MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXI, Mathematics No. 2, 1958.

Some results in the theory of the differential forms of the first kind on algebraic varieties II.

By

Yoshikazu Nakai

(Received April 15, 1958)

This is a suit of our previous paper $[3]^{1}$ with the same title, and we shall prove the following:

THEOREM. Let V^n be a hypersurface in a projective space L^{n+1} , and let s be the minimum number among the codimensions of the singular subvarieties of V (we shall put s=n+1 when V^n has no singular point). Now assume that s>2, then V has no differential form of degree $\leq s-2$ which is relatively of the first kind on V^{2} . In particular V has no differential form of the first kind of degree $\leq s-2$.

This is the generalization of the well known classical results that a non singular surface in a projective 3-space has no differential form of the first kind of degree 1^{3} Moreover it will be shown by an example that the hypersurface V^n in L^{n+1} may have a differential form of the first kind which is of degree >s-2, where s has the same meaning as above. Thus the estimation s-2 is the best one in the above sence.

The method of the proof is based on the representation of the differential forms of the first kind given in [3] and some auxiliary lemmas. Let V^n be a hypersurface in a projective space L^{n+1} and assume that V has no singular subvariety of codimension 1.

¹⁾ The number in the bracket refers to the bibliography at the end of the paper.

²⁾ A differential form ω is called relatively of the first kind on V when ω is finite at every simple point of V. A differential form ω is of the first kind, if ω is relatively of the first kind on every birationally equivalent model of V. This is equivalent to say that ω is relatively of the first kind on a non-singular birational model of V (cf. [2]).

³⁾ An algebraic proof can be found, e.g., in [4], pp. 119-120. But the proof appeared there is not satisfactory.

Yoshikazu Nakai

Let k be a field of definition for V and X_0, X_1, \dots, X_{n+1} be indeterminates in L. Let u_{ij} $(i, j=0, 1, \dots, n+1)$ be $(n+2)^2$ independent variables over k and put

$$Y_i = \sum_{j=0}^{n+1} u_{ij} X_j \quad (i = 0, 1, \cdots, n+1)$$

Let $f(X_0, X_1, \dots, X_{n+1}) = 0$ be a defining equation for V with coefficients in k and we shall put

$$F(Y_0, Y_1, \cdots, Y_{n+1}) = f(\sum_{j=0}^{n+1} v_{0j}Y_j, \sum_{j=0}^{n+1} v_{1j}Y_j, \cdots, \sum_{j=0}^{n+1} v_{n+1j}Y_j)$$

where (v_{ij}) is the inverse matrix of the matrix (u_{ij}) . Let $P = (\xi_0, \xi_0)$ ξ_1, \dots, ξ_{n+1}) be a generic point of V over the field $K = k(u_{ij})$ in the coordinate system (X). Then in the new coordinate system (Y), P can be represented by a homogeneous coordinates $(\eta_0, \eta_1, \dots, \eta_n)$ η_{n+1}), where $\eta_i = \sum_{i=0}^{n+1} u_{ij} \xi_j$ $(i=0, 1, \dots, n+1)$, and F(Y) = 0 is the defining equation for V, and P is also a generic point of Vover K. We shall put $y_i = \eta_i / \eta_0$. As is easily seen the function field K(y) = K(P) of V over K is separably generated over $K(y_{i_1}, y_{i_2})$..., y_{i_n}) for any choice i_1, \dots, i_n taken from $1, \dots, n+1$. Hence n differentials $dy_{i_1}, \dots, dy_{i_n}$ form a base of the Grassmann algebra of the differential forms on V. Let H_i be the hyperplane defined by the equation $Y_i = \sum_{j=0}^{n+1} u_{ij} X_j = 0$ and $C_i = V \cdot H_i$. Then C_i is an irreducible variety without singular subvariety of codimension 1 for any index $i(0 \le i \le n+1)$. For any subvariety A^{n-1} of V different from C_0 we can find *n* indices i_1, \dots, i_n such that v_{i_1}, \dots, v_{i_n} y_{i_n} $(1 \le i_o \le n+1)$ is a set of uniformizing parameters along A. Let F_i $(i=0, 1, \dots, n+1)$ be the partial derivatives of the form F(Y) with respect to Y_i , then F_i is either identically zero or a form of degree m-1, where $m = \deg V$. We shall also denote by $F_i(y)$ the polynomial in K[y] defined by $F_i(y) = F_i(1, y_1, \dots, y_{n+1})$. Let G(Y) be a form in (Y), then we shall denote by (G) the hypersurface defined by the equation G(Y) = 0. Now we shall restate a part of the Theorem 1 of [3] in the

