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A mod p Hopf invariant (homomorphism )H,: 7,,,(S**")—Z,
is related to the double suspension E? by the exactness of the p-
components of the sequence

2

”2pt—2 (Szt—x) = ”zpt (Szt+1) _”,Zp .

The homomorphism H, is onto if and only if there exists a cell
complex K=S"vue”*#*™ v in which £': H"(K, ZQ——»H’”“’“’“’(K;Z,,)
is an isomorphism.

One of the purposes of this section II is to prove

Theorem 2.11. H, is trivial except for t=p". If H, is onto
for t=p’, then it is trivial for t=p"*".

It is known that H,: 7,,(S°) — Z, is onto, then it follows that
H,: 7,,(8*")—Z, is trivial and E*: 7,,_,(§?7") —>m,,(S*") is
an isomorphism of the p-components.

The above theorem is a consequence of an important theorem
(Theorem 2.9) which will be applied in the next section to com-
pute the homotopy groups, in particular, to determine the p-
components (Z, and Z,2) of the stable homotopy groups 7,,c, .,
and ”zp(p—x)—x-

In the case p=2, H,: =,(S¥*)—Z, is also defined and it is
onto if and only if the usual Hopf homomorphism H: =,_,(S*)—Z2
is onto. Then our theorem 2.11 is a modification of Adames’
theorem (Theorem 2.15).

The notations and results in the previous section [9] are used
and referred to such as (1.3), Lemma 1.3, etc.
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§ mod p Hopf invariant.

The mod p Hopf invariant (homomorphism)
(2. 1). H,: Ty r(SV—Z,, n=2tp—1),

may be defined in terms of the functional reduced power opera-
tions (c¢f. [7]). Here we introduce the homomorphism H, in the
following manner.

Denote by E"*' the unit (r+1)-cube and by S” the unit »-
sphere of its boundary. Choose generators (orientations) ¢« € H™(S™)
and /€ H™"(E™+", S™**"). For any element « of =,,.,_,(S”), there
is a cell complex

(2.2). K,=S"ue"™"

such that the restriction f|S™*""! of a characteristic map f: (E™*",
S — (K, S™) of ¢"*" represents a by the given orientations
9/ and ¢« It is easy to see that such complexes K, of (2.2) have
the same homotopy type.

Let ¢, € H"(K,, Z,) and ¢,,.,€ H"""(K,, Z,) be the generators
given by ¢ and f*/ respectively. Then the homomorphism H, is
defined by the following formula.

2. 3). Ph,, = H,(W)1,,,,, n=2tp—1).
The proof of the formulas

H,(a+pB) =H,(«)+H,(#3),
H,oE=+H,
is omitted.

Lemma 2.1. i). H,:~=,,, (S")—Z,, n=2t(p—1) is onto if
and only if there exists a cell complex K,=S"\ve"**" such that
F': H"(K,, Z,)— H""(K,, Z,) is an isomorphism.

i) H,: =, (S")—Z,, n=2t(p—1) is trivial for m <2t
For m>2t, H, is onto if and only if it is onto for m=2t+1:
(7t (S*H) —Z ).

iii). If H,: =,,,, ,(S")—Z, is onto for n=2t(p—1), then
t=p’ for some integer j=0.

Proof. i) is easy. For m< 2t, &*': H"(K, Z,)—H"*""(K, Z,)
is trivial in general. For m=2¢, P'a=a?=0, since &’ € H*"(K, Z,)
=0. By 1), it follows that H, is trivial for m <2¢. It is known
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that the double suspension E?*: =,,,,_(S”) — 7, ... (S”7?) is a mod p
isomorphism for odd m and for m>2t [4]. Then the second
assertion of ii) follows from i) and from H,-E=+H,. Suppose
that pi<’t<p’*'. By Lemma 1.3, &¥*CM,,,. Thus S*CM%,,, in
particular, &°*€ M%,,. Since H"*(K, Z,)=0 for 0<i<n=2t(p—1),
it follows that AH™(K, Z,) = Pr*H" (K, Z,)=0 for k=0,1,2, -+, ].
Therefore MY,, operates trivially on H™(K, Z,) and thus &°‘
operates trivially on it. By i), it follows iii). q.e.d.

Next an alternative definition of the mod p Hopf invariant
will be given.

Denote by Q(X) the space of loops in X. Then there is an
isomorphism Q: 7;(X) =~ =;_,(2(X)). Denote that Q*(X) =Q(Q(X))
and *=0Q0:Q: 7,(X) ~m;_,(Q*X)). S**' is imbedded canonically
in Q%S**') and we have the following commutative diagram

71,-+,(52t+1)

5 E/ NJ
(2. 4). e —> ”i_l(s?t—1)< l foX > ”i_l(Qz(Sztﬂ)’ Szt
I\ S Jx

™, (S
e,

— ”i-z(sﬂ—l) cee

where J=74°Q* and E*=EE is the double suspension. It is known
[4] that
Z or i =2pt—2, 2pt—1,
Hi(Qz(SatH)’ Z,,) — { 4 ) f P 1-'7
0 otherwise for 2t—1<i<2(p+1)t—3.

