MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXII, Mathematics No. 1, 1959.

On the equiasymptotic stability in the large

By

Taro Yoshizawa

(Received Feb. 27, 1959)

In the foregoing paper [3]* we have discussed a necessary and sufficient condition for the equi-ultimate boundedness of solutions of the differential system. In this paper we will discuss the asymptotic stability in the large by the idea in [3].

Now we consider a system of differential equations,

(1)
$$\frac{dx}{dt} = F(t, x),$$

where x denotes an n-dimensional vector and F(t, x) is a given vector field which is defined and continuous in the domain

 $\Delta: \quad 0 \leq t < \infty, \quad ||x|| < \infty.$

We adopt the notations in [3]. Moreover for the purpose of discussing the stability, we assume that

 $(2) F(t, 0) \equiv 0.$

Definition. The solution $x(t) \equiv 0$ of (1) is said to be equiasymptotically stable in the large if there exists a positive constant $T(t_0, \alpha, \varepsilon)$, defined for any $\varepsilon > 0$ and any non-negative value of α and $t_0 \geq 0$, such that $||x_0|| \leq \alpha$, $t_0 \geq 0$ and $t > t_0 + T(t_0, \alpha, \varepsilon)$ imply $||x(t; x_0, t_0)|| < \varepsilon$.

In the case where the solutions of (1) are uniformly bounded and the solution $x(t) \equiv 0$ is uniformly stable, if $T(t_0, \alpha, \varepsilon)$ is determined depending only on α and ε and independent of t_0 , the solution $x(t) \equiv 0$ is uniformly asymptotically stable in the large (cf. [1]).

^{*} Numbers in [] refer to the bibliography at the end of the paper,

When every solution is unique for the Cauchy-problem, if the solution $x(t) \equiv 0$ of (1) is equiasymptotically stable in the large, it is stable in the sense of Liapounoff and hence it is equiasymptotically stable in the sense of Liapounoff. Moreover by Lemma 1 in [3] we can see that the equiasymptotic stability in the large implies the equi-boundedness. Therefore we need not add the stability and the equi-boundedness to the definition.

As a simple case, if $F \in \overline{C}_0$ with respect to x (cf. [2]) and the solutions of (1) are uniformly bounded and T is independent of t_0 , we can easily see that the equiasymptotic stability in the large implies the uniform asymptotic stability in the large.

Now we will obtain a condition for the equiasymptotic stability in the large. At first we have the following theorem which gives a sufficient condition.

Theorem 1. We suppose that there exists a continuous function $\mathcal{P}(t, x)$ satisfying the following conditions in the domain Δ ; namely

- 1° $\varphi(t, x) > 0$, if $||x|| \neq 0$,
- 2° $\lambda(||x||) \leq \varphi(t, x)$, where $\lambda(u)$ is a continuous increasing function such that $\lambda(u) > 0$ for u > 0 and $\lambda(u) \to \infty$ as $u \to \infty$,
- $3^{\circ} \quad \varphi(t, x)$ belongs to the class C_0 with respect to (t, x) and we have

$$D_F \varphi(t, x) = \overline{\lim_{h \to 0}} \frac{1}{h} \{ \varphi(t+h, x+hF) - \varphi(t, x) \} \leq -\varphi(t, x) \,.$$

Then the solution $x(t) \equiv 0$ of (1) is equiasymptotically stable in the large.

Proof. For a given positive constant α , we put

$$\max_{||x_0|| \leq \alpha} \varphi(t_0, x_0) = M(t_0, \alpha) .$$

By the condition 2°, there exists a positive number $\beta(>\alpha)$ such that

$$\min_{||x||=\beta} \varphi(t, x) > M(t_0, \alpha).$$

If we suppose that for some t, say t_1 , we have

$$||x(t_1; x_0, t_0)|| = \beta$$
,

we have

(3)
$$\varphi(t_1, x(t_1; x_0, t_0)) > M(t_0, \alpha) \geq \varphi(t_0, x_0).$$

On the other hand, by the condition 3° , we have

$$(4) \qquad \qquad \varphi(t_1, x(t_1; x_0, t_0)) \leq \varphi(t_0, x_0)$$

which contradicts (3). Therefore we have $||x(t; x_0, t_0)|| < \beta$.

