq°u,. We have relations
Sq'a,=Sq’a, = Sq a,=Sq'e,= Sq e,— Sq*Sq'd,= Sq'd, —(Sq‘°+SqBSq +
Sq¢’S¢®)d, =0, 16 Sq*a,={e.}, —Sq12a4——{qud} and ——((Sq +Sq¢*'Sq')d,
+&Sq“a,) = {Sq'e,} for some E=0 or 1. Let A*— SYAL be an
A*-submodule generated by a, and e,, then Al~ Ai]/ (@ Ai ' +@,Ai™*
+P AP AT (@, AT +@,AiTY), For i< 21, Ai(R,, Z,) is generated
by a,, d, and e,, and Ai(R,, Z,)) ~ Ay D A7/ (Pe AT+ P, AT+
¢(10)+(8.2)+(7.3)Ai—”)-

Proof. A4R,, Z,)=0 by (4.5), then A*: A%=,, Z,)—> AR, Z,)
= {Sq'a,} is onto. Thus A*y,=Sq'a, and A*u,=c, by (3.3), v).
It follows from (4. 4), ii) that p*A*(R,, Z,) is generated by a,=p*a,
and isomorphic to A*/ (@, A* +@,A*+p,A*). Since A*S¢°u,=Sq°c;=0
and A*Sq*u,=Sq'Sq'a, —Sq°Sq*a,+Sq'Sq'a,—=0, there are elements
e, and d, such that i*e,—=Sq¢°, and i*d,=Sq'u,. Let A¥ and A¥
be A*-submodules generated by e, and d, respectively. Since
PRAY(R,, Z,) = p*A™(R,, Z,)=0, we have from Lemma 4.2, iii)
that A* = A¥+p*A*(R,, Z,) and A¥ =~ A*/(p,A*+9,A¥). Since
PrACR,, Z,) = p*A"(R,, Z,) =0 and Sq': p*A"(R,, Z,) = {Sq¢"a,}
~p*A®(R,, Z,) = {S¢*°a,}, we have from Lemma 4.2, v) that
PHAX(R,, Z,) Y AFP = p*AX(R,, Z,) + A¥ and Af = A*/ (P A + P, A*
+ Pyt aarrraA¥) for dimensions less than 21. From Lemma 3.1
and from (4.4), ii), we have A*(R,, Z,)=p*A*K,, Z,) v AFUA¥
for dimensions less than 21. Since A¥ and A¥ are imbedded by
i* into direct factors, we have A*(8®,, Z,)=p*A*(R,, Z,) + A¥ + A¥
for dimensmns less than 21.

Since E—Sq a,= {Sq'c,} = A*Sq‘u,, we have from Lemma 4.1,
i), an element & € A°(R®,, Z,) such that (p*Sq a,) = Sq a,={a}

and *& =S¢'Sq‘u, = Sq°u, = i*e,. Since p*A"(Ra, Z,) =0, i*d =1i*e,

1) B*“Y(C* means the minimal A*-submodule containning B* and C*.
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implies @ =e, and %Sq“a‘: {e,}. Similarly from %Sq‘zas-:Sq”aa
=S5¢°S¢’Sq*a, = A*Sq*Sq*u,, Sq'Sq°Sq*u, = Sq°Sq*u,=i*Sq¢°d, and from
p*A®(R,, Z,)=0, we have %Sq‘za;—— {Sq¢a,}.

ES(f’ScJ“z13= %A*Sq“u0= (Sq® +Sq°Sq?)c,=A*(Sq* + S¢°Sq*) u,,

8 "
we have, from Lemma 4.1, iii), elements & € A*&,, Z,) and B €

A®(R,, Z,) such that %& = {B}, i*a& = Sq¢'Sq*u, = (Sq°+Sq'Sq")Sq‘u,
=1*(Sq°+S¢*'Sq")d, and i *B = Sq'(Sq* + Sq°Sq?) u, = Sq*Sq°u, = i*Sq’e,.
From p*A®(R,, Z,)=0 and p*A'*(RK,, Z,) = {Sq¢*a,}, we have that
B=Sg'e, and &= (S¢°+Sq'Sq")d,+&ESqa, for some €=0 or 1.
Then —g— ((S¢°+Sq*Sq")d,+ESq**a,)={Sq'e,} . q.e.d.

