p-primary components of homotopy groups

I. Exact sequences in Steenrod algebra

By

Hirosi Toda

(Received June 5, 1958)

The structure of the Steenrod algebra $\mathscr{S}^* \mod p$ [1] gives important tools for the calculation of the homotopy groups. In this section, the exactness of the several \mathscr{S}^* -homomorphisms is studied, and it will be applied to prove the triviality of mod p Hopf invariant in the next section and also to verify the homotopy groups in those sections which follow further.

§ Notations.

Throughout this paper, p denotes an odd prime and \mathscr{S}^* denotes the Steenrod algebra $\operatorname{mod} p$ [1] [3]. \mathscr{S}^* is a graded Z_p -algebra $\sum_i \mathscr{S}^i$ which is generated multiplicatively by the Bockstein operator $\Delta \in \mathscr{S}^1$ and Steenrod's reduced powers $\mathscr{D}^t \in \mathscr{S}^{2t(p-1)}$, $t=0,1,2,\cdots$.

For the simplicity of the descriptions, we shall use the following notations.

(1.1) $\mathscr{T}(\Delta^{\mathfrak{e}_0}, r_1, \Delta^{\mathfrak{e}_1}, r_2, \cdots, r_n, \Delta^{\mathfrak{e}_n}) = \Delta^{\mathfrak{e}_0} \mathscr{T}^{r_1} \Delta^{\mathfrak{e}_1} \mathscr{T}^{r_2} \cdots \mathscr{T}^{r_n} \Delta^{\mathfrak{e}_n},$ where \mathcal{E}_i and r_i are non-negative integers. From the relation

$$\Delta^2 = \Delta \Delta = 0$$
.

the monomial (1.1) vanishes if one of $\varepsilon_i \geq 2$. If $\varepsilon_i = 0$, we may omit Δ^{ε_i} in (1.1) since Δ° means the identity. If $\varepsilon_i = 1$, we write Δ^{ε_i} by Δ . Also if $r_i = 0$, then we may replace " $\Delta^{\varepsilon_{i-1}}$, r_i , Δ^{ε_i} " and " $\Delta^{\varepsilon_{i-1}} \mathscr{P}^{r_i} \Delta^{\varepsilon_i}$ " by " $\Delta^{\varepsilon_{i-1}+\varepsilon_i}$ " since \mathscr{P}° is the identity.

A monomial (1.1) is said to be *admissible* if ε_i are 0 or 1, $r_n > 0$ and if $r_i \ge pr_{i+1} + \varepsilon_i$ for $i = 1, 2, \dots, n-1$. Then the admissible

sible monomials form an additive Z_{b} -base of \mathscr{S}^{*} [1] [2].

Let A^* be a left (*resp.* right) \mathcal{S}^* -module and let α be an element of \mathcal{S}^* . We define a homomorphism

$$\alpha_*$$
 (resp. α^*) : $A^* \rightarrow A^*$

by setting $\alpha_*(a) = \alpha a$ (resp. $\alpha^*(a) = a\alpha$), $a \in A^*$. If A^* is a two sided \mathscr{S}^* -module, then $\alpha_*(resp. \alpha^*)$ is a right (resp. left) \mathscr{S}^* -homomorphism. Obviously

$$(\alpha\beta)^* = \alpha_*\beta_*$$
, $(\alpha\beta)^* = \beta^*\alpha^*$ and $\alpha_*\beta^* = \beta^*\alpha_*$

for $\alpha, \beta \in \mathcal{S}^*$. In particular, we denote that

$$R(r) = (r+1) \Delta \mathscr{P}^1 - r \mathscr{P}^1 \Delta = (r+1) \mathscr{P}(\Delta, 1) - r \mathscr{P}(1, \Delta)$$

and we shall treat the induced homomorphisms

$$R(r)_*$$
 and $R(r)^*$: $\mathcal{S}^* \to \mathcal{S}^*$.

We denote that

$$\alpha A^* = \{\alpha a \mid a \in A^*\} = \alpha_*(A^*),$$

$$A^*\alpha = \{a\alpha \mid a \in A^*\} = \alpha^*(A^*).$$

Since $\Delta\Delta = 0$, a left (resp. right) \mathscr{S}^* -module A^* is a complex with respect to the coboundary operator Δ_* (resp. Δ^*). Denote by

$$H_{\Delta}(A^*)$$
 (resp. $H^{\Delta}(A^*)$)

the cohomology group of the complex (A^*, Δ_*) (resp. (A^*, Δ^*)). An admissible monomial (1.1) is Δ_* -cocycle (resp. Δ^* -cocycle) if and only if $\varepsilon_0 = 0$ (resp. $\varepsilon_n = 0$), and it is Δ_* -cobounded (resp. Δ^* -cobounded). It follows

(1.2)
$$H_{\mathcal{A}}(\mathcal{S}^*) = H^{\mathcal{A}}(\mathcal{S}^*) = 0$$
, $H^{\mathcal{A}}(\Delta \mathcal{S}^*) = H_{\mathcal{A}}(\mathcal{S}^*\Delta) = \{\Delta\}$
and $H^{\mathcal{A}}(\mathcal{S}^*/\Delta \mathcal{S}^*) = H_{\mathcal{A}}(\mathcal{S}^*/\mathcal{S}^*\Delta) = \{1\}$.

It is convenient to regard that $\mathscr{S}^*/\Delta\mathscr{S}^*$ (resp. $\mathscr{S}^*/\mathscr{S}^*\Delta$) is spanned by the admissible monomials (1.1) of $\varepsilon_0=0$ (resp. $\varepsilon_n=0$). Then we define two right \mathscr{S}^* -homomorphisms

$$\begin{split} R' : \mathcal{S}^* / \Delta \mathcal{S}^* + \mathcal{S}^* / \Delta \mathcal{S}^* &\to \mathcal{S}^* \,, \\ R : \mathcal{S}^* &\to \mathcal{S}^* / \Delta \mathcal{S}^* + \mathcal{S}^* / \Delta \mathcal{S}^* \,, \end{split}$$

by the formulas $R'(\alpha, \beta) = \mathcal{P}^1 \Delta \alpha + \Delta \mathcal{P}^1 \Delta \beta$, $\alpha, \beta \in \mathcal{S}^* / \Delta \mathcal{S}^*$ and $R(\alpha) = (\mathcal{P}^1 \Delta \alpha, -\mathcal{P}^1 \alpha), \alpha \in \mathcal{S}^*$.

§ Exact sequences of right \mathscr{S}^* -homomorphisms.