Let
H,: 7,,(S"") — H,, ,(*S**), Z,) =Z,

be the composition of £* and the Hurewicz homomorphism
T ”zpt—z(QZ(SZtH))"‘_)Hzpt-z(Qz(SZt“)» Zp)-

Proposition 2. 2. Hf‘,: T, (S**)—>Z, is onto if and only if
7, (S —>Z, is onto.

Proof. We used the notation of [8]. Consider the case = 2.
Let S, be (p—1)-reduced product of S” imbedded in Q(S**),
then the injection homomorphism: =, ,(Si%))— 7,,,_,(Q(S*")) is
onto. From the definition of }3[1,, it follows that I?p is onto if and
only if there is a mapping g: S*''— 52, such that (Qg)x:

H

b-
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H,, ,(S*%)—H,, ,(Q(SjL)), Z,) is onto, or equivalently, such that
(Qg)* . HZP'_Z(Q(S,Z,t_ﬂ, Zp) =H2pt—2(Qz(SZt+l), Zp)____>Hzpt—2(Szpt—2’ Zp) is
an isomorphism. Let S, ve® be a complex such that the attach-
ing map of ¢* is g By Lemma (4.5) of [8], (Q2g* is an
isomorphism if and only if Z%(e,) =¢e?==0 for a generator e, of
H*(S;t,ve?, Z,). From the canonical mapping S;%,xI—>S¥*,
we can construct a mapping of a suspension S(SX%,ve*”’) of
Szt ve? onto K,=S""ue?* such that it carries the cells of the
dimensions 2{+1 and 2pf+1 with degree +1, where g represents
+Q(a) € 7, ,,_,(2(S**). Conversely, since the injection homomor-
phism 7, ,,_,(S321)—> 7,,,,((S**)) is onto, for arbitrary « € =, ,,(S**")
there is a mapping g having the above properties. Since Z' is
compatible with the suspension, it follows that Z7%(e)==0 if and
only if &#': H**(K,, Z,)—H***(K,, Z,) is an isomorphism.
Consequently we have from i) of Lemma 2.1 that the proposition
is true for =2

Consider the case #=1. We prove that H, and sz are onto.
Let M, be the k-dimensional complex projective space. Extend
the injection S*CC M, _, over a cellular mapping f: S;1—M, ,. By
Theorem (4. 1) of [8], for the class « € =,, ,(M,_,) of the attaching
map of ¢?=M,—M,_,, there is an element B of =,, ,(S2_,) such
that f«(B) =ra for some r==0 mod p. Let g be a representative
of B and let a complex Si_,uel” be given by attaching €% by g.
Then f is extendable over f: S;_, vey”—> M, such that ¢§” is mapped
to ¢# with the degree r. Since F'(e)=et+0 in M,, it follows
that Z'(e,) =¢}==0 in S2_,velr. Similarly to the above, we have
a complex K from S(S2_,uve’) such that 7! is not trivial in K.
Therefore H, is onto. By (4.3) of [8], there is a mapping
8,: 57— Q(S_,) such that gf : H**™*(Q(S? ), Z ) —> H*» ¥S**™, Z )
is an isomorphism. Let g: $?7'—S2 | be a mapping (a suspen-
sion of g,) such that g,=Qg. That (2g)* is an isomorphism implies
that H, is onto, q.e.d.

Corollary 2.3. H,: 7,,(S°)—Z, and FIp: 7,,(8)—Z, are
isomorphisms of the p-components.

Proposition 2.4. H,: 7, ,(S*")—Z, is onto if and only if
J: 7, (S*T) —> 7, ,(P(SH), S*7Y) is onto of the p-components.

Proof. For the case t=1, this follows from Corollary 2.3
and from =,, ,(S')=0. For the case =2, this follows from the
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commutative diagram

7o pt-o(F(S*H)) 2% o pt-o(F(S*TY), ST

L , |7

H oo 2(54) 25 H,,,_(02(5%), S

in which 7 of the right side is an isomorphism of the p-com-
ponents by the relative Hurewicz theorem of [6]. q.e.d.

Proposition 2.5. Let , be a generator of =,(S*). Then
H,: = (S —Z, is onto if and only if [ty, [ts, t,]1=0.

Proof. Assume that [ ¢, ¢, ¢, ]]=0. Then we construct as in
[5] a complex M,=S**"'vue**" in which &* is not trivial. By
Lemma 2.1, H, is onto.

Next assume that [¢, (6, ¢ ]1]7E0. By 3.1) of [5], 3
Ceoes Leat, 011=0. By [10], Ele:, [ex, 0211=0. By (5.1), b) of
[31, [ea, [tars t2]1=FEvy for some € m,_(S*'). These equations
show that the 3-component of the kernel of E*: m,_,(S*!)—
me_,(S*1Y) is not zero. From the exactness of the sequence (2. 4),
it follows that J: =, (S* ")—> =, _,(Q*(S***), S*7') is not onto of the
3-components. Therefore, by Proposition 2.4, H, is trivial if
LCeas Leats t6]]1=0. qg.e.d.