As(ﬂu Zz) = AG(RM Zz) =0; A7(‘Q4: Zz) == {dA} and AB(RU Zz)
= {Sq¢'d,, Sq¢*a,}. By (3.3), vii), and (4. 4), i), the 2-component of
7, vanishes. Then A*(z,, Z,)=0. From the exact sequence (4. 4),
ii), we have an isomorphism

p*: A*R,, Z,) =~ AX(Rs, Z) .

Since

Similarly we have an isomorphism
p*: AX(K;, Z) = AX(R., Z)) .
Again from (3. 3), vii) and (4. 4), 1),

Corollary. 2-component of =,=2-component of =;=0,

2—-component of wy=272,.

From the corollary, A*(w,, Z,) is isomorphic to A* and is
generated by an element u of A%=,, Z,). Consider the exact
sequence of (4.4), ii) for k=6, where we identify A*(f,, Z,) with
A*(®,, Z,) by the above two isomorphisms p*. Denote that a,=
p*a, e A(R,, Z,) and e¢,= p*e, € A%(R,, Z,).

Proposition 4.7. There exists elements f,ecA(R,, Z,), f/ €
AR(R,, Z,) and f,” € AR,, Z,) such that i*f,=Sq*Sq'u, i*f,'=Squ
and i*f;" = (S¢"° +Sg*Sq*+Sq'Sq*)u. Let A¥ be an A*-submodule
generated by a,, e, and f,. We have relations Sq'a,=Sq’a,=Sq¢‘a,
=S¢'e,= Sq%,=Sq*f,=0 and an isomorphism Ai=~Ai/ (P, Ai*+@,Ai"*
+P AT PAT (P AT+, ATy B AT P, AT AXR,, Z,)] AF has
a linearly independent base {f,, Sq*f), 1, Sa‘'fy, S&’*fy"; Sq'f/,
Sq'Sg’f 5 -}
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Proof. The existence of f,, f,’ and f,” follows from (4. 4), ii)
and the previous proposition. The second assertion follows from
Lemma 4.2, iv) since p*A"(®,, Z,)=0. The last assertion follows
from (4.4), ii) and from the calculation in the proof of Lemma
3. 1. g.e.d.

We see AYR,, Z,) = {Sq*a,} and A*(R,, Z,)=e,, f;}. By pro-
position 4.6 and (3.3), iv), {%Sqaa, = ﬁ*{%Sq% = {p*e,} = {e;}.
Then by (3. 3), vii) and (4. 4), i),

Corollary. 2-component of n,=2.
A*(m,, Z,) is isomorphic to A*/p A*+ A*/p A* and generated

u, € A=, Z,) and wu, € A'(w,, Z,) such that 18—6u0=u1. Consider

the exact sequence (4.4), ii) for k=7. Denote that p*a,=a,,
P =/, P/ =1 and p*f=f/".

Porposition 4.8. There exist elements g, € AR, Z,), g’ €
A%, Z,) and h, € ARy, Z,) such that i*g,=Squ,, 1*g’ =Sq"u,,
*hy =Sq*u, and Sq’h,=0. Let A¥ be an A*-submodule generated
by a,, f, & and h,, then we have relations Sq'a, = Sq¢’a, = Sq‘*a,
= S¢*a, = Sq¢*f, = Sq’g, = 0 and an isomorphism Ai=~ Ail(P, A7+
PAT P AT DA B AT P AT B AT P AT D AT P, AT,
A*(R,, Z,)| A¥ has a linearly independent base {f,'; S¢*f), &'; fi:
Sq'fy, Sa’g’; S¢’fs”, Sa’gs’; Sa’fy, Sa‘'Sa’fy, Sa'gl ; -}