Any monomial (1.1) may be normalized to a sum of admissible monomials (uniquely) by use of the Adem's relations [1] [2]:

$$\mathscr{P}(r,s) = \sum_{i} (-1)^{r+i} \binom{(s-i)(p-1)-1}{r-pi} \mathscr{P}(r+s-i,i) \text{ if } r < ps,$$

$$(1.3) \mathscr{P}(r, \Delta, s) = \sum_{i} (-1)^{r+i} \binom{(s-i)(p-1)}{r-pi} \mathscr{P}(\Delta, r+s-i, i) + \sum_{i} (-1)^{r+i+1} \binom{(s-i)(p-1)-1}{r-pi-1} \mathscr{P}(r+s-i, \Delta, i) \text{ if } r \leq ps.$$

For the case $0 \le r < p$, we have from (1.3)

$$(1.3)' \qquad \mathscr{P}(r,s) = {r+s \choose r} \mathscr{P}(r+s) ,$$

$$\mathscr{P}(r,\Delta,s) = {r+s-1 \choose r} \mathscr{P}(\Delta,r+s) + {r+s-1 \choose s} \mathscr{P}(r+s,\Delta) .$$

In particular, $\mathscr{S}(1, s) = (s+1) \mathscr{S}(s+1)$ and $\mathscr{S}(1, \Delta, s) = s\mathscr{S}(\Delta, s+1) + \mathscr{S}(s+1, \Delta)$.

Proposition 1.1. The following circular sequence is exact.

$$\mathcal{G}^* \xrightarrow{R(p-2)_*} \mathcal{G}^* \longrightarrow \cdots \xrightarrow{R(2)_*} \mathcal{G}^* \xrightarrow{R(1)_*} \mathcal{G}^*$$

$$\mathcal{G}^* / \Delta \mathcal{G}^* + \mathcal{G}^* / \Delta \mathcal{G}^*.$$

The groups H^4 of the kernel-images are spanned by the classes of the following elements:

$$H^{2}(R(r)\mathscr{S}^{*})$$
 : $\mathscr{S}^{p_{i}+p^{-r}}\Delta$, $\Delta\mathscr{S}^{p_{i}+p^{-r}}\Delta$, $(1 \leq r \leq p-2)$,

$$H^{2}(image\ of\ R'):\mathscr{P}^{p_{i}+1}\Delta,\,\Delta\mathscr{P}^{p_{i}+1}\Delta$$
,

$$H^{2}(image\ of\ R)\ :\ (\mathscr{T}^{p_{i}}\Delta,\ 0),\ (0,\ \mathscr{T}^{p_{i}}\Delta)$$
,

where $i = 0, 1, 2, \dots$.

Proof. It follows from (1.3)'

$$R(r) \mathscr{T}(s, t, \cdots) = (r+s+1) \mathscr{T}(\Delta, s+1, t, \cdots) - r \mathscr{T}(s+1, \Delta, t, \cdots),$$

$$R(r) \mathscr{S}(s, \Delta, t, \cdots) = (r+s+1) \mathscr{S}(\Delta, s+1, \Delta, t, \cdots),$$

$$R(r) \mathscr{T}(\Delta, s, t, \cdots) = (r+1) \mathscr{T}(\Delta, s+1, \Delta, t, \cdots),$$

$$R(r) \mathscr{P}(\Delta, s, \Delta, t, \cdots) = 0$$
.

If a monomial in the left side is admissible, then so is in the right side. For the case $1 \le r \le p-2$, the kernel of $R(r)_*$ is generated by the elements $(r+s+1) \mathscr{P}(\Delta, s, t, \cdots) - (r+1) \mathscr{P}(s, \Delta, t, \cdots)$ and $\mathscr{P}(\Delta, s, \Delta, t, \cdots)$. In particular, R(r+1) is in the kernel of $R(r)_*$. Thus $R(r)_* \circ R(r+1)_* = 0$. Since $(r+s+1) \mathscr{P}(\Delta, s, t, \cdots) - (r+1) \mathscr{P}(s, \Delta, t, \cdots) = R(r+1) \mathscr{P}(s-1, t, \cdots)$, and $(r+2) (\Delta, s, \Delta, t, \cdots) = R(r+1) \mathscr{P}(\Delta, s-1, t, \cdots)$, then the kernel of $R(r)_*$ is contained in the image of $R(r+1)_*$ if $1 \le r < p-2$. Therefore the exactness of the sequence

$$\mathscr{G} * \xrightarrow{R(r+1)_*} \mathscr{G} * \xrightarrow{R(r)_*} \mathscr{G} *$$

is established for $1 \le r < p-2$. The exactness of the sequence

$$\mathscr{S}^*/\Delta\mathscr{S}^*+\mathscr{S}^*/\Delta\mathscr{S}^* \xrightarrow{R'} \mathscr{S}^* \xrightarrow{R(p-2)_*} \mathscr{S}^*$$

follows from the above results on the kernel of $R(p-2)_*$ and from the first two of the following relations obtained from (1.3)'.

$$\begin{split} R'(\mathscr{P}(s,\,t,\,\cdots),\,\,0) &= s\mathscr{P}(\Delta,\,s+1,\,t,\,\cdots) + \mathscr{P}(s+1,\,\Delta,\,t,\,\cdots)\,\,,\\ R'(0,\,\mathscr{P}(s,\,t,\,\cdots)) &= \mathscr{P}(\Delta,\,s+1,\,\Delta,\,t,\,\cdots)\,\,,\\ R'(\mathscr{P}(s,\,\Delta,\,t,\,\cdots),\,\,0) &= s\mathscr{P}(\Delta,\,s+1,\,\Delta,\,t,\,\cdots)\,\,,\\ R'(0,\,\mathscr{P}(s,\,\Delta,\,t,\,\cdots)) &= 0\,\,. \end{split}$$

From these relations, it follows that the kernel of R' is generated by $(\mathscr{S}(s, \Delta, t, \cdots), -s\mathscr{S}(s, t, \cdots))$ and $(0, \mathscr{S}(s, \Delta, t, \cdots))$. Then the exactness of the sequence $\xrightarrow{R} \xrightarrow{R'}$ follows from the first two of the following relations.

$$\begin{split} R\mathscr{P}(s,\,t,\,\cdots) &= (\mathscr{P}(s+1,\,\Delta,\,t,\,\cdots),\,\,-(s+1)\,\mathscr{P}(s+1,\,t,\,\cdots))\;,\\ R\mathscr{P}(\Delta,\,s,\,t,\,\cdots) &= (0,\,\,-\mathscr{P}(s+1,\,\Delta,\,t,\,\cdots))\;,\\ R\mathscr{P}(s,\,\Delta,\,t,\,\cdots) &= (0,\,\,-(s+1)\,\mathscr{P}(s+1,\,\Delta,\,t,\,\cdots))\;,\\ R\mathscr{P}(\Delta,\,s,\,\Delta,\,t,\,\cdots) &= 0\;. \end{split}$$

Then the kernel of R is generated by $(s+1) \mathscr{P}(\Delta, s, t, \cdots) - \mathscr{P}(s, \Delta, t, \cdots) = R(1) \mathscr{P}(s-1, t, \cdots)$ and $\mathscr{P}(\Delta, s, \Delta, t, \cdots) = \frac{1}{2}R(1) \mathscr{P}(\Delta, s-1, t, \cdots)$. Since $R \circ R(1)_* = 0$, we have the exactness of the remainder sequence $\xrightarrow{R(1)_*} \xrightarrow{R}$.

