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I. Exact sequences in Steenrod algebra
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The structure of the Steenrod algebra &“* mod p [1] gives
important tools for the calculation of the homotopy groups. In
this section, the exactness of the several .%*-homomorphisms is
studied, and it will be applied to prove the triviality of mod p
Hopf invariant in the next section and also to verify the homotopy
groups in those sections which follow further.

§ Notations.

Throughout this paper, p denotes an odd prime and $*
denotes the Steenrod algebra mod p [1] [3]. &* is a graded
Z,-algebra 2.9 which is generated multiplicatively by the Bock-

stein operator A € .* and Steenrod’s reduced powers ! e ¥ ™D)
t=0,1, 2, .

For the simplicity of the descriptions, we shall use the follow-
ing notations.

(1- 1) g(AgO’ rl) Ael; 7/2 y "t rny A!”) - Agoﬁr‘Aek@rz b ‘g‘qunAln "
where €&; and 7; are non-negative integers. From the relation
A? = AA =0,

the monomial (1.1) vanishes if one of &, =2. If ¢ =0, we may
omit A% in (1.1) since A° means the identity. If & =1, we write
A% by A. Also if 7;,=0, then we may replace “A%-: 7, A%” and
CAL-IPTINNY by “Af-1T” since &7° is the identity.

A monomial (1.1) is said to be admissible if & are 0 or 1,
r,>0 and if »,>pr,,,+¢&, for i=1,2,---,n—1. Then the admis-
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sible monomials form an additive Z,-base of 7* [1] [2].
Let A* be a left (resp. right) S~ *-module and let @ be an
element of &*. We define a homomorphism

ay (resp. a¥)  A¥ — A*

by setting ax(a) =ca (resp. a*(a) =ac), ac A*. 1f A* is a two
sided $*-module, then «x(resp. a*) is a right (resp. left) S*-
homomorphism. Obviously

@B)* = ayBy, (aB)* =pB*a* and auB* = B*a,
for a, Be€ &*. In particular, we denote that
R(r) = (r+1) AP —rFP'A = (r+1) P (A, 1)—rP (1, A),
and we shall treat the induced homomorphisms
R()x and R@p* : F* - %,
We denote that
aA* = {aala e A*} = au(A*),
A*a = {act|a € A*} = a*(A*).

Since AA =0, a left (resp. right) S“*-module A* is a complex
with respect to the coboundary operator Ay (resp. A*). Denote by

H,(A*) (resp. H4(A%))

the cohomology group of the complex (A%, Ay) (resp. (A*, A¥%)),

An admissible monomial (1.1) is Ay—cocycle (resp. A*-cocycle)
if and only if &=0 (resp. £,=0), and it is Ag—cobounded (resp.
A*—cobounded). It follows

(1.2) H(&*) =H‘/(&*) =0, H/AS*) = H,/(F*A) = {A}
and HA4(*|ASF*) = H,(F*]*A) = {1} .

It is convenient to regard that */AS* (resp. S */.SF*A) is
spanned by the admissible monomials (1.1) of &=0 (resp. &,=0).
Then we define two right &*-homomorphisms

R’ : F*|AF*+ F*[AF* » F* |
R . &% - P¥[AF*+ F*AF*
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by the formulas R'(«, B) = Z'Aa+AFP'AB, a, B F*[AS* and
R(@) =(Z'Aa, —F'a), ae F*
§ Exact sequences of right &*-homomorphisms.

Any monomial (1.1) may be normalized to a sum of admis-
sible monomials (uniquely) by use of the Adem’s relations [17] [2]:

P(r, ) =2 (1) ((s—i)(p—l)—l) P(r+s—i, i) if rps,

r—pi
1.3 20, 8,9 =5 (1 ($ D) 24, ras—i
+ 3 =y (STPUTN T P rps—i, A, ) if r<ps.