Proof. As is seen in the proof of Proposition 4.6, A*y,=Sq’a,
and A*y,—e,. From Proposition 4.8, Lemma 3.2 and from (4. 4),
ii), there are elements g,, g’ and A&’ such that i*g,=Sq%,, i*g,’
=Sq*u, and *h’=Squ,. Since *Sq*h,’ =S¢*Sq*u,=0 and since
p*A%(R,, Z,) = {Sq*Sq'f;}, we have Sg¢*h,/’ =ESq¢*Sq'f, for some €=0
or 1. Setting h, = h/ +&Sq'f, we have that *h, = Sg’u, and
Sg?h,=0. Remark that the condition p*A**(R,, Z,)=0 of Lemma
4.2, iv) may be replaced by the condition S¢’°v=0. Then the
proposition is proved by Lemma 4.2, iv), the exact sequence (4. 4),
ii) and by Lemma 3. 2. q.e.d.

We see AQ(RS’ Z)= {fs, gs} and Aw(ga, Zz)={sqlfs» Sq'g,, hs}
By (3.3), vii) and 4. 4), i),

Corollary. 2-component of wy,=2Z2,+2Z,.

Then A*(w,, Z,) ~ A*+A*. We may chose generators # and
uw’ of A*(m,, Z,) such that, in the exact sequence (4.4), ii) for



60 Hirosi Toda

k=38, the relations A*y=f, and A*y’=g, hold. Denote that p*a,
=4y, p*fs/ =f9/; p*fs” =f9”’ p*gs'zgg’ and p*hs=h9~

Since A*Sg*u=Sq¢*f,=0 and A*Sq¢s’=Sq¢’g,=0, there exist
elements 7’ and j,’ of A"(&,, Z,) such that

i*i, = Sq°u and %5’ = Sq*u’ .

To determine S¢*%,” and Sg*j,/, we shall consider the Bockstein
operators in Ai(&,, Z,) for i=12, 13 and k=7, 8, 9.

A*(R,, Z)) = {Sq**a,, S¢°Sq'f;} and A“(®., Z,)={S¢'e;, Sq'f:, f:'}.
Then the following three possibilities are considered.

. 0 )
4.6) 1) oS¢"a;={f}y and S¢Sqf;=1{Sq¢'e};

3

.. )
ii) 3 Sq¢*a, = {Sq'e,} and ZSqZSq‘f, ={f'};

i) Sq'e, ={Sq'e} and §-S¢Sqf,={f/+Sq'e} .

Proof. TFirst we remark that p*A*(R,, Z,)={S¢"a,} and p*A®
(R,, Z,)={Sq'e,}. By Proposition 4. 6, —8«Sq‘2a4= {Sq¢°d,} ={A*Sq'u}.
Since *f, =Sq'u=54¢'Sq°u, we have by Lemma 4.1, i), %Sqlzca

={f,+ASq%,} for some A=0 or 1. By Proposition 4.6, %((qu
+Sq¢'Sq")d, +ESqa,) = {Sq'e,} = {Sq'e,+Sq°d,}. In the case &€=0,
applying Lemma 4.1, ii), we have from S¢*Sq'S¢’Sq'u =Sq'(Sq°
+S¢*'Sq")u that %(SqZSq‘f,-i-qu”a,) = {Sq’¢,} for some v. Since
Sq*a, eg—kernel, we have %(quSq‘f,)= {Sq’¢,}. Since Sg’e, e%—
§8—Sq‘2a,= {f +1Sq'e;} = {f}. Then we hsave the case i).
Next consider the case € =1. By (3.3), iv), —g((qu+Sq‘Sq‘)d4
+Sq*a,) = {Sq’e,} implies g—Sq”@:{Sq‘e,}. Since (S¢°+S¢*'Sq")d,
+Sq*a, E%—kernel, we have %S(]“"cq:%(SqS+Sq“Sq‘)d4 = {Sq¢°d,}.

