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This is a suit of our previous paper [3 ]  with the same title,
and we shall prove the following :

THEOREM. Let V " be a  hypersurface in a projective space L ' 1 ,
an d  le t s  be the m inim um  num ber am ong the codimensions of the
singular subvarieties o f  V  (we shall p u t  s = n + 1  w hen V " has no
singular point). N ow  assume that s > 2 , then V has no differential
form  of  degree s-2 w hich is relativ ely  of  the f irst k ind on  V 2 ).
In particular V has no dif ferential form  of  the f irst k ind o f  degree
< s -2 .

This is the generalization of the well known classical results
that a non singular surface in a projective 3—space has no differen-
tial f orm  of  the f irst k ind of  degree 1 »  Moreover it will be shown
b y  an example that the hypersurface V ' in  L" 4 - 1 m ay have a
differential form of the first kind which is o f degree>s-2, where
s  has the same meaning as above. Thus the estimation s -2  is
the best one in the above sence.

The method o f the proof is based on the representation of
the differential forms of the first kind given in  [ 3 ]  and some
auxiliary lemmas. Let V " be a hypersurface in a projective space
L " ' and assume that V has no singular subvariety of codimension 1.

1) The number in  the bracket refers to the bibliography at the end of the paper.
2) A differential form w is called relatively of the first kind on  V  when w is finite

at every sim ple point of V . A  differential form w is o f the first kind, if  co is relatively
of the first kind on every birationally equivalent model o f  V .  T h is  is equivalent to
say that w is relatively of the first kind on a non-singular birational model o f V  (c f. [2 ]).

3 )  A n  algebraic proof can be found, e. g., in  [4 ] ,  pp. 119-120. B u t the proof
appeared there is not satisfactory.
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Let k  be a field  of definition for V  and X 0 , X „ •-• , X „, be in-
determinates in  L .  Let u i ;  ( i, j  0, 1, ••• , n +1 )  be (n +2) 2 inde-
pendent variables over k  and put

Y. = (i =o, 1, ••• n+1)

Let f  (X o , X „ - • , X „„) 0  be a defining equation for V with coef-
ficients in k  and we shall put

F( Yo, Y1, • • , Y.+1) — f  ( E v 0 Y ,
 0 v1iY» ' • , E v„, ; 17

.,)
i -

where (vi i )  is the inverse matrix of the matrix (u1 1 ). Let P , ( 0 ,
el,••• ,e,,+i) be a  generic point of V  over the field K =k (u i i )  in
the coordinate system (X ) .  Then in the new coordinate system
( Y ), P can be represented by a homogeneous coordinates Oh , m • • • ,

nn_J ,  where Il i - - E  ug i e, (1 -= 0, 1, • • • , n+ 1 ) , and F (Y ) = 0  is  the,-0
defining equation fo r V , an d  P  is also a  generic p o in t o f V
over K .  We shall put y i  = /7, /no . As is easily seen the function
field K (y )=K (P)  of V  over K  is separably generated over K (y ,,,
••• y i )  for any choice i 1 , • • • , in taken from 1, , n + 1 .  Hence n
differentials dy,,,••• form a base of the G rassm ann algebra
of the differential forms on V . Let H , be the hyperp lane  defined

p,
by the equation Yi E  ui ,x;  := 0  and Ci  =  V .1 /1 . Then Ci  is  an,=0 -
irreducible variety without singular su b v a rie ty  o f codimension 1
fo r  any index i(0 i S n + 1 ) .  For any su b v a r ie ty  A " ' o f  V
different from C o we can find n  indices , in  such that vi „ •••
yin  ( 1 .< A-1) is a  set o f unifo rm iz ing  parameters along A.
Let F .  (1 =0 , 1, ••• , n +1 )  be the partial derivatives o f the form
F(Y )  with respect to  11

1 ,  then F. is either identically zero or a
form o f degree m - 1 ,  where m = deg V .  We shall also denote by
F,(y ) the polynomial in K [y ] defined by F 1 (y) =F,(1 ,y „ y „ , i ).
Let G( Y )  be a  form in  ( Y), then we shall denote by (G) the
hypersu rface  defined by the equation G(Y) = O. Now we shall
restate a part of the Theorem 1  o f [ 3 ]  in the

