MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXI, Mathematics No. 2, 1958.

p-primary components of homotopy groups I. Exact sequences in Steenrod algebra

By

Hirosi TODA

(Received June 5, 1958)

The structure of the Steenrod algebra \mathscr{S}^* mod *p* [1] gives important tools for the calculation of the homotopy groups. In this section, the exactness of the several \mathscr{S}^* -homomorphisms is studied, and it will be applied to prove the triviality of mod p Hopf invariant in the next section and also to verify the homotopy groups in those sections which follow further.

§ Notations.

Throughout this paper, *p* denotes an odd prime and \mathcal{S}^* denotes the Steenrod algebra mod p [1] [3]. \mathcal{S}^* is a graded Z_{p} -algebra $\sum \mathcal{S}^{i}$ which is generated multiplicatively by the Bockstein operator $\Delta \in \mathcal{S}^1$ and Steenrod's reduced powers $\mathcal{P}^t \in \mathcal{S}^{2t(p-1)},$ $t\!=\!0, 1, 2, \cdots$.

For the simplicity of the descriptions, we shall use the following notations.

 (1.1) . $\mathscr{P}(\Delta^{e_0}, r_1, \Delta^{e_1}, r_2, \cdots, r_n, \Delta^{e_n}) = \Delta^{e_0} \mathscr{P}^{r_1} \Delta^{e_1} \mathscr{P}^{r_2}$

where ε_i and r_i are non-negative integers. From the relation

$$
\Delta^2 = \Delta \Delta = 0,
$$

the monomial (1.1) vanishes if one of $\epsilon_i \geq 2$. If $\epsilon_i = 0$, we may omit Δ^{ϵ_i} in (1.1) since Δ^0 means the identity. If $\epsilon_i = 1$, we write $\Delta^{\mathfrak{e}}$ by Δ . Also if $r_i = 0$, then we may replace " $\Delta^{\mathfrak{e}}$ _{i-1}, r_i , $\Delta^{\mathfrak{e}}$ _i" and " $\Delta^{e_{i-1}}\mathcal{P}^{r_i}\Delta^{e_i}$ " by " $\Delta^{e_{i-1}+e_i}$ " since \mathcal{P}° is the identity.

A monomial (1.1) is said to be *admissible* if ε ^{*i*} are 0 or 1, $r_n > 0$ and if $r_i \geq pr_{i+1} + \varepsilon_i$ for $i = 1, 2, \dots, n-1$. Then the admissible monomials form an additive Z_{n} -base of \mathcal{S}^* [1] [2].

Let A^* be a left *(resp.* right) \mathscr{S}^* -module and let α be an element of \mathcal{S}^* . We define a homomorphism

$$
\alpha_*
$$
 (resp. α^*) : $A^* \rightarrow A^*$

by setting $\alpha_*(a) = \alpha a$ (resp. $\alpha^*(a) = a\alpha$), $a \in A^*$. If A^* is a two sided \mathscr{S}^* -module, then $\alpha_*(\text{resp. }\alpha^*)$ is a right (resp. left) \mathscr{S}^* homomorphism. Obviously

$$
(\alpha\beta)^* = \alpha_*\beta_*, \quad (\alpha\beta)^* = \beta^*\alpha^* \quad and \quad \alpha_*\beta^* = \beta^*\alpha_*
$$

for $\alpha, \beta \in \mathcal{S}^*$. In particular, we denote that

$$
R(r) = (r+1) \Delta \mathcal{P}^{1} - r \mathcal{P}^{1} \Delta = (r+1) \mathcal{P}(\Delta, 1) - r \mathcal{P}(1, \Delta),
$$

and we shall treat the induced homomorphisms

$$
R(r)_*
$$
 and $R(r)^*$: $\mathcal{S}^* \rightarrow \mathcal{S}^*$.

We denote that

$$
\alpha A^* = \{ \alpha a \mid a \in A^* \} = \alpha_*(A^*),
$$

$$
A^* \alpha = \{ a \alpha \mid a \in A^* \} = \alpha^*(A^*).
$$

Since $\Delta\Delta = 0$, a left (resp. right) \mathcal{S}^* -module A^* is a complex with respect to the coboundary operator Δ_{*} (resp. Δ^{*}). Denote by

$$
Ha(A*) \t (resp. Ha(A*))
$$

the cohomology group of the complex (A^*, Δ_*) (resp. (A^*, Δ^*)).

An admissible monomial (1.1) is $\Delta_{*}-$ cocycle (resp. $\Delta^{*}-$ cocycle) if and only if $\varepsilon_0 = 0$ (resp. $\varepsilon_n = 0$), and it is Δ_{*} -cobounded (resp. Δ^* -cobounded). It follows

$$
(1.2) \quad H_d(\mathcal{S}^*) = H^d(\mathcal{S}^*) = 0, \quad H^d(\Delta \mathcal{S}^*) = H_d(\mathcal{S}^* \Delta) = {\Delta}
$$

and
$$
H^d(\mathcal{S}^*/\Delta \mathcal{S}^*) = H_d(\mathcal{S}^*/\mathcal{S}^* \Delta) = \{1\}.
$$

It is convenient to regard that $\mathscr{S}^*/\Delta\mathscr{S}^*$ (resp. $\mathscr{S}^*/\mathscr{S}^*\Delta$) is spanned by the admissible monomials (1.1) of $\varepsilon_0 = 0$ (resp. $\varepsilon_n = 0$). Then we define two right \mathscr{S}^* -homomorphisms

$$
R': \mathscr{S}^{*}/\Delta \mathscr{S}^{*} + \mathscr{S}^{*}/\Delta \mathscr{S}^{*} \rightarrow \mathscr{S}^{*},
$$

$$
R: \mathscr{S}^{*} \rightarrow \mathscr{S}^{*}/\Delta \mathscr{S}^{*} + \mathscr{S}^{*}/\Delta \mathscr{S}^{*},
$$

130

by the formulas $R'(\alpha, \beta) = \mathscr{P}^1 \Delta \alpha + \Delta \mathscr{P}^1 \Delta \beta$, $\alpha, \beta \in \mathscr{S}^*/\Delta \mathscr{S}^*$ and $R(\alpha)=(\mathscr{P}^1\Delta \alpha, \ -\mathscr{P}^1\alpha), \ \alpha\in$

§ Exact sequences of right \mathscr{S}^* -homomorphisms.

