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§1. Let {Y(#, w); t€T} be a stochastic process and let ®(¢, o)
be a function of the time parameter ¢#€ 7 and the probability
parameter ». The integral

plo) =|_o(t, o) d¥i()

cannot be defined as an ordinary Stieltjes integral for each sample
function, since the sample functions are not of bounded variation
except in trivial cases.

In case Y({, o) is a Wiener process and ®(#, ») satisfies the
following conditions :

Cl. &, w) is measurable in (¢, o),
ce. STEd)Z(t, ©) dt < 00t

C3. ®(t -) is measurable in B, for each #, where B, is the Borel
field determined by {Y(s, »); s<#},

K. It6 defined the above integral and called it a stochastic integral
[1]. His definition consists of two steps. First he defined the
integral in usual way when the integrand ® is a uniformly step-
wise function, namely when there exist ¢ <¢,<¢,<---<¢, in-
dependent of o such that

* In [1] he took the weaker hypothesis that ST(DZO‘, w)di < oo for almost all o,

but this part has no connection to the purpose of this note.
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®(t, w) =0 <1,
@(t, w) = (I)(tw ) tv£t<tv+1! Vé”""l
O, 0) =0 t,<t,

and next he showed, for general ®, the existence of a sequence
of uniformly stepwise function {®,} such that

S E®,—®) dt —0
T

and defined its integral as @(0) =Li.m. S D,.(t, 0) dY,(w).
T

J. L. Doob [2] showed that this definition is also available to the
more general case in which Y{(#) is a martingale process.

In order to avoid the technical trouble of making two cases
we shall use the Random Riemann Sum which we introduced
in connection with Lebesgue integral in our previous paper [3].

We shall here discuss Ito’s case, since Doob’s general case
can be treated with a slight modification.

§2. Let (2, B, P) be the probability space on which we have a
Wiener process {Y(f, ): t€[0, )} and a function P )
satisfing C1, C2 and C3. Let us introduce a probability space
(', B’, P’) on which we define Poisson processes {P,(f, o) ;
te[0, )}, » being the mean value of P,(1, »’); it makes no
difference here whether these Poisson processes are independent
or dependent of each other. We shall take the direct product
probability space (2, B, P)=(Q, B, P)x (<, B/, P’) as a basic one,
so that o and o’ are independent. Let #}(o’) be the i-th jumping
time of the Poisson process P,(f, »’) and set #3(o’)=0 for con-
venience.

For brevity we use the following notations. Let z=z(a)
—2z(w, ®') be a random variable on (2, B, P). Then E, E and E’
are defined as follows

Ez = Sn 2(w, ') Plda)
Ez= S _2(, o) P'(dw)

7 = Sa 2(5) Plda) = SQ,SQ 2(e, o) P(dw) P'(de)
— E'Ez — EE'z.
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It is clear that both Ez and E’z are random variables depending
on o’ and o respectively. By the same way we understand the
notations P, P and P’. It is clear that

P(A) = E'P(A) = EP'(A) .
Consider the Random Riemann Sum for sample process

Sa(@) = 23 O(t(e)), 0)[Y(#1,(0), 0) = Y(Ei(e), o)].

We will define stochastic integral as follows.

Definition. @*(w), which is independent of «’, is the stochastic

integral of ® with respect to dY,, say () S D(t, 0) dY,(w), if

0
and only if
P[ES,(&8)—9* (@) >€]—=>0 for n— co.

(We put * in order to distinguish this definition from Itd’s.)
Now we shall prove the following

Theorem 1. (x) Smcb(t, ) dY;(w) exists and is uniquely deter-

0

mined except P-measure zero.

Proof. We will prove that E’E(S,(®)—S,.(®))*—0 for n, m— co.
For convenience’s sake we introduce the following notations
X, (t, o) = %0 for #e)<t<th (o) i=0,1,2 -
D*(t, w) = P(t, ) for >0 =0 for t=0.