PROPOSITION. Under the sam e notations and assumptions as
above, let co be a dif ferential form  on V  w hich is relativ ely  of the
f irst k ind  on V  and of degree q ( < n ) .  Moreover we shall assume
that co is defined over k. Then co must be w ritten in the form
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A i ••• (y)w E (43711 A A  d.Yiq

'i < ".< '' F .1 -1 (Y )

where the sum  is ex tended over all indices i i < • • •  < i g  tak en f rom
1, ••• , n, an d  Ai,...i a ( y ) 's  are  polynomials i n  K [ y ]  satisf y ing the
following conditions:

(1) degrees of A i,...i, (y )'s  as a polynomials in y's are at most equal
to m — q -1 ,  where m  is  the projective degree of  V .

(2) y, A 0 1 .  q - i  = •- •  A*
 i l - ' q - 1 ( Y )

C' 4 . 1 , •  • • , ' a - 1

is  a polynom ial of  degree S m —q-1 .

(3) There ex ist the polynomials A n . . . i a ( y )  o f  degree .•< m — q -1
such that

( - 1 ) 'F  i i ,(y)Aio•- tia•••ig (Y) „ i(Y) •.=0

Conversely i f  (0  satisf ies these three conditions, (0  is relativ ely  of
the f irst k ind on  V.

We shall remark here the follow ing. In the proposition we
take the hyperplane H, as a plane at infinity, but the similar
formulation are valid when we take any one of the hyperplanes

(i =1 ,  •••  , n +1 ) as a plane at infinity.
LEMMA 1. L et V " be a  variety  in  a  projective space L  and

let G„ ••• ,G 0 b e  hypersurfaces in  L .  A ssume th at the  components

of  the set-theoretic intersection r\G i n V  has the dimension n—r,

and there ex ists at least one component in  that intersection which is
exactly of dimension n — r .  Then there ex ist indices i„ ••• , i r  among
1, ••• ,t such that any  com ponent of  V nG,, r \ ••• r \ G, r  is  of dimension
exactly n—r.

PROOF. We shall use the induction on the number t  o f the
hypersurf aces. W hen t =  1  the assertion is  triv ia l. We shall
denote by dim (G, ( -\ ••• r \ G, r \  V) the highest dimension of the com-
ponents in that intersection. Then by our assumption dim (Gin
••• r \ G ( r \ V )= n —  r .  We shall pay attension to the intersection
G, r \  • • • r \ G _, r \ VV. Then either dim (G, r \  • • • r\G _, r\ V ) n  —  r  + 1  or
dim (G, r \ -•  G0 1 1- V )  N o w  assume that the second case
take place, then the asertion is valid by the induction assumption.
When the first case occurs, then G t does not contain any component
of G, r \ ••• 1- G 0 1 1 - ., V which is of dimension n — r + 1 .  By the induc-
tion assumption we can find r - 1  indices i„  • -•  ,i r _ , from 1, • , t - 1
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such that any component o f  G„ r \ ••• G„_ i n V  i s  o f  dimension
exactly n — r+ 1 .  Moreover these components are not contained
in G „ hence Gi1 ,••• , G1 ,, G , satisfy the condition of our Lemma.

LEMMA 2. L et V , f ( X )  an d  F ( Y )  b e  a s  before and assum e
that V  has no singular subv ariety  of  codim ension less than s. Then
f o r  any  integer a 5 s ,  w e  hav e dim ((Fi i ) •  r \ (Fia ) r \ V )=n — a,
where i„•• •  ,i a  are  arbitrary  a indices taken from  0, 1, ,  n + 1.

PROOF. Since any singular subvariety h a s  the dimension
5 n —s, w e have dim ((fo) n • • • r■ ( fn+i) n V) = n—  r s .  Then we
can find r  indices i„• • •  , i r  such that dim  ( ( f i i ) r \ ••• n (f i r ) r \ V) ,

n — r.  W e sh a ll assume for the sake o f sim plicity that i a = a
( a = 1 , • • •  , r ) .  Let j 1< • • •  < j a  b e  the indices taken form 1, • • • , r,
then dim (( ••• n (f a), \ V ) =n — a. Let i„ , ia  be arbitrary

indices taken from 0, 1, ,  n + 1 .  Then since F a =  Ef,v,„ and
0 =0

(v ) are independent variables over k  which contains all the
coefficients of f 8 's ,  the hypersurfaces (Fi,), ••• ,(Fi a )  can be special-
ized simultaneously to the hypersurfaces (f i i ), • • • , (f i a ) over k.
Hence we must have dim ((Fi,) r \ • • • r \ (Fia ) r \ V )5n—  a. Combining
the inverse inequality which holds true in  general w e get the
Lemma.