Now in the domain

$$\Delta_{\boldsymbol{\beta}}: \quad t_{\scriptscriptstyle 0} \leq t < \infty , \quad ||x|| \leq \beta ,$$

we consider a function $\psi(t, x)$ such as

$$\psi(t, x) = e^t \varphi(t, x) \, .$$

It is clear that this function satisfies

(5)
$$\lambda(||x||)e^t \leq \psi(t, x)$$

 $D_F \psi(t, x) \leq 0$ (6)

and belongs to the class C_0 with respect to (t, x). If for some $\varepsilon > 0$ (ε : small), there exists a divergent sequence $\{t_m\}$ such that for some solution, we have $||x(t_m; x_0, t_0)|| \ge \varepsilon$, we have

(7)
$$\psi(t_m, x(t_m; x_0, t_0)) \ge e^{t_m} \lambda(\mathcal{E}) .$$

On the other hand, we have

(8)
$$\psi(t_0, x(t_0; x_0, t_0)) \leq e^{t_0} M(t_0, \alpha)$$

and

$$\psi(t_m, x(t_m; x_0, t_0)) \leq \psi(t_0, x(t_0; x_0, t_0))$$
 (by (6))

and hence by (7) and (8) we find

$$e^{t_m}\lambda(\mathcal{E}) \leq e^{t_0}M(t_0, \alpha)$$
.

Since $\lambda(\varepsilon) > 0$ and $t_m \to \infty$ $(m \to \infty)$, there arises a contradiction. Therefore we have $||x(t; x_0, t_0)|| \leq \varepsilon$ for $t > t_0 + \log \frac{M(t_0, \alpha)}{\lambda(\varepsilon)}$. This completes the proof of Theorem.

Next we will obtain a necessary condition. Namely we have the following theorem.

Theorem 2. We assume that F(t, x) in (1) belongs to the class C_0 with respect to x. Then if the solution $x(t) \equiv 0$ of (1) is equiasymptotically stable in the large, there exists a continuous function $\varphi(t, x)$ satisfying the following conditions in the domain Δ ; namely

- 1° $\varphi(t, x) > 0$ if $||x|| \neq 0$,
- $2^{\circ} \quad \varphi(t,0) \equiv 0,$
- 3° $\lambda(||x||) \leq \varphi(t, x)$, where $\lambda(u)$ is the same as one in Theorem 1,
- $4^{\circ} \quad \varphi(t, x)$ belongs to the class C_{\circ} with respect to (t, x),
- $5^{\circ} \quad D_F \varphi(t, x) \leq -\varphi(t, x).$

Proof. Let I_{η} and X_{η} be the interval $0 \leq t \leq \eta$ and the space $||x|| \leq \eta$ respectively. And we represent the product space $I_{\eta} \times X_{\eta}$ by Ω_{η} . Since the solution $x(t) \equiv 0$ is equiasymptotically stable in the large, the solutions of (1) are equi-ultimately bounded for any positive number \mathcal{E} . Hence, by Lemma 2 in [3], they are locally uniformly ultimately bounded⁽¹⁾. Namely for the solution issuing from $(t_0, x_0) \in \Omega_{\eta}$ to the right, there exists $T(\mathcal{E}, \eta)$ such that we have $||x(t; x_0, t_0)|| < \mathcal{E}$ for $t > t_0 + T(\mathcal{E}, \eta)$. We assume that $T(\mathcal{E}, \eta) = T(1, \eta)$ for $\mathcal{E} > 1$. Then $T(\mathcal{E}, \eta)$ is defined in the quadrant $0 < \mathcal{E}, 0 \leq \eta$ and it is non-negative. Moreover we can assume that it is monotone increasing in η for each fixed \mathcal{E} and monotone decreasing in \mathcal{E} for each fixed η and that it is a continuous function of $(\mathcal{E}, \eta)^{(2)}$.