PROPOSITION. Under the same notations and assumptions as above, let ω be a differential form on V which is relatively of the first kind on V and of degree q(< n). Moreover we shall assume that ω is defined over k. Then ω must be written in the form Some results in the theory of the differential forms

$$\omega = \sum_{i_1 < \cdots < i_q} \frac{A_{i_1} \cdots i_q(y)}{F_{n+1}(y)} dy_{i_1} \wedge \cdots \wedge dy_{i_q}$$

where the sum is extended over all indices $i_1 < \cdots < i_q$ taken from $1, \cdots, n$, and $A_{i_1 \cdots i_q}(y)$'s are polynomials in K[y] satisfying the following conditions:

(1) degrees of $A_{i_1 \cdots i_q}(y)$'s as a polynomials in y's are at most equal to m-q-1, where m is the projective degree of V.

(2)
$$\sum_{\alpha \pm i_1, \cdots, i_{q-1}} y_{\alpha} A_{\alpha i_1 \cdots i_{q-1}} = A^* i_1 \cdots i_{q-1} (y)$$

is a polynomial of degree $\leq m-q-1$.

(3) There exist the polynomials $A_{i_0i_1\cdots i_q}^{**}(y)$ of degree $\leq m-q-1$ such that

$$\sum_{\boldsymbol{\alpha}=0}^{\vee} (-1)^{\boldsymbol{\alpha}} F_{i_{\boldsymbol{\alpha}}}(y) A_{i_{0}\cdots\hat{i}_{\boldsymbol{\alpha}}\cdots i_{q}}(y) = A_{i_{0}i_{1}\cdots i_{q}}^{**}(y) F_{n+1}(y) .$$

Conversely if ω satisfies these three conditions, ω is relatively of the first kind on V.

We shall remark here the following. In the proposition we take the hyperplane H_0 as a plane at infinity, but the similar formulation are valid when we take any one of the hyperplanes H_i $(i=1, \dots, n+1)$ as a plane at infinity.

LEMMA 1. Let V^n be a variety in a projective space L and let G_1, \dots, G_i be hypersurfaces in L. Assume that the components of the set-theoretic intersection $\bigcap_{i=1}^{i} G_i \cap V$ has the dimension $\leq n-r$, and there exists at least one component in that intersection which is exactly of dimension n-r. Then there exist indices i_1, \dots, i_r among $1, \dots, t$ such that any component of $V \cap G_{i_1} \cap \dots \cap G_{i_r}$ is of dimension exactly n-r.

PROOF. We shall use the induction on the number t of the hypersurfaces. When t = 1 the assertion is trivial. We shall denote by dim $(G_{1} \cap \cdots \cap G_{t} \cap V)$ the highest dimension of the components in that intersection. Then by our assumption dim $(G_{1} \cap \cdots \cap G_{t} \cap V) = n - r$. We shall pay attension to the intersection $G_{1} \cap \cdots \cap G_{t-1} \cap V$. Then either dim $(G_{1} \cap \cdots \cap G_{t-1} \cap V) = n - r + 1$ or dim $(G_{1} \cap \cdots \cap G_{t-1} \cap V) = n - r$. Now assume that the second case take place, then the asertion is valid by the induction assumption. When the first case occurs, then G_t does not contain any component of $G_{1} \cap \cdots \cap G_{t-1} \cap V$ which is of dimension n - r + 1. By the induction assumption we can find r-1 indices i_1, \cdots, i_{r-1} from $1, \cdots, t-1$

89

such that any component of $G_{i_1} \cap \cdots \cap G_{i_{r-1}} \cap V$ is of dimension exactly n-r+1. Moreover these components are not contained in G_t , hence $G_{i_1}, \cdots, G_{i_{r-1}}, G_t$ satisfy the condition of our Lemma.