As is seen in this proof, it follows from the exactness of the
sequence (2.4) and from Proposition 2.4 that there exists the
following exact sequence of p-components :

2
(0) —> 7, (S#71) —> 7, (S*1) —> Z,,—> 7,y _o(S*7)
EZ

- ”2pt-1(82t+1) —0.

§ Iterated reduced join.

Denote by I¢ and I? the unit g—cube and its boundary. I'is
the unit interval I=[0, 1] and each point of I? will be represented
by a sequence (¢, ¢,, ---, t,) of real numbers ¢, ¢,, ---, t,€ L

Let

Y, (I I — (87, 3)
be an identification which shrinks I? to a (base) point y, of S%.

S? is a g-sphere.
A reduced join Ax B of two spaces A and B, with respect to
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their base points ¢,€ A and b,€ B, is the image of the product
space Ax B under an identification which shrinks the subset
Axb,va,x Bto a point x,€ AxB. The image of a point (a, b) of
Ax B will be denoted by a symbol axb. We take the point x,=
a,xb, as a base point of AxB. In the case B=S’ the reduced
join AxS? will be denoted by SYA and it is a g-fold suspension
of A. In fact S’A and S'(S?7'A) are homeomorphic by the corres-
pondence : axr,(t,, -+, t,_y, 1) o (@xyr, (¢, -+, £,5)) %y (¢,) and
S'A is a suspension SA (with some sigularities) of A.

The g-fold iterated reduced join AxAx---x A will be denoted
by the symbol A, each point of which may be represented by
a,xa,*--xa, for some a,, a,, -, a,€ A. Let o be a permutation
of ¢ letters {1, 2, -+, ¢}. Define a homeomorphism #,: A—> A®
by the formula /Ag(a,*a,*  %a,) =as % Aoe* =" *ayp. Then it
holds the equality k,ch.=h,,.

Consider the case A=SB=BxS'. Let D be a (closed) subset
of A= (SB)“” = (B*S")‘” which consists of the points

2 = (bl * ‘Pl(tl)) ¥ oeee ¥k (bq—l * ’\},‘l(tq—l)) * (bq * ‘Pl(tq))

such that 0<t, <. <t,,<t, and b,, -, b,,,b,€B. Consider
the formula

(2.5).  k(2) = (b, % Y, (t,/ 1)) -+ % (by_y % Yri(E,_1/1,)) * (bg k(L)) .

Lemma 2.6. There exists uniquely a continuous mapping k:
(SB)®—> (SB)‘? such that the formula (2.5) holds on D and the
equality

k-h,=k

holds for all permutations o. Let x, be the base point of (SB)P,
then the inverse image k™((SB)°—x,) is the union of q! disjoint
open subsets h, (Int. D) each of which is mapped by k homeomorphically
onto (SB)”—x,. Let k, be a mapping of (SB)” on itself given by
setting k) D=Fk|D and k,((SB)‘>—D)=x,, then k, is homotopic to
the identity.

Proof. Consider a mapping g: I‘“—> S? given by the formula
g(tly tz) Tty tq) :"pq(tltz tq) tz "'tqy Tty tq)

and denote that g(I?)=A and g(I?) =A. g maps I‘—1I? homeo-
morphically onto A—A. Then the formula ¥’ (x) =+ ,(g7'(x)), x € A,
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defines a mapping
k’: (A’ A.)_>(Sq: yo)

which maps A—A homeomorphically onto S*—y,. The continuity
of k¥ follows from the compactness of I, &, operates on S by
the formula

kc("l’q(tn Tty tq)) :"'l'q(ta(1)» Tty tu(q)) .

Since A is the set of all the points (¢, ¢,, -+, ¢,) such that
L <t, <+ <t,, it follows that

\J i, (A) = S7.

A is the boundary of A. A—A is the set of all Yty by, o t,)
such that 0<¢ < ¢,<---<t,< 1. Then

h (A NAC A
if o is not the identity. Consider a mapping
kot (B9 x h3A, BOx h7'A) — (B9 % S7, x,% y,)

given by the formula B, (x* y) =h,(x) %k (h,(v)), x € B®, yeh;'A.
BP9 xh;'A is closed in B xS? and B“x%S? has the topology of
the identification, then B“xh;'A is closed in B®xS?. Two mapp-
ings E, and k. coincide on the intersection B@xh;'AN B@xh;'A,
For, y € h;'Ank;*A implies k. (y) € ANh,-1,A C A and also %,(y) € A,
then k., (xx* ) =k (x* y) =x,%3,. Therefore a continuous mapping

E: B®%xS?— B9 xS?

is defined by setting k| (B®@xh;'A)=Ek,.