A monomial is Δ^* -cocycle if it is of a form $\mathscr{P}(\cdots, \Delta)$. Let $1 \le r \le p-2$ and consider the generators $(r+s+1) \mathscr{P}(\Delta, s+1, t, \cdots)$

 $-r\mathscr{D}(s+1, \Delta, t, \cdots)$ and $\mathscr{D}(\Delta, s+1, \Delta, t, \cdots)$ of $R(r)\mathscr{S}^*$. Then the Δ^* -cocycles of $R(r)\mathscr{S}^*$ are generated by the elements of the following forms:

$$(r+s+1) \mathcal{P}(\Delta, s+1, t, \dots, \Delta) - r\mathcal{P}(s+1, \Delta, t, \dots, \Delta),$$

 $\mathcal{P}(\Delta, s+1, \Delta, t, \dots, \Delta),$
 $\mathcal{P}(\Delta, s+1, \Delta) \quad and \quad r\mathcal{P}(pi-r, \Delta).$

Obviously the Δ^* -cocycles of the first two forms are Δ^* -cobounded in R(r) \mathscr{S}^* . $\mathscr{S}(\Delta,s+1,\Delta)$ is Δ^* -cobounded if $r+s+1\equiv 0$ mod p, since $\mathscr{S}(\Delta,s+1,\Delta)=\frac{1}{r+s+1}$ ((r+s+1) $\mathscr{S}(\Delta,s+1)-(r+1)$ $\mathscr{S}(s+1,\Delta)$ Δ . The elements $\mathscr{S}(pi-r,\Delta)$ and $\mathscr{S}(\Delta,pi-r,\Delta)$, $i=1,2,3,\ldots$, are not Δ^* -cobounded and their classes form a Z_p -base of $H^{\mathfrak{s}}(R(r)$ \mathscr{S}^*). The other results on $H^{\mathfrak{s}}$ are proved similarly, q.e.d.

Proposition 1.2. The following two sequences are exact:

i)
$$\mathscr{S}^* \xrightarrow{\mathscr{G}^1} \mathscr{S}^* \xrightarrow{\mathscr{G}^{p-1}} \mathscr{S}^* \xrightarrow{\mathscr{G}^1} \mathscr{S}^*$$
,

ii)
$$\mathscr{S}^*/R(1) \mathscr{S}^* \xrightarrow{\mathscr{G}^1} \mathscr{S}^*/\Delta \mathscr{S}^* \xrightarrow{\mathscr{G}^{n-1}} \mathscr{S}^*/R(1) \mathscr{S}^* \xrightarrow{\mathscr{F}^1} \mathscr{S}^*/\Delta \mathscr{S}^*.$$

 $H^{\mathtt{d}}(\mathscr{T}^{1}\mathscr{S}^{*}) = H^{\mathtt{d}}(\mathscr{T}^{\mathfrak{p}-1}\mathscr{S}^{*}) = 0, \quad H^{\mathtt{d}}((\mathscr{T}^{1}\mathscr{S}^{*} + \Delta\mathscr{S}^{*})/\Delta\mathscr{S}^{*})$ $= \{\mathscr{T}^{\mathfrak{p}i}\Delta, \ i = 1, 2, 3, \cdots\} \quad and \quad H^{\mathtt{d}}((\mathscr{T}^{\mathfrak{p}-1}\mathscr{S}^{*} + R(1)\mathscr{S}^{*}/R(1)\mathscr{S}^{*})$ $= \{\mathscr{T}^{\mathfrak{p}i-1}, \ i = 1, 2, 3, \cdots\}.$

Proof. By (1.3)',

$$\mathscr{P}(1) \mathscr{P}(s, t, \cdots) = (s+1) \mathscr{P}(s+1, t, \cdots)$$

$$\mathscr{P}(1) \mathscr{P}(s, \Delta, t, \cdots) = (s+1) \mathscr{P}(s+1, \Delta, t, \cdots)$$

$$\mathscr{S}(1) \mathscr{S}(\Delta, s, t, \cdots) = s \mathscr{S}(\Delta, s+1, t, \cdots) + \mathscr{S}(s+1, \Delta, t, \cdots)$$

$$\mathscr{P}(1) \mathscr{P}(\Delta, s, \Delta, t, \cdots) = s \mathscr{P}(\Delta, s+1, \Delta, t, \cdots)$$

Then the kernel of $\mathscr{T}(1)_*$ is generated by $\mathscr{T}(pi+p-1,t,\cdots)=\mathscr{T}(p-1)\mathscr{T}(pi,t,\cdots), \ \mathscr{T}(pi+p-1,\Delta,t,\cdots)=\mathscr{T}(p-1)\mathscr{T}(pi,\Delta,t,\cdots), \ \mathscr{T}(\Delta,pi,t,\cdots)-\mathscr{T}(pi,\Delta,t,\cdots)=\mathscr{T}(p-1)\mathscr{T}(\Delta,pi-p+1,t,\cdots)$ and $\mathscr{T}(\Delta,pi,\Delta,t,\cdots)=\mathscr{T}(p-1)\mathscr{T}(\Delta,pi-p+1,\Delta,t,\cdots).$ As a consequence we have the exactness of the sequence

$$\mathscr{G}^* \xrightarrow{\mathscr{P}(p-1)_*} \mathscr{G}^* \xrightarrow{\mathscr{P}(1)_*} \mathscr{G}^*.$$

The cokernel $\mathcal{S}^*/\mathcal{P}(1)$ \mathcal{S}^* of $\mathcal{P}(1)_*$ has a base which

consists of the admissible monomials $\mathscr{P}(pi,t,\cdots)$, $\mathscr{P}(pi,\Delta,t,\cdots)$, $\mathscr{P}(\Delta,pi+1,t,\cdots)$ and $\mathscr{P}(\Delta,pi+1,\Delta,t,\cdots)$. From (1.3)', it follows that these elements of the base are mapped by $\mathscr{P}(p-1)_*$ to the elements $\mathscr{P}(pi+p-1,t,\cdots)$, $\mathscr{P}(pi+p-1,\Delta,t,\cdots)$, $\mathscr{P}(\Delta,pi+p,t,\cdots)$ and $\mathscr{P}(\Delta,pi+p,\Delta,t,\cdots)$ respectively. Thus $\mathscr{P}(p-1)_*$ maps $\mathscr{S}^*/\mathscr{P}(1)$ \mathscr{S}^* isomorphically into \mathscr{S}^* , and then the exactness of the sequence

$$\mathcal{G}^* \xrightarrow{\mathcal{G}^b(1)_*} \mathcal{G}^* \xrightarrow{\mathcal{G}^b(p-1)_*} \mathcal{G}^*.$$

is proved.