For the case 0 <r<(p, we have from (1.3)

P(r, s) = <r;':s>9”(r+s) ,

1. 3)’
Pr, A, §) = <r+f,_1> P (A, r+s)+<r+‘;—1> P (r+s, A).

In particular, (1, s)=(s+1) FP(s+1) and F(,A,s)
=87 (A, s+1)+ AP (s+1, A).

Proposition 1.1. The following civcular sequence is exact.

RO o FDx oy RO
Y\R’ If/
FHEAS*+ SN,

The groups H* of the kernel-images are spanned by the classes
of the following elements :
H4(R(r).5"*) CPRIPTIN AP ITITTA 1ZLr<p—2),
H4(image of R) : FPPTA, AFPPTA
H4(image of R) : (P*A,0), (0, FP?A),
where 1=0, 1, 2, ---.
Proof. 1t follows from (1.3)
Rir) FP(s, t, ) =(r+s+1) FP A, s+1,t--)—rP(s+1, A, t,-+),
R(») P (s, A, t,--) = (r+s+1) FP(A, s+1, A, ¢, --4),
R(ir) (A, s, t,-) = (r+1) F (A, s+1, A, 1, -9,
R(r) (A, s, At ) =0.
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If a monomial in the left side is admissible, then so is in the
right side. For the case 1 <7 <p—2, the kernel of R(r)x is gen-
erated by the elements (r+s+1) P (A s, 1, ) —(r+1) P (s, A, L, )
and (A, s, A, t,--+). In particular, R(r+1) is in the kernel of
R(r)x. Thus R(NxR(r+1)x=0. Since ((r+s+1) AP, s, ¢, )
—(r+1) P(s, A L, ) =R(r+1) FP(s—1,t ), and (r+2) (A, s, AL
< )=Rr+1) L (A, s—1, t, --+), then the kernel of R(#)4 is contained
in the image of R(r+1)x if 1 <r< p—2. Therefore the exactness
of the sequence

R(r+1)s R(r)«

¥ S * ¥

is established for 1 <7< p—2. The exactness of the sequence

SH|AGH 1 A B cox RO o

follows from the above results on the kernel of R(p—2)x and
from the first two of the following relations obtained from (1.3)".

R'(A (s, t, ), 0) =sP(A, s+1, ¢, )+ FP(s+1,A L ),
R0, P(s, t, ) =P (A, s+1,4A, ¢t ),

R(ZP(s, A L, ), 0) =sFP (A, s+1,A, L, -+,

R'(0, P (s, A, t, ) =0.

From these relations, it follows that the kernel of R’ is
generated by (£ (s, A, ¢, -+), —s (s, t,-+)) and (0, Z (s, A, ¢, +++,)).
Then the exactness of the sequence LN follows from the
first two of the following relations.

RAP (s, t, ) = (P(s+1,A, L, ), —(s+1) P(s+1, ¢ ),
RPA, s, t, ) =0, —P(s+1,A, 1)),

RZ (s, A, 8, -) = (0, —(s+1) P (s+1, A, £, ),

RP A, s, At ) =0.

Then the kernel of R is generated by (s+1) Z (4, s, £, =)
—P(s, At )=R() L(s—1,¢ ) and F (A, s, At ---)=3R(1)
P(A, s—1,t +-+). Since RoR(1)x=0, we have the exactness of

. R(1)y R :
the remainder sequence —> ——.
A monomial is A*-cocycle if it is of a form &7 (---,A). Let

1 <r <p—2 and consider the generators (r+s+1) (A, s+1, ¢, )
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—rP(s+1,4,t ) and LA, s+1, A ¢ ) of R(r) & *. Then
the A*-cocycles of R(r) &* are generated by the elements of the
following forms:

(r+s+1) Z @A, s+1,¢t, -, A)—=rFP(s+1,A, ¢, --,4),
ﬁ(A’ S+1, Aa t’ '"1A) s
PA,s+1,A) and rP(pi—r, A).