Since %, and k’l(A—A) are homeomorphisms, it follows that
k maps each subsets B(q’*h(,A—B“”*h(,A=Int(B<‘”*h,,A) homeo-
morphically onto B‘®xS?—x,xy,. Consider a homeomorphism

@: BPx%S?—> (SB)?.

given by the formula @((b,%---xb,) (¢, -, £,)) = (b, ()% -
* (b,x4n(t,)). Then D=@(B”xA) and the composition E=@okop™
satisfies the conditions of the lemma. The uniqueness of % is
obvious.

Next define a mapping ko: (S? y)— (5% »,) by setting
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o|A=F and k(S?—A) =y,. It is easy to see that ¥’ is a mapping
of degree 1. Then there is a homotopy k;: (S? y,)—> (5% ¥,
0<t<1, such that k] is the identity. Consider the formula
B (xxy) =xxkl(y), x€B®, y€S'. k= .k, @i (SB)?—> (SB)®
is a homotopy satisfying the condition that k| D==Fk|D, k,((SB)*>— D)
=1x, and k, is the identity. This completes the proof, q.e.d.

Let K=S"ue™*" be a cell complex which consists of cells ¢,
e, and ¢, of the dimensions 0, m and m-+n respectively, where
m >0, n >0, S”"=¢, e, and ¢,=¢™*"". The ¢-fold product (K)?=
KxKx-+-xK of K is a cell complex of the cells ¢; xe;,x--xe¢;,
for i,, 1,, .-, 1,=0, 1, 2. The iterated reduced join K is the image
of (K)? under the identification 7: (K)?— K given by i(x,, x,,
e, X)) =X, %X,x--x%x,. Then K is a cell complex of the cells
Xo==@y*key*x -+ ke, and

e ke, % xe, =i Xe;,X - Xe,; ),

for i,,1,, -, i,=1 or 2. The homeomorphism %, maps e; *e;,* -
xe;,, onto e, *e; . k- *xe,. .. Denote by e{™™ 0=<r<gq, the
cell e ---xe xe,x---xe,—ef" "xey’. Then the cells of the dimen-
sion gm+rn in K are h,(el™*™) and the number of the different

(gm +rn)-cells is (3) =gq!/r(g—7)]. Denote by ei™*™, e§™*™, ...
edn+™ the different cells of the dimension gm+7n. Then we have

a cell-decomposition :
. )
K® = X, + Z E 63""‘”” .
r=0 ;=1

Taken orientations on e, and e¢,, the orientations in (K)? are
given by the cross products. The cells e/™*™ of K are oriented
such that the identification ¢ preserve the orientations.

Now we suppose that m and » are even. Then the homeo-
morphism #, preserves the orientations.

Also we suppose that K is a suspension SB=BxS' of a cell
complex B=e¢juej e, such that e,=ey*xy,, e,=eix(S'—y,) and
e,=¢eyx (S'—y,). It is remarkable that the mapping k: K‘°—> K@
and the homotopy k,: K‘°—> K in the proof of the Lemma 2.6
are cellular.

Let x be a point of ¢!™*™ and consider the local degree of

kles»™, j=1,2, -, (?) about the point x. By (2.5), k()" D
‘s
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is a point, say x,€e?™*™. From the homotopy k,, it follows that
the local degree of k|e{™*™ND about x is 1. There are »!(qg—7)!

=q!/ (g) points of £7'(x) in €¢!™*™ and each of which is mapped

by some orientation preserving homeomorphism /4, to x,. There-
fore the local degree of k|e!™*™ about x is »(g—7)! (m, n: even).
Also considering suitable #/,, it follows that the local degree of
kies™™ about x is rl(g—7r)! for every j=1, 2, -, <g> Then

we have a formula

—
)

)
(2.6). krei™ ™ =rlg—r)! ;

i=

er;m+r/1,’ Oéréq, 1 _—gig (3) ,

-

where k* is the endomorphism of H?"*™(K‘?) induced by k and
where we use the following convention. A cohomology class of
H°(K, G) represented by a cell (cocycle) ¢’ K will denoted by the
same symbol e’ € H'(K, G) without any confusions.

Shrinking the subset S™ of K to a single point y,, we obtain
a mapping P’: (K, S”)— (8”*”, ) which maps ¢”'” homeomorphi-
cally onto S”*"—y,. Define a mapping

P: KCQ)_>S”‘+”K(?—1) :K(‘I'l)*sm+”

by the formula P(x,*---xx, *x,) = (x % xx,_)x P'(x,).

