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On the equiasymptotic stability in the large

By

Taro YOSHIZAWA

(Received Feb. 27, 1959)

In the foregoing paper [3]* we have discussed a necessary
and sufficient condition for the equi-ultimate boundedness of solu-
tions of the differential system. In this paper we will discuss the
asymptotic stability in the large by the idea in [3].

Now we consider a system of differential equations,

dx
(1 == =F(t, x),

) dt (2, x)
where x denotes an n-dimensional vector and F(f, x) is a given
vector field which is defined and continuous in the domain

A 0t oo, x|l < oo,

We adopt the notations in [3]. Moreover for the purpose of
discussing the stability, we assume that

(2) F(t, 0=0.

Definition. The solution x(f)=0 of (1) is said to be equi-
asymptotically stable in the large if there exists a positive constant
T(t,, , &), defined for any € >0 and any non-negative value of «
and t,=0, such that ||x,||<«, {,=0 and t>t,+T(t,, o, &) imply
(25 %o, 2| <E.

In the case where the solutions of (1) are uniformly bounded
and the solution x(#)=0 is uniformly stable, if T(¢, «, &) is deter-
mined depending only on « and & and independent of #,, the
solution x(f)=0 is uniformly asymptotically stable in the large

(cf. [1].

* Numbers in [[ ] refer to the bibliography at the end of the paper,
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When every solution is unique for the Cauchy-problem, if the
solution x(#)==0 of (1) is equiasymptotically stable in the large,
it is stable in the sense of Liapounoff and hence it is equi-
asymptotically stable in the sense of Liapounoff. Moreover by
Lemma 1 in [3] we can see that the equiasymptotic stability in
the large implies the equi-boundedness. Therefore we need not
add the stability and the equi-boundedness to the definition.

As a simple case, if FeC, with respect to x (cf. [2]) and the
solutions of (1) are uniformly bounded and T is independent of £,
we can easily see that the equiasymptotic stability in the large
implies the uniform asymptotic stability in the large.

Now we will obtain a condition for the equiasymptotic stability
in the large. At first we have the following theorem which gives
a sufficient condition.

Theorem 1. We suppose that there exists a continuous function
P(t, x) satisfying the following conditions in the domain A ; namely

1° @t x)>0, if |[xl|l==0,

2° Mz @@, x), where Mu) is a continuous increasing function
such that Mu) >0 for u >0 and Mu)— < as u— oo,

3° @t x) belongs to the class C, with respect to (¢, x) and we have

Dy#(t, %) = Tim —};{(P(le, XHhF)—p(t, 1)} < —9(, %) .
h~>0

Then the solution x(£)=0 of (1) is equiasymptotically stable in the
large.

Proof. For a given positive constant «, we put

max P(t,, x,) = M(t,, o).

<

By the condition 2°, there exists a positive number B(>«) such
that

min (¢, x) > M(¢,, ) .

==

If we suppose that for some ¢, say ¢,, we have

”x(tl y Xo» to)” = B y
we have

(3) P(t,, x(t,; x4, 1)) > M(t,, @) = @(t,, x,) .
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On the other hand, by the condition 3°, we have
(4) Pt x(t, 5 %0, 1)) = Py, %)

which contradicts (3). Therefore we have ||x(¢; x,, &,)||< 8.
Now in the domain

Ag: L, =t<oo, [Ix]|<8,
we consider a function (£, x) such as
P(t, x) = e'p(t, x) .
It is clear that this function satisfies
(5) MlxlDe! < (2, %),
(6) Dpr(t, ) < 0

and belongs to the class C, with respect to (¢, x). If for some
&>0 (&: small), there exists a divergent sequence {¢,} such that
for some solution, we have ||x(¢,,; %, £,)||=¢, we have

(7) Yt (s Xor B0)) = € N(E) .
On the other hand, we have

(8) Ylty, x(ty; %o, 1)) = e"M(t,, @)
and

Yty 2(E s Koy 1)) = P(ty, x(855 %5, 8))  (by (6))
and hence by (7) and (8) we find
ei"\ME) < e M(t,, @) .

Since Mé&) >0 and ?,,—o (m—>o), there arises a contradiction.
Therefore we have ||x(¢; x,, t)||< & for t>t0+loglwg+é)m. This

completes the proof of Theorem.
Next we will obtain a necessary condition. Namely we have
the following theorem.