Next consider the sequence ii). Concerning the above images of $\mathscr{P}(1)_*$, in the biginning of the proof, mod. by $\Delta\mathscr{S}^*$, we have that the kernel of $\mathscr{P}(1)_*: \mathscr{S}^* \to \mathscr{S}^*/\Delta\mathscr{S}^*$ is generated by the element $\mathscr{P}(pi+p-1,t,\cdots)=\mathscr{P}(p-1)\mathscr{P}(pi,t,\cdots), (s+1)\mathscr{P}(\Delta,s,t,\cdots)-\mathscr{P}(s,\Delta,t,\cdots)=R(1)\mathscr{P}(s-1,t,\cdots)$ and $\mathscr{P}(\Delta,s,\Delta,t,\cdots)=R(1)\mathscr{P}(\Delta,s-1,t,\cdots)$. Then the sequence

$$\mathscr{S}^* \xrightarrow{\mathscr{I}^{(p-1)_*}} \mathscr{S}^*/R(1) \mathscr{S}^* \xrightarrow{\mathscr{I}^{(1)_*}} \mathscr{S}^*/\Delta \mathscr{S}^*$$

is exact. The admissible monomials $\mathscr{P}(pi,t,\cdots)$ from a base of the cokernel $\mathscr{S}^*/(\mathscr{P}(1)\,\mathscr{S}^*+\Delta\mathscr{S}^*)$. Since $R(\mathscr{P}(p-1))=(\mathscr{P}(1,\Delta,p-1),-\mathscr{P}(1,p-1))=(\mathscr{P}(p,\Delta),0)$ and since $\mathscr{P}(p,\Delta)\,\mathscr{P}(pi,t,\cdots)=\mathscr{P}(pi+p,\Delta,t,\cdots)$ mod $\Delta\mathscr{S}^*$, it holds $(R\circ\mathscr{P}(p-1)_*)\,\mathscr{P}(pi,t,\cdots)=(\mathscr{P}(pi+p,\Delta,t,\cdots),0)$. Then $R\circ\mathscr{P}(p-1)_*$ maps $\mathscr{S}^*/(\mathscr{P}(1)\,\mathscr{S}^*+\Delta\mathscr{S}^*)$ isomorphically into $\mathscr{S}^*/\Delta\mathscr{S}^*+\mathscr{S}^*/\Delta\mathscr{S}^*$. By Proposition 1.1, R carries $\mathscr{S}^*/R(1)\,\mathscr{S}^*$ isomorphically into $\mathscr{S}^*/\Delta\mathscr{S}^*$. Therefore $\mathscr{P}(p-1)_*$ maps $\mathscr{S}^*/(\mathscr{P}(1)\,\mathscr{S}^*+\Delta\mathscr{S}^*)$ isomorphically into $\mathscr{S}^*/R(1)\,\mathscr{S}^*$, and the sequence

$$\mathscr{S}^* \xrightarrow{\mathscr{G}(1)_*} \mathscr{S}^* / \Delta \mathscr{S}^* \xrightarrow{\mathscr{F}(p-1)_*} \mathscr{S}^* / R(1) \mathscr{S}^*$$

is exact.

The factor group $(\mathscr{S}^1\mathscr{S}^*+\Delta\mathscr{S}^*)/\Delta\mathscr{S}^*$ is generated by the classes of $(s+1)\mathscr{S}(s+1,t,\cdots)$ and $\mathscr{S}(s+1,\Delta,t,\cdots)$. As is seen in the previous proof, $H^4((\mathscr{S}^1\mathscr{S}^*+\Delta\mathscr{S}^*)/\Delta\mathscr{S}^*)=\{\mathscr{S}(pi,\Delta),i=1,2,\cdots\}$. From the exact sequence ii), we have an exact sequence of Δ^* -complexes:

$$0 \to (\mathcal{P}^{1}\mathcal{S}^{*} + \Delta\mathcal{S}^{*})/\Delta\mathcal{S}^{*} \to \mathcal{S}^{*}/\Delta\mathcal{S}^{*}$$
$$\to (\mathcal{P}^{p^{-1}}\mathcal{S}^{*} + R(1)\mathcal{S}^{*})/R(1)\mathcal{S}^{*} \to 0.$$

From the cohomology exact sequence associated with this sequence

and from (1.2), there is an isomorphism

$$\begin{split} H^{ {\scriptscriptstyle d}}((\mathscr{T}^{ \, {\scriptscriptstyle p}^{-1}}\mathscr{S}^* + R(1)\,\,\mathscr{S}^*)/R(1)\,\,\mathscr{S}^*) \\ &\approx H^{ {\scriptscriptstyle d}}((\mathscr{T}^1\mathscr{S}^* + \Delta\mathscr{S}^*)/\Delta\mathscr{S}^*) + H^{ {\scriptscriptstyle d}}(\mathscr{S}^*/\Delta\mathscr{S}^*) \;. \end{split}$$

By this isomorphism $\mathscr{P}(pi+p-1)$ corresponds to $\mathscr{P}(pi, \Delta)$ (for $i \ge 1$) or 1 (for i = 0). Thus $H^{d}((\mathscr{P}^{p-1}\mathscr{S}^* + R(1)\mathscr{S}^*)/R(1)\mathscr{S}^*)$ = $\{\mathscr{P}(pi+p-1), i=0, 1, 2, \cdots\}$. The proof of $H^{d}(\mathscr{P}^{1}\mathscr{S}^*)$ = $H^{d}(\mathscr{P}^{p-1}\mathscr{S}^*) = 0$ is similar and easy, q.e.d.