Denote that

FImHTR = gla=Dmar—Dm (S™"—y), 1<r<gq, 1<i< (3:%) ,
then we have a cell decomposition

o (1)

Smlvu.K(q*‘l) — xo*y0+ 2 2 e‘gln-ﬂ'n.
r=1 =1

If g™ =g{i @ Drye,  then P maps ei"*™ homeomorphi-
cally onto &{™*™. Then we orient é}™*™ such that P|e{™*"™" pre-
serves the orientations. If ™™ =¢ " "™ "xe  then P maps
ey™*™ into the ((¢g—1)m~+mn)-skeleton of S”™*"K<“ >, It follows
easily that the induced homomorphism

P* : Ii‘qm{-rn(,smsr nK(q-~x)) — qu+rn(K(q))

is an isomorphism into such that P*¥ei™*™ =ei™*™ for ej™™=
egq—l)mur—l)n* e Let
-
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k=P:k: K%—S""KW4D
be the composition of k£ and P. Then from (2.6),

q

@2.7). ke =7 l(g—7) 'Z ei™, 1=sr<gq, 1<j< (31) .

Suppose that (e,€ H (K, Z,) and ¢,€e H"*"(K, Z,))
P'e,=¢e, (mod p), n=2ip—1),

in the complex K=S"ue¢"*". Then in the product complex
(K)?"=Kx Kx -+ x K, it follows from the Cartan’s formula Z?*(x x y)
= 3 (FPixx FP’y) that

it+j=k

PHeyx - xe) =2)e,x - Xe;,  (mod p)
where the summation runs over the indices (i,, --+, 7,) such that
i, =, i,=1,2 and i,+---+i,=¢q+7. Since the identification homo-
morphlsm *: HX¥(K9, Z )——»H*((K)" Z,) is an isomorphism into,
it follows

()

2.8). P =i2=le‘,‘”‘“", (mod p) for 0<r<q.

Similarly

q-l)

2.9). Priewn =3 grmresin mod p) for 0<r<g—1.

i=1

Identifying K‘?uS™*"K“ UK x I by the relation (x, 0) =x
and (x, 1) =«(x), x € K°, a mapping cylinder L, of « is obtained.
L, is a cell complex by the natural cell-decomposition :

L, =K@ +S" KD 4 z,x (I— 1)+ 3 3 e (I 1) .

By setting k.(x, t) = (h.(x), ), x€ K°, t€ I, we have a trans-
formation (homeomorphism)

il_ci (Lq, K(q)’ S'""'"K(q‘l)) N (Lq, K(q), Sm+nK(ll—1'))

such that k,| K =h,. The restriction %,|S™*"K“® is the identity
since k>h,=Pokoh,=Pok=«x. OQObviously h,ch,=h,,. Consider
the following commutative diagram :

(2. 10).
' Pk
CSHML,, Z) e, 2) S L, K, Z) B e, 2,)—

i5 Hr* s NS i |1k
Hk(Sm+nK(4—1)’ Zp) Hk+1(Sm+nK(q-1), Zp) ,
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where 7, i,, j and j, are injections and » is a retraction given by
r(x, t)=x(x). Since i, and r are homotopy equivalences, ¥ and
r* are isomorphisms.

Lemma 2.7. Suppose that m is an even positive integer, p=gq
is an odd prime, n =2Hp—1) and that F'e,—e, mod p in the complex
K=e¢,ve,ve,=S"ve"™"=EB. Then we have the following pro-
perties in the diagram (2.10).

i),  gXprermin —= kgrmtn — — Plet™  (mod p).

ii). g*:H!*"*™(L,, K» Z,)— H?*"*™(L,, Z,) and &* : H*""*™
(K», Z ,)y— H?"" (L, KP, Z,) are isomorphisms. The Bockstein
homomorphism A : H*"+*™(L,, K», Z ) — H*"*™* (L ,, K» Z,) is
an isomorphism and it carries j*¥ (P LVIpEEI™IN) fg &K (P Pey™).

iii). Let 1=s=p—1. If an element o of S*HP" " (K» Z )
satisfies the equality o=« for all the permutations o, then a=0.

Proof. i) follows from (2.7) and (2. 8).

H (K9 Z ) and H**™(L,, Z,) are generated by e™*™ =0
and 7*e¥™*™ ==0 respectively. By (2.8) and (2.9), e3™*™ = P #lerm
and 7¥ermm — px(p-Digemin — GB-Vtypkgrmin By (2 T) K (pKepmin) —
w3 = pleg™™® =0 (mod p). Then #*: H*"*™(L,, Z,)—
H"*™(KP, Z ) is trivial. From the exactness of the sequence
(2.10) and from H**"*" Y K®, Z ) =HP‘”’+”’+‘(LP, Z,)=0, it follows
the first assertion of ii). Denote that e =e}™*™ x (I—1) and orient
the cell ¢ such that de;™*™ =¢. In the integral coefficient, by (2.7),
riermem —grmiw o plopmem - Gince r¥2™*™ is a cocycle, it follows

dermim = — plderm+m — — plg, Then %e‘{’“’”"”: —(p—1)!e=¢e mod p.
Thus A(]*—ly(p-l)tr* éyl)'m-*—n) — A(j:,k'l é‘{‘(’"“’)) — O% e?{(m-l-?l) — O% L@ pteglm
(mod p), and then the second assertion of ii) follows.