Theorem 2. We assume that F(t, x) in (1) belongs to the class
C, with respect to x. Then if the solution x(£)=0 of (1) is equi-
asymptotically stable in the large, there exists a continuous function
P(t, x) satisfying the following conditions in the domain A ; namely
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1° ot x>0 if ||lx]|==0,

2° @(t, 0)=0,

3° Mxl)=Ze(t, x), where Mu) is the same as one in Theorem 1,
4° @(t, x) belongs to the class C, with respect to (i, x),

5° Dpp(t, x) < —@(t, x).

Proof. Let I, and X, be the interval 0=<<¢{< 7 and the space
l|x||< 7 respectively. And we represent the product space I, x X,
by Q,. Since the solution x(f)=0 is equiasymptotically stable
in the large, the solutions of (1) are equi-ultimately bounded for
any positive number & Hence, by Lemma 2 in [3], they are
locally uniformly ultimately bounded. Namely for the solution
issuing from (¢, x,) € Q, to the right, there exists T'(, 5) such that
we have ||x(¢; x,, t,)|<& for ¢t >t,+T(E, ). We assume that
TE, n)=T(1, ) for E>1. Then T(&, ) is defined in the quadrant
0<(¢&, 0= % and it is non-negative. Moreover we can assume that
it is monotone increasing in 7 for each fixed &€ and monotone
decreasing in & for each fixed » and that it is a continuous func-
tion of (&, 5)®.

By Lemma 1 in [3], when x(#)=0 is equiasymptotically stable
in the large, the solutions of (1) are equi-bounded. Therefore
there exists B(n) such as ||x(¢; x,, £,)||=B(x) for (¢, x,) € 2,®, and
we can assume that B(z) is a positive continuous increasing function.

If we put

max [|F(t, x)|| = F*(n),

0 1%l < BCM)

(1) Even if we do not assume the uniqueness for the Cauchy-problem, this lemma
is true.
(2) T(&m) is defined in the quadrant 0<{g, 0<% and it is increasing in 7 and
decreasing in & Therefore it is integrable in 0<{a<<e<(h, 0<c<n<ld. Thus if we put
2 (e(7+1 -
?SE Sﬂ T(o, £)dodt = T(&, n),
T(e, n) is a continuous functi02n of (&) and it is increasing in % and decreasing in &.
Moreover we have T(g, 7)<T(&, n). Hence we represent this T(& ) by T(g n) again.
(3) We suppose that the solutions of (1) are equi-bounded (every solution need not
be unique for the Cauchy-problem). Then every solution issuing from (Z, x,) € Qq to
the right intersects the hyperplane t=% and hence ||x(¢; %o, %) || (0=<t<n) is bounded
by a suitable positive number a(zn). Since we can consider this solution as the solution
issuing from t=v, |x||<e(n) to the right, by the equi-boundedness we have a suitable
positive number y(n) which is the bound of | x(¢; %o, )| on <t < eo. Consequently
we can find a suitable positive number B(7).
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F*(n) is continuous increasing and we may assume that F*(5)=1.
Moreover let D, , be the set of points (4, x) such as

0=t=9+T(, 75, O0=|lxl|=B().

Since F(¢, x) belongs to the class C, with respect to x, there is a
positive constant L(&, ) such that

HF(t, x)_F(ty xl)” gL(ey 7])Hx_x,H ’

where (¢, x) € D,,,, (¢ 1) €D,,. We can also assume that L(&, ) is
a positive continuous function of (& ») and that it is increasing in
n for each fixed & and decreasing in & for each fixed 7.

Now we consider a function as follows; namely

f—¢ (=9
0 O=¢<9.

Then this is a non-negative continuous function defined for 0<¢,
0< ¢ and it tends to infinity as {—oo when € is fixed, and we have

G §) = {

(9) |G, ©)—G(E &) ZI1e—=¢| .
If we put
(10) F*(n) exp {(L(&, )+ 1)T(E, n)} +G(&, B(n)) exp {T(&, )+ 7}
= M(¢, ),

M, n) is a positive continuous function defined for 0<7¢&, 0=9.

