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In a recent paper Y. Matsushima studied the family of complex
analytic bundles over a complex torus 7 which have GL(», C) as
the structural group and which have holomorphic connections
(see [5]). Particularly definitive are the results that if »=2, then
those bundles which have holomorphic connections are those which
are associated to the universal covering space of 7, with respect
to various representations of its fundamental group into GL (2, C),
and that the set of the indecomposable GL (2, C)-bundles over T
with holomorphic connections are in one-to-one correspondence, in
a natural way, with the product of the Picard variety B of T and
a complex projective space P of dimension one less than that
of T. (See theorems 4 and 5 in [5].)

On the other hand it is clear that the decomposable GL (2, C)-
bundles with holomorphic connections over a compact Kihler mani-
fold M are in one-to-one correspondence with the points of the
symmetric product V of the Picard variety ¥ of M with itself.
We shall construct a non-singular variety W by a monoidal trans-
formation applied to V. It will be shown that W contains a
submanifold X homeomorphic to P X P, that there exists an analytic
GL(2, C)-bundle E over Mx W which gives rise to a family of
GL (2, C)-bundles over M parametrized by W, each of its member
having holomorphic connections, and that w € X gives an indecom-
posable bundle.

Thus we see the true nature of Matsushima’s theorem 5 and,
at the same time, we see that the indecomposable bundles can be
considered as limits of decomposable ones. Furthermore, if we
compare this family with that of decomposable bundles parametrized
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by V, we have another example of the phenomenon of non-Haus-
dorff parameter variety in the theory of deformations of complex
structures, as was first revealed by Kodaira and Spencer [4].

§1. Symmetric products of domains in C”

We shall first consider the symmetric product of the complex
n-space C” with itself (n=2). It is the quotient space of C*"xC”
by the group {1, T}, where 1 denotes the identity automorphism
of C”x C” and = denotes the automorphism defined by 7 (x, y)={(y, x).
Let (§,,-,&,) be linear coordinates of C* and let u;=£,0p, and
v;=E&;0p,, where p, and p, denote projections from C”x C” to the
first and the second factors respectively. Put

(u; +v;) i=12,n,
(1)
Yiy= o (uv;+u,) 1<, j<n.

M. Nagata has shown ([6]) that the functions x; and y;, on the
symmetric product define a normal model of this variety. His
argument refers to the algebraic structure of the symmetric product,
but it is not hard to see that the same conclusion holds when we
replace C” by an open set U of it and consider the analytic struc-
ture of the symmetric product V of U with itself. Thus V has a
normal model given by (1). If we put

%= 5 (4 +0) i=1,2 - ,n,
(2) 1
| Yo =5 (i—v)u;—0)) 1<, j<mn,

then we have y; ,=x,~xj—% Y:5, and hence (2) also define a normal

model of V. This model is defined by the equations

Yis =D
(3) . .
Vi3 Vet = Vit Ve;j 14,4,k 1< n.

This shows that V is the product of a domain in the space of x’s
and a neighbourhood of the vertex in a quadric cone in the
space of »’s. The latter has a singularity at the vertex.
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Because of this simple structure, it is easy to ‘“de-singularize”
V by a monoidal transformation. We take a projective (n—1)-
space P"™' and denote by (¢, ---,¢,) a set of homogeneous coordi-
nates of this space. We then define

(4) W= {x,11t¢ VXPn_llyz‘thzyiktj} .

W is a non-singular manifold. In fact, around a point (x, y) of V
where (»)==(0), (#) may be solved as holomorphic functions in ()
and W is locally homeomorphic to V in analytic sense. If (y)=(0),
then any point (x, 0, #) belongs to W and some of #’s, say ¢,,
differs from zero at this point. Then we may put {,=1 and the
set (X,, ", Zu> Yun> Li» =+, L4_,) S€rves as a system of local para-
meters at the point in question. We see that the subvariety S of
V composed of its singular points is “blown up” into a divisor X
defined by (y)=(0).

§2. Symmetric products of complex tori.