Let 8=21b,e1™*"" be an element of H*"*"(K®, Z,) such that
8*B=c. Since the homomorphisms induced by h, commute with
the sequence of (2.10), it follows that &*(A*B—pB) =h*a—a=0.
Thus h¥B—Bei*H™™"(L,, Z?). By (2.7) and by w«*=i*or*, it
follows that #*H*"**"(L,, Z,) is generated by the element 3>} ey™**",

3
Therefore

REB = h* S bet™ " =37 (b, +c,)etm
- 4 7 ¢

for some integer ¢, which depends on . For two indices 7z and
j, there exists a permutation o such that 7,(e?™**") =e5™*** and
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ho(e{;m-l»sn) :_.e,‘,m-rs”. Thus I),-Ebj-{-co_ and bij;+Cﬂ- mod p, and
2b,=2b, mod p. Since p is an odd prime, b,=0b; mod p and then
B=b, Z et ¢ l‘*Hpm—-sn(LP, Zp) Therefore o =258%3 e S¥pkHPm+™"

(L,, Z,)=0. g.e.d.

§ Theorems.

We shall construct a space WY having the following pro-
perties :

A for i=N,
(W) ~ 1§ Z, for i=N+2p(p—1)—1, 0<j<r,
0 otherwise,

PYHNWYN, Z) =0 for 0<j<r.

W¥ is an Eilenberg-MacLane space of a type (Z, N). If a
space WY is given, we may imbed WP into an Eilenberg-MacLane
space X of a type (Z,, N+2p’(p—1)) such that the injection
homomorphism maps a fundamental class of HN*22"»~>(X, Z ,) onto
P *u, where u is a fundamental class of HY(WY, Z,). Let W},
be a space of the paths in X starting at a point and ending in
WX, Then W}, satisfies the above properties. Asscciating to
each path of WY, its end point, we have a fibering

frr Whh— WY

whose fibre F, =(X) is an Eilenberg-MacLane space of a type
(Z,, N+2p"(p—1)—1). Let (k<2N—1<2N+2p (p—1)—2)
ok f;k % oO*

(2.11) o — HY WY, Z,) — HYWPY,., Z,) — H*F,, Z,) —> -
be the cohomology exact sequence associated with the above
fibering. We choose a fundamental class u, of HN*?"¢">"NF,  Z )
such as 0*u, =P u. (u=(f*,0-- fu,)

In the following, we take N sufficiently large such as the
exactness of the sequences (2.11) holds in our considerations.
Then, from [2], there is an % *-isomorphism :

Hk(F,, Zp) — Hk(Zp, N+21)’(ﬁ—1)——1, Zp) %yk—N—ZP’(ﬁ—l)+l
(for sufficiently large N).

The homomorphisms of (2.11) are &*-homomorphisms, may
be different in sign. Then the image of &% is S#*2? y, It follows
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that the image of H*(WY, Z,) in H*(WY, Z,) under f}¥ ,o--off is
G *u| M¥u=F*u| (L Au+ S * P u+ - +F*P* 'y). Then the
kernel of &* is clarified by Proposition 1.6 and Proposition 1.7,
and the following proposition is verified by the exactness of (2.11).

Proposition 2.8. There exists an element b,., of HN*2#""p=01
(WP, Z,) such that i*b,,,=c P ¥ ¢ Oy, SNHWN.,,Z,), k<2N—1,
k

is an S *-module generated by b,,, and elements of dimensions less
than N+2(2p"+p ") (p—1) (less then N+4(p—1)+1 for r=0).

Now our main result is stated as follows.

Theorem 2.9. Suppose that the mod p Hopf homomorphism
H,: 7, (S*"—Z, is onto for t=p". Then, for sufficiently large
N, the element Ab,,, — P 'u belongs to an F*-submodule
; S¥HH WMy, Z,), NkRSN+2(p"+1) (p—1).

By Corollary 2.3, our theorem is valuable for =0, and the
result is stated as follows.

Theorem 2.10. H:WY, Z,), k<2N—1, is an S *-module
generated by elements u, a and b, of dimensions N, N+4(p—1) and
N+2p(p—1)—1, respectively, such that i*a=Ru,= 2.7 'Au,— AP u,
and *b,=P* y,. There are relations Au=P'u=0, Ra=0 and
Ab,=FPtu+F?*a.

This follows from Proposition 1.6, the above Theorem 2.9,
the exact sequence (2. 11) and from the fact that #*Ab, =AFP? 7y, =
PP Ru, =1*P**q. (See also the proof of Theorem 2.9.)

Suppose that H,: =,,(S*"")—Z, is onto for {=p" and for
t=p"*". By Lemma 2.1, there is a cell complex K=S"uve"*",
n=2p""(p—1), such that Z#*'*" is not trivial. Let f:S"—Wnr,
be a mapping representing a generator of =, (Wr,)~Z. Since
a1 (Wm1) =0, we can extend the mapping f over whole of K.
Consider the induced homomorphism :

f*: HYWi,, Z,)— H*(K, Z,).