Obviously the A*-cocycles of the first two forms are A*-
cobounded in R(r) &*. P(A, s+1,A) is A*-cobounded if »+s+1==0

. ]
, _ —
mod p, since (A, s+1, A) = i (r+s+1) LA, s+1)—(r+1)

P(s+1,A) A, The elements F(pi—r,A) and F (4, pi—r, A),
i=1,23,..., are not A¥—cobounded and their classes form a
Z,base of H4(R(r) &*). The other results on H“ are proved
similarly, q.e.d.

Proposition 1.2. The following two sequences are exact:
1 n—
) o T oo RN FH,
Py rt Py

il) */R(1) % =5 x| AR L, ook R(1) X 5 KA

HNP'\F*) =H (PP *) =0, H(P'S*+AS*)[AS™)
={PrA i=1,2 3, -} and H*(P?'L*+R(1) F*/R(1)5*)
={FPr =1,23,-}.

Proof. By (1.3),

PA) APls, t, ) =(s+1) P (s+1, ¢ ),

PA) P(s, A t, ) = (s+1) P (s+1,A, L ),

FP Q) P, s, t, ) =P A, s+1, 1, )+ P(s+1,A, L ),

P() PA, s, A L ) =sFP (A, 5+1, A, L, ).

Then the kernel of &7 (1)« is generated by Z (pi+p—1, ¢, )
=P (p—1) P (pi, t, ), P(pi+p—1 At - )=P(p—1) P (P, A ¢,
), PA i L ) =P (Pi, AL, ) =P (p—1) P (A, pi—p+1, ¢, )
and F A, pi, AL ) =P (p—1) P, pi—p+1,A, ¢t ). As a

consequence we have the exactness of the sequence

9’ £ o T (s
(p-1s (1)5/-

The cokernel #*/ (1) * of ZP(1)x has a base which
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consists of the admissible monomials .2 (i, ¢, «-+), P (pi, A, ¢, -+*),
PA pi+1,t ) and P (A, pi+1,A ¢ ). From (1.3), it fol-
lows that these elements of the base are mapped by Z(p—1)«
to the elements P (pi+p—1,¢t ), P(pi+p—1,4A ¢ ), P4,
pi+p t ) and F(A, pi+p, AL, --) respectively. Thus F (p—1)«
maps ¥/ (1) &* isomorphically into .&“*, and then the exact-
ness of the sequence

x ﬁ(l)* ._?(p 1)*

: 5> K
is proved.

Next consider the sequence ii). Concerning the above images
of Z(1)4, in the biginning of the proof, mod. by AS* we have
that the kernel of & (1)x: F*— F*/AS* is generated by the
element &£ (pi+p—1,t - )=FP(p—1) P (pi, t, ), (s+1) L (A, s, ¢,
) —=FP(s, A t, ) =R(1) LP(s—1, ¢, ) and P (A, s, A ¢, - )=R(1)
(A, s—1, ¢ ). Then the sequence

ox T (- Dy oL W

S*/R(1) —5 FHRAF*

is exact. The admissible monomials & (pi, ¢, ---) from a base of the
cokernel F*[(FP (1) F*+AF*). Since R(ZF(p—1))=(ZL(1, A,
p—1), —F(, p—1)) =(Z(p, 4), 0) and since F(p, A) L (pi, t, -*+)
=P (pi+p, A, ¢, ---) mod A *, it holds (Ro.F (p—1)x) L (pi, t, ++*)
=(P(pi+p, At ), 0. Then RoP(p—1)x maps . F*/(F (1) S *
+A%7*) isomorphically into S7*/A S * 4 F*|AS*, By Proposi-
tion 1.1, R carries &*/R(l) &“* isomorphically into &7*/AF*
+ %A *, Therefore P (p—1)x maps F*/(F (1) F*+AF*)
isomorphically into S*/R(1) &“*, and the sequence

»

is exact.