Any monomial (1. 1) may be normalized to a sum of admissible monomials (uniquely) by use of the Adem's relations $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$:

$$
\mathscr{P}(r, s) = \sum_{i} (-1)^{r+i} \binom{(s-i)(p-1)-1}{r-pi} \mathscr{P}(r+s-i, i) \text{ if } r < ps,
$$

(1. 3)
$$
\mathscr{P}(r, \Delta, s) = \sum_{i} (-1)^{r+i} \binom{(s-i)(p-1)}{r-pi} \mathscr{P}(\Delta, r+s-i, i)
$$

$$
+ \sum_{i} (-1)^{r+i+1} \binom{(s-i)(p-1)-1}{r-pi-1} \mathscr{P}(r+s-i, \Delta, i) \text{ if } r \leq ps.
$$

For the case $0 \leq r \leq p$, we have from (1.3)

$$
\begin{aligned}\n\mathscr{P}(r,s) &= \binom{r+s}{r} \mathscr{P}(r+s), \\
(1.3)' & \mathscr{P}(r,\Delta,s) &= \binom{r+s-1}{r} \mathscr{P}(\Delta,r+s) + \binom{r+s-1}{s} \mathscr{P}(r+s,\Delta)\,.\n\end{aligned}
$$

In particular, $\mathscr{P}(1, s) = (s+1) \mathscr{P}(s+1)$ and $\mathscr{P}(1, \Delta, s)$ $= s\mathscr{P}(\Delta, s+1) + \mathscr{P}(s+1, \Delta).$

Proposition 1.1. The following circular sequence is exact.

$$
\mathcal{S}^* \xrightarrow{R(p-2)*} \mathcal{S}^* \longrightarrow \cdots \xrightarrow{R(2)*} \mathcal{S}^* \xrightarrow{R(1)*} \mathcal{S}^*
$$

$$
\mathcal{S}^* / \Delta \mathcal{S}^* + \mathcal{S}^* / \Delta \mathcal{S}^*.
$$

The groups H° of the k ernel-images are spanned by the classes of the following elements:

H 4 (R(r)9') :* APi+P-rzl , (1_.<_r *p-2) H⁴ (image of R') : A,9iPi+1A , H° (image of R) :* (9PlA, 0), (0, ,

where $i = 0, 1, 2, \cdots$.

Proof. It follows from $(1.3)'$ $R(r) \mathcal{P}(s, t, \cdot\cdot\cdot) = (r+s+1) \mathcal{P}(\Delta, s+1, t, \cdot\cdot\cdot) - r \mathcal{P}(s+1, \Delta, t, \cdot\cdot\cdot)$ $R(r) \mathcal{P}(s, \Delta, t, \cdots) = (r+s+1) \mathcal{P}(\Delta, s+1, \Delta, t, \cdots),$ $R(r) \mathcal{P}(\Delta, s, t, \cdots) = (r+1) \mathcal{P}(\Delta, s+1, \Delta, t, \cdots),$ $R(r) \mathcal{P}(\Delta, s, \Delta, t, \cdots) = 0$.

132 *Hirosi Toda*

If a monomial in the left side is admissible, then so is in the right side. For the case $1 \le r \le p-2$, the kernel of $R(r)_*$ is generated by the elements $(r+s+1)$ $\mathscr{P}(\Delta, s, t, \cdots) - (r+1)$ $\mathscr{P}(s, \Delta, t, \cdots)$ and $\mathscr{P}(\Delta, s, \Delta, t, \cdots)$. In particular, $R(r+1)$ is in the kernel of *R*(*r*)*. Thus $R(r) * oR(r+1) * = 0$. Since $(r+s+1) \mathcal{P}(\Delta, s, t)$ $-(r+1)$ $\mathscr{P}(s, \Delta, t, \cdots) = R(r+1)$ $\mathscr{P}(s-1, t, \cdots)$, and $(r+2)$ $(\Delta, s, \Delta, t, \Delta)$ \cdots) = $R(r+1)$ $\mathcal{P}(\Delta, s-1, t, \cdots)$, then the kernel of $R(r)_*$ is contained in the image of $R(r+1)_{*}$ if $1 \leq r < p-2$. Therefore the exactness of the sequence

$$
\mathcal{S}^* \xrightarrow{R(r+1)*} \mathcal{S}^* \xrightarrow{R(r)*} \mathcal{S}^*
$$

is established for $1 \le r < p-2$. The exactness of the sequence

$$
\mathcal{S}^{*}/\Delta \mathcal{S}^{*}+\mathcal{S}^{*}/\Delta \mathcal{S}^{*} \xrightarrow{R'} \mathcal{S}^{*} \xrightarrow{R(p-2)_{*}} \mathcal{S}^{*}
$$

follows from the above results on the kernel of $R(p-2)$ and from the first two of the following relations obtained from $(1.3)'$.

$$
R'(\mathcal{P}(s, t, \cdots), 0) = s\mathcal{P}(\Delta, s+1, t, \cdots) + \mathcal{P}(s+1, \Delta, t, \cdots),
$$

\n
$$
R'(0, \mathcal{P}(s, t, \cdots)) = \mathcal{P}(\Delta, s+1, \Delta, t, \cdots),
$$

\n
$$
R'(\mathcal{P}(s, \Delta, t, \cdots), 0) = s\mathcal{P}(\Delta, s+1, \Delta, t, \cdots),
$$

\n
$$
R'(0, \mathcal{P}(s, \Delta, t, \cdots)) = 0.
$$

From these relations, it follows that the kernel of R' is generated by $(\mathscr{P}(s, \Delta, t, \cdots), -s\mathscr{P}(s, t, \cdots))$ and $(0, \mathscr{P}(s, \Delta, t, \cdots)).$ Then the exactness of the sequence \longrightarrow \longrightarrow follows from the first two of the following relations.

$$
R\mathscr{P}(s, t, \cdots) = (\mathscr{P}(s+1, \Delta, t, \cdots), -(s+1) \mathscr{P}(s+1, t, \cdots)),
$$

\n
$$
R\mathscr{P}(\Delta, s, t, \cdots) = (0, -\mathscr{P}(s+1, \Delta, t, \cdots)),
$$

\n
$$
R\mathscr{P}(s, \Delta, t, \cdots) = (0, -(s+1) \mathscr{P}(s+1, \Delta, t, \cdots)),
$$

\n
$$
R\mathscr{P}(\Delta, s, \Delta, t, \cdots) = 0.
$$

Then the kernel of *R* is generated by $(s+1)$ $\mathscr{P}(\Delta, s, t, \cdots)$ $-\mathscr{P}(s, \Delta, t, \cdots) = R(1) \mathscr{P}(s-1, t, \cdots)$ and $\mathscr{P}(\Delta, s, \Delta, t, \cdots) = \frac{1}{2}R(1)$ $\mathscr{P}(\Delta, s-1, t, \cdots)$. Since $R \circ R(1)_{*} = 0$, we have the exactness of the remainder sequence $\stackrel{R(1)_*}{\longrightarrow}$ -

A monomial is Δ^* -cocycle if it is of a form $\mathscr{P}(\cdots, \Delta)$. Let $1 \leq r \leq p-2$ and consider the generators $(r+s+1)$ $\mathscr{P}(\Delta, s+1, t, \cdots)$