LEMMA 3. Let V " be a hypersurface of degree m  in a projective
space L "± ' and F(Y ) =0  b e  the defining equation f o r V . L e t F i be
the partial derivative o f  F ( Y )  w ith respect to the indeterminate Y i

and  assum e th a t  dim ((Fi 1) r \  •-• r \ (Fi s ),-\ V ) = n — s .  Then there
cannot ex ist the relation of  the form

0  (mod F(Y ))a-i -

w ith  the  f o rm s A 's  o f  d e g re e s <m - 1 ,  unless all the f orm s are
identically  zero.

PROOF. Without losing any generality we can assume that
i, =  c -1  (a  = 1, • • • , s). Let K  be a field containing all the coeffi-
cients o f  F ( Y). L e t  w i i  ( i  • • •  ,  s - 1 ;  j  =  0, 1, •  ,  s - 1 )  be
s (s — 1) independent variables over K .  Let

X0 Y O  XS - Y S  -  ( j-=1 ,•••  ,n — s+2 )

-= Y .  (i = 1, • • • , s— 1)
i _o. 1 . 7
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For the sake o f  simplicity we shall put w00 -= 1  and w „ = 0  for
i> 0 .  Let (k i i )  be the inverse matrix o f th e matrix (w 1) ,  then
we have

=  E Fv„X;  (0< i ss-1 )
-

Substituting these relations in the equation F (Y ) = 0, we get the
equation G ( X ) = O  for V in  the new coordinate system (X ) .  We
shall denote as before by F ,  and G ., the partial derivatives of
F (Y ) with respect to Yi  and the partial derivatives o f G (X ) with
respect to X . respectively. Then we have the relations

F, -= (0 i S s - 1 )

G .=  E F i k i o , ( 0  S c e

Hence

A o,F . =  E AosGowso E ( E wo.A.)Go B ,G ,
a=o a,f3 p = o  a = o P=0

where B B  E w8 ,, A 1., in  particular 130 =  A,.

Let C  be a component o f 17 /-\ (G1) n • • • n (Gs_2). Then dim C =
n— s + 2 .  In fact i f  dim C>n—  s + 2, we have dim (V  r \ (G0) n • • • r\
(Gs_i)) > n —  s. But this is a contradiction to the assumption, since
(Vn  (G0) n  • ( G ,_ ,) )  = ( V  n ( F o )  n  • - •  n ( F ,i) ) .  We shall show that
if the form A , is not identically zero, C  cannot be contained in
the hypersurf ace (A 0). Let x  be a  generic point of C  over the
field R „  where K 1 = K (w i i ,  1 5 i  5 s  — 1 ,  1 5 j  S s - 2 ) .  We shall
show that dimK (x) - = n  which will prove our assertion since the
hypersurf ace (A ,)  is defined over K  and does not contain V.
Since w i j  ( 1 < i  S s - 1 ,  1 < j <  s - 1 )  are  independent variables
over K, ( 1 5 i  S s - 1 ,  1 5 j s - 1 )  are also independent vari-
ables over K , and hence dimK K, , --- (s  — 1 )(s -2 ) . From this we get
the equality dimK KI (x) = dimK K, + dimK , (x) =  (s— 1)(s-2) + (n— s+ 2)
= n +