Denote that

$$M_t = \Delta \mathcal{S}^* + \mathcal{I}^1 \mathcal{S}^* + \mathcal{I}^p \mathcal{S}^* + \cdots + \mathcal{I}^{p^{t-1}} \mathcal{S}^* \quad (M_0 = \Delta \mathcal{S}^*).$$

Lemma 1.3. i) M_t is spanned by the admissible monomials which are not of the forms $\mathcal{P}(a_0p^t, a_1p^{t-1}, \dots, a_{t-1}p, a_t, \dots)$, where $a_0 \ge a_1 \ge \dots \ge a_t \ge 0$ and we omit $a_rp^{t-r}, \dots, a_t, \dots$ if $a_r = 0$.

ii)
$$\mathscr{S}(q_1, q_2, \dots, q_{t-s}) M_s \subset M_t \text{ for } 0 \leq s \leq t.$$

Proof. $M_0 = \Delta \mathscr{S}^*$ is spanned by the admissible monomials $\mathscr{P}(\Delta, r, \cdots)$. From the proof of Proposition 1.2, it follows that $M_1/M_0 = (\mathscr{P}^1\mathscr{S}^* + \Delta\mathscr{S}^*)/\Delta\mathscr{S}^*$ is spanned by the admissible monomials $\mathscr{P}(s, r, \cdots)$ and $\mathscr{P}(r, \Delta, t, \cdots)$ such that $s \not\equiv 0 \mod p$. Then i) is true for M_0 and M_1 . i) implies that $\mathscr{P}(q, \Delta) \in M_1$. Thus $\mathscr{P}(q) M_0 = \mathscr{P}(q, \Delta) \mathscr{P}^* \subset M_1 \mathscr{P}^* = M_1$.

Now suppose that i) and ii) are true for M_s , $s \leq t$. Then it is sufficient to prove that i) and ii) are true for M_{t+1} . We shall verify the image M_{t+1}/M_t of $\mathscr{S}(p^t)_*$. Since $\mathscr{S}(p^t)$ $M_{t-1} \subset M_t$, it is sufficient to compute $\mathscr{S}(p^t, a_0 p^{t-1}, a_1 p^{t-2}, \cdots, a_{t-1}, \cdots) \mod M_t$. Let $s \leq t$ and consider the relation

$$\mathscr{T}(p^{s}, ap^{s-1}) = \sum_{i=0}^{p^{s-1}} (-1)^{i+1} \binom{(ap^{s-1}-i)(p-1)-1}{p^{s}-pi} \mathscr{T}(p^{s}+ap^{s-1}-i, i)$$

of (1.3). If the term $\mathscr{S}(p^s+ap^{s-1}-i,i)$ is not in M_s , then $p^s+ap^{s-1}-i\equiv 0 \mod p^s$ and $i\equiv 0 \mod p^{s-1}$ by the assertion i) for M_s . This is possible only if a=bp or a=bp+1 for some integer b, and then the non-trivial relations $\mod M_s$ are the followings.

$$(1.4) \qquad \begin{array}{c} \mathscr{P}(p^s, bp^s) \equiv (b+1) \, \mathscr{P}((b+1) \, p^s) & \mod M_s, \\ \mathscr{P}(p^s, bp^s + p^{s-1}) \equiv \mathscr{P}((b+1) \, p^s, \, p^{s-1}) & \mod M_s. \end{array}$$

From ii), we remark that $\alpha \equiv \beta \mod M_s$ implies $\mathscr{S}(c_0 p^t, \dots, c_{t-s-1} p^{s+1}) \alpha \equiv \mathscr{S}(c_0 p^t, \dots, c_{t-s-1} p^{s+1}) \beta \mod M_t$. Then repeating

the relation (1.4) and concerning the relation $\mathscr{P}(1, \Delta, s) \equiv \mathscr{P}(s+1, \Delta) \mod M_0$, it follows that $\mathscr{P}(p^t, a_0 p^{t-1}, \cdots, a_{t-1}, \cdots)$ is not in M_t only if it has one of the following forms: $(0 \le r \le t)$

Then M_{t+1}/M_t is spanned by the admissible monomials $\mathscr{S}(c_0p^t, c_1p^{t-1}, \cdots, c_{t-1}p, c_t, \Delta^e, \cdots)$ such that one of c_i is not divisible by p or $\varepsilon = 1$. It follows from this and from the assertion i) for M_t that i) is true for M_{t+1} .

By i), $\mathscr{P}(ap^{t+1}, \Delta) \in M_{t+1}$ and $\mathscr{P}(ap^{t+1}, p^i) \in M_{t+1}$ for $0 \le i \le t-1$, then $\mathscr{P}(ap^{t+1}) M_t \subset M_{t+1}$. If $q \not\equiv 0 \mod p^{t+1}$, then $\mathscr{P}(q) \in M_{t+1}$ and $\mathscr{P}(q) M_t \subset M_{t+1}$. Thus $\mathscr{P}(q_1, \dots, q_{t-s+1}) M_s = \mathscr{P}(q_1) \mathscr{P}(q_2, \dots, q_{t-s+1}) M_s \subset \mathscr{P}(q_1) M_t \subset M_{t+1}$, and then ii) is proved, q.e.d.

Proposition 1.4. The kernel of the homomorphism

$$\mathscr{P}^{p^t}_*:\mathscr{S}^*{\longrightarrow}\mathscr{S}^*/M_t$$

is $M_{t-1} + \mathcal{P}^{2p^{t-1}}\mathcal{S}^* + (2\mathcal{P}^{p^t+p^{t-1}} - \mathcal{P}^{p^t}\mathcal{P}^{p^{t-1}}) \mathcal{S}^* + \mathcal{P}^{(p-1)p^t}\mathcal{S}^*$ for $t \ge 1$.

Proof. Set $B = M_{t-1} + \cdots + \mathcal{P}^{(p-1)p^t} \mathcal{S}^*$. The following relations are verified from (1.3) and by Lemma 1.3.

$$\begin{split} \mathscr{T}(p^t, 2p^{t-1}) &= \sum_{i=0}^{p^{t-1}} \mathscr{T}(p^t + 2p^{t-1} - i, i) \equiv 0 \mod M_t, \\ 2\mathscr{T}(p^t, p^t + p^{t-1}) - \mathscr{T}(p^t, p^t, p^{t-1}) \\ &= 2\sum_{i=0}^{p^{t-1}} \mathscr{T}(2p^t + p^{t-1} - i, i) - \sum_{j=0}^{p^{t-1}} \sum_{i=0}^{\lfloor j/p \rfloor} \mathscr{T}(2p^t + p^{t-1} - i - j, j, i) \\ &\equiv 2\binom{p^t(p-1)-1}{0} \mathscr{T}(2p^t, p^{t-1}) + \binom{p^t(p-1)-1}{p^t} \mathscr{T}(2p^t, p^{t-1}) \mod M_t \\ &= 0, \\ \mathscr{T}(p^t, (p-1) p^t) &= \sum_{i=0}^{p^{t-1}} \mathscr{T}(p^{t+1} - i, i) \\ &\equiv -\binom{p^t(p-1)^2-1}{p^t} \mathscr{T}(p^{t+1}) = 0 \mod M_t. \end{split}$$

These and ii) of Lemma 1.3 imply that $\mathcal{P}(p^t) B \subset M_t$. Then

it is sufficient to prove that \mathcal{S}^*/B is mapped isomorphically into \mathcal{S}^*/M_t by $\mathcal{S}(p^t)_*$.