LEMMA 2. Let V, f(X) and F(Y) be as before and assume that V has no singular subvariety of codimension less than s. Then for any integer $a \leq s$, we have $\dim((F_{i_1}) \cap \cdots \cap (F_{i_a}) \cap V) = n-a$, where i_1, \dots, i_a are arbitrary a indices taken from $0, 1, \dots, n+1$.

PROOF. Since any singular subvariety has the dimension $\leq n-s$, we have dim $((f_0) \cap \cdots \cap (f_{n+1}) \cap V) = n-r \leq n-s$. Then we can find r indices i_1, \cdots, i_r such that dim $((f_{i_1}) \cap \cdots \cap (f_{i_r}) \cap V) = n-r$. We shall assume for the sake of simplicity that $i_a = \alpha$ $(\alpha = 1, \cdots, r)$. Let $j_1 < \cdots < j_a$ be the indices taken form $1, \cdots, r$, then dim $((f_{j_1}) \cap \cdots \cap (f_{j_a}) \cap V) = n-a$. Let i_1, \cdots, i_a be arbitrary indices taken from $0, 1, \cdots, n+1$. Then since $F_{\alpha} = \sum_{\beta=0}^{n+1} f_{\beta} v_{\beta\alpha}$ and $(v_{\beta\alpha})$ are independent variables over k which contains all the coefficients of f_{β} 's, the hypersurfaces $(F_{i_1}), \cdots, (F_{i_a})$ can be specialized simultaneously to the hypersurfaces $(f_{j_1}), \cdots, (f_{j_a})$ over k. Hence we must have dim $((F_{i_1}) \cap \cdots \cap (F_{i_a}) \cap V) \leq n-a$. Combining the inverse inequality which holds true in general we get the Lemma.

LEMMA 3. Let V^n be a hypersurface of degree m in a projective space L^{n+1} and F(Y) = 0 be the defining equation for V. Let F_i be the partial derivative of F(Y) with respect to the indeterminate Y_i and assume that dim $((F_{i_1})_{\cap} \cdots _{\cap} (F_{i_s})_{\cap} V) = n-s$. Then there cannot exist the relation of the form

$$\sum_{\alpha=1}^{s} A_{\alpha} F_{i_{\alpha}} \equiv 0 \pmod{F(Y)}$$

with the forms A's of degrees < m-1, unless all the forms are identically zero.

PROOF. Without losing any generality we can assume that $i_{\sigma} = \alpha - 1$ ($\alpha = 1, \dots, s$). Let K be a field containing all the coefficients of F(Y). Let w_{ij} ($i = 1, \dots, s-1$; $j = 0, 1, \dots, s-1$) be s(s-1) independent variables over K. Let

$$X_{0} = Y_{0}, X_{s-1+j} = Y_{s-1+j} \quad (j = 1, \dots, n-s+2)$$
$$X_{i} = \sum_{j=0}^{s-1} w_{ij} Y_{j} \quad (i = 1, \dots, s-1)$$

For the sake of simplicity we shall put $w_{00}=1$ and $w_{0i}=0$ for i>0. Let (\overline{w}_{ij}) be the inverse matrix of the matrix (w_{ij}) , then we have

$$Y_i = \sum_{j=0}^{s-1} \overline{w}_{ij} X_j \quad (0 \le i \le s-1)$$

Substituting these relations in the equation F(Y) = 0, we get the equation G(X) = 0 for V in the new coordinate system (X). We shall denote as before by F_i and G_{α} , the partial derivatives of F(Y) with respect to Y_i and the partial derivatives of G(X) with respect to X_{α} respectively. Then we have the relations

$$F_{i} = \sum_{\alpha=0}^{s-1} G_{\alpha} w_{\alpha i} \quad (0 \leq i \leq s-1)$$
$$G_{\alpha} = \sum_{i=0}^{s-1} F_{i} \overline{w}_{i\alpha} \quad (0 \leq \alpha \leq s-1)$$