Now let us consider a complex torus T of dimension n. We
can represent T as C"/D, where D is a discrete subgroup of C” of
rank 2n. Let V be the symmetric product of T with itself. The
singular subvariety S of V is the image of the diagonal under
the natural projection Tx T—V. To examine V in the neigh-
bourhood of S, we take a sufficiently fine simple open covering
{U,} of T. Let = denote the canonical projection C*—T. We

choose, for each «, a sheet U, in = %(U,), which maps homeomor-
phically onto U, If (u,,--,%,) is a set of linear coordinates in
C”, then wt=wu;on,! (for i=1,2,--,n) form a set of local para-
meters on U,, where =;' denotes the inverse of =: U,— U,. We
have

(5) u*—uP =q*® ¢ D for points in U, Us,

where #® denotes the point (#%, -+, u%) in C”.

We take a replica of T and define * in the same way as u®.
Consider #7 and v3 as functions on U, X (its replica) in an obvious
manner. Form the symmetric product V, of U, with itself as in
the preceeding paragraph. \ijw is a neighbourhood of S in V.

We shall distinguish the quantities refering to V, by superscript
«, Then by (5) and the corresponding equation v*—v® =a?, we see
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x°—xP=a"® ¥, =3 for points in V,NVj.

The way how V, and V, are patched together within V is now
obvious, and we see that there exists a neighbourhood of S which
is the product of 7 and a neighbourhood of the vertex in the
cone (3). Monoidal transforms W, of V, with centres SNV, are
also patched together to form, together with V—\J/V,, the mono-
idal transform W of V with the centre S, and S is blown up into
X=TxP"" in this transform.

§3. Construction of a class of bundles.?

Let M be a manifold and 1\2 be a principal bundle over M

with the structural group T (M and M have complex analytic,
differentiable or C° structures according to the kind of structures
we are interested in. The same should be understood for all
objects and maps in this paragraph.) Let a group G be given. We

consider a map f: Mx I' -G with the property
(6)  fl& o7) = f(do, T) - f(#,0) for €M, o rel'.
In this equation, dot in the right hand side denotes the group

multiplication in G. Two such functions f and g are said to be
A
equivalent if and only if there exists a map ®: M—G such that

(7) f(£, 0) = P(£0)7"-g(%, 0)-2(4).

It is easy to see that this is an equivalence relation.

We shall point out the following fact:

The G-bundles over M which induce the product bundle over
M under the canonical projection = : M—M are in one-to-one cor-
respondence with the equivalence classes of the maps f with property
(6). This correspondence is given in the following way: Given a

map f we consider the quotient space F obtained from MxG by the
equivalence relation

(8) (%, §) ~ (%0, f(%, 0)-0),

then F is the G-bundle we associate to f.

1) The contents of this and the next paragraphs are essentially contained in
Kodaira [3], § 2. But it is convenient to have a presetation as given here.
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In fact it is easy to see that (8) is actually an equivalence
A
relation. Next, (8) is compatible with the projection MxG> (£, &)
—x=m(%£)€ M. This map defines the projection p:F— M. Right
translations on G are also compatible with (8). Thus G operates
on F on the right. These structures define F as a principal G-
A

bundle over M. If we denote by II the canonical map from MxG
to F, then the diagram

. o
MXG——> F
2] | s
A T

M — M

is commutative, and right translations by elements of G commute
with II. This shows that II is a bundle map.
Conversely let a principal G-bundle F over M be given, and

suppose F induces the product bundle on M. The induced bundle
A A
is the subset F of Mx F defined by

F={(# a)e MxF|=(#) = p(a)} ,
where p denotes the projection of the bundle F. Since 1‘«Q has
global cross sections, we take one given by
]\AJBJ%—MJ(JZ)GF where p(a) = =(%).
For o €T, a(4o) is a point of p (= (%)) F. Hence there exists an
element g = g(£, ) € G such that
(9) a(fo) =a(%)-g(%, o).

From a(£(o7)) = a((#5)-7), we deduce g(£, or) = g(%, o)-g(Z0, 7).
Hence if we put

(10) f(%£,0)=g(%, o),

f satisfies the equation (6). Now the cross section «(£) define a
bundle map ]AWXGB(J?, C)H(ﬁ,a(f)-é‘)ef‘. Since F comes out
from F by identifying (£, b) with (£o, b) (for b€ F), F also comes
out from ]\AJXG by identifying (£, ) with (#o, f(%, 0)-£). This
shows that F is associated to f.