First we consider the image of $\mathscr{P}(2p^{t-1})_*: \mathscr{S}^* \to \mathscr{S}^*/M_{t-1}$. By Lemma 1. 3, $\mathscr{P}(2p^{t-1}, \Delta)$, $\mathscr{P}(2p^{t-1}, p^i) \in M_{t-1}$ for $i=0, 1, 2, \cdots, t-3$. Then $\mathscr{P}(2p^{t-1}) M_{t-2} \subset M_{t-1}$. Thus the image of $\mathscr{P}(2p^{t-1})_*$ in \mathscr{S}^*/M_t is generated by $\mathscr{P}(2p^{t-1}, a_0p^{t-2}, \cdots, a_{t-2}, \cdots) \mod M_{t-1}$ where $a_0 \geq \cdots \geq a_{t-2} \geq 0$. Consider the relation $\mathscr{P}(2p^s, ap^{s-1}) = \sum *\mathscr{P}(2p^s + ap^{s-1} - i, i)$, $0 \leq i \leq 2p^{s-1}$, of (1.3). Then, by Lemma 1.3, the non-trivial relations $\mod M_s$ are

$$\mathscr{P}(2p^s, bp^s) = {b+2 \choose 2} \mathscr{P}((b+2) p^s) \mod M_s,$$

$$\mathscr{P}(2p^s, bp^s + p^{s-1}) = (b+1) \mathscr{P}((b+2) p^s, p^{s-1}) \mod M_s,$$
and $\mathscr{P}(2p^s, bp^s + 2p^{s-1}) = \mathscr{P}((b+2) p^s, 2p^{s-1}) \mod M_s.$

Analogous discussions of the proof of Lemma 1.3 lead us to the following (1.6) from these relations and from (1.4).

(1.6) $M_{t-1}+\mathcal{P}(2p^{t-1})\mathcal{S}^*$ is spanned by the admissible monomials which are not of the forms $\mathcal{P}(b_0p^t+p^{t-1},\cdots,b_{t-1}p+1,\Delta,\cdots)$ and $\mathcal{P}(b_0p^t+p^{t-1},\cdots,b_{r-1}p^{t-r+1}+p^{t-r},b_rp^{t-r},\cdots,b_{t-1}p,b_t,\cdots)$ where $0 \le r \le t$ and $b_0 \ge b_1 \ge \cdots \ge b_t \ge 0$.

B was given by

$$\begin{split} B = M_{t-1} + \mathscr{P}(2p^{t-1}) \, \mathscr{S}^* + (2\mathscr{P}(p^t + p^{t-1}) - \mathscr{P}(p^t, \, p^{t-1})) \, \mathscr{S}^* \\ + \mathscr{P}((p-1) \, p^t) \, \mathscr{S}^* \end{split}$$

and let C be a submodule of \mathcal{S}^* spanned by the admissible monomials

$$\mathscr{S}(b_{0}p^{t}+p^{t-1},\cdots,b_{t-1}p+1,\Delta,b_{t},\cdots)$$
and
$$\mathscr{S}(c_{0}p^{t}+p^{t-1},\cdots,c_{r-1}p^{t-r+1}+p^{t-r},c_{r}p^{t-r},\cdots,c_{t},\cdots)$$

such that $c_0+1\equiv 0, \dots, c_s+1\equiv 0, c_r+1\equiv 0 \mod p$ and $c_{s+1}=\dots=c_r$ for some $0\leq r\leq t, s\leq r$.

By (1.5), it is verified easily that $\mathscr{S}(p^t)_*$ maps C isomorphically into \mathscr{S}^*/M_t and also onto M_{t+1}/M_t . Therefore, for the proof of the proposition, it is sufficient to prove the equality

$$B+C=\mathscr{S}^*$$
.

Or, by (1.6), it is sufficient to prove that an admissible

monomial $\mathscr{P}(c_0p^t+p^{t-r-1},\cdots,c_{r-1}p^{t-r+1}+p^{t-r},c_rp^{t-r},\cdots,c_t,\cdots)$ belongs to B+C if it satisfies one of the following three conditions.

- a) $c_s+1 \equiv 0$, $c_r+1 \equiv 0 \mod p$ and $c_s > c_r$ for some $0 \le s < r$,
- b) $c_s+1 \equiv 0$ and $c_r+1 \equiv 0 \mod p$ for some $0 \leq s < r$.
- c) $c_0 + 1 \equiv 0, \dots, c_{r-1} + 1 \equiv 0 \text{ and } c_r + 1 \equiv 0 \mod p$.

For the simplicity we set $Q_s = 2\mathscr{P}(p^s + p^{s-1}) - \mathscr{P}(p^s, p^{s-1})$. By (1.3) and by (1.6), we compute the following relations:

$$\begin{split} Q_s \mathscr{T}(bp^s) &\equiv (b+2) \, \mathscr{T}((b+1) \, p^s + p^{s-1}) - \mathscr{T}((b+1) \, p^s, \, p^{s-1}) \\ &\mod M_{s-1} + \mathscr{T}(2p^{s-1}) \, \mathscr{S}^* \, , \\ Q_s \mathscr{T}(bp^s + p^{s-1} + p^{s-2}) &\equiv \mathscr{T}((b+1) \, p^s + p^{s-1}) \, Q_{s-1} \\ &\mod M_{s-1} + \mathscr{T}(2p^{s-1}) \, \mathscr{S}^* \, . \end{split}$$

Applying these relations and (1.4) to $Q_t \mathcal{P}((c_0-1) p^t + p^{t-1} + p^{t-2}, \dots, (c_{s-1}-1) p^{t-s+1} + p^{t-s} + p^{t-s-1}, (c_s-1) p^{t-s}, c_{s+1} p^{t-s-1} + p^{t-s-2}, \dots, c_{r-1} p^{t-r+1} + p^{t-r}, c_r p^{t-r}, \dots, c_t, \dots)$ we have the following relation $(0 \le s < r \le t)$

$$(c_{s}+1) \ \ \mathcal{C}(c_{0}p^{t}+p^{t-1},\cdots,c_{s}p^{t-s}+p^{t-s-1},\cdots,c_{r-1}p^{t-r+1}+p^{t-r},c_{r}p^{t-r},\cdots,c_{t},\cdots)$$

$$\equiv (c_{r}+1) \ \mathcal{O}(c_{0}p^{t}+p^{t-1},\cdots,c_{s-1}p^{t-s+1}+p^{t-s},c_{s}p^{t-s},(c_{s+1}+1) \ p^{t-s-1},\cdots,c_{t},\cdots)$$

$$(c_{r}+1) \ p^{t-r},c_{r+1}p^{t-r-1},\cdots,c_{t},\cdots) \ \ \text{mod} \ B.$$

Consider an admissible monomial satisfying the condition a) in which we may suppose that $c_s > c_{s+1}$ and that $c_q = c_s$ if q < s and $c_q + 1 \not\equiv 0 \mod p$. Then the last relation shows that the monomial is equivalent mod B to an element of C, and it belongs to B + C. It follows directly from the last relation that an admissible monomial satisfying b) belongs to $B \subset B + C$.