By Lemma 1 in [3], when $x(t) \equiv 0$ is equiasymptotically stable in the large, the solutions of (1) are equi-bounded. Therefore there exists $\beta(\eta)$ such as $||x(t; x_0, t_0)|| \leq \beta(\eta)$ for $(t_0, x_0) \in \Omega_{\eta}^{(3)}$, and we can assume that $\beta(\eta)$ is a positive continuous increasing function.

If we put

$$\max_{\substack{0 \leq t \leq \eta \\ 0 \leq ||x|| \leq \beta(\eta)}} ||F(t, x)|| = F^*(\eta),$$

 $(1)\$ Even if we do not assume the uniqueness for the Cauchy-problem, this lemma is true.

(2) $T(\varepsilon, \eta)$ is defined in the quadrant $0 < \varepsilon$, $0 \le \eta$ and it is increasing in η and decreasing in ε . Therefore it is integrable in $0 < a \le \varepsilon \le b$, $0 \le c \le \eta \le d$. Thus if we put

$$\frac{2}{\varepsilon}\int_{\frac{2}{2}}^{\varepsilon}\int_{\eta}^{\eta+1}T(\sigma,\,\xi)d\sigma\,d\xi=\,\widetilde{T}(\varepsilon,\,\eta)\,,$$

 $\tilde{T}(\varepsilon, \eta)$ is a continuous function of (ε, η) and it is increasing in η and decreasing in ε . Moreover we have $T(\varepsilon, \eta) \leq \tilde{T}(\varepsilon, \eta)$. Hence we represent this $\tilde{T}(\varepsilon, \eta)$ by $T(\varepsilon, \eta)$ again.

(3) We suppose that the solutions of (1) are equi-bounded (every solution need not be unique for the Cauchy-problem). Then every solution issuing from $(t_0, x_0) \in \Omega_\eta$ to the right intersects the hyperplane $t=\eta$ and hence $||x(t; x_0, t_0)||$ $(0 \le t \le \eta)$ is bounded by a suitable positive number $\alpha(\eta)$. Since we can consider this solution as the solution issuing from $t=\eta$, $||x|| \le \alpha(\eta)$ to the right, by the equi-boundedness we have a suitable positive number $\gamma(\eta)$ which is the bound of $||x(t; x_0, t_0)||$ on $\eta \le t < \infty$. Consequently we can find a suitable positive number $\beta(\eta)$.

 $F^*(\eta)$ is continuous increasing and we may assume that $F^*(\eta) \ge 1$. Moreover let $D_{e,\eta}$ be the set of points (t, x) such as

$$0 \leq t \leq \eta + T(\mathcal{E}, \eta), \quad 0 \leq ||x|| \leq \beta(\eta).$$

Since F(t, x) belongs to the class C_0 with respect to x, there is a positive constant $L(\mathcal{E}, \eta)$ such that

$$||F(t, x) - F(t, x')|| \leq L(\varepsilon, \eta) ||x - x'||,$$

where $(t, x) \in D_{\varepsilon,\eta}$, $(t, x') \in D_{\varepsilon,\eta}$. We can also assume that $L(\varepsilon, \eta)$ is a positive continuous function of (ε, η) and that it is increasing in η for each fixed ε and decreasing in ε for each fixed $\eta^{(4)}$.

Now we consider a function as follows; namely

$$G(\varepsilon, \zeta) = \begin{cases} \zeta - \varepsilon & (\zeta \ge \varepsilon) \\ 0 & (0 \le \zeta < \varepsilon) \end{cases}$$

Then this is a non-negative continuous function defined for $0 \leq \zeta$, $0 < \varepsilon$ and it tends to infinity as $\zeta \rightarrow \infty$ when ε is fixed, and we have

$$(9) \qquad |G(\varepsilon, \zeta) - G(\varepsilon, \zeta')| \leq |\zeta - \zeta'|$$