Arrange the elements of the set {{}(0")} v {{7*(«’)} in the order of
magnitude and denote the i-th term by s%™(’).

E(S,(@)—S,(@))
= E'S} E[¢*(X,(s7™(0), o), )= PH(X,,(s7™(), o), o) T
x [stfi(e’) —s7m(e’) ]
=B [T B[0*(X,(t, o), o) = P*(X,.(t, ), )T dt
— B | ELO*(X, 1, @), 0) =@l @)+, 0) = PH(X, (1, ), o) dt
< 2F S“ E[®*(X,(t, o), ) —D(t, o) dt

+ 2F r E[P*(X,,(, o), o) — D, o) [ dt.
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B (B[O (X4, ), @) —®(t, o) dt
= BB [T E@ (X, (4, 0), ) —®(t, 0))* dt] 130}

— S:e‘"" ndh [S:Ed)z(t, o) dt+E’g:E(<I>(X,,(t, o), ©)— O, o)) dt]
=A,+B,.
A, = S, E®(t, o) dtg o ndh —S E®t, o) e dt — 0
for #n— .

Since the probability that P,(f, o) has a jump in (f—s, ¢—s+ds)
and no jump in (¢—s, #) is nds-e~"5, we have

B, = S: e ndh S”

t=h

dt S""E(@(t—s, 0)— D, w))? e nds

s=0

S e~k pudh S dt S E(®(t—s, o) —P(t, 0))2 e nds

s$=0

= S“’_ g-s ndss E(@(t—s, o) — D¢, o)) dt

t=s

= S“ e nds S” E@(F, o)—D(+s, o)) dt

s=0 t=0

= (" eeas (7 E(o¢, o)—0(t+5, o)) dt,
[.eas | E( (1))

which tends to O by virtue of C2. as n— co.
So we obtain E (S,—S,.)?—0, so that there exists @*(w, ') such
that
P[E(S,(&) —P* (@, ©))? >E]—>0 for n— .
Next we shall show that ¢*(e, ') is independent of «'.
E(S, (@) —E’S,(@))* = ES}(@) —E(E'S (@))*
ESi@) =E’ D EP(ti(0), ) (E1(0) —1i(0)

=2 Bv, o 2L D it (e ndn

- S” EQ, o) dt < oo .

’Q N = exp (—nt) (nt)i~}
E'S,(@) =3} [ o o g mdt

xS” (Y(E+h, o)— Y, ) e ndh

- SN Pt ) ndt Sw (Yt +h, o) —Y(¢, ) e ndh
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EE'S, @) = E[ S“’ Dt o) ndt S”, (Yl +h, o) — Y, ©)) e ndh]?
— ZE[S

xg' D, w) ndt’g (Yt + 1, 0)— Y, o) e ndh']
t’=0

h =0

oo

P(t, w) ndt Sw (Y(t+h, 0)—Y(t, o)) e ndh

t= h=0

— 2E[ S“, D, ) ndt S” (Y(E+h, o)— Y, o) e ndh

h=0

xg' D, w) ndtfr (Y + W, o)=Y, o) e ndh']
t/ =0

W =t-t'

=2S°° ndtgt E®( o) O, o)) ndt’r - ndh
t=0 t/ =0 h=0

o

xg [min (¢ +#, t+h)—t] e- ndl’

W=t-t'

= S“ dt S‘E(cb(t, ©) D, o)) e ndt! — S E®¢t, o) dt .
0 0 0

Therefore E(S,(®) —E’S,(@))? tends to zero when » tends to infinity.
Now we have
E(E'(#* (o, o) —E'S,(®)) < E@* (0, o) —E'S,@)* >0,
and therefore
E@* (0, o) —E'9*(0, ©))* =0,
namely P*(0, o) = E'P* (0, o) .
This completes our proof.

From the above calculation we can easily obtain the following
properties.