By (1.3) and by (1.6) we have a relation mod $M_{s-1} + \mathcal{P}(2p^{s-1})\mathcal{L}^*$ $\mathcal{P}((p-1) p^s, bp^{s-1} + p^s) \equiv \mathcal{P}(bp^{s+1} + (p-1) p^s + p^{s-1}, (p-1) p^{s-1})$.

In the case c), we compute the following relation from the above one.

Since $\mathscr{T}(c_0p^t+p,\cdots,c_{r-1}p^{t-r+1}+p^{t-r},(c_r-1)p^{t-r}+p^{t-r-1},(p-1)p^{t-r-1})$ satisfies b), it belongs to B. Then the last term of the above relation belongs to $B\mathscr{S}^*=B$. Therefore the relation shows that an admissible monomial satisfying c) belongs to $B \subset B+C$.

Consequently we have proved $B+C=\mathcal{S}^*$ and then the proposition is established, q.e.d.

§ Exact sequences of left \mathscr{S}^* -homomorphisms.

Let

$$c: \mathcal{S}^* \longrightarrow \mathcal{S}^*$$

be the anti-automorphism (conjugation) of [3]. c is determined by the following properties.

(1.7)
$$c(\alpha\beta) = (-1)^{rs} c(\beta) c(\alpha), \quad \alpha \in \mathcal{G}^r, \ \beta \in \mathcal{G}^s, \\ c(\Delta) + \Delta = 0 \quad and \quad \sum_{i+j=t} \mathcal{F}^i c(\mathcal{F}^j) = 0, \quad t > 0.$$

First we remark that (1.7) implies

$$(1.7)'$$
 $c^2 = 1(c^{-1} = c)$ and $\sum_{i+j=t} c(\mathscr{O}^i) \mathscr{O}^j = 0$, $t > 0$.

Proof. Obviously $c^2(\Delta) = \Delta$ and $c^2(\mathscr{P}^1) = \mathscr{P}^1$. By (1.7),

$$\sum_{i+j=t} \left(c^{\boldsymbol{2}}(\mathscr{S}^i) - \mathscr{S}^i \right) \, c(\mathscr{S}^i) = c\left(\sum_{i+j=t} \mathscr{S}^j c(\mathscr{S}^i) \right) - \sum_{i+j=t} \mathscr{S}^i c(\mathscr{S}^j) = 0 \, .$$

Then the equality $c^2(\mathcal{P}^t) - \mathcal{P}^t = 0$ is proved inductively. Since c^2 is a ring homomorphism, it follows that $c^2 = 1$.

Next the second equality is true for t=1. Suppose that it is true for t < r. Then

$$\sum_{i+j=r} c(\mathscr{P}^{i}) \mathscr{P}^{j} = \sum_{i+j=r} c(\mathscr{P}^{i}) \mathscr{P}^{j} + \sum_{l=1}^{r-1} \left(\sum_{i+k=r-l} c(\mathscr{P}^{i}) \mathscr{P}^{k} \right) c(\mathscr{P}^{l})$$

$$= \sum_{i+k+l=r} c(\mathscr{P}^{i}) \mathscr{P}^{k} c(\mathscr{P}^{l}) - c(\mathscr{P}^{r})$$

$$= \sum_{i=0}^{r-1} c(\mathscr{P}^{i}) \left(\sum_{k+l=r-i} \mathscr{P}^{k} c(\mathscr{P}^{l}) \right) = 0.$$

Thus the equality $\sum_{i+j=r} c(\mathcal{P}^i) \mathcal{P}^j = 0$ is proved by the induction, q.e.d.

By (1.3)' and by (1.7), we have easily

$$(1.8) \ c(\mathscr{P}^r) = (-1)^r \, \mathscr{P}^r \ and \ c(\mathscr{P}^{p+r}) = (-1)^{r+1} \, \mathscr{P}^p \mathscr{P}^r \quad for \ 0 \le r < p.$$

Also we have that $c(R(r)) = (r+1) c(\Delta \mathscr{P}^1) - rc(\mathscr{P}^1 \Delta) = (r+1) \mathscr{P}^1 \Delta - r\Delta \mathscr{P}^1$. Then we denote that

$$R_r = c(R(r)) = (r+1) \mathscr{I}^1 \Delta - r \Delta \mathscr{I}^1$$
.

Define two left \(\mathcal{S}^*\)-homomorphisms

$$R^*: \mathscr{S}^* \longrightarrow \mathscr{S}^*/\mathscr{S}^*\Delta + \mathscr{S}^*/\mathscr{S}^*\Delta,$$

 $'R^*: \mathscr{S}^*/\mathscr{S}^*\Delta + \mathscr{S}^*/\mathscr{S}^*\Delta \longrightarrow \mathscr{S}^*.$

by the formulas $R^*(\alpha) = (\alpha \Delta \mathcal{G}^1, \alpha \mathcal{G}^1)$, $\alpha \in \mathcal{G}^*$ and $R^*(\alpha, \beta) = \alpha \Delta \mathcal{G}^1 - \beta \Delta \mathcal{G}^1 \Delta$, $\alpha, \beta \in \mathcal{G}^* / \mathcal{G}^* \Delta$.