Since is also a positive continuous function, by Massera’s

(€, )
lemma in [1] there are two functions g(€), k() €C.. in [0, + o)

such that k() >0, g(6) >0 when & >0, g(0)=0 and that

1
Sk(p)<- — .
g(&) (n)_M(E’ )
If we put k—(175=h(77)’ we have
(11) gE)M(E, n) < h(n) .

To simplify the descriptions, we represent T(¢, 5), L(&, n), G(§, £)

(4) cf. (2).
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and g(E) for 8=% (n=1»2)"') by Tn(ﬂ)) Ln("])) Gn(t) and 8n
respectively.
Now we put

(12 Pu(t, X) = g, SUp [G.(lx(t+7; x, B)])e”; 0= 7].

It is clear that we have

(13) Z.Gallx]) = 2.2 )
and
(14) @, 0)=0.

For (¢, x) € Q2,, that is, for the solutions issuing from £, to the
right we have

Pult, %) < .G u(B(m))eTn™
and hence by (10) and (11) we have
(15) Pat, x) < h(n) .

Next we will show that ¢,(¢, x) belongs to the class C, with
respect to (4, x). We suppose that (£, x)e,, (¢,x)eQ,. If we
put @, x)=g,G(lx(E+T; x, 1) |)e,

Pt X)— P, ) < g AGAx(t+75 x, D))" =G (|| x(E+7; &, 1))}
< g e llx(t+7; x, )—x(t+7; 2/, 8] (by (9)
= gl x—a'||efnmT
g g”Hx_.x/He(L"(n)H)Tn(n) .

In the similar way we have
Pult, )= Pt 2') = —gull x— || eEnPTOTA
Therefore by (10) and (11) we have
(16) |Pult, £)—Pult, 2| = h(n) ||x—2"|] .

Now we shall consider @,(¢, x)—@,(¢, x), where t<¢'. If we put
ot ) =g,G||x(t+7; x,]|)e” and we assume that ¢++=¢ and
t+r=1¢+7, we have

¢n(t) x)"‘Pn(t/, x)
< 2 Gl x(t+75 2, D|)e"—G (| x(' +7";5 x, ¥)|))e™}
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< g Gl x(t+75 x, HIN=Glx(t"+"; x, ')}
+ 2G| x(t' +7; x, t)||)Ne"—e™)

= gl llxt+7; X, t)—x@t'+7"; x, V)]
+ G| x(t +7"5 x, t) e (e " —1)

= 2.67P|| X—x|| e Th™ + g,G (B(n)) eV et — 1),

where X=ux(¢'; x,t). Since || X—x||<F*(n)(¢'—t), we find
Pult, )= Pt 2) = g, {eLnTOTF () + G (B(7)) e Ty (8 — 8) .
In the case where ¢+7< ¢, we have

¢n(t1 x)_(pn(t,) x)
< g AGlx(t+7; 2, DI e™—G (| 21}
< .G (lxt+7;5 x, N1+ g,G (| x(E+7;5 x, 1)) —g.G.(lx]])
< g.Gllxt+T; x, DI =)+ gullxE+7; x, H—x|| (T<t'—1)
< 8,G.(B(n)e"(t' —t)+ g F*(n)(t' —1)
< gAG.(B(m)e"+F*(n)} (' —1).
If we put @, x)=g,G (| x(t'+7"; x,t)|)e” and ¢+ =t4+® we
have
(pn(tv x)'—(pn(t/’ x)
= g AG 2t +7;5 x, e =Gl +7; x, t)]))e”}
= 2G| x(t+7; X, ) )—=G, (2" +7"; x, )N} (=7
; —g,,eTn“’ “ X_x H eLn(n) T,
= — g, eLaTOTOOR x () —1) .
In the end, by (10) and (11), we have
|¢n(t, x)—(pn(t,, x)ig h(’})|t_t/l .
From this and (16) we obtain
a7 [Pt )= Pt )| < k(LI x—2"|| + [£=2]].

Finally, if 2 >0, x’=x(t+%; x,¢) and 7’ is such that @ (¢ +#, x’)
=g,G | x(t+h+7'; &/, t+h)|De” and if T=7"+h
Pt+h, 2) = g,G|x(t+h+7"; &, t+h)|)e”
= g,GA||x(t+7; x, 8)|))e"-e” "
< @t x)e” T,
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whence
P (t+h, x)—P,(t, x) < 9.t %) e "—1
h h
and by letting 2—0, we find
(18) D@ (t, x) =< —Pult, x) .