 $-r\mathscr{P}(s+1, \Delta, t, \cdots)$ and $\mathscr{P}(\Delta, s+1, \Delta, t, \cdots)$ of $R(r)\mathscr{S}^*$. Then the Δ^* -cocycles of $R(r)$ \mathcal{S}^* are generated by the elements of the following forms :

$$
(r+s+1) \mathcal{P}(\Delta, s+1, t, \cdots, \Delta) - r\mathcal{P}(s+1, \Delta, t, \cdots, \Delta),
$$

$$
\mathcal{P}(\Delta, s+1, \Delta, t, \cdots, \Delta),
$$

$$
\mathcal{P}(\Delta, s+1, \Delta) \quad and \quad r\mathcal{P}(pi-r, \Delta).
$$

Obviously the Δ^* -cocycles of the first two forms are Δ^* cobounded in $R(r)$ \mathscr{S}^* . $\mathscr{P}(\Delta, s+1, \Delta)$ is Δ^* -cobounded if $r+s+1 \not\equiv 0$ mod *p*, since $\mathcal{P}(\Delta, s+1, \Delta) = \frac{1}{r+s+1} ((r+s+1) \mathcal{P}(\Delta, s+1) - (r+1)$ $\mathscr{P}(s+1, \Delta)$ Δ . The elements $\mathscr{P}(pi-r, \Delta)$ and $\mathscr{P}(\Delta, pi-r, \Delta)$, $i=1, 2, 3, \ldots$, are not Δ^* -cobounded and their classes form a Z_p -base of $H^4(R(r) \mathcal{S}^*)$. The other results on H^4 are proved similarly, q.e.d.

Proposition 1. 2. *The following two sequences are exact:*

i)
$$
\mathcal{S}^*
$$
 $\overset{\mathcal{P}^1}{\longrightarrow} \mathcal{S}^*$ $\overset{\mathcal{P}^p}{\longrightarrow} \mathcal{S}^*$ $\overset{\mathcal{P}^p}{\longrightarrow} \mathcal{S}^*$,
\nii) $\mathcal{S}^*/R(1) \mathcal{S}^*$ $\overset{\mathcal{P}^p}{\longrightarrow} \mathcal{S}^*/\Delta \mathcal{S}^*$ $\overset{\mathcal{P}^{p-1}}{\longrightarrow} \mathcal{S}^*/R(1) \mathcal{S}^*$ $\overset{\mathcal{P}^1}{\longrightarrow} \mathcal{S}^*/\Delta \mathcal{S}^*$.
\n $H^4(\mathcal{P}^1\mathcal{S}^*) = H^4(\mathcal{P}^{p-1}\mathcal{S}^*) = 0$, $H^4((\mathcal{P}^1\mathcal{S}^* + \Delta \mathcal{S}^*)/\Delta \mathcal{S}^*)$
\n $= \{\mathcal{P}^{pi}\Delta, i=1, 2, 3, \cdots\}$ and $H^4((\mathcal{P}^{p-1}\mathcal{S}^* + R(1) \mathcal{S}^*/R(1)\mathcal{S}^*)$
\n $= \{\mathcal{P}^{pi-1}, i=1, 2, 3, \cdots\}$.
\n*Proof.* By (1, 3)',
\n $\mathcal{P}(1) \mathcal{P}(s, t, \cdots) = (s+1) \mathcal{P}(s+1, t, \cdots)$,
\n $\mathcal{P}(1) \mathcal{P}(s, \Delta, t, \cdots) = s\mathcal{P}(\Delta, s+1, t, \cdots) + \mathcal{P}(s+1, \Delta, t, \cdots)$,
\n $\mathcal{P}(1) \mathcal{P}(\Delta, s, \Delta, t, \cdots) = s\mathcal{P}(\Delta, s+1, t, \cdots) + \mathcal{P}(s+1, \Delta, t, \cdots)$,
\n $\mathcal{P}(1) \mathcal{P}(\Delta, s, \Delta, t, \cdots) = s\mathcal{P}(\Delta, s+1, \Delta, t, \cdots)$.

Then the kernel of $\mathscr{P}(1)_*$ is generated by $\mathscr{P}(pi + p-1, t, \cdots)$ $=\mathscr{P}(p-1)\mathscr{P}(pi, t, \cdots), \mathscr{P}(pi+p-1, \Delta, t, \cdots)=\mathscr{P}(p-1)\mathscr{P}(pi, \Delta, t, \cdots)$ $\mathscr{P}(\Delta, p i, t, \cdots) - \mathscr{P}(p i, \Delta, t, \cdots) = \mathscr{P}(p-1) \mathscr{P}(\Delta, p i-p+1, t, \cdots)$ and $\mathscr{P}(\Delta, pi, \Delta, t, \cdots) = \mathscr{P}(p-1) \mathscr{P}(\Delta, pi-p+1, \Delta, t, \cdots)$. As a consequence we have the exactness of the sequence

$$
\mathcal{S} \ast \xrightarrow{\mathcal{P}(p-1)} \mathcal{S} \ast \xrightarrow{\mathcal{P}(1)} \mathcal{S} \ast.
$$

The cokernel $\mathscr{S}^*/\mathscr{P}(1)$ \mathscr{S}^* of $\mathscr{P}(1)_*$ has a base which

consists of the admissible monomials $\mathscr{P}(pi, t, \cdots), \mathscr{P}(pi, \Delta, t, \cdots)$, $\mathscr{P}(\Delta, pi+1, t, \cdots)$ and $\mathscr{P}(\Delta, pi+1, \Delta, t, \cdots)$. From (1.3)', it follows that these elements of the base are mapped by $\mathscr{P}(p-1)_*$ to the elements $\mathscr{P}(\vec{p} + \vec{p} - 1, t, \cdots), \mathscr{P}(\vec{p} + \vec{p} - 1, \Delta, t, \cdots), \mathscr{P}(\Delta, t, \cdots)$ $pi + p, t, \cdots$ and $\mathscr{P}(\Delta, \pi + p, \Delta, t, \cdots)$ respectively. Thus $\mathscr{P}(p-1)$ *** maps $\mathscr{S}^*/\mathscr{P}(1)$ \mathscr{S}^* isomorphically into \mathscr{S}^* , and then the exactness of the sequence

$$
\mathcal{G} * \xrightarrow{\mathcal{P}(1)_*} \mathcal{G} * \xrightarrow{\mathcal{P}(p-1)_*} \mathcal{G} *.
$$

is proved.