Hence

$$\sum_{\alpha=0}^{s-1} A_{\alpha} F_{\alpha} = \sum_{\alpha,\beta} A_{\alpha} G_{\beta} w_{\beta\alpha} = \sum_{\beta=0}^{s-1} \left(\sum_{\alpha=0}^{s-1} w_{\beta\alpha} A_{\alpha} \right) G_{\beta} = \sum_{\beta=0}^{s-1} B_{\beta} G_{\beta}$$

where $B_{\beta} = \sum_{\alpha=0}^{s-1} w_{\beta\alpha} A_{\alpha}$, in particular $B_0 = A_0$.

Let C be a component of $V_{\cap}(G_1)_{\cap} \cdots_{\cap} (G_{s-2})$. Then dim C= n-s+2. In fact if dim C > n-s+2, we have dim $(V_{\cap}(G_0)_{\cap} \cdots_{\cap})$ $(G_{s-1}) > n-s$. But this is a contradiction to the assumption, since $(V_{\cap}(G_0)_{\cap}\cdots_{\cap}(G_{s-1}))=(V_{\cap}(F_0)_{\cap}\cdots_{\cap}(F_{s-1})).$ We shall show that if the form A_0 is not identically zero, C cannot be contained in the hypersurface (A_0) . Let x be a generic point of C over the field \overline{K}_1 , where $K_1 = K(w_{ij}, 1 \leq i \leq s-1, 1 \leq j \leq s-2)$. We shall show that $\dim_{\kappa}(x) = n$ which will prove our assertion since the hypersurface (A_0) is defined over K and does not contain V. Since w_{ij} $(1 \le i \le s-1, 1 \le j \le s-1)$ are independent variables over K, \overline{w}_{ij} $(1 \leq i \leq s-1, 1 \leq j \leq s-1)$ are also independent variables over K, and hence $\dim_{\kappa} K_1 = (s-1)(s-2)$. From this we get the equality $\dim_{K} K_{1}(x) = \dim_{K} K_{1} + \dim_{K_{1}}(x) = (s-1)(s-2) + (n-s+2)$ Since dim $((F_0) \cap \cdots \cap (F_{s-1}) \cap V) = n-s$, C is not $= n + (s - 2)^2$. contained in at least one of the hypersurfaces F_i $(i=1, \dots, s-1)$. Now assume that C is not contained in the hypersurface (F_1) . Then we can solve the linear equations $0 = G_{\beta}(x) = \overline{w}_{1\beta}F_1(x) + \cdots$ $+\overline{w}_{s-1\beta}F_{s-1}(x)$ with respect to $\overline{w}_{1\beta}$ ($\beta=1, \dots, s-2$) and we see that $\dim_{K(x)} K_1 \leq (s-2)^2$. Combining the inequalities $\dim_K K_1(x) = n + 1$ $(s-2)^2$ and $\dim_{K(x)}K_1 \leq (s-2)^2$ we get the required result $\dim_K(x) \geq n$.

Let l be a linear form such that the hyperplane (l) does not contain C. Then $(\sum_{\alpha=0}^{s-1} B_{\alpha}G_{\alpha})/l^{\alpha}$ is a function of the ambiant space for a suitable integer a. Restricting this function on C we get $(B_0G_0 + B_{s-1}G_{s-1})/l^{\alpha} = 0$ on C. Now assume that $A_0 = B_0$ is not identically zero. Then by the preceding considerations the hypersurface (B_0) does not contain C. On the other hand (G_0) does not contain C. Then we get the relation

$$(B_0) \cdot C + (G_0) \cdot C = (B_{s-1}) \cdot C + (G_{s-1}) \cdot C$$

Since dim $((G_0) \cap \cdots \cap (G_{s-1}) \cap V) = n-s$, $(G_0) \cdot C$ and $(G_{s-1}) \cdot C$ have no common component. Then we must have $(B_0) \cdot C > (G_{s-1}) \cdot C$. But this is impossible because the degree of B_0 is less that that of G_{s-1} . Thus we have shown that under our assumption A_0 must be identically zero. Changing the rolles of the forms A_i 's, we see that all the forms A_i $(i=1, \dots, s-1)$ must be identically zero. This proves the Lemma.