image,

Then we have from Lemma 4.2, iii), %(quSsqlf?+>uSq‘2c§,)= {f/+
vSq'e,} for some A, v=0o0r 1. Since Sg“q, ez—kernel, Z—(SqZSqlf,)
= {f,/+vSq%,}. Then we have the cases ii) and iii). q.e.d.
AR, Z,) = {S¢’Sq'fs, Sa°Sq'gs} and A®(Rs, Z,) = {1, S¢°Sq'hs,
Sq'fs, Sq*g,}. Then the following three possibilities are considered.
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Wn B SseSea=(f) and §S¢Ses={SaSeh;
. )
i) 0 SPSef, ={f}) and g SqSes={SESEh);

et 8 )
iii) ZquSq‘fa={ﬁ;’} and ~8—qu5¢(12+gs)={Scqu‘ha}-

Proof. First we remark that the term Sg‘f, does not appear

%—image, because S¢'Sq‘f, =Sq°f; ==0.
Applying the Lemma 4.1, i) and ii), we have from the case i) of

(4.6) that %quSq‘(g8 +1f)={fs'} and ~g—Sq”'Sq‘fa = {S¢*Sq*hy+ v 14’}
for some A and ». Then %quSq‘fss =0 and {S¢S¢'h,+vf'}

= {S¢°Sq'h,}. Therefore (4.6), i) implies (4.7), i).
Next consider the cases ii) and 1iii) of (4.6). By (3.3),

8 2Q 1 ’ PR : 8 2Q 1 ’ :
ISq Sq'f, = {f/’+vSq'e,} implies Z'Sq Sq¢'fy = {f’}. Applying

%Sq‘za,={Sq‘e7}, we have that %Sq’Sq‘(ga

+Mf) = {S¢’Sq*h,+v £} = {S¢°S¢'k,}. Then we have the case ii)
and iii). q.e.d.

From (4.4), ii) for k=8 and from Theorem I, we have that
AX(R,, Z,) | p*A*(R,, Z,) is isomorphic to A*/p,A*+ A¥/p,A* and
generated by i’ and j’. In particular A%*(R,, Z,)= {Sq¢*,’, S¢*j,’}
and A®(R,, Z,)=1{S¢’Sq'h,, f,/,S¢’Sq'i,, S¢°Sq*j,’}. Then the following
three possibilities are considered.

in any representatives of a

Lemma 4.1, iii) to

@.8) B S¢i={f} and §Sgil={SqSqh};
. . 3 ., b1
i) S¢i' = {f'} and -S¢j/ = {S¢'Sqhs} ;
ses . 8 . + 7 1
i) S¢i’={f} and - pS¢U'+7) = {Sa°Sq'h} .

Proof. Consider the case i) of (4.7). From Lemma 4.1, ii),
we have elements & and ¢ such that *& =S¢'S¢*Sq'u’ = Sq*Sq’u’
= #Sgy, o) = (f} and g&=pry. Since prAUR, Z) =0,
*& =1*Sq%j,’ implies & =Sgq%j,/. Since %—image——-—O in A%, Z,),
{v}={f/} implies y=1, and p*y=Ff,. Therefore Sq“jg’:%qujg’
=f,/. We have also, from Lemma 4. 1, ii), %—Sq2i9’={quSq‘hg+8 1}
= {S¢’Sq'h,}.



62 ' Hirosi Toda

Similarly (4.7), ii) implies 4.8), ii)) and (4.7), iii) implies
(4. 8), iii). g.e.d.

Now we define elements 7, and j, of A“(R,, Z,) as follows
corresponding for each cases of (4. 8);

i) ie = is’ and Jo = .7'9, s
ii) is = jQ/ and 3, =1y,

iii) o, =1/ +7j and j,=1, .

Then S¢%j, = £, %quig = {S¢*Sq¢*h,} and Sg¢%, = —Z—quig =0.
Obviously ¢, and j, generate A*(&,, Z,)/p*A*(8®,, Z,). By making
use of the condition Sgq*%,=0, in place of the condition on Sg' in
Lemma 4.2, i), we have

Proposition 4.9. Let A¥ be an A*-submodule generated by h,
and i,, then we have relations Sq*h,=Sq*i,—=0 and an isomorphism
Al =~ A0 @, Ai @ A0 @, A7, AX(R,, Z,)]|A¥ has a linearly
independent base {Sq“a,; g/, Sq¢ig,, i =2,3, 4; £, S¢*F)"; Sq'j,,
I4=(5, 1)}, for dimensions less than 20.