 \sim

Next consider the sequence ii). Concerning the above images of $\mathscr{P}(1)_*$, in the biginning of the proof, mod. by $\Delta \mathscr{S}^*$, we have that the kernel of $\mathscr{P}(1)_*$: $\mathscr{S}^* \rightarrow \mathscr{S}^*/\Delta \mathscr{S}^*$ is generated by the element $\mathscr{P}(pi + p - 1, t, \cdots) = \mathscr{P}(p - 1) \mathscr{P}(pi, t, \cdots)$, $(s+1) \mathscr{P}(\Delta, s, t, \cdots)$ $A_{\mathcal{P}}(\mathcal{A}, \mathcal{A}, \mathcal{A}, \mathcal{A}, \mathcal{A}, \cdots) = R(1) \mathscr{P}(s-1, t, \cdots)$ and $\mathscr{P}(\Delta, s, \Delta, t, \cdots) = R(1)$ $\mathscr{P}(\Delta, s-1, t, \cdots)$. Then the sequence

$$
\mathcal{S}*\stackrel{\mathscr{P}(p-1)*}{\xrightarrow{\qquad}}\mathcal{S}^*/R(1)\mathcal{S}*\stackrel{\mathscr{P}(1)*}{\xrightarrow{\qquad}}\mathcal{S}^*/\Delta\mathcal{S}^*
$$

is exact. The admissible monomials $\mathscr{P}(pi, t, \cdots)$ from a base of the cokernel $\mathcal{S}^*/(\mathcal{P}(1) \mathcal{S}^*+\Delta\mathcal{S}^*)$. Since $R(\mathcal{P}(p-1)) = (\mathcal{P}(1, \Delta))$ $p(1, p-1)$, $-\mathscr{P}(1, p-1)$ = $(\mathscr{P}(p, \Delta), 0)$ and since $\mathscr{P}(p, \Delta)$ $\mathscr{P}(pi, t, \cdots)$ $=$ $\mathscr{P}(pi + p, \Delta, t, \cdots)$ mod $\Delta \mathscr{S}^*$, it holds $(R \circ \mathscr{P}(p-1)_*) \mathscr{P}(pi, t, \cdots)$ $=(\mathscr{P}(\pi + h, \Delta, t, \cdots), 0)$. Then $R \circ \mathscr{P}(p-1)_*$ maps $\mathscr{S}^*/(\mathscr{P}(1) \mathscr{S}^*)$ + $\Delta \mathcal{S}^*$) isomorphically into $\mathcal{S}^*/\Delta \mathcal{S}^*+\mathcal{S}^*/\Delta \mathcal{S}^*$. By Proposition 1.1, *R* carries $\mathcal{S}^*/R(1)\mathcal{S}^*$ isomorphically into $\mathcal{S}^*/\Delta\mathcal{S}^*$ $+\mathscr{S}^*/\Delta\mathscr{S}^*$. Therefore $\mathscr{P}(p-1)_*$ maps $\mathscr{S}^*/(\mathscr{P}(1)\mathscr{S}^*+\Delta\mathscr{S}^*)$ isomorphically into $\mathcal{S}^*/R(1)$ \mathcal{S}^* , and the sequence

$$
\mathcal{S} \times \xrightarrow{\mathscr{P}(1)_{*}} \mathscr{S} \times |\Delta \mathscr{S} \times \xrightarrow{\mathscr{P}(p-1)_{*}} \mathscr{S} \times |\mathcal{R}(1) \mathscr{S} \times
$$

is exact.

The factor group $(\mathscr{P}^1\mathscr{S}^*+\Delta\mathscr{S}^*)/\Delta\mathscr{S}^*$ is generated by the classes of $(s+1)$ $\mathscr{P}(s+1, t, \cdots)$ and $\mathscr{P}(s+1, \Delta, t, \cdots)$. As is seen in the previous proof, $H^{\mathcal{A}}((\mathcal{P}^1\mathcal{S}^*+\Delta\mathcal{S}^*))/\Delta\mathcal{S}^* = {\mathcal{P}(\mathbf{\mu},\Delta)},$ $i=1, 2, \dots$. From the exact sequence ii), we have an exact sequence of $\Delta^{*}-complexes$:

$$
0 \to (\mathcal{P}^1 \mathcal{S}^* + \Delta \mathcal{S}^*)/\Delta \mathcal{S}^* \to \mathcal{S}^*/\Delta \mathcal{S}^*
$$

$$
\to (\mathcal{P}^{p-1} \mathcal{S}^* + R(1) \mathcal{S}^*)/R(1) \mathcal{S}^* \to 0
$$

From the cohomology exact sequence associated with this sequence

and from (1. 2), there is an isomorphism

$$
H^4((\mathscr{P}^{p-1}\mathscr{S}^* + R(1) \mathscr{S}^*)/R(1) \mathscr{S}^*)
$$

\n
$$
\approx H^4((\mathscr{P}^{1}\mathscr{S}^* + \Delta \mathscr{S}^*)/\Delta \mathscr{S}^*) + H^4(\mathscr{S}^*/\Delta \mathscr{S}^*) .
$$

By this isomorphism $\mathcal{P}(bi + b - 1)$ corresponds to $\mathcal{P}(bi \Delta)$ (for $i \geq 1$) or 1 (for $i = 0$). Thus $H^d((\mathscr{P}^{p-1}\mathscr{S}^* + R(1)\mathscr{S}^*)/R(1)\mathscr{S}^*)$ $=$ { $\mathscr{P}(pi + p - 1)$, $i = 0, 1, 2, \cdots$ }. The proof of $H^4(\mathscr{P}^1\mathscr{S}^*)$ $=H^{\prime}(\mathscr{P}^{p-1}\mathscr{S}^*)=0$ is similar and easy, q.e.d.

Denote that

$$
M_t = \Delta \mathcal{S}^* + \mathcal{S}^1 \mathcal{S}^* + \mathcal{S}^p \mathcal{S}^* + \cdots + \mathcal{S}^{p+1} \mathcal{S}^* \quad (M_0 = \Delta \mathcal{S}^*).
$$

Lemma 1.3. i) *M_t is spanned by the admissible monomials which are not of the forms* $\mathscr{P}(a_0p^t, a_1p^{t-1}, \dots, a_{t-1}p, a_t, \dots),$ *where* $\cdots \ge a_t \ge 0$ and we omit $a_r p^{t-r}, \cdots, a_t, \cdots$ if $a_r = 0$.

ii) $\mathscr{P}(q_1, q_2, \cdots, q_{t-s}) M_s \subset M_t$ for $0 \leq s \leq t$.

Proof. $M_0 = \Delta \mathcal{S}^*$ is spanned by the admissible monomials $\mathscr{P}(\Delta, r, \cdots)$. From the proof of Proposition 1.2, it follows that $M_1/M_0 = (\mathcal{P}^1 \mathcal{S}^* + \Delta \mathcal{S}^*)/\Delta \mathcal{S}^*$ is spanned by the admissible mono- $\mathscr{P}(s, r, \cdots)$ and $\mathscr{P}(r, \Delta, t, \cdots)$ such that $s \not\equiv 0 \mod p$. Then i) is true for M_0 and M_1 . i) implies that $\mathscr{P}(q, \Delta) \in M_1$. Thus $\mathscr{P}(q)$ $M_0 = \mathscr{P}(q, \Delta)$ $\mathscr{P}^* \subset M_1 \mathscr{P}^* = M_1$.