Proposition 1.5. The following circular sequence is exact.

$$\mathcal{S} * \xrightarrow{R_{p-1}^*} \mathcal{S} * \longrightarrow \cdots \xrightarrow{R_2^*} \mathcal{S} * \xrightarrow{R_1^*} \mathcal{S} *$$

$$\uparrow_{R^*} \qquad \qquad \downarrow_{R^*} \qquad \qquad \uparrow_{R^*} \qquad \qquad \uparrow_{R^*} \qquad \qquad \uparrow_{R^*} \qquad \qquad \downarrow_{R^*} \qquad \qquad$$

The group H_{\perp} of the kernel-images are spanned by the classes of the following elements:

$$\begin{array}{lll} H_{\mathcal{A}}(\mathscr{S}^*R_r) & : \Delta c(\mathscr{S}^{p_i+p-r}) \ , \ \Delta c(\mathscr{S}^{p_i+p-r}) \ \Delta \ , \ \ (1 \leq r \leq p-2) \ , \\ H_{\mathcal{A}}(image\ of\ R^*) \ : \Delta c(\mathscr{S}^{p_i+1}) \ , \ \Delta c(\mathscr{S}^{p_i+1}) \ \Delta \ , \\ H_{\mathcal{A}}(image\ of\ R^*) \ : (\Delta c(\mathscr{S}^{p_i}),\ 0) \ , \ \ (0,\ \Delta c(\mathscr{S}^{p_i})) \ , \\ where \ i = 0,\ 1,\ 2,\ \cdots \,. \end{array}$$

Proof. The formula $\tilde{c}(\alpha, \beta) = (c(\alpha), c(\beta))$ defines an antiautomorphism of $\mathscr{S}^*/\mathscr{S}^*\Delta + \mathscr{S}^*/\mathscr{S}^*\Delta$. Then c and \tilde{c} define an anti-isomorphism of the sequence of Proposition 1.1 onto that of this proposition. It follows from Proposition 1.1 that the sequence of this proposition is exact. The kernel-images are the image of those of Proposition 1.1 under c and \tilde{c} . c and \tilde{c} induce isomorphisms of $H^{\mathcal{A}}$ onto $H_{\mathcal{A}}$. Then the proposition is established, q.e.d.

Similarly, the following proposition is obtained from Proposition 1.2.

Proposition 1.6. The following two sequences are exact.

$$\begin{split} H_{\boldsymbol{A}}(\mathscr{S}^*\mathscr{P}^1) &= H_{\boldsymbol{A}}(\mathscr{S}^*\mathscr{P}^{b^{-1}}) = 0 \;, \quad H_{\boldsymbol{A}}((\mathscr{S}^*\mathscr{P}^1 + \mathscr{S}^*\Delta)/\mathscr{S}^*\Delta) \\ &= \{\Delta c(\mathscr{P}^{bi}) \;, \quad i = 1, \, 2, \, 3, \, \cdots\} \; \; and \; \; H_{\boldsymbol{A}}((\mathscr{S}^*\mathscr{P}^{b^{-1}} + \mathscr{S}^*R_1)/\mathscr{S}^*R_1) \\ &= \{c(\mathscr{P}^{bi^{-1}}) \;, \quad i = 1, \, 2, \, 3, \, \cdots\} \;. \end{split}$$

Put $M_t^* = c(M_t) = \mathcal{S}^*c(\Delta) + \mathcal{S}^*c(\mathcal{P}^1) + \cdots + \mathcal{S}^*c(\mathcal{P}^{p^{t-1}}).$

By Lemma 1.3, $\mathscr{S}^i \subset M_t$ and also $\mathscr{S}^i \subset M_t^*$ for $0 \subset i \subset p^t$. By (1.7)', $0 = \sum c \mathscr{S}(i) \mathscr{S}(p^t - i) \equiv \mathscr{S}(p^t) + c \mathscr{S}(p^t) \mod M_t$ and mod M_t^* . Thus we have the followings.

- i) $\mathscr{P}(p^t) \equiv -c\mathscr{P}(p^t) \mod M_t$ and $\mod M_t^*$.
- (1.9) ii) $M_t^* = M_{t-1}^* + \mathcal{S}^* \mathcal{P}^{p^{t-1}} = \mathcal{S}^* \Delta + \mathcal{S}^* \mathcal{P}^1 + \dots + \mathcal{S}^* \mathcal{P}^{p^{t-1}}$.
- iii) $(c\mathscr{T}^{pt})^* = -(\mathscr{T}^{pt})^* : \mathscr{S}^* \longrightarrow \mathscr{S}^*/M_t^*$.
 - iv) $\mathscr{T}(2p^t) \equiv c(\mathscr{T}(2p^t)) \mod M_t \quad and \mod M_t^*$.

The last relation iv) can be verified as follows. By (1.7), $\mathscr{S}(2p^t) + \mathscr{S}(p^t) c\mathscr{S}(p^t) + c\mathscr{S}(2p^t) \equiv 0 \mod M_t$. By (1.3), $\mathscr{S}(p^t) \mathscr{S}(p^t) \equiv 2\mathscr{S}(2p^t) \mod M_t^*$. Then $\mathscr{S}(p^t) c\mathscr{S}(p^t) \equiv -c\mathscr{S}(p^t) c\mathscr{S}(p^t) \equiv -c\mathscr{S}(p^t) c\mathscr{S}(p^t)$ and the relation iv) follows.

Then operating the anti-automorphism c, it follows from Proposition 1.4 the following proposition.

Proposition 1.7. The kernel of the homomorphism

$$(\mathscr{D}^{p^l})^*:\mathscr{S}^*\longrightarrow \mathscr{S}^*/M_t^*$$

is $M_{t-1}^* + \mathcal{S}^* \mathcal{P}^{2p^{t-1}} + \mathcal{S}^* c (2\mathcal{P}^{p^{t+p^{t-1}}} - \mathcal{P}^{p^t} \mathcal{P}^{p^{t-1}}) + \mathcal{S}^* c (\mathcal{P}^{(p-1)p^t})$ for $t \ge 1$.

§ A remark on Steenrod algebra A* mod 2.

It was proved in [4]

Proposition 1.8. (Negishi) Let $M_t = Sq^1A^* + \cdots + Sq^{2^{t-1}}A^*$, then the kernel of the homomorphism

$$(Sq^{2^t})_*: A^* \longrightarrow A^*/M_t$$

is $M_{t-1} + Sq^{2^t}A^*$.

Then by use of the anti-automorphism c, it follows

Proposition 1.9. Let $M_t^* = A^*Sq^1 + \cdots + A^*Sq^{2^{t-1}}$, then the kernel of the homomorphism

$$(Sq^{2^t})^*: A^* \longrightarrow A^*/M_t^*$$

is $M_{t-1}^* + A^* Sq^{2^t}$.

REFERENCES

- [1] J. Adem, The relations on Steenrod powers of cohomology classes, Algebraic geometry and Topology, Princeton Univ. Press, 1957, 191-238.
- [2] H. Cartan, Sur l'itération des opérations de Steenrod, Comm. Math. Helv., 29 (1955), 40-58.
- [3] J. Milnor, The Steenrod algebra and its dual, Ann. of Math., 67 (1958), 150-171.
- [4] A. Negishi, Exact sequences in the Steenrod algebra, Jour. Math. Soc. Japan, 10 (1958), 71-78.
- [5] N. Steenrod, Cyclic reduced powers of cohomology classes, Proc. Nat. Acad. Sci. U. S. A., 39 (1953), 217-223.