THE PROOF OF THE THEOREM. Let V, f(X) and F(Y) have the same meaning as before and let ω be a differential form of degree $q (\leq s-2)$ defined over k which is relatively of the first kind on V. Let us represent ω in the form (*) of the Proposition. Then the coefficients $A_{i_1\cdots i_q}$ of ω must satisfy the equation of the type (3) in the Proposition, i.e.

$$\sum_{\alpha=1}^{q+1} (-1)^{\alpha} F_{i_{\alpha}}(y) A_{i_{1}} \dots \hat{i_{\alpha}} \dots i_{q+1}(y) = F_{n+1}(y) A_{i_{1}}^{**} \dots i_{q+1}(y)$$

The above equality implies the existence of the forms of degree $\langle m-1 \rangle$ such that $\sum_{\alpha=1}^{q+1} F_{i_{\alpha}} A_{i_{\alpha}} + F_{n+1} A^* = 0$ on V. Since $q+2 \leq s$, the Lemma 2 implies that dim $((F_1) \cap \cdots \cap (F_{q+1}) \cap (F_{n+1}) \cap V) = n-q+2$. Thus the proof of the theorem is reduced to the Lemma 3. Moreover if there exists a differential form which is relatively of the first kind on V, then we can find such one among the differential forms defined over a given field of definition for V ([2]). Hence the proof is complete.

COROLLARY 1. Let V^n be a non-singular hypersurface in a projective (n+1)-space, then there cannot exist the differential form of the first kind on V which is of degree $\leq n$.

As is known the irregularity of a normal variety V (=the dimension of the Picard variety attached to V) is not greater than

the number of the linearly independent differential forms of the first kind of degree 1([1]). Hence we have the

COROLLARY 2. Let V^n be a hypersurface in L^{n+1} such that any singular subvariety has the codimension >2, then V is a regular variety.

At the end of the paper we shall give an example which shows that a hypersurface V^n in a projective space L^{n+1} whose singular subvarieties have the codimensions s at least, may have a differential form of the first kind of degree >s-2. Let U^{s-1} be a non-singular variety contained in a linear subspace L^s and assume that U has a differential form of the first kind of degree s-1. Let T^{n-s} be a linear subspace in L^{n+1} such that $T \cap L^s = \phi$. Let \tilde{U} be the variety which is composed of the straight lines connecting the points on U and T. Then \tilde{U} is an irreducible variety of dimension *n*, i.e. a hypersurface in L^{n+1} , and whose singular loci are all contained in T, i.e. T is the largest singular subvariety of \tilde{U} which is of codimension s on \tilde{U} . Moreover \tilde{U} is birationally equivalent to the product of U and a projective space of dimension n-s+1. Since U has a differential form of the first kind of degree s-1, \tilde{U} has also a differential form of the first kind of degree s-1. This is a required example.

BIBLIOGRAPHY

- [1] Igusa, J. A fundamental inequality in the theory of Picard varieties, Proc. N. A. Sc., U. S. A. 41 (1955), 317-320.
- [2] Koizumi, S. On the differential forms of the first kind on algebraic varieties, Jour. M. S. of Japan, 1 (1949), 273-280.
- [3] Nakai, Y. Some results in the theory of the differential forms of the first kind on algebraic varieties, Proc. Inter. Symp. on algebraic number theory, Tokyo-Nikko (1955), 155-178.
- [4] Picard, E. and Simard, G. Théorie des fonctions algébriques de deux variables indepéndantes, Tome 1, Paris (1897).

93