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Let /¢ be a Jacobian variety of a complete non-singular curve
I', @ be a canonical mapping of I' into J and let ® be a canonical
divisor corresponding to ®@(I'). It is known, in the classical case,
that ®, --- ®,,  is numerically equivalent to (g—1)! #(I') and the
self-intersection number of ® is g!. Originally these are due to
Poincaré and later Castelnuovo gave an algebro-geometric proof for
the first (cf. Castelnuovo [1]). Castelnuovo’s idea is very simple
but the proof depends upon a rather difficult result, the irreduci-
bility of the variety of moduli of curves of the given genus. First,
we shall prove them by using the theorem of Riemann-Roch and
an equivalence criterion for numerical equivalence we shall discuss.
Later in the Appendix, we shall prove them using Weil's idea,
which was communicated to the writer by him. Next let A be
an Abelian variety of dimension #, X be an irreducible subvariety
of dimension #—1 on A such that the self-intersection number of
X is n! and that X, --- X,,_, is numerically equivalent to (n—1)!C,
where C is a positive l-cycle on A. Then we shall show that C
is irreducible, non-singular, A is the Jacobian variety of C, C is
canonically embedded into A and that X is a canonical divisor
corresponding to C. Therefore, we can say that the two numerical
relations, together with the irreducibility of the divisor, charact-
erizes a canonically polarized Jacobian variety completely. In §1,
we define an endomorphism «(X, Y) relative to a pair (X, Y) of

1) This research was partly supported by National Science Foundation.
2) We shall follow the terminology and conventions of Weil [6], [8].
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cycles of complementary dimensions on an Abelian A. We shall
see that it is bilinear and depends only on classes of cycles modulo
numerical equivalence. Mappings X—a(X, Y), Y—-a(X, Y), when
Y is kept fixed in the former case and X is kept fixed in the
latter case, define homomorphisms of groups of classes of cycles,
modulo numerical equivalence, into the ring U of endomorphisms
of A. When Y (resp. X) is either a positive non-degenerate divisor
or a complete intersection of positive non-degenerate divisor, the
former (resp. latter) will be shown to be an isomorphism.

§ 1. Endomorphisms attached to cycles

The writer assumes that the reader is familiar with the theory
of Picard varieties. Those results which will be needed in this
paper could be found in writer’s another paper (cf. Matsusaka [2])
with references. Let G'(A) be the additive group of »—cycles on A
and let G;(A) be the set of »-cycles X on A such that deg (X-Y"™")=0
for all Y" " on A, whenever X-Yis defined. G;(A) forms a subgroup
of G’(4), and any 7r-cycle X in G (A) is said to be numerically
equivalent to 0. When X and X’ are two r—cycles such that X— X’
is numerically equivalent to 0, we say that X