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In the paper [1], we defined the notion of Henselizations of
normal quasi-local rings and proved generalized Hensel lemma in
Henselian valuation rings, and in the paper [2] we proved the
properties of Henselizations of normal quasi-local rings and of
quasi-local integral domains.

In the present paper, we shall define the Henselization of an
arbitrary quasi-local rings and we shall prove that if a Henselian
ring § dominates a quasi-local ring o then there exists one and
only one o-homomorphism from the Henselization of o into ¥.
Besides some other properties of Henselizations, we shall discuss
unramifiedness. On the other hand, since the paper [2] contains
some errors, corrections to the paper will be given in §1.

§1. Corrections to the paper [2].

(1) In 84 ([2, Chap. II]), we stated 4 lemmes (Lemmas 4-7).
Among them, Lemma 6 is not correct (the others are correct).

What we should prove in §4 are really as follows:

Let v be a normal quasi-local ring with maximal ideal Y and
let q be a prime ideal of o. Let 0 be an almost finite separable
normal extension of v with Galois group G and let b be a maximal
ideal of . Let d be the decomposition ring of b and set H=5p/\D,
o¥=>5-. We denote by q* and S an arbitrary prime divisor of qo*
and the complement of q in o. Then, (i) ¥ \o=4q, (ii) QO¥ = GF0¥ .,
(iil) o*g/qo*s is Noetherian and (iv) qv* is the intersection of all the
q¥.

(i) was proved in Lemma 4 (in a more general form) and the
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proof of Lemma 4 is good. If (ii) and (iii) are proved, then the
proof of Lemma 7 becomes good and (iv) is proved. Thus we
shall prove (ii) and (iii). Let a be an element of § which is in
none of the other maximal ideals of 5 and let f(x) be the monic
polynomial over o which has @ as a root. Set ¥=o[a], m=pN\J.
Then Corollary 1 to Theorem 1 in [2] shows that o¥*=( . By
our choice of @, f(x) modulo g* has (¢ modulo q*) as a simple
root. Hence o*g/g*o*g, which is a field, is a direct summand of
(oq/qoq)[x]/(f(x) modulo q)=0o*g/qo*s. Since this is true for any
a*, we see that q*g/qo*g is the direct sum of a finite number of
fields, which proves (ii) and (iii).

REMARK. We see that o*/q* is separable over 0/q by the above
proof.

(2) In §6, III), we stated two lemmas and one corollary to
these lemmas. But these lemmas are to be stated under the ad-
ditional condition that ¢ or & in Lemma A or Lemma B respec-
tively is in the decomposition ring of p. Under this additional
assumption, the proofs there work well. (The corollary should be
omitted).

(3) In order to derive Corollary 1 to Theorem 1 (in [2]), we
used an alternative form of Lemma 2 in [1] without explicit
formulation of the lemma. Therefore the corrected Lemma B
above (or the alternative form of Lemma 2 along the line of
Lemma B) should be stated at the end of §1 or at the beginning
of §2.

(4) Among the words added in proof (at the end of [2]),
“Lemma 13 should be read as ‘“lemmas stated in the introduc-
tion”.

§2. Henselizations of arbitrary quasi-local rings.

Let o be a quasi-local ring with maximal ideal m. We shall
define the Henselization o* of o as follows; the uniqueness will
be proved later (Theorem 3):

Let R be a normal quasi-local ring with an ideal a such that
R/a=po and let R* be the Henselization of R. Then o* = R*/aR*
is the Henselization of o.

Until the uniqueness of o* will be proved, we shall fix R so
that o* is unique. We denote by 9 the maximal ideal of R.
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Theorem 1. o* is a Henselian ring dominating o.

Proof. Since R* is Henselian, o* is Henselian, because any
homomorphic image of a Henselian ring is Henselian. Since K*
dominates R, in order to prove that o* dominates o, it is sufficient
to prove that aR*/\R=a. Let b be an arbitrary element of R
which is in aR*/\R. Let R’ be the integral closure of R in R*
and set m'="MR*N\R. Then there are elements c,, ---, ¢, of R’
and elements a,, ---, a, of a such that (i) ¢, ¢ m’ and (i) ¢,b ="c;a;.
Let S be a local ring dominated by R such that (i) S is of finitely
generated type® over the prime integral domain of R and (ii) S
contains b and all the @; and (iii) all the ¢; are integral over S.
By the finiteness of derived normal rings of local integral domains
of finitely generated type (see, for instance [5]) and by the fact
each ¢; is in a finite quasi-decompositional extension of R with
characteristic prime contained in m’, we can extend S preserving
the conditions stated above so that S is normal and that ¢;/c, are in
the Henselization S* of S dominated by R*. Then b€ (a/\S)S*NS.
Since S is a normal Noetherian local ring, S is a dense subspace
of §* and (a/N\S)S*N\S=a/\S, which shows that b€a. Thus
Theorem 1 is proved.