Pl. Ep*(w) =0,

P2 Epf(o)pfle) = S"’ ED,(¢t, o) ¢, o) dt ,

P 3. Let X,(-) is the 0characteris.tic function of the set [0, #].

If we denote the separable modification of (x) S: X, (s) P(s, o) dY,(w)
with the same expression, then we have

cPlsup| | %9 ©(s, @) d¥(0) (=)< Epraf (>0

Proof. P1: It is clear that for almost all o/, ES,(®) =0.

Since there are subsequence {n;} such that for almost all o’
E|S,,(@ —#*@)|* =0

we have E¢*(0) =0.
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P2: We use S,(@; ®) for Random Riemann Sum to specify
the integrand function ®.
We have

ES,(0; ) S,@; ®) = |  E®(X,t, &), o) PEX(, o), o) df
for almost all w’. If we take subsequence {#;} such that

[(Eror ¢, o), @)=t @ Fdt >0, EIS, (@ )=t =0
i=12, n,—>oo

b

for almost all »’, we obtain P2 by the property of inner product.
P 3: Keeping in mind that S,(@; X,®P) is the only finite sum
for almost all @, we have for almost all o’
EP(sup |S,(5; X,®)|>c) < S“’ ED*(X, (¢, o), o) dt
[P<Z 0
¢’P(sup |S,(o; X P)—S,(@; X,P)[ = 0)
<t<oo
< [TE@ X, o), ) =P (Xt @), )7 dt

0

by Kolmogorav’s inequality in infinite sequence.
Therefore for some subsequence {n;} we have

sup |S,.(&; X,<I>)—S,,j(c5; X®P)| -0 and

05!(\» :
S" E[®*(X,,(t, o), ©) — @, o) F'dt >0 for n;, n;— oo
for almost all .
So if we take the sequence {S,(@; X,P)}, we can prove P3.
Remark. For almost all o, () S” X,(s) B(s, w) dY,(w) is continuous.

Consider the modified Random Riemann Sum;

N-1
Salo; X,P) = Z{ Dt (@), o) (Y(74:(0), 0) — Y (1 (0), o)
+P(tH(0), o) (Y, ) — Y(I}(e), @)
for t}(e) <t <th(o) .
For almost all &, S,(@; X,®) is continuous in . Furthermore

c*P( sup 1S (@; X%,®)—S§,,(@; X,P)|>c)
Osl a

< [ E[9* (X8, o), o) —®*(X,,(t, @), )T dt
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for almost all o'.

So by the analogous calculation a subsequence §,.j(c3; X, P)
tends to a stochastic process whose sample functions are con-
tinuous with probability one.

On the other hand the following estimation

— — t
E|S,(@; X,®) =S, (&; X,P) !2_<_S E®*(s, w)(t—s) e -2 nds -0
0
for n— oo,
shows that S, and S, have the same limit for each . Therefore
our integral is continuous in ¢ with probability one.

Now we shall show that our integral coincides with Ito’s
stochastic integral.

Theorem 2. For almost all o, *(0) =P ().

Proof. Taking s, appropriately as in the proof of the existence
theorem of ®@(») [1], we have

5 —_ k k+1 k 2
E[S,,(w)— So+2£>o(b(so+ﬁ, m, w)<Y<80+7, co)— Y(so+ﬁ, w>>]
- m
=E’ g E[(D*(Xn(t, o’), w)_(p(({{)m(t—so) + o, w)]g dat
where ¢,,() =(k—1)/m for (k—1)/m<t<k/m, k=0, £1, £2 ...
< 2F/ S“’ E[P*(X, (¢, o), o) —D(t, o) ] dt

+2 r E[® (P, (t—S) + Sy, 0) —P(t, 0)]?dt =0 for mn,m—> oo,
So E(@* (@) —¢()*=0.

In conclusion the author wishes to express her sincere thanks
to Professor K. It6 for his kind guidance.
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