The factor group (F'F*+AF*)/AS* is generated by the
classes of (s+1) P (s+1,¢t --) and LP(s+1,A ¢ --+). As is seen
in the previous proof, HA(FP'F*+AF*)|ASFS*)={P(pi, A),
i=1,2,--}. From the exact sequence ii), we have an exact
sequence of A*-complexes :

0 - (P F*+AF*)|AF* - F*[AF*
- (PPr*+R(1)S*)/R(1) ¥ * —0.

From the cohomology exact sequence associated with this sequence
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and from (1.2), there is an isomorphism
HA(P P \*+R(1) *)/R(1) %)
~ H((P L *+AF*) [ASL*) + HI(F*[AF*) ,

By this isomorphism & (pi+p—1) corresponds to &°(pi, A) (for
i=1) or 1 (for i=0). Thus H/(F?'F*+R(1) &*)/R(1) &*)
={ZF(pi+p—1), i=0,1,2,---}. The proof of H{ (P F*)
=H(P ' *) =0 is similar and easy, q.e.d.

Denote that

M, =ASF* 4+ P L PP * e oee L PO (M, = AF*) .,

Lemma 1.3. i) M, is spanned by the admissible monomials
which are not of the forms F(a,p', a,p'™", -+, a,_p, a,, ), where
a=a,=2a,20 and we omit a,p'”" -, a,, - if a,=0.

i) P, ¢, 9e-) MM, for 0 <s<t

Proof. M,=AS%* is spanned by the admissible monomials
P(A, r,-+-). From the proof of Proposition 1.2, it follows that
M,/ M,= (' F*+AF*)[|AS* is spanned by the admissible mono-
mials (s, 7, ---) and F(r, A, t, --+) such that s5=0 mod p. Then
i) is true for M, and M,. 1) implies that (g, A) € M,. Thus
P(q) My=P(q, A) P*_MFP*=M,.

Now suppose that i) and ii) are true for M,, s<¢. Then it
is sufficient to prove that i) and ii) are true for M,,,. We shall
verify the image M,,,/M, of & (p')x. Since P (p") M,_,M,, it is
sufficient to compute Z (¢, a,p'™", a,p' % -, a,_,, ---) mod M,. Let
s <t and consider the relation

I)x—l s—1__r _ _

2 ap ) =5 (~1 (TR ey i
of (1.3). If the term FP(p°+ap°'—i, i) is not in M,, then
P’ +ap’'—i=0 mod p° and i=0 mod p°' by the assertion i) for
M,. This is possible only if a=bp or a=0bp+1 for some integer
b, and then the non-trivial relations mod M, are the followings.

PP, bp") = (b+1) 2 ((b+1) p) mod M, ,

1.4
(.4 P, 0"+ =P ((b+1) P, p7Y) mod M, .

From ii), we remark that a=g8 mod M, implies £ (c,p’,
G DTN =P (o, e, € 7T B mod M,. Then repeating
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the relation (1.4) and concerning the relation (1,4, 5s)
=2 (s+1, A) mod M,, it follows that (P, a,p'™’, -+, a;_,, =+*) is
not in M, only if it has one of the following forms: (0 <7 <¥)

PP, b+ e by T DT 0, DT, e b D, by, o)
=(b,+1) P ((by+1) p', -+, (b,+1) p'7, b, P77, cor , by, %)
(1.5) mod M, ,
ﬁ(j)', bopt"'pt_l, R bt—1p+1’ A; bu ‘“)
= P((b,+1) p', -+, (by_,+1) p, b, +1, A, ---) mod M, .

Then M,,,/M, is spanned by the admissible monomials
P (o', €D o, € by €y AT, -++) such that one of ¢; is not divisible
by p or é=1. It follows from this and from the assertion i) for
M, that i) is true for M,,,.

By i), £ (ap'*’, A) € M,,, and P (ap'*?, p') € M,,, for 0<i<i—1,
then Z(ap'™*) M, M,,,. If ¢=£0 mod p**', then F(q) € M,,, and
*—qa(q) Mt<Mt+l' Thus ‘@(qu o yQt—s+1) Ms:g(ql) *9;(427 Ty qt—s-i—l)
M.C Zq,) M, M,,,, and then ii) is proved, q.e.d.