We have proved that if b is an ideal of R, then bLR* \R=0).
If we apply this fact to the case where b contains a, we have

Corollary 1. If b is an ideal of o and if o* is the Henseliza-
tion of o, then bo* N\o=0>.

We apply Corollary 1 to the case where o is an integral
domain and b is a principal ideal bo (b €0). Let K be the field of
quotients of o. Then K can be imbedded in the total quotient
ring of o* by Theorem 4 in [2]. K/\o* contains o obviously.
If ¢/b (b, c€p) is in K/\o* then co*Tho* and coTbdo by the
above observation, hence c¢/b € o.

The same observation can be applied even if o is not an in-
tegral demain. Namely, we take K to be the total quotient ring
of o, proving

Proposition 1. If a is not a zero divisor in o, then a is not
a zero divisor in o¥*.

1) We say that a ring R is of finitely generated type over another ring S if R
is a ring of quotients of a finitely generated ring over S.
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Proof. Assume that ab=0 (be€o*). As in the proof of
Theorem 1, we can reduce to the case where R is of finitely
generated type over the prime integral domain, then R is Noe-
therian and therefore b=0.

Thus we have

Corollary 2. If K is the total quotient ring of o, then
KN\o*=o. In particular, if o* is a normal ring, then o is normal.

The technique we used for the proofs of Theorem 1 and Pro-
position 1 gives many results on correspondence between ideals
of o and of Henselization o* (under certain finiteness condition
depending on the assertion), as in the case of Noetherian ring and
its completion.

For example,

Proposition 2. If b is an ideal in o and if b€o, then bo*:
bo* = (b : b)o*.

Proof. We may assume that b=0, because, by our definition,
o*/bo* is the Henselization of o/b. Then we can reduce to the
Noetherian case and prove the assertion.

REMARK. Proposition 1 can be obtained as a corollary to
Proposition 2.
The following can be obtained as a corollary to Proposition 1:

Proposition 3. A maximal prime divisor of zero in o* lies
over that in o.

ReEMARK. Adaptation of the case of completions to the case of
Henselizations of Noetherian local rings is rather trivial because
of Theorem 5 which will be stated later.

Theorem 2. If a Henselian ring ) dominates o, then there exists
one and only one o-homomorphism ¢ from the Henselization o* of o
nto 9.?

Proof. Let F be the set of pairs (S, o) of subrings S and
homomorphisms o such that (1) S is a quasi-local normal ring
dominated by R* and containing R and (2) ¢ is a homomorphism
from S into ) whose restriction on R coincides with the natural
homomorphism ¢, from R onto o. Let F’ be the subset of F

2) We shall understand here that an D-homomorphism from a ring containing 0
into another ring containing 0 is a ring homomorphism whose restriction on 0 is the
identity.
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defined by F'={(S, o); (S,0)€F and if (S, ¢)€F then oc=¢'}.
Introducing partial order in F as usual, we see that F’ is an in-
ductive set. Let (S* o*) be a maximal member of F’. Assume
that S*==R*. Then S* is not Henselian, therefore there exists a
monic polynomial f(x) =x"+ax" '+ --- +a, which is irreducible over
S* such that a; € S*, a, ¢ MR*N\S*, a,_, ¢ MR*N\S*. Since § is
Henselian, b has a root @ of o*(f(x)) such that ¢ is in the maximal
ideal n of ), hence &*(f(x))=(x—a)g*(x) such that g*(x)e€jlx]
and g*(0)¢n. By the existense of @, we can extend &* to the
homomorphism ¢* from S*’:S*[a](;mR*m s#q]) (@ being the root
of f(x) which is in YRR*) so that ¢*(¢)=a. Thus (S¥, ¢*)€F.
By the maximality of (S*, ¢*) in F’, there is a member (S¥, o**)
of F such that * ==¢**. Since (S*, ¢*) € F’, the restriction of &**
on S* is equal to ¢*. Therefore ¢**(a)==a. Since a € R* N\S*¥,
o**¥(@) must be in the maximal ideal of 1), hence g(s**(a)) is a
unit in §. Since f(a)=0, it follows that o¢**(a)—a&=0, which is
contradiction. Thus S*=R*. Now the uniqueness of o* shows
in particular the assertion.