Remark that f,=Sq¢%,, S¢f, =(Sq°+S¢*Sq")j,, Sq*f,’ =Sq°Sq¢*j;,,
Sq¢'fy =S5¢°Sq’j, and Sq*Sq*f) = (Sq°+Sq°Sq' +Sq'Sq* +Sq°Sq*Sq') js .

Since *S¢’f,’ = S¢®Sq'u = (S¢*Sq*Sq* +Sq")S¢*Sq'u = i*(Sq*S¢*Sq*
+Sq")f,, we have Sg*f;—(Sq'S¢’Sq'+Sq') f, € p*A*(R,, Z,) = {Sq"°a,,
Sq’e,}. By operating p*, we have that Sg*f,’ =ESq¢"a, for some
€=0 or 1. Thus we consider the following two cases:

A) S¢°Sq'js = S¢’f' =0,
B) Sq°Sq'js = Sq*fy = Sq*°a; .

By (3.3), vil) and 4.4), i), we have from A“(R,, Z,) = {4,
2.9: j9} and AII(RQ, Zz)= {Sqlhs, Sqlisa Squs}’

Corollary. 2-component of n,=Z,+2Z,+2Z,.

A¥(m,, Z,)~A*+ A*+ A*. We may chose generators #, #’ and
u” such that the relations A*u=h,, A*y’=i, and A*w” =73, hold
in the exact sequence (4.4), ii), k=9. Denote that p*a,=a,,
P¥f9=fis and p*gs=gi,.

Proposition 4.10. There exist elements k,, € A" (R, Z,) and
1o, € ARy, Z,) such that i*k,—=Sq*u and i*l,,=Sq’. Let A¥ be
an A*-submodule generated by k., and l,,, then we have relations

Sq¢*k,, = Sq'l,, = Sq°l,, = 0 and —i—lm= {Sq’k,,} and an isomorphism
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A=A P, Ai 2P AT (P, A2+, Ai 7)., For the case A), A*(8,,,
Z)| A¥ = {gls, my; Sq*ay, fis; Sg°gls; S¢°fis, Sa°gie; -} where
*m,,=Sg°Sq'w’’. For the case B), A*(Ry, Z.)| A¥ ={gio; f1o; Sq’g1o’;
Sa’fls, Sq°gio; -}

Proof. From the previous proposition, A*Sg*u = A*Sqg*u’=0,
prAIR,, Z,) =0, i=12, 13, and Sq¢': p*A"(R,, Z,) = {S¢’gl} —
Pp*AR,, Z,) = {Sq’gls, S¢*fis} is an isomorphism into. Then we
have, from i) and ii) of Lemma 4.2, the first two assertions of
the proposition. Since p*A*(R,, Z,) = p*A®(],, Z,) =0, %quig
—{Sg*Sq'h} implies %lm={8q2km} by Lemma 4.1, iii). The last
two assertions are verified directly. g.e.d.

From Au('@m, Z)= {km} and Alz(‘@xo) Z)= {Sqlk{m 110}’

Corollary. 2-component of =,=Z2,.

The A*(w,, Z,) is isomorphic to A* and generated by an
element u# of A%(w,, Z,).

Continuing our calculation, we have the following results
without difficulties :

A*(‘@u: Z) = {an; Lys mys quln; gllly qulny my,, qunu;
qusau, flllly Sq‘lu; Sqanu; qugl/h Sqqnn; "'}
where *n,,=Sq’u and the elements m, and Sq“a, are omitted for

the case B). %lu={nu}.

A*('sz, Zz) = {am; gllz, My, Sqlsam’ ffé» 025 "'}

where i*0,,=Sq°u, and the elements m,, and Sq*°a,, are omitted for
the case B).
Therefore we have from (3. 3), vii) and (4. 4), i),
Proposition 4.11. i) 2-component of = ,=2Z,,
ii) 2-component of m,=2-component of w,,=0,
ili) the 2-component of =, has at most two generators.
Remark. 1f 7y(SY), ky, #Tne(S™), EBnes, -+ are Postnikov’s in-

variant system of S¥, then K, has an invariant system 7 (SV), ky,
cty ”N+k—1(SN)y O’ O) ctt.
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