Proposition 1.4. The kernel of the homomorphism
PL . F*¥—— F*[ M,
is M,_,+ P Sk QPP Pr P Pk POV X for
t=1.
Proof. Set B=M, ,+ - + P 00" g*  The following rela-
tions are verified from (1.3) and by Lemma 1. 3.

t 1

P (P, 207 -—Z*g" (P+2p 1 —1,0) =0 mod M, ,

zﬁ(pt p+pl 1) ﬁ(p pt pt l)
ﬁ’ 1 pt l
=23 P+ = i)~ 8 oy p—izid

j=v i=0

Ez(f’ (p=D-1 )9?(21;', p"‘)+<1’ (# p}) >g’(2p’, #) mod M,
=0,

t—1

Z(P, (p=1) 1) =2+ F (P —1, 1)

— _(P (P—};’l) — )g»(pHI) =0 mod M, .

These and ii) of Lemma 1.3 imply that &2 (p") B_M,. Then
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it is sufficient to prove that .%“*/B is mapped isomorphically into
S*I M, by P (p)«.

First we consider the image of & (2p' ") : F* - F*/M,_,. By
Lemma 1.3, 2 2p', 8), LP2p'7", p)eM,_, for i=0, 1, 2,---, t—3.
Then L 2p'™") M, ,C M, ,. Thus the image of Z2(2p' "4 in
%[ M, is generated by 7 (2p', a,p'"% -+, a,_,,+-+) mod M,_, where
a,= -+ =a,_,=0. Consider the relation 2 (2p°, ap*™*) = >+ P (2p°
+ap'—i,4), 0<i<2p°", of (1.3). Then, by Lemma 1.3, the
non-trivial relations mod M, are

F (2P, bp°) = (1”2”2) P ((b+2) p°) mod M, ,
PP, bp°+p°7Y) = (b+1) L((b+2) p°, p°Y) mod M, ,
and P 2P°, bp*+2p°"") = P ((b+2) p°, 2p°7) mod M, .

Analogous discussions of the proof of Lemma 1.3 lead us to
the following (1.6) from these relations and from (1. 4).

(1.6) M, ,+F2p')S* is spanned by the admissible monomials
which are not of the forms P Op'+p' 7", -, b,_,p+1, A, ) and
ﬁ(bopt""pt_l’ o >br—1pt_r+1 +pt—r, brpt_r’ "t bt——lpy bt» "') where 0<r <t
and b,=b,>= -+ =2b,=0.

B was given by

B=M,  +P2p") FL*+ Q2P (p'+p'")—F (P, p'™)) &F*
+Z((p—1) p) *
and let C be a submodule of * spanned by the admissible
monomials
@(bopt*’pt—l) Ty bt—1p+1) A) bt) "')
and ‘geﬁ(copt_‘_pt—l’ "ty Cr—lpt_r_H +pt—”,crpt—?’, sty Gy "')
such that ¢,+1=0, -+-, ¢,+1=0, ¢,+15=0 mod p and ¢,,,= --- =¢,
for some 0 <r <t, s<r.
By (1.5), it is verified easily that & (p')x maps C isomorphic-

ally into .%“*/M, and also onto M,,,/M,. Therefore, for the proof
of the proposition, it is sufficient to prove the equality