Now suppose that i) and ii) are true for M_s , $s \leq t$. Then it is sufficient to prove that i) and ii) are true for M_{t+1} . We shall verify the image M_{t+1}/M_t of $\mathscr{P}(p^t)_*$. Since $\mathscr{P}(p^t) M_{t-1} \subset M_t$, it is sufficient to compute $\mathscr{P}(\hat{p}^t, a_0 \hat{p}^{t-1}, a_1 \hat{p}^{t-2}, \cdots, a_{t-1}, \cdots) \mod M_t$. Let $s \leq t$ and consider the relation

$$
\mathscr{P}(p^s, ap^{s-1}) = \sum_{i=0}^{p^{s-1}} (-1)^{i+1} \binom{(ap^{s-1}-i)(p-1)-1}{p^s-pi} \mathscr{P}(p^s+ap^{s-1}-i, i)
$$

of (1.3). If the term $\mathcal{P}(p^s + ap^{s-1}-i, i)$ is not in *M*_s, then $p^{s} + ap^{s-1} - i \equiv 0 \mod p^{s}$ and $i \equiv 0 \mod p^{s-1}$ by the assertion i) for M_s. This is possible only if $a = bp$ or $a = bp + 1$ for some integer *b,* and then the non-trivial relations mod *m^s* are the followings.

(1.4)
$$
\mathscr{P}(p^s, bp^s) \equiv (b+1) \mathscr{P}((b+1) p^s) \quad \text{mod } M_s,
$$

$$
\mathscr{P}(p^s, bp^s + p^{s-1}) \equiv \mathscr{P}((b+1) p^s, p^{s-1}) \quad \text{mod } M_s.
$$

From ii), we remark that $\alpha \equiv \beta \mod M_s$ implies $\mathscr{P}(c_0 p^t)$, , $c_{t-s-1}p^{s+1}$ $\alpha \equiv \mathcal{P}(c_0p^t, \cdots, c_{t-s-1}p^{s+1})$ β mod M_t . Then repeating

Hirosi Toda

the relation (1.4) and concerning the relation $\mathscr{P}(1, \Delta, s)$ $\equiv \mathcal{P}(s+1, \Delta) \mod M_0$, it follows that $\mathcal{P}(p^t, a_0 p^{t-1}, \dots, a_{t-1}, \dots)$ is not in M, only if it has one of the following forms: $(0 \le r \le t)$

$$
\mathscr{P}(p^t, b_0 p^t + p^{t-1}, \cdots, b_{r-1} p^{t-r+1} + p^{t-r}, b_r p^{t-r}, \cdots, b_{t-1} p, b_t, \cdots)
$$

\n
$$
\equiv (b_r + 1) \mathscr{P}((b_0 + 1) p^t, \cdots, (b_r + 1) p^{t-r}, b_{r-1} p^{t-r-1}, \cdots, b_t, \cdots)
$$

\n
$$
\mod M_t,
$$

 (1.5)

$$
\mathscr{P}(p^t, b_0p^t + p^{t-1}, \cdots, b_{t-1}p + 1, \Delta, b_t, \cdots)
$$

\n
$$
\equiv \mathscr{P}((b_0 + 1) p^t, \cdots, (b_{t-1} + 1) p, b_t + 1, \Delta, \cdots) \quad \mod M_t.
$$

Then M_{t+1}/M_t is spanned by the admissible monomials $\mathscr{P}(c_0 p^t, c_1 p^{t-1}, \dots, c_{t-1} p, c_t, \Delta^t, \dots)$ such that one of c_i is not divisible by p or $\varepsilon = 1$. It follows from this and from the assertion i) for M, that i) is true for M_{t+1} .

By i), $\mathcal{P}(ap^{t+1}, \Delta) \in M_{t+1}$ and $\mathcal{P}(ap^{t+1}, p^i) \in M_{t+1}$ for $0 \le i \le t-1$, then $\mathscr{P}(ap^{t+1}) M_t \subset M_{t+1}$. If $q \not\equiv 0 \mod p^{t+1}$, then $\mathscr{P}(q) \in M_{t+1}$ and $\mathscr{P}(q)$ $M_t \subset M_{t+1}$. Thus $\mathscr{P}(q_1, \cdots, q_{t-s+1})$ $M_s = \mathscr{P}(q_1)$ $\mathscr{P}(q_2, \cdots, q_{t-s+1})$ $M_s \subset \mathcal{P}(q_1)$ $M_t \subset M_{t+1}$, and then ii) is proved, q.e.d.

Proposition 1.4. The kernel of the homomorphism

$$
\mathscr{P}^{\,\mathit{p}^t}_\mathit{*} \,:\, \mathscr{S}^\ast \!\longrightarrow \mathscr{S}^\ast/M_t
$$

is $M_{t-1} + \mathscr{P}^{\circ p^{t-1}} \mathscr{S}^* + (2 \mathscr{P}^{p^{t}+p^{t-1}} - \mathscr{P}^{p^{t}} \mathscr{P}^{p^{t-1}}) \mathscr{S}^* + \mathscr{P}^{(p-1)p^{t}} \mathscr{S}^*$ for $t\geq 1$.

Proof. Set $B = M_{t-1} + \cdots + \mathcal{P}^{(p-1)p^t}\mathcal{S}^*$. The following relations are verified from (1.3) and by Lemma 1.3.

$$
\mathscr{P}(p^t, 2p^{t-1}) = \sum_{i=0}^{p^{t-1}} * \mathscr{P}(p^t + 2p^{t-1} - i, i) \equiv 0 \mod M_t,
$$

\n
$$
2\mathscr{P}(p^t, p^t + p^{t-1}) - \mathscr{P}(p^t, p^t, p^{t-1})
$$

\n
$$
= 2\sum_{i=0}^{p^{t-1}} * \mathscr{P}(2p^t + p^{t-1} - i, i) - \sum_{j=0}^{p^{t-1}} \sum_{i=0}^{[j/p]} * \mathscr{P}(2p^t + p^{t-1} - i - j, j, i)
$$

\n
$$
\equiv 2\left(\frac{p^t(p-1)-1}{0}\right) \mathscr{P}(2p^t, p^{t-1}) + \left(\frac{p^t(p-1)-1}{p^t}\right) \mathscr{P}(2p^t, p^{t-1}) \mod M_t
$$

\n
$$
= 0,
$$

\n
$$
\mathscr{P}(p^t, (p-1) p^t) = \sum_{i=0}^{p^{t-1}} * \mathscr{P}(p^{t+1} - i, i)
$$

\n
$$
\equiv -\left(\frac{p^t(p-1)^2-1}{p^t}\right) \mathscr{P}(p^{t+1}) = 0 \mod M_t.
$$

These and ii) of Lemma 1.3 imply that $\mathcal{P}(p^{t}) B \subset M_t$. Then

it is sufficient to prove that \mathcal{S}^*/B is mapped isomorphically into \mathscr{S}^* / M_t by $\mathscr{P}(p^t)_*$