Finally suppose f and g give rize to equivalent bundles F and
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A
F’. F is the quotient space of Mx G with respect to the relation
(%, &) ~ (%o, f(£, 0)+&) and F’ is similarly defined. Equivalence
between F and F’ is brought into expression by a correspondence

F > the class of (£, £) & the class of (£, ) € F/,

which is compatible with right translation of G. Hence we must
have

(7) n=®(£)-€  where ® is a map M—G.

If (%0, &) and (40, %) belong to the classes of (£, £) and (%, 5)
respectively, then we have & =f(%, 0).&, 7/ =g(%, o)-7 and 7' =
@ (£a)-&’. This gives the relation

f(%, 0) = P(£0)7'-g(%, 0)-P(%) .

The converse is easily seen.
Let us remark that if f is independent of £, then f is an anti-
representation of I' into G and the corresponding bundle F is the

one associated to the bundle AAJ —-M.

§4. Family of decomposable bundles.

Let M be a compact Kidhler manifold and let 8 be the Picard
variety of M. % has the structure of a complex torus and is the
set of all complex line bundles over M which are associated to
representations of the fundamental group of M into the multi-
plicative group of non-zero complex numbers.” Kodaira has given
a line bundle over Mx %, which explicitly gives an analytic family
of line bundles over M parametrized by . (See [3], §2.) We
want to construct a family of GL (2, C)-bundles over M, para-
metrized by the symmetric product V of ¥ with itself.

Let »n be half the first Betti number of M and let o,, -+, »,
be a basis of the module A of linear differential forms of the
first kind on M. The vector space A of the conjugates of the
forms in A can be considered as the universal covering space of
PB. Namely

(11) B=A4/D,

2) A line bundle (or a C*-bundle) is associated to a representation of fund-
mental group if and only if it has a holomorphic connection.
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1
27\ —1
We take linear coordinates (,, -+, %,) in A with respect to the
basis ®,, -+, ®, and apply notations in § 2 for L'=7T and (u).

Let U, and U, be any two, say U, and U, among {U,} and
let (#) and (v) stand for «* and v®.. We set

where @€ D if and only if S (B—B) e Z for all Z e H,(M, Z).
z

exp(Sy%:vjaj> 0

(12)  flw, v), v) = 0 exp( Sv ; uj5j>

for (u, v) € U, x U,, ve€l' = the fundamental group of M, where S ®
Y

denotes the integral of @ on the homology class determined by +.

We look on (12) as a map from Mx U, xU,xI into GL(2, C)

A A
where M is the universal covering space of M and where M x U, x U,
is considered as a principal I'-bundle over Mx U, x U,. Since f

is independent of the variables describing Z\Ad, the analytic bundle
over Mx U, x U, defined by f represents an analytic family of
bundles over M, parametrized by U, x U,, and each member of the
family having holomorphic connections.

If we take another open set U/x U, instead of U, xU,, we
see the bundles constructed over Mx U, x U, and MxU,/x U,/
induce equivalent bundles over the intersection, by virtue of (11)
and (5). In fact we denote by («’) and (") local coordinates on
U/’ and U, respectively, and set

exp(SZZvjwj ) 0
P(%, (1, v) = ’ , ,
0 exp(Sé?uJ.wi>
where % is a variable point on M and 6 is a fixed point on M,
then we have

f(d, V), v) =P(xy, (u—u', v—=0"))"f((u, V), V)P (X, (u—u', v—0")).

Thus we have principal GL(2, C)-bundles over Mx U, x U for
all «, 8 and any of them induces equivalent bundle on an open
set of MxBxP where it is defined. Under this circumstance we
have a principal GL(2, C)-bundle F over whole Mx B xB. It is clear
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that F induces on Mxuxv the bundle E,®E,, where E, denotes
the C*-bundle corresponding to u € .

Now let us consider the automorphism 7 of P xP which is
defined by T(«, v)=(v, #). 7 induces an automorphism % of the
bundle F defined in the following way:  maps Mx U, x U, onto
MxU,xU,, and in (12) it holds that

£, w), 7) = (2 (1)) £l v), ) ((1) (1)) .

0 1
We have only to take <P=( 1 0) in (7’), to establish required

bundle map # of the part of F over Mx U, x U, onto that over
MxU,xU,.