B+C =9%*,

Or, by (1.6), it is sufficient to prove that an admissible
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monomial P (c,p' +p* ", e, 0 TP, 0 pt T, 000, €4, 00) Delongs
to B+C if it satisfies one of the following three conditions.
a) ¢,+1==0, ¢,+1==0 mod p and ¢, >c, for some 0 <s<r,
b) ¢,+1F0 and ¢,+1=0 mod p for some 0 <s<r.
c) ¢,+1=0,+-,c,.,+1=0 and ¢,+1=0 mod p.
For the simplicity we set Q, =22 (p°+p" ") — P (p°, p*'). By
(1.3) and by (1.6), we compute the following relations:
QP (bp) = (b+2) P(b+1) p°+p" )= ((b+1) p°, p°7")
mod M,_,+ 2P (2p°") F*,
QALY +p ' +p)=LP((b+1) '+ Q,_,
mod M,_,+F(2p°") L *.
Applying these relations and (1.4) to Q. F((c,—1) p'+p'!
A+ e (e D YT DT T, (=) P e T,
e, PP, 000, o0, ¢y, o) we have the following relation
0s<<r<n
(CS+1) E(Copt+pt—1’...) cspt_s_’-p’_s—l’...’ cr—lpt_r+l +pt—r’ c"p‘_r)-..’ cl )...)
E(Cf+1) ?(Copt_‘-pt_l’ oot b Cs—lp'_s+l +pt—s’ Cspt_s’ (CS+1+1) pt_s-l7 b )
(C,+1) pt—rr Cri lpt—r-—l, Gy ) mOd B.
Consider an admissible monomial satisfying the condition a) in
which we may suppose that ¢,_>c,,, and that ¢,=c¢, if ¢<s and
c,+1==0 mod p. Then the last relation shows that the monomial
is equivalent mod B to an element of C, and it belongs to B+C. It
follows directly from the last relation that an admissible mono-
mial satisfying b) belongs to B B+C.
By (1.3) and by (1.6) we have a relation mod M,_, + & (2p°"") &*
FP(p—1) P, 0" + ) =P O™ + (p—1) p°+9°7, (p—1) p°7).
In the case c), we compute the following relation from the
above one.
k&/—’(Cﬁpt_'-.ptwl, b ’ Cf—lp’_'+] +p’-r’ C"p’_r) C""'lpt‘r_l) eee ’Ct’ ...)
=2((p—1 p) FP((co—D+2) 'y -+, (c,.s—D+2) P77, (c,—p+1)
pt_r’ Cr-i—lpt_r—l) ce )Ch '“)_‘@(Copt_"pt—l’ °tty cr—lpl_r-H +pt—f’ (C,—‘l)
PTTHDTTT (0D P e, T e ery o0)
mod M,_, + P (2p'"") *,



p-primary components of homotopy groups I. 139

Since P(cop' +p, ¢, 0P, (e, —1D) PP, (p—1)
p'"7") satisfies b), it belongs to B. Then the last term of the
above relation belongs to BS* =B. Therefore the relation shows
that an admissible monomial satisfying c) belongs to B B+C.

Consequently we have proved B+C=.5"* and then the pro-
position is established, g.e.d.

§ Exact sequences of left .“*-homomorphisms.
Let
¢ ¥ —p F*
be the anti-automorphism (conjugation) of [3]. ¢ is determined
by the following properties.
c@B) = (—1)" ¢(B) c(a), ae S, Be S,
c(AY+A =0 and > Pic(F#F?) =0, t>0.

itj=t

(1.7

First we remark that (1.7) implies

.7y 2=1c'=ct and 3 ¢(F) F =0, t>0.

Proof. Obviously ¢*(A)=A and ¢3(Z")=". By (1.7),
2 (PPN (P = 2 Pe(FN— 3] Pie(FP) =0.

i+j=t i+j=t idj=t
Then the equality ¢*(&?*) — &7 =0 is proved inductively. Since
¢® is a ring homomorphism, it follows that ¢*=1.
Next the second equality is true for £=1. Suppose that it
is true for < ». Then

S (PN P =3 o P) Pi+ S (T (P P (P

i+j=r itj=r I=1 j{+p=r—-1

= 23 c(P) FPrc(PN)—c(F)