If we put

(10)
$$F^*(\eta) \exp \{(L(\mathcal{E}, \eta) + 1)T(\mathcal{E}, \eta)\} + G(\mathcal{E}, \beta(\eta)) \exp \{T(\mathcal{E}, \eta) + \eta\}$$
$$= M(\mathcal{E}, \eta),$$

 $M(\varepsilon, \eta)$ is a positive continuous function defined for $0 < \varepsilon$, $0 \le \eta$. Since $\frac{1}{M(\varepsilon, \eta)}$ is also a positive continuous function, by Massera's lemma in [1] there are two functions $g(\varepsilon)$, $k(\eta) \in C_{\infty}$ in $[0, +\infty)$ such that $k(\eta) > 0$, $g(\varepsilon) > 0$ when $\varepsilon > 0$, g(0) = 0 and that

$$g(\varepsilon) k(\eta) \leq \frac{1}{M(\varepsilon, \eta)}.$$

If we put $\frac{1}{k(\eta)} = h(\eta)$, we have

(11)
$$g(\mathcal{E}) M(\mathcal{E}, \eta) \leq h(\eta) .$$

To simplify the descriptions, we represent $T(\mathcal{E}, \eta)$, $L(\mathcal{E}, \eta)$, $G(\mathcal{E}, \zeta)$

⁽⁴⁾ cf. (2).

Taro Yoshizawa

and $g(\varepsilon)$ for $\varepsilon = \frac{1}{n}$ $(n = 1, 2, \dots)$ by $T_n(\eta)$, $L_n(\eta)$, $G_n(\zeta)$ and g_n respectively.

Now we put

(12)
$$\varphi_n(t, x) = g_n \sup_{\tau} \left[G_n(||x(t+\tau; x, t)||)e^{\tau}; 0 \leq \tau \right].$$

It is clear that we have

(13)
$$g_n G_n(||x||) \leq \varphi_n(t, x)$$

•

and

(14)
$$\varphi_n(t, 0) \equiv 0.$$

For $(t, x) \in \Omega_{\eta}$, that is, for the solutions issuing from Ω_{η} to the right we have

$$\varphi_n(t, x) \leq g_n G_n(\beta(\eta)) e^{T_n(\eta)}$$

and hence by (10) and (11) we have

(15)
$$\varphi_n(t, x) \leq h(\eta) \, .$$

Next we will show that $\varphi_n(t, x)$ belongs to the class C_0 with respect to (t, x). We suppose that $(t, x) \in \Omega_n$, $(t', x') \in \Omega_n$. If we put $\varphi_n(t, x) = g_n G_n(||x(t+\tau; x, t)||)e^{\tau}$,

$$\begin{aligned} \varphi_n(t, x) - \varphi_n(t, x') &\leq g_n \{ G_n(||x(t+\tau; x, t)||)e^{\tau} - G_n(||x(t+\tau; x', t)||)e^{\tau} \} \\ &\leq g_n e^{\tau} ||x(t+\tau; x, t) - x(t+\tau; x', t)|| \quad \text{(by (9))} \\ &\leq g_n e^{\tau} ||x - x'||e^{L_n(\eta)\tau} \\ &\leq g_n ||x - x'||e^{(L_n(\eta)+1)T_n(\eta)}. \end{aligned}$$

In the similar way we have

$$\varphi_n(t, x) - \varphi_n(t, x') \ge -g_n ||x - x'|| e^{(L_n(\eta) + 1)T_n(\eta)}$$

Therefore by (10) and (11) we have

(16)
$$|\varphi_n(t, x) - \varphi_n(t, x')| \leq h(\eta) ||x - x'||.$$

Now we shall consider $\varphi_n(t, x) - \varphi_n(t', x)$, where t < t'. If we put $\varphi_n(t, x) = g_n G_n(||x(t+\tau; x, t)||)e^{\tau}$ and we assume that $t+\tau \ge t'$ and $t+\tau = t'+\tau'$, we have

$$\varphi_n(t, x) - \varphi_n(t', x) \leq g_n \{G_n(||x(t+\tau; x, t)||)e^{\tau} - G_n(||x(t'+\tau'; x, t')||)e^{\tau'}\}$$