 ( s 2 ) 2 . S in ce  d im  ((F0) n  • • • r\ (F ) r \  V) n —  s , C  is not
contained in at least one of the hypersurfaces F, ( i=1 , •••  , s -1 ) .
N ow  assume that C  is not contained in the hypersurf ace (Fi).
Then we can solve the linear equations 0 = G8  (x) = T.6,8  F, (x) +  •
+ w o _ i s F s - i ( x )  w ith  respect to /To  ( R = 1 , • • •  , s - 2 )  and we see that
dimic()Ki< ( s -2 ) 2 . Combining the inequalities dirn,K i (x) = n +
(s-2 ) 2 and dim„, x ,K ,< (s-2 ) 2 we get the required result dim„-(x) n.
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Let I  be a linear form such that the hyperplane (1) does not

contain C .  Then Bc.G)/r is  a function of the ambiant space
a= o

for a suitable integer a .  Restricting this function on C  w e get
(B0G0 +B s 1 G0 _1) I r  0  o n  C . N ow assume th a t  A ,= B ,  is not
identically zero. Then by the preceding considerations the hyper-
surf ace (130) does not contain C .  On the other hand (G,) does not
contain C .  Then w e get the relation

(/30) • C + (G„)•C= (B s _i 1•C+(G s _i )•C

Since dim  ((Go ) r \  • • • f -N (Gs _i ) n V )=n—  s, (G o ) •C  and (Gs _i ) • C  have
no common component. Then we must have (B,)•C>(G.,_,)•C.
But th is is  impossible because the degree of B , is  less th at th at
of Gs _1 . Thus we have shown that under our assumption A , must
be iden tica lly  zero . Changing the rolles of the forms A i 's ,  we
see that a ll the forms A i  (i =1 ,• • •  , s - 1 )  must be identically zero.
This proves the Lemma.

THE PROOF OF THE THEOREM. Let V, f  (X ) and F(Y ) have the
same meaning as before and let co be a differential form of degree
q ( S s - 2 )  defined over k  w hich is relatively of the first k ind  on
V . Let us represent co in the form (*) of the Proposition. Then
the coefficients o f  to must satisfy the equation of the type
(3) in the Proposition, i.e.

( — 1) a F i a  A i l  (Y) F  i (y)A;ki!.i „i(Y )
ob --I

The above equality implies the existence of the forms of degree
0 -< m - 1  such that F i  A i  + F , A * =  0  o n  V . S in ce  q +2 _<.s,

th e  Lemma 2  im p lies that d im  ((F1) n  •  •  •  n (F,,,) n (F 1) r \ V ) =
n — q +2 . Thus the proof of the theorem is reduced to the Lemma
3. Moreover if there exists a differential form which is relatively
of the f irst k in d  on V, then  w e can  find  such  one among the
differential forms defined over a  given  field of definition for V
([2 ]) .  Hence the proof is complete.

COROLLARY 1 . L et V f l be a  non-singular hypersurface in  a pro-
jective (n+1)-space, then there cannot ex ist the dif ferential form  of
the f irst k ind o n  V  w hich is of  degree<n.

A s  is know n the irregularity of a normal varie ty  V (=the
dimension of the Picard variety attached to V) is not greater than



Some results in  the theory  of  the differential forms 93

the number of the linearly independent differential forms of the
first kind of degree 1  ( [ 1 ] ) .  Hence we have the

COROLLARY 2 .  L e t V ' be a  hypersurface in  L"±1 such that any
singular subv ariety  has the codim ension>2, then  V  is  a  regular
variety.

At the end of the paper we shall give an  example which
shows that a  hypersurf ace V" in a projective space w h o s e
singular subvarie ties have the codim ensions s  at least, may have
a  differential form o f the first kind o f d e g r e e > s - 2 .  L e t Us '
be a  non-singular variety contained in  a  linear subspace LS and
assume that U has a differential form of the first kind o f degree
s - 1 .  Let T "  be a linear subspace in L "+ ' such that T r \ Ls=çb.
L e t r /  b e  the variety which is composed o f the straight lines
connecting the points on U  and T .  T h en  U  is  an  irreducible
variety of dimension n , i.e. a  hypersu rface  in  L n + ' a n d  whose
singular loci are all contained in T , i.e. T  is the largest singular
subvarie ty  of U which is o f codim ension s  on C .  Moreover U is
birationally  equivalent to the product of U and a projective space
of dimension n— s-1-1. Since U has a differential form of the first
kind o f degree s - 1 ,  Û  has also a  differential form o f th e  first
kind o f degree s - 1 .  T h is  is a required example.
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