If we disregard the part of F which lies over MxAgq, where
AsB denotes the diagonal in the product P x B, then formation of
the quotient with respect to the group {1, v} gives a bundle F’' over
Mx(V—S), where S denotes the singular subvariety of the sym-
metric product V. This family F’ has an advantage that we have
inequivalent bundles over M for different points of V. (A conse-
quence of a theorem of M. F. Atiyah, see [1], theorem 3, or [5],
prop. 4.1.)

Unfortunately, this method breaks down when we take S into
account. It seems we have to content ourselves with the following
remark : the bundle F defines a V-bundle on the V-mainfold MxV
in the sense of W. L. Bailey [ 2], and we may say we have an analytic
family of bundles parametrized by V, in some weaker sense.

§5. Family parametrized by W.

We have constructed the bundle F’ over Mx(V—S), or, if we
consider the monoidal transform W (see §2), over Mx(W—X).
We want to see what will happen in a neighbourhood of a point
w, of X. Suppose the homogeneous coordinate £, which appeared
in (4) is not zero at w,, then in a neighbourhood N of w, in W,
we may assume that {,=1 and that x,, -, x,, ¥,, and ¢, - ,¢,_,
form a system of local parameters on N. (For the meaning of
symbols, see (2).) On the other hand, «; and v, for 1 <4, j < form
a system of local coordinates in N—X, and (12) gives the bundle
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F’ restricted on N—X. We first transform f by %(—1 1)
€ GL(2, C), and obtain 11

g((u,v),ry)=%(—i i)'f((u,v),fy).<_i i)

1 - 1 —ay

._(ea)_‘_e w) _(ew_e w)

2 2

= exp (S Zx,.ﬁ,-)@ ,
R4 —1_ o« 2 l 2 —a
> (e*—e™?) 2 (e*+e %)

1
where a:%& 2V (v;—u;)o;. Next transform g by ( 0 ),
¥ 0 v,—u,

then we have

13) Al v), 'Y)=((1) ,,ngu”)'g ((1) 1/<v,,3u,,>)

_ exp(S zxi6i> ® %‘(ew+e‘“) 2—(0"{__‘%)(@”__(3‘@
Y

(?)_n;un)(ew_e-w) '%‘(8“4-8_“)

~ All these are maps from (N—X) x 1" into GL(2, C) which define
F’ over Mx(N—X). But from the invariance of %z by 7: (u, v)—
(v, u), and from the fact that # remains bounded in N and that
det(#) remains away from zero in N, it follows that (13) can be
extended to a holomorphic map from the whole Nx1' into GL(2, C)
satisfying (6), and thus F’ can be extended to an analytic bundle
over Mx N. For different N’s these bundles are in coherence, and
we have an analytic principal GL(2, C)-bundle E over Mx W. For
a point w, € X where f,=1, we have

1og )3

0 1

(14) h(w,, ¥) = exp ( S,Zf X0, ) ®

The first factor in (14) gives the line bundle which corresponds
to the projection of w, to the factor B in the product X=P x P**,
and the second factor represents the projection of w, to P. As
one sees in Matsushima’s paper (or in Weil’s lectures [7]), diffe-
rent points of X correspond to different indecomposable bundles.
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Matsushima’s theorem 5 tells that if M is a complex torus
T, we obtain the set of all GL(2, C)-bundles with holomorphic
connections as the union Vu W (with obvious identification of V—S
and W—X). The complex structure he gave to the set of inde-
composable bundles is the same as that of our X. This can readily

be seen from (14). Namely S 2 t,0,, considered as a function of
Y

v€m(T)=H, (T, Z), represents an element of Matsushima’s AF¢/A*
(see [5], last section), since we integrate » and not o.

The final remark is the following: If we consider decom-
posable and indecomposable bundles together, we have to consider
the space VuW, where points of V—S are identified with the
corresponding points of W—X, while points of S and X are left
separately. Thus this space is not a Hausdorff space but a pre-
analytic variety as Serre calls in his Faisceaux algébriques cohérents.
In view of what has been shown by Kodaira and Spencer ([4]
Chapter IV, 14, v), it is no wonder that we have such a situation.
But it seems interesting to the author to have another simple and
concrete example of the phenomenon like this one.
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