We are now going to obtain the desired function. If we put
Pt 1) = 3} ot 3,

®(t, x) is a continuous function defined in A, because @,(¢, x) < k(7)
when (4, x) €, and hence the series is uniformly convergent in Q,
and moreover 5 is arbitrary. We can see easily that we have

o, x)=0 and (¢, 0)=0.

For x such as lgllxll<—1~,
n _

(o= gzl g,

1
> _ =
P(t, x) Pasi(t, x) n(n+1)

= gni1 = onhi

and for x such as ||x||>1,
Pt 0= glxl—1)

and hence there exists a continuous increasing function M) such

that Mx) >0 when »_>0 and Mu)—>oo as u—oo and M||x|)Z (¢, x).

This function (¢, x) belongs to the class C, with respect to
(¢, %). For (t,x)€Q, and (¢,x")€Q,,

|p(t, x)—P(t, x')|
= | ’i 'lnq)n(t) x)_ g élh¢”(t,’ x/)|

I

l APt D)=t 2D}

2| Pty ) =P8, %)

Ms IMs iMs i
‘|-A N NI= N

N IA

S x—x'| + [t —=2]]

< hp)llx—x'|| + [t —2'1] Z} ?'
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Therefore we find
|p(t, x) =P, )< h(n)[|x—2"|| + [t —-1']],
that is, @(t, x) € C,.

Finally, we have

Dpp(t, x) = Tim l (Pt+h, x+hF)— (1, %)}
h->0

—hm»—{Z Loptth xvhF)— 3

r>o R Palls x)}

1
2"

=1m22n {Pt+h, x+hF)—p( x)}
Ko =1
=1 1 5
=3 llm? {Pt+h, x+hF)—p,t, x)}
n=1 h->0

n=1

< i%( Pt 1) = -31 Lot 1) = —olt, 2),

whence we obtain
DF(p(t) x) g _"?(t) x) .

Therefore we can see that this function @(¢, x) is the desired.
Then we have the following theorem wh1ch gives a necessary
and sufficient condition.

Theorem 3. We assume that F(t, x) of (1) belongs to the class
C, with respect to x. In order that the solution x(t)=0 of (1) is
equiasymptotically stable in the large, it is necessary and sufficient
that there exists a continuous function P(t, x) satisfying the conditions
in Theorem 2 in the domain A.

(5) For instance, if f,(k) is continuous in 0< |2 —a|< b and the series %: f,,(h) is

uniformly convergent (this condition is not essential) and S“ 11m fu(h) is convergent
-—-l
we have

lim 3 f,.(h)S ?‘ lim fu(h).

h>a =1
In our case, since for (4, x) € Q, and (¢, %) € Q,, we have |@,(¢, x)—@.(¥, )| < h(n)
[lx—«Y+|t—1¢|] and for a sufficiently small ||, we may assume that both (%, x)
and (¢+h, x+hF) belong to ©, for a suitable n, we have
{fﬂ (t+h, x+hF) -, (4, 2} < ﬁh (IR F 4R 1< h(n)

and hence we can regard 2"—{(/7,,(t+h, x+hF) -, (4, )} as f.(h).
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Remark 1. As a sufficient condition, we need not ®(¢, 0)=0.
As a necessary condition, we obtain @(¢, 0)=0, but if we take the
function ~(#, x) such as

Y(t, x) = P(t, x)+e*,

this function (¢, x) is positive for all x and (¢, x) €C, with
respect to (f, x) and we have

Ml xl]) < P2, %),
Dpyr(t, x) < — (2, x)

and hence +r(#, x) has the same properties as those of ®(Z, x) in
Theorem 1. Therefore we may consider that the function ®(Z, x)
in Theorem 3 is positive.

Remark 2. When, without assuming (2), we consider the case
where x(¢)—0 (f— o) under the condition in Definition, we can
follow the proof of Theorem 3. But we have not necessarily
@,(¢t,0)=0 and hence we have not necessarily ®(¢,0)=0.
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