Corollary. If ¢, is a homomorphism from a quasi-local ring o
into a Henselian ring Y, then there exists one and only one homo-
morphism ¢ from the Henselization of o into ), provided that the
restriction of ¢ on o coincides with ¢,.

Now we prove the uniqueness of the Henselization. Let o*’ be
the Henselization of o defined by another R. Applying Theorem 2,
we see that there are o-homomorphisms ¢, ¢’ from o* into o*’ and
from o* into o* respectively. Consider the product ¢’-¢. This
is an o-homomorphism from o* into v* itself, hence ¢’-¢$ is identity
by Theorem 2. Similarly, ¢-¢’ is identity. Therefore o* and o*’
is isomorphic. Thus we have proved, by virtue of Theorem 2,
the following

Theorem 3. If o* and o* are Henselizations of a given quasi-
local ring o, then o* and o* are canonically isomorphic. Further-
more, any o-homomorphism from o* into o* is the canonical iso-
morphism.

As a corollary to Theorem 2, we have

Theorem 4. Let o be a quasi-local integral domain such that
the derived normal ring of o is again quasi-local. If a Henselian
ring O dominates o, then §) contains the Henselization o* of o (up
to isomorphism).
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Proof. Let ¢ be the p-homomophism from o* into f) and let
a* be the kernel of ¢. By Theorem 6 in [2], o* is an integral
domain. Therefore, if a*5=0, then a*/\o==0, which is not the
case. Therefore a*=0 and ¢ is an isomorphism.

We shall remark the following

Theorem 5. If o is a local ring, then the Henselization o* of
0 1s a local ring and o is a dense subspace of o*. If o is a Noe-
therian local ving, then o* is also Noetherian.

Proof. Using R and R* as before, let F be the set of pairs
(S, o) as in the proof of Theorem 2 in the case where h=o*. F’
be the subset of F consisting of all pairs (S, &) such that &(S) is
a local ring containing o as a dense subspace. Then F’ is an in-
~ductive set. Let (S* o*) be a maximal member in F’. If S*==R*,
then by the proof of Theorem 1 in [2] (the first step), we have
a contradiction, which proves the first half of the assertion. The
last half of the assertion is proved by the same way as the proof
of Theorem 3 in [2].

We say that a ring R is of finite type over another ring S
if R is a ring of quotients of a ring which is a finite module
over S. Then the following is easily seen:

Theorem 6. If a quasi-local ring o' is of finite type over
another quasi-local ring o dominated by o', then the Henselization
o'* is a finite module over the image of the Henselization of o under
the canonical homomorphism given by the corollary to Theorem 2.

(The uniqueness of homomorphisms (Corollary to Theorem 2)
is the key of the proof.)

§3. Unramifiedness.

There are many notions which are called unramifiedness. We
shall consider two of them in the case of finite type extensions.

Let o and o’ be quasi-local rings with maximal ideals m and
m’ respectively. Assume that o’ dominates o, and is of finite type
over o.

Though we shall restrict ourselves to the case where 0’ is of
finite type over o, the conditions we shall state below can be con-
sidered in a more general cases.

Each of the following (Ul), (U2) gives unramifiedness and (U2)
is obviously stronger than (Ul):
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o’ is unramified over o if and only if:

(Ul) m'=mvo’ and o’/m’ is separable over o/m, or

(U2) The Henselization of o’ is a (separable) inertia extension
of the Henselization of o.

One convenient property of the unramifiedness in the sense
of (Ul) lies in the wvalidity of the following criterion, which is
called Zariski’s criterion of unramifiedness :

Theorem 7. (Under the assumption that o' is of finite type
over o),

(1) If o' is a ring of quotients of olu], with an element u of
o’ which is a root of a polynomial f(x) over v such that denoting by
f(x) the derivative of f(x), f'(u) €W, then o' is unramified over o.

(2) Conversely, assume that o' is unramified over o and let o”
be a finitely generated subring of o’ over o such that (i) o’ is a ring
of quotients of o’ and (i) o” is integral over o. Let m,, ---, m,
be the maximal ideals of o, where o =v’. Let u be an element of
0" such that (i) u modulo m, generates the residue class field of o
over that of o and (ii) denoting by fi(x) a monic polynomial over o
such that fix) modulo m is the irreducible monic polynomial for u
modulo m; over o/m, fi(x) is not congruent to f(x) (i==1) modulo
m (ie., f(uygm,). Then o is a ring of quotients of olu] and (ii)
u is a root of a monic polynomial f(x) over o such that, for some
natural numbers n,, -+, n,, f—fife--fremolx], hence in parti-
cular, if f'(x) is the derivative of f(x), then f'(u) is not in m.