First we consider the image of $\mathscr{P}(2p^{t-1})_*: \mathscr{S}^* \to \mathscr{S}^*/M_{t-1}$. By Lemma 1.3, $\mathscr{P}(2p^{t-1}, \Delta), \mathscr{P}(2p^{t-1}, p^i) \in M_{t-1}$ for $i=0, 1, 2, \dots, t-3$ Then $\mathscr{P}(2p^{t-1}) M_{t-2} \subset M_{t-1}$. Thus the image of $\mathscr{P}(2p^{t-1})_*$ in \mathscr{S}^* / M_t is generated by $\mathscr{P}(2p^{t-1}, a_0p^{t-2}, \dots, a_{t-2}, \dots) \mod M_{t-1}$ where $a_{t-2} \geq 0$. Consider the relation $\mathscr{P}(2p^s, ap^{s-1}) = \sum_{k} \mathscr{P}(2p^s)$ $+a p^{s-1}-i, i$, $0 \le i \le 2p^{s-1}$, of (1.3). Then, by Lemma 1.3, the non-trivial relations mod M_s are

$$
\mathscr{P}(2p^s, bp^s) = {b+2 \choose 2} \mathscr{P}((b+2) p^s) \quad \text{mod } M_s,
$$

$$
\mathscr{P}(2p^s, bp^s + p^{s-1}) = (b+1) \mathscr{P}((b+2) p^s, p^{s-1}) \quad \text{mod } M_s,
$$

$$
\mathscr{P}(2p^s, b p^{s} + p^{s-1}) = (b+1) \mathscr{P}((b+2) p^s, p^{s-1}) \quad \mod M_s,
$$

and
$$
\mathscr{P}(2p^s, b p^{s} + 2p^{s-1}) = \mathscr{P}((b+2) p^s, 2p^{s-1}) \quad \mod M_s.
$$

Analogous discussions of the proof of Lemma 1.3 lead us to the following (1. 6) from these relations and from (1. 4).

 (1.6) $M_{t-1} + \mathcal{P}(2p^{t-1})\mathcal{S}^*$ is spanned by the admissible monomials which are not of the forms $\mathscr{P}(b_0 p^t + p^{t-1}, \dots, b_{t-1} p + 1, \Delta, \dots)$ and $(b_0 p^t + p^{t-1}, \cdots, b_{r-1} p^{t-r+1} + p^{t-r}, b_r p^{t-r}, \cdots, b_{t-1} p, b_t, \cdots)$ where $0 \le r \le$ *and* $b_0 \geq b_1 \geq \cdots \geq b_t \geq 0$.

B was given by

$$
B = M_{t-1} + \mathcal{P}(2p^{t-1}) \mathcal{S}^* + (2\mathcal{P}(p^t + p^{t-1}) - \mathcal{P}(p^t, p^{t-1})) \mathcal{S}^* + \mathcal{P}((p-1) p^t) \mathcal{S}^*
$$

and let C be a submodule of \mathcal{S}^* spanned by the admissible monomials

 $\mathscr{P}(b_0 p^t + p^{t-1}, \dots, b_{t-1} p + 1, \Delta, b_t, \dots)$ and $\mathscr{P}(c_0p^t+p^{t-1},\cdots,c_{r-1}p^{t-r+1}+p^{t-r},c_rp^{t-r},\cdots,c_t,\cdots)$

such that $c_0 + 1 \equiv 0, \dots, c_s + 1 \equiv 0, c_r + 1 \not\equiv 0 \mod p$ and $c_{s+1} = \dots = c_r$ for some $0 \leq r \leq t$, $s < r$.

By (1.5), it is verified easily that $\mathcal{P}(p^t)_*$ maps C isomorphically into \mathcal{S}^*/M_t and also onto M_{t+1}/M_t . Therefore, for the proof of the proposition, it is sufficient to prove the equality

$$
B+C=\mathscr{S}^*.
$$

Or, by (1.6) , it is sufficient to prove that an admissible

138*H i rosi Toda*

monomial $\mathscr{P}(c_0 p^t + p^{t-r-1}, \dots, c_{r-1} p^{t-r+1} + p^{t-r}, c_r p^{t-r}, \dots, c_t, \dots)$ belongs to $B+C$ if it satisfies one of the following three conditions.

- a) $c_s + 1 \not\equiv 0$, $c_r + 1 \not\equiv 0 \mod p$ and $c_s > c_r$ for some $0 \leq s < r$,
- b) $c_s + 1 \not\equiv 0$ and $c_r + 1 \equiv 0 \mod p$ for some $0 \leq s < p$
- *c*₀ + 1 \equiv 0, \cdots , c_{r-1} + 1 \equiv 0 and c_r + 1 \equiv 0 mod p.

For the simplicity we set $Q_s = 2\mathcal{P}(p^s + p^{s-1}) - \mathcal{P}(p^s, p^{s-1})$. By (1.3) and by (1.6) , we compute the following relations:

$$
Q_s \mathscr{P}(bb^s) \equiv (b+2) \mathscr{P}((b+1) p^s + p^{s-1}) - \mathscr{P}((b+1) p^s, p^{s-1})
$$

mod $M_{s-1} + \mathscr{P}(2p^{s-1}) \mathscr{S}^*$,

$$
Q_s \mathscr{P}(bb^s + p^{s-1} + p^{s-2}) \equiv \mathscr{P}((b+1) p^s + p^{s-1}) Q_{s-1}
$$

mod $M_{s-1} + \mathscr{P}(2p^{s-1}) \mathscr{S}^*$.
mod $M_{s-1} + \mathscr{P}(2p^{s-1}) \mathscr{S}^*$.

Applying these relations and (1.4) to $Q_t \mathcal{P}((c_0-1) p^t + p^{t-1})$ $+b^{t-2}, \cdots, (c_{s-1}-1) p^{t-s+1}+p^{t-s}+p^{t-s-1}, (c_s-1) p^{t-s}, c_{s+1}p^{t-s-1}+p^{t-s-2},$ \cdots , $c_{r-1}p^{t-r+1}+p^{t-r}, c_r p^{t-r}, \cdots, c_t, \cdots$ we have the following relation *(0* ≤ *s* \le *r* ≤ *t*)

$$
(c_s+1) \, \varepsilon^s (c_0 p^t + p^{t-1}, \cdots, c_s p^{t-s} + p^{t-s-1}, \cdots, c_{r-1} p^{t-r+1} + p^{t-r}, \, c_r p^{t-r}, \cdots, c_t, \cdots)
$$
\n
$$
\equiv (c_r+1) \, \mathscr{P}(c_0 p^t + p^{t-1}, \cdots, c_{s-1} p^{t-s+1} + p^{t-s}, \, c_s p^{t-s}, \, (c_{s+1}+1) \, p^{t-s-1}, \cdots, (c_r+1) \, p^{t-r}, \, c_{r+1} p^{t-r-1}, \cdots, c_t, \cdots) \mod B.
$$

Consider an admissible monomial satisfying the condition a) in which we may suppose that $c_s > c_{s+1}$ and that $c_q = c_s$ if $q < s$ and $c_q + 1 \not\equiv 0 \mod p$. Then the last relation shows that the monomial is equivalent mod *B* to an element of *C*, and it belongs to $B+C$. It follows directly from the last relation that an admissible monomial satisfying b) belongs to $B \subset B + C$.