176

$$\leq g_{n}e^{\tau} \{G_{n}(||x(t+\tau; x, t)||) - G_{n}(||x(t'+\tau'; x, t')||)\} + g_{n}G_{n}(||x(t'+\tau'; x, t')||)(e^{\tau} - e^{\tau'}) \leq g_{n}e^{\tau}||x(t+\tau; X, t') - x(t'+\tau'; x, t')|| + g_{n}G_{n}(||x(t'+\tau'; x, t')|)e^{\tau'}(e^{\tau-\tau'} - 1) \leq g_{n}e^{T} n^{(n)}||X-x||e^{L} n^{(n)T} n^{(n)} + g_{n}G_{n}(\beta(\eta))e^{T} n^{(n)}e^{\eta}(t'-t),$$

where X = x(t'; x, t). Since $||X - x|| \leq F^*(\eta)(t'-t)$, we find

$$\varphi_n(t, x) - \varphi_n(t', x) \leq g_n \{ e^{(L_n(\eta)+1)T_n(\eta)} F^*(\eta) + G_n(\beta(\eta)) e^{T_n(\eta)+\eta} \} (t'-t) .$$

In the case where $t + \tau < t'$, we have

$$\begin{split} \varphi_{n}(t, x) - \varphi_{n}(t', x) \\ &\leq g_{n}\{G_{n}(||x(t+\tau; x, t)||)e^{\tau} - G_{n}(||x||)\} \\ &\leq g_{n}G_{n}(||x(t+\tau; x, t)||)(e^{\tau} - 1) + g_{n}G_{n}(||x(t+\tau; x, t)||) - g_{n}G_{n}(||x||) \\ &\leq g_{n}G_{n}(||x(t+\tau; x, t)||)(e^{t'-t} - 1) + g_{n}||x(t+\tau; x, t) - x|| \quad (\tau < t' - t) \\ &\leq g_{n}G_{n}(\beta(\eta))e^{\eta}(t' - t) + g_{n}F^{*}(\eta)(t' - t) \\ &\leq g_{n}\{G_{n}(\beta(\eta))e^{\eta} + F^{*}(\eta)\}(t' - t) \; . \end{split}$$

If we put $\varphi_n(t', x) = g_n G_n(||x(t' + \tau'; x, t')||)e^{\tau'}$ and $t' + \tau' = t + \tau$, we have

$$\begin{split} \varphi_{n}(t, x) &- \varphi_{n}(t', x) \\ &\geq g_{n}\{G_{n}(||x(t+\tau; x, t)||)e^{\tau} - G_{n}(||x(t'+\tau'; x, t')||)e^{\tau'}\} \\ &\geq g_{n}e^{\tau}\{G_{n}(||x(t+\tau; X, t')||) - G_{n}(||x(t'+\tau'; x, t')||)\} \quad (\tau \geq \tau') \\ &\geq -g_{n}e^{T_{n}(\eta)}||X-x||e^{L_{n}(\eta)T_{n}(\eta)} \\ &\geq -g_{n}e^{(L_{n}(\eta)+1)T_{n}(\eta)}F_{n}^{*}(\eta)(t'-t) \,. \end{split}$$

In the end, by (10) and (11), we have

$$|\varphi_n(t, x) - \varphi_n(t', x)| \leq h(\eta) |t - t'|.$$

From this and (16) we obtain

(17)
$$|\varphi_{n}(t, x) - \varphi_{n}(t', x')| \leq h(\eta) [||x - x'|| + |t - t'|].$$

Finally, if $h \ge 0$, x' = x(t+h; x, t) and τ' is such that $\mathcal{P}_n(t+h, x') = g_n G_n(||x(t+h+\tau'; x', t+h)||)e^{\tau'}$ and if $\tau = \tau' + h$

$$\begin{aligned} \varphi_n(t+h, x') &= g_n G_n(||x(t+h+\tau'; x', t+h)||)e^{\tau'} \\ &= g_n G_n(||x(t+\tau; x, t)||)e^{\tau} \cdot e^{\tau'-\tau} \\ &\leq \varphi_n(t, x)e^{\tau'-\tau} , \end{aligned}$$