For the proof and references, see [6].

Corollary. If o’ is unramified over o in the sense of (Ul) and
if ¥ is a prime ideal of v', then v}, is unramified over Oy Moy
the semnse of (Ul).

Now we shall consider some cases where these two notions
coincide.

Theorem 8. Assume that the derived normal ving of o is quasi-
local. Then o is unramified in the sense of (Ul) (if and) only if
it is unramified in the sense of (U2).

In this case, if o is normal, then o' is also normal and for any
prime ideal v’ of o, oi.,, is unramified over 2y M0y

Proof. By Theorem 4, the Henselization o’* of o’ contains the
Henselization o* of o and o* is a finite o*-module by Theorem 6.
Since o’* is Henselian, there exists an inertia extension o** of o*
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whose residue class field coincides with that of o*. Therefore,
denoting by m** the maximal ideal of 0**, we have o"*=p** + m**p'*,
which implies o* =o0** by Krull-Azumaya’s lemma (Corollary to
Lemma 1 in [2]). Thus unramifiedness of o’ in the sense of (Ul)
implies that of (U2). (The converse is trivial. Now we assume
that o is normal. The last assertion is a consequence of Corollary
to Theorem 7 and what we proved above. The normality of o
can be proved by Corollary 2 to Theorem 1.

Now we shall show how the finiteness assumption of v’ over
o is important in Theorem 8:

ReMARK 1. Even if we assume that o is normal, if we only
assume that, 0o’ is a ring of quotients of an almost finite separable
integral extension of o instead of assuming to be of finite type,
Theorem 8 becomes false. (Observe that in Theorem 8, we did not
assume the separability, separability is a consequence of Theorem
7).

This can be seen easily considering suitable non-discrete
valuation rings of rank 1.

ReMARK 2. Even if we assume that o is a discrete valuation
ring of rank 1, if we assume only that v’ is a ring of quotients
of an almost finite integral extension of o instead of assuming
to be of finite type, then Theorem 8 becomes false.

For, there exists a discrete valuation ring o such that the
completion o of v is an extension of degree p, p being the charac-
teristic of v, as was given in [1, Appendix (II)].

By the way, we shall give a simple example, which shows
that the condition on o in Theorem 8 is important, even if we
assume that o is integral domain and o’ is separable over o:

Let P be an ordinary double point of an algebraic curve C
and let P’ be a point of the derived normal variety of C which
corresponds to P. Let o and o’ be local rings of P and P’ (over
a field k over which P and P’ are rational). Then o’ is unramified
over v in the sense of (Ul). But, since the Henselization of o is
not an integral domain and since the Henselization of o’ is a
valuation ring, o’ is not unramified in the sense of (U2).

Theorem 9. Assume that o is a local ring and that o is
unramified over o in the sense of (Ul). Then o is unramified in the
sense of (U2) if and only if o is a subspace of v'.
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Proof. Assume that o is a subspace of v’. Then the comple-
tion of o’ contains the completion of o. Therefore we see that
the Henselization of v’ contains the Henselization of 0. Therefore
we prove the assertion by the same proof as in Theorem 8.

Theorem 10. Assume that o is a Noetherian local ring and
that v’ is unramified over v in the sense of (Ul). Assume further-
more that, for any prime divisor p of zero of v and for any finite
integral extension 3 of 0/p, every maximal ideal of 38 has rank equal
to rank o. Then o is unrvamified in the sense of (U2) if and only
if for any, or equivalently for a suitable, primary ideal q belong-
ing to m, the multiplicity e(q) is equal to the multiplicity e(qo’).

Proof. Let o* and o* be the Henselizations of o and o’ re-
sepctively and let ¢ be the o-homomorphism from o* into o*,
Then, by the proof of Theorem 8, v* is an inertia extension of
¢(0*), hence e(Pp(qo*)) =e(qo’*) by the extension formula for multi-
plicities (see [3]). Since v’ is a dense subspace of 0¥, e(qp’) = e(qo’*).
By the assumption on o, zero ideal has no imbedded prime divisor
in o, hence in o* as is easily seen by virtue of Proposition 3, and
for any prime divisor p* of zero in o* rank o*/p*=rank o.
Therefore, by the additivity of multiplicities (Corollary 1 to
Theorem 9 in [3]), we see that e(q) =e(¢(qo*)) if and only if the
kernel of ¢ is zero, which proves the assertion.

REMARK. If we omit the assumption on prime divisors of
zero of o, then even if we assume that o is an integral domain,
Theorem 10 becomes false.

We can get such an example by an example in [4].

Harvard University and Kyoto University
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