By (1.3) and by (1.6) we have a relation mod $M_{s-1} + \mathcal{P}(2p^{s-1})\mathcal{S}^*$

$$
\mathscr{P}((p-1) p^s, bp^{s-1}+p^s) \equiv \mathscr{P}(bp^{s+1}+(p-1) p^s+p^{s-1}, (p-1) p^{s-1}).
$$

In the case c), we compute the following relation from the above one.

$$
\mathscr{P}(c_0 p^t + p^{t-1}, \cdots, c_{r-1} p^{t-r+1} + p^{t-r}, c_r p^{t-r}, c_{r+1} p^{t-r-1}, \cdots, c_t, \cdots)
$$

\n
$$
\equiv \mathscr{P}((p-1) p^t) \mathscr{P}((c_0-p+2) p^t, \cdots, (c_{r-1}-p+2) p^{t-r+1}, (c_r-p+1))
$$

\n
$$
p^{t-r}, c_{r+1} p^{t-r-1}, \cdots, c_t, \cdots) - \mathscr{P}(c_0 p^t + p^{t-1}, \cdots, c_{r-1} p^{t-r+1} + p^{t-r}, (c_r-1))
$$

\n
$$
p^{t-r} + p^{t-r-1}, (p-1) p^{t-r-1}) \mathscr{P}(c_{r+1} p^{t-r-1}, \cdots, c_t, \cdots)
$$

\nmod $M_{t-1} + \mathscr{P}(2p^{t-1}) \mathscr{S}^*$,

Since $\mathcal{P}(c_0 p^t + p, \dots, c_{r-1} p^{t-r+1} + p^{t-r}, (c_r-1) p^{t-r} + p^{t-r-1}, (p-1)$ p^{t-r-1} satisfies b), it belongs to *B*. Then the last term of the above relation belongs to $B\mathscr{S}^* = B$. Therefore the relation shows that an admissible monomial satisfying c) belongs to $B \subset B + C$.

Consequently we have proved $B+C=\mathscr{S}^*$ and then the proposition is established, q.e.d.

§ Exact sequences of left \mathscr{S}^* -homomorphisms.

Let

 $\ddot{}$

$$
\mathcal{C}\,:\,\mathscr{S}^*\!\longrightarrow\!\mathscr{S}^*
$$

be the anti-automorphism (conjugation) of $\lceil 3 \rceil$. *c* is determined by the following properties.

$$
(1.7) \quad c(\alpha\beta) = (-1)^{rs} c(\beta) c(\alpha), \quad \alpha \in \mathcal{S}^r, \ \beta \in \mathcal{S}^s, \n c(\Delta) + \Delta = 0 \quad and \quad \sum_{i+j=t} \mathcal{P}^i c(\mathcal{P}^j) = 0, \quad t > 0.
$$

First we remark that (1. 7) implies

$$
(1.7)' \t c2 = 1(c-1 = c) \t and \sum_{i+j=i} c(\mathscr{P}^i) \mathscr{P}^j = 0, \t t > 0.
$$

Proof. Obviously $c^2(\Delta) = \Delta$ and $c^2(\mathcal{P}^1) = \mathcal{P}^1$. By (1.7),

$$
\sum_{i+j=t} (c^2(\mathscr{P}^i)-\mathscr{P}^i) c(\mathscr{P}^i)=c(\sum_{i+j=t} \mathscr{P}^i c(\mathscr{P}^i))-\sum_{i+j=t} \mathscr{P}^i c(\mathscr{P}^j)=0.
$$

Then the equality $c^2(\mathcal{P}^t) - \mathcal{P}^t = 0$ is proved inductively. Since c^2 is a ring homomorphism, it follows that $c^2 = 1$.

Next the second equality is true for $t=1$. Suppose that it is true for $t < r$. Then

$$
\sum_{i+j=r} c(\mathscr{P}^i) \mathscr{P}^j = \sum_{i+j=r} c(\mathscr{P}^i) \mathscr{P}^j + \sum_{i=1}^{r-1} \left(\sum_{i+k=r-i} c(\mathscr{P}^i) \mathscr{P}^k \right) c(\mathscr{P}^i)
$$

=
$$
\sum_{i+k+l=r} c(\mathscr{P}^i) \mathscr{P}^k c(\mathscr{P}^i) - c(\mathscr{P}^r)
$$

=
$$
\sum_{i=0}^{r-1} c(\mathscr{P}^i) \left(\sum_{k+l=r-i} \mathscr{P}^k c(\mathscr{P}^l) \right) = 0.
$$

Thus the equality $\sum_{i+j=r} c(\mathcal{P}^i) \mathcal{P}^j = 0$ is proved by the induction, q.e.d.

By $(1.3)'$ and by (1.7) , we have easily

$$
(1.8) c(\mathcal{P}') = (-1)^r \mathcal{P}' \text{ and } c(\mathcal{P}^{p+r}) = (-1)^{r+1} \mathcal{P}^p \mathcal{P}' \text{ for } 0 \leq r < p.
$$

Also we have that $c(R(r)) = (r+1) c(\Delta \mathcal{P}^1) - rc(\mathcal{P}^1 \Delta) = (r+1)$ $\mathscr{P}^1 \Delta - r \Delta \mathscr{P}^1$. Then we denote that

$$
R_r = c(R(r)) = (r+1) \mathcal{P}^1 \Delta - r \Delta \mathcal{P}^1.
$$

Define two left \mathcal{S}^* -homomorphisms

$$
R^* \; : \; \mathscr{S}^* \longrightarrow \mathscr{S}^* / \mathscr{S}^* \Delta + \mathscr{S}^* / \mathscr{S}^* \Delta ,
$$

\n
$$
R^* \; : \; \mathscr{S}^* / \mathscr{S}^* \Delta + \mathscr{S}^* / \mathscr{S}^* \Delta \longrightarrow \mathscr{S}^* ,
$$

by the formulas $R^*(\alpha) = (\alpha \Delta \mathcal{P}^1, \alpha \mathcal{P}^1), \alpha \in \mathcal{S}^*$ and $R^*(\alpha, \beta)$ $=\alpha\Delta\mathscr{P}^1-\beta\Delta\mathscr{P}^1\Delta, \alpha, \beta \in \mathscr{S}^*/\mathscr{S}^*\Delta.$

Proposition 1.5. The following circular sequence is exact.

The group H_A of the kernel-images are spanned by the classes of the following elements:

$$
H_{\mathcal{A}}(\mathcal{S}^*R_r) \qquad : \Delta c(\mathcal{S}^{p_i+p-r}), \ \Delta c(\mathcal{S}^{p_i+p-r}) \Delta, \ (1 \leq r \leq p-2),
$$

\n
$$
H_{\mathcal{A}}(image \ of \ R^*) : \Delta c(\mathcal{S}^{p_i+1}), \ \Delta c(\mathcal{S}^{p_i+1}) \Delta,
$$

\n
$$
H_{\mathcal{A}}(image \ of \ R^*) : (\Delta c(\mathcal{S}^{p_i}), 0), (0, \Delta c(\mathcal{S}^{p_i})),
$$

\nwhere $i = 0, 1, 2, \cdots$.