=S 5 PPN =0

Thus the equality Z (i) &P7=0is proved by the induction,

itj=r

q.e.d.
By (1.3) and by (1.7), we have easily

(1.8) ¢(FP)=(—1)" " and c(FP**")=(—1)"" FP*P" for 0<rp.
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Also we have that c(R(r)) =(+1) cAFP)—rc(F'A)=(r+1)
P'A—rA . Then we denote that

R, = c(R(r)) = (r+1) FP'A—rATF",
Define two left S*-homomorphisms

R* | F* —— ¥ F*RA 4 K[ FHA
'R* : ¥ RN+ F*] F RN —— F*
by the formulas R*(@)= (AP, aFP'), ae.F* and 'R¥*(«, B)
=aAP'—BAPA a, Be F*| F*A,
Proposition 1.5. The following circular sequence is exact.

Sk R ox R¥ I RY x
\ ' R* R* /
x| F A+ F*| FEA

The group H, of the kernel-images are spanned by the classes
of the following elements :

Hd(y*R) T Ac(gpriteTy | Ac(ypi+p—r) A, (1<r<p—2),
H,(image of R¥) : Ac(P**), Ac(FP*P) A,

H,(image of R*) : (Ac(P%), 0), (0, Ac(F?)),

where i=0, 1, 2, -

Proof. The formula ¢(«, B) =(c(«), ¢(B)) defines an anti-
automorphism of */F*A+ & *[*A, Then ¢ and ¢ define an
anti-isomorphism of the sequence of Proposition 1.1 onto that of
this proposition. It follows from Proposition 1.1 that the sequence
of this proposition is exact. The kernel-images are the image of
those of Proposition 1.1 under ¢ and ¢. ¢ and ¢ induce isomor-
phisms of H4 onto H,. Then the proposition is established, g.e.d.

Similarly, the following proposition is obtained from Proposi-
tion 1. 2.

Proposition 1.6. The following two sequences are exact.

PR N

p-1
k| SRR (g’) y*/y*A@y*/y*R (_q_a_)_,y*/y*A
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H(S*P) = H (S *P?Y) =0, H,((F*P +F*A)]F*A)
= {Ac(P?), i=1,2 3 -} and H,((*P?" + F*R)| F*R)
= {c(PP), i=1,23 -}.

Put M =c(M,) = *c(A) +F*c(P) + - +F*c(P#7).

By Lemma 1.3, . M, and also &I C M} for 0<i< p'. By
(L7, 0=3c¢2() LPp'—) =2 (Pp)+cP(p") mod M, and mod
M¥. Thus we have the followings.

i) ZP(p) = —cP(p) mod M, and mod M¥.

i) M¥=M¥,+ PP = * A 4 F*P 4 ces 4 PV

iii) (c2?)* = —(PP)* 1 F* — F*¥IMF.

iv) P @2p') = (P 2pY)) mod M, and mod M¥.
The last relation iv) can be verified as follows. By (1.7),
P2+ P P) cP(P) +cP2p)=0 mod M,. By (1.3), F(p"
P (p) =27 (2p") mod M¥. Then P (p') cF(p")=—cP(p") cP(P)
=—c(P(P) P (p"))=—2cP(2p) mod M, and the relation iv)
follows.

Then operating the anti-automorphism ¢, it follows from Pro-
position 1.4 the following proposition.

Proposition 1.7. The kernel of the homomorphism
(PPYk . F*—— P MF

15 M¥,+SF* P p FHeQPYH T PP P p Fre (P e
for t=1.

§ A remark on Steenrod algebra A* mod 2.

It was proved in [4]
Proposition 1.8. (Negishi) Let M,=Sq'A*+ --- +Sq* 'A%,
then the kernel of the homomorphism
(Sg*)x : A* —> A*| M,
is M,_,+Sq* A*.
Then by use of the anti-automorphism ¢, it follows
Proposition 1.9. Let M¥=A*Sq'+ -+ +A*Sq*”", then the
kernel of the homomorphism
(Sg¥)* : A¥ —> A*|MF¥
is M* .+ A*Sq”.
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