Taro Yoshizawa

whence

$$\frac{\varphi_n(t+h, x') - \varphi_n(t, x)}{h} \leq \varphi_n(t, x) \frac{e^{-h} - 1}{h}$$

and by letting $h \rightarrow 0$, we find

(18)
$$D_F \varphi_n(t, x) \leq -\varphi_n(t, x) \,.$$

We are now going to obtain the desired function. If we put

$$\varphi(t, x) = \sum_{n=1}^{\infty} \frac{1}{2^n} \varphi_n(t, x) \, ,$$

 $\varphi(t, x)$ is a continuous function defined in Δ , because $\varphi_n(t, x) \leq h(\eta)$ when $(t, x) \in \Omega_{\eta}$ and hence the series is uniformly convergent in Ω_{η} and moreover η is arbitrary. We can see easily that we have

 $\varphi(t, x) \ge 0$ and $\varphi(t, 0) \equiv 0$.

For x such as $\frac{1}{n} \le ||x|| < \frac{1}{n-1}$, $p(t, x) > -\frac{1}{n} \cdot \varphi_{-1}(t, x) > -\frac{1}{n} \left(||x|| - \frac{1}{n-1} \right) \varphi_{-1} > -\frac{1}{n-1}$

$$\varphi(t, x) \ge \frac{1}{2^{n+1}} \varphi_{n+1}(t, x) \ge \frac{1}{2^{n+1}} \Big(||x|| - \frac{1}{n+1} \Big) g_{n+1} \ge \frac{1}{2^{n+1}} \frac{1}{n(n+1)} g_{n+1}$$

and for x such as ||x|| > 1,

$$\varphi(t, x) \geq \frac{1}{2} g_1(||x||-1)$$

and hence there exists a continuous increasing function $\lambda(u)$ such that $\lambda(u) > 0$ when u > 0 and $\lambda(u) \to \infty$ as $u \to \infty$ and $\lambda(||x||) \le \varphi(t, x)$.

This function $\mathcal{P}(t, x)$ belongs to the class C_0 with respect to (t, x). For $(t, x) \in \Omega_{\eta}$ and $(t', x') \in \Omega_{\eta}$,

$$\begin{split} |\varphi(t, x) - \varphi(t', x')| \\ &= |\sum_{n=1}^{\infty} \frac{1}{2^n} \varphi_n(t, x) - \sum_{n=1}^{\infty} \frac{1}{2^n} \varphi_n(t', x')| \\ &= |\sum_{n=1}^{\infty} \frac{1}{2^n} \{ \varphi_n(t, x) - \varphi_n(t', x') \} | \\ &\leq \sum_{n=1}^{\infty} \frac{1}{2^n} |\varphi_n(t, x) - \varphi_n(t', x')| \\ &\leq \sum_{n=1}^{\infty} \frac{1}{2^n} h(\eta) [||x - x'|| + |t - t'|] \\ &\leq h(\eta) [||x - x'|| + |t - t'|] \sum_{n=1}^{\infty} \frac{1}{2^n}. \end{split}$$

178

Therefore we find

$$|\varphi(t, x) - \varphi(t', x')| \leq h(\eta) [||x - x'|| + |t - t'|],$$

that is, $\varphi(t, x) \in C_0$.

Finally, we have

$$D_F \varphi(t, x) = \overline{\lim_{h \to 0}} \frac{1}{h} \{ \varphi(t+h, x+hF) - \varphi(t, x) \}$$

$$= \overline{\lim_{h \to 0}} \frac{1}{h} \left\{ \sum_{n=1}^{\infty} \frac{1}{2^n} \varphi_n(t+h, x+hF) - \sum_{n=1}^{\infty} \frac{1}{2^n} \varphi_n(t, x) \right\}$$

$$= \overline{\lim_{h \to 0}} \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{1}{h} \{ \varphi_n(t+h, x+hF) - \varphi_n(t, x) \}$$

$$\leq \sum_{n=1}^{\infty} \overline{\lim_{h \to 0}} \frac{1}{2^n} \frac{1}{h} \{ \varphi_n(t+h, x+hF) - \varphi_n(t, x) \}^{(5)}$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{2^n} (-\varphi_n(t, x)) = -\sum_{n=1}^{\infty} \frac{1}{2^n} \varphi_n(t, x) = -\varphi(t, x)$$

whence we obtain

$$D_F \varphi(t, x) \leq -\varphi(t, x)$$
.