Proof. The formula $\tilde{c}(\alpha, \beta) = (c(\alpha), c(\beta))$ defines an antiautomorphism of $\mathscr{S}^*/\mathscr{S}^*\Delta + \mathscr{S}^*/\mathscr{S}^*\Delta$. Then c and c define an anti-isomorphism of the sequence of Proposition 1.1 onto that of this proposition. It follows from Proposition 1.1 that the sequence of this proposition is exact. The kernel-images are the image of those of Proposition 1.1 under c and \tilde{c} . c and \tilde{c} induce isomorphisms of $H²$ onto $H₂$. Then the proposition is established, q.e.d.

Similarly, the following proposition is obtained from Proposition 1.2.

Proposition 1.6. The following two sequences are exact.

$$
\mathcal{G}*\stackrel{(\mathcal{P}^1)^*}{\longrightarrow} \mathcal{G}*\stackrel{(\mathcal{P}^p^{-1})^*}{\longrightarrow} \mathcal{G}*\stackrel{(\mathcal{P}^1)^*}{\longrightarrow} \mathcal{G}^*,
$$

$$
\mathcal{G}*/\mathcal{G}*\stackrel{(\mathcal{P}^1)^*}{\longrightarrow} \mathcal{G}*/\mathcal{G}*\Delta \stackrel{(\mathcal{P}^p^{-1})^*}{\longrightarrow} \mathcal{G}*/\mathcal{G}*\stackrel{(\mathcal{P}^1)^*}{\longrightarrow} \mathcal{G}*/\mathcal{G}*\Delta.
$$

140

 $H_{4}(\mathscr{S}^{*}\mathscr{P}^{1})=H_{4}(\mathscr{S}^{*}\mathscr{P}^{p-1})=0$, $H_{4}((\mathscr{S}^{*}\mathscr{P}^{1}+\mathscr{S}^{*}\Delta)/\mathscr{S}^{*}\Delta)$ $= {\Delta_{\mathcal{C}}(\mathcal{P}^{p_i})}, i = 1, 2, 3, \cdots$ and $H_{\mathcal{A}}((\mathcal{S}^*\mathcal{P}^{p-1}+\mathcal{S}^*R_i)/\mathcal{S}^*R_i)$ $= \{c(\mathscr{P}^{i-1}), i = 1, 2, 3, \cdots \}.$

Put $M_t^* = c(M_t) = \mathcal{S}^*c(\Delta) + \mathcal{S}^*c(\mathcal{S}^1) + \cdots + \mathcal{S}^*c(\mathcal{S}^{p^{t-1}}).$

By Lemma 1.3, $\mathcal{S}^i \subset M_t$ and also $\mathcal{S}^i \subset M_t^*$ for $0 \lt i \lt p^t$. By $(1.7)'$, $0 = \sum c \mathcal{P}(i) \mathcal{P}(p^t - i) \equiv \mathcal{P}(p^t) + c \mathcal{P}(p^t) \mod M_t$ and mod M_t^* . Thus we have the followings.

i)
$$
\mathscr{P}(p^t) \equiv -c \mathscr{P}(p^t)
$$
 mod M_t and mod M_t^* .

(1. 9)
\nii)
$$
M_t^* = M_{t-1}^* + \mathcal{S}^* \mathcal{P}^{pt-1} = \mathcal{S}^* \Delta + \mathcal{S}^* \mathcal{P}^{1} + \dots + \mathcal{S}^* \mathcal{P}^{pt-1}
$$

\niii) $(c \mathcal{P}^{pt})^* = -(\mathcal{P}^{pt})^* : \mathcal{S}^* - \mathcal{S}^* / M_t^*$.
\niv) $\mathcal{P}(2p^t) \equiv c(\mathcal{P}(2p^t)) \mod M_t \text{ and } \text{mod } M_t^*$.

The last relation iv) can be verified as follows. By (1.7) , $\mathscr{P}(2p^{t}) + \mathscr{P}(p^{t}) c \mathscr{P}(p^{t}) + c \mathscr{P}(2p^{t}) \equiv 0 \mod M_{t}$. By $(1, 3), \mathscr{P}(p^{t})$ $\mathscr{P}(p') \equiv 2\mathscr{P}(2p') \mod M_t^*$. Then $\mathscr{P}(p') c \mathscr{P}(p') \equiv -c \mathscr{P}(p') c \mathscr{P}(p')$ $\equiv -c(\mathcal{P}(p^{t})\mathcal{P}(p^{t}))\equiv -2c\mathcal{P}(2p^{t}) \mod M_{t}$ and the relation iv) follows.

Then operating the anti-automorphism c , it follows from Proposition 1.4 the following proposition.

Proposition 1.7. The kernel of the homomorphism

 $(\mathscr{P}^{p^t})^* : \mathscr{S}^* \longrightarrow \mathscr{S}^*/M^*$

 $\label{eq:2.1} \imath s \quad M^*_{\iota-1} + \mathcal{S}^* \mathcal{P}^{2p^{t-1}} + \mathcal{S}^* c(2\mathcal{P}^{p^t+p^{t-1}} - \mathcal{P}^{p^t} \mathcal{P}^{p^{t-1}}) + \mathcal{S}^* c(\mathcal{P}^{(p^{-1})\,p^t})$ for $t \geq 1$.

§ A remark on Steenrod algebra A* mod 2.

It was proved in $\lceil 4 \rceil$

Proposition 1.8. (Negishi) Let $M_t = Sq^1 A^* + \cdots + Sq^{2^{t-1}} A^*$. then the kernel of the homomorphism

$$
(Sq^{2^t})_* : A^* \longrightarrow A^*/M_t
$$

is $M_{t-1} + Sq^{2t} A^*$.

Then by use of the anti-automorphism c , it follows

Proposition 1.9. Let $M_t^* = A^*Sq^1 + \cdots + A^*Sq^{2^{t-1}}$, then the kernel of the homomorphism

$$
(Sq^{2^t})^* : A^* \longrightarrow A^*/M_t^*
$$

is $M_{t-1}^* + A^* S q^{2^t}$.

Hirosi Toda

REFERENCES

- [1] J. Adem, The relations on Steenrod powers of cohomology classes, Algebraic geometry and Topology, Princeton Univ. Press, 1957, 191-238.
- [2] H. Cartan, Sur l'itération des opérations de Steenrod, Comm. Math. Helv., 29 $(1955), 40-58.$ i.
- [3] J. Milnor, The Steenrod algebra and its dual, Ann. of Math., 67 (1958), 150-171.
- [4] A. Negishi, Exact sequences in the Steenrod algebra, Jour. Math. Soc. Japan, 10 $(1958), 71-78.$
- [5] N. Steenrod, Cyclic reduced powers of cohomology classes, Proc. Nat. Acad. Sci. U. S. A., 39 (1953), 217-223.