By Theorem 2.9, Z#?" "'y is a sum of elements of /*H+W™,,,
Z,), N<k< N+2p+(p—1). Since FXHHW?,y, Z,)=HHK, Z,)=0,
frPI Yy =P fxy—=0. Since f*u==0, this contradicts to the
non-triviality of £2#™" in K. Therefore the following theorem is
established.

Theorem 2.11. If H,: 7,,(S"")—Z, is onto for t=p", then
H, is trivial for t=p"*".
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By Corollary 2.3,

Corollary 2.12. H,: m,,(S***")—Z, is trivial.

By Proposition 2.5,

Corollary 2.13. If [4y, [ty, tx]1=0, then [”zpt’ [‘zph 1:21,,]]4:0-
In particular [, [, ¢ 11==0.

Proof of Theorem 2.9.

From the definition of H,, it follows that there is a cell
complex K=S"v¢e"™*", n=2p"(p—1), such that F*"e,=e, (mod p).
Here we may suppose that, taking suspensions if it is necessary,
K is a suspension SB and m is even and sufficiently large.
According to the previous § we construct the iterated reduced
join K, the mapping «: K®»—S""™K®™ and its mapping
cylinder L,.

Put N=pm, and consider spaces WNC X such as in the
biginning of this §. Since =, (WY)=0 for i=pm+n—1>N+2p""*
(p—1)—1, there exists a mapping

&: K?—WNCX

such that gfu=et™ for gf: HY(WY, Z,)— HN(K», Z,). Also
there exists a mapping

g: STKPD X

such that g¥u' = —é&?™*" where « is a fundamental clase of
H***"(X, Z,) such that #*u’ =*"u. Consider the composition g,o«,
then we have the equality (g;o#)*u’=g¥u’. Since X is an Eilenberg-
MacLane space, the mapping g,°« and g, are homotopic to each
other. Let g/: K— X be a homotopy such that gi=g, and
gi=gox. Then the formula g(x, ) =g.(x), x€ K», defines a
mapping

g: (Lp’ K(P)) I (X: er-v)
such that g| K’ =g, and g|S"*"K®* " =g,. Now it will be proved
(2.12). g h,=g: (L,, K?)— (X, W}).

We shall construct a homotopy G: (L, x I, K xI)— (X, W)
as follows. Put G(x, 0)=g(x), G(x, 1)=g(h,(x)), x€L,. Since
hy|S™"K® is the identity, we can put G(x, f)=g(x) for
x €S™"K®™  Since h, preserve the orientations, G is extended
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over (x,vet™)xI into WY, Since = (W =0 for i=pm+n/p, G
is extended over K x I such that G(K“>x I\ W». By the natural
cell decompositicn of L,x1I, there are no cells of the dimension
pm+n+1=N+2p"(p—1)+1 in L,xI—(L,x I (K®»yS""K* )
xI). Therefore G may be extended the whole of L,x[ into X.
This completes the proof of (2.12).

Consider the following commutative diagram.

1%
Hk(. ﬁl)Zp) _L)Hk(Fr, Zp)
—

/ AN
FE/ I's s NS
S* ‘ j* %\
H*W}, Z,) — H*(X, WM, Z,) ~—H*"(X,Z,) —H*"'(W,Z,)
E e e e
Sk S Ik

HHE®, Z,) — H*(L,, K®, Z,) 7> H*(L,, Z,) <> H* (K, Z,),

where S are suspension isomorphisms of contractible fibre spaces,
and we choose S and &% of (2.11) such that the above diagram is
commutative. Then Su,=u'. Put Sb,,,=bec H!"+(X, WV, Z,),
then j*b=cPP 1"y,

Remark that the case »=—1 does not occur, since the assump-
tion of the theorem fails for »=1 by Corollary 2.12.

Consider j*(AD) =Ac PPy —= — (PP OP"A)/. By (1.3),
Z(p—1)p", A) =21, A, (p—1)p"—1)+ZF (A, (p—1)p") for r=2
and 2 (p—1, A)=R(1)Z (p—2). Then by (1.7) and (1.8),

A + AP Y if r=2,

*(Ab) =
J (AD) { aoqu, lf yr=0

for some «,, a,, @, € &*. By Propositions 1.5 and 1.7, (*A P =
*Au' =i*Ru'=0. Then there are elements w, € H*"***(X, W}, Z,),
- w, € g X, WN, Z)), r=2, and w,€ H"PNX, W, Z,)
such that j*w, =Aw’, *w,=AP"W and jw,=Ru’. It follows from

FFAb—a,w,—a,w,)=0, r=2 and j*¥Ab—a,w)=0 that
_ { oW, + e, +8*%x,  r>=2,

Ab =
aw,+8*x r=20

for some xe€ H**™*™ (W}, Z,). By Proposition 2.8, x=Bu+28.y;
for some B, B, € &* and y, e H™ " (WY, Z,), 0<k;<n=2p"(p—1).
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Obviously B;=0 if »=0. In &*H*(WP, Z,), there is a relation
M, 0%u=0. It follows from Lemma 1.3 and (1.9), i) that
&*Bu = B*u =d 7 * "'8*y for some integer d. Then we have

a,w, +a,w,+ > B:6%y, , r=2,

(2.13). Ab—dP# " '&*y — {
aowo ’ Yy = 0.

By operating S7', it follows that Ab,,,—dP? &y e S F*H*

(Wh, Z,) for N=pm<k<pm+n+2(p—1)=N+2(p"+1) (p—1).
Then it is sufficient to determine the coefficient d such as d=1
mod p.

Consider the image of each term of (2. 13) under the homomor-
phism g*. Since 0< k,<ln, gtd*y, =0&*g*y, ¢ &HV**(K®, Z )=0.
Since 1< 2(p—1) +1<n for r=2, g*w, € H"+™*2-0"(L KD, Z,)
=0. Since j*g*w,€ H*"*"*(L,, Z,)=0 and j*g*w,e H""*"*(L,,
Z,)=0, the elements g*w, and g*w, are the image of &*. By
(2.12), k¥ (g*w,)=g*w, and k¥(g*w)=g*w, for all s. Then it
follows from iii)) of Lemma 2.7 that g*w,=g*w,=0. Next
7* g*5=g*j*13= GXC PO O o — ¢ PP OV ghyl — ¢ PLTOL ik gymin,
‘and then grb=7*"c PP ' prgrmtn . Consequently the following
relation is obtained from (2.13):

A (%I GP B0 phpomin) — g*A5 — g*dﬁﬁ"“‘&*u = dS* PP grm

Compairing this to the relation A (j* G2 @07 pkgpmsn) — Sko”* gpm
of Lemma 2.7, ii), it follows from the following (2.14) the
required equality

d=1 mod. p,
and this proves the theorem.

(2. 14). Suppose that n=2p'(p—1) and that HY**(Y, Z,)=0 for
k=0 mod n. Then P"*'a=(—1)cP *'« for ae HVY, Z,) and for
0r<p—1.

This is obvious for r=0. By (1.3), for 0<i<p,

P )P i) ="5, » P i+ —HP )
= (—1) (P DN) (v jpra = ("H) 2 (+ipa.
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Suppose that (2.14) is true for »<s<p—1. Then by (1.7),

sﬁ“

0=2F (sp'—)eP ()a = 33 P ((s—)p')e P (ip')a
=3 (P (5= P (p)a—(—1)' PP e+ c P a.

Thus (—1)° ﬁsﬁa—cﬁ%’azg(—n:’ (j) P ra=0. By the in-

duction, (2.14) is proved, and then the proof of the theorem is
accomplished. ' q.e. d.

§ The case p=2.
The mod 2 Hopf homomorphism
Hz : ﬂm+n—l(sm) —_—> Zz, n =2 »

is also defined similarly by using S¢* in place of &7

Meny properties of H, are established for H, replacing Z** by
Sq¢*. The exceptions are the followings. ii) .of Lemma 2.1 has
to be rewritten such as
i), H,: 7wy, (S™)—Z, is trivial for m<m. For m=n H, is
onto if and only if it is onto for m=mn(: =,,_ (S")—Z,).

Instead of Proposition 2.5, we have

(2.16). H,: =,, (S")—Z, is onto if and only if [¢, ., ¢, ,]=0.

WX is defined also for p=2. Then

Proposition 2.8'. There exists an element b,., of HN*"!
(WN, Z) such that i*b,,,=Sq” " 'u,. SSH:WDN,., Z,), k< 2N—1, is
k

an A*-module generated by b,., and elements of dimensions less
than N+2"1 42771

Regarding the proof of Theorem 2.9, for the case p=2, it
is seen that the only difficulty is to use Proposition 1.9 in place
of Proposition 1.7. Then, in the proof, we take the relation
Sq”*'Sq' =S¢’Sq” ' +S¢'S¢” " in place of P L P A=.... To be
contained S¢* and S¢' in the kernel of (Sg¥*)*: A¥ — A%/ M¥,,,
it is necessary to hold »=2. Then the modification of Theorem
2.9 is stated as follows.

Thorem 2.14. Suppose that H,: =,,_,(S*)—> Z, is onto for t =27
and r=2. Then for sufficiently large N, the element Sq'b,,,—Sq* "*u
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belongs to an A*-submodule 3 A¥XH*(WN.,, Z,)), N k< N+2+ +4.
k

It follows from this the following

Theorem 2.15. (Adames [1]). If H,: =,,_(S*)—Z, is onto
for t=4, then H,: =y _(S¥)—Z, is trivial.

Finally, as is seen in [7], H,: 7, _(S*)—Z, is onto if and
only if the usual Hopf homomorphism H: =,,_,(S¥)— Z is onto.
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