Therefore we can see that this function $\varphi(t, x)$ is the desired. Then we have the following theorem which gives a necessary and sufficient condition.

Theorem 3. We assume that F(t, x) of (1) belongs to the class C_0 with respect to x. In order that the solution $x(t) \equiv 0$ of (1) is equiasymptotically stable in the large, it is necessary and sufficient that there exists a continuous function $\mathcal{P}(t, x)$ satisfying the conditions in Theorem 2 in the domain Δ .

$$\overline{\lim_{h\to a}}\sum_{n=1}^{\infty}f_n(h)\leq \sum_{n=1}^{\infty}\overline{\lim_{h\to a}}f_n(h).$$

In our case, since for $(t, x) \in \Omega_{\eta}$ and $(t', x') \in \Omega_{\eta}$, we have $|\varphi_n(t, x) - \varphi_n(t', x')| \leq h(\eta)$ $[\|x - x'\| + |t - t'|]$ and for a sufficiently small |h|, we may assume that both (t, x) and (t+h, x+hF) belong to Ω_{η} for a suitable η , we have

$$\left|\frac{1}{h}\{\varphi_n(t+h, x+hF) - \varphi_n(t, x)\}\right| \leq \frac{1}{|h|}h(\eta)[|h| ||F|| + |h|] \leq \tilde{h}(\eta)$$

and hence we can regard $\frac{1}{2^n} \frac{1}{h} \{\varphi_n(t+h, x+hF) - \varphi_n(t, x)\}$ as $f_n(h)$.

⁽⁵⁾ For instance, if $f_n(h)$ is continuous in $0 < |h-a| \le b$ and the series $\sum_{n=1}^{\infty} f_n(h)$ is uniformly convergent (this condition is not essential) and $\sum_{n=1}^{\infty} \overline{\lim_{h \to a}} f_n(h)$ is convergent, we have

Remark 1. As a sufficient condition, we need not $\varphi(t, 0) \equiv 0$. As a necessary condition, we obtain $\varphi(t, 0) \equiv 0$, but if we take the function $\psi(t, x)$ such as

$$\psi(t, x) = \varphi(t, x) + e^{-t},$$

this function $\psi(t, x)$ is positive for all x and $\psi(t, x) \in C_0$ with respect to (t, x) and we have

$$\lambda(||x||) \leq \psi(t, x),$$

 $D_F \psi(t, x) \leq -\psi(t, x)$

and hence $\psi(t, x)$ has the same properties as those of $\varphi(t, x)$ in Theorem 1. Therefore we may consider that the function $\varphi(t, x)$ in Theorem 3 is positive.

Remark 2. When, without assuming (2), we consider the case where $x(t) \rightarrow 0$ $(t \rightarrow \infty)$ under the condition in *Definition*, we can follow the proof of Theorem 3. But we have not necessarily $\varphi_n(t, 0) \equiv 0$ and hence we have not necessarily $\varphi(t, 0) \equiv 0$.

BIBLIOGRAPHY

- J. L. Massera, "Contributions to stability theory", Ann. of Math., Vol. 64 (1956), pp. 182-206.
- [2] T. Yoshizawa, "On the necessary and sufficient condition for the uniform boundedness of solutions of x'=F(t, x)", These Memoirs, Vol. 30 (1957), pp. 217-226.
- [3] T. Yoshizawa, "Note on the equi-ultimate boundedness of solutions of x' = F(t, x)", These Memoirs, Vol. 31 (1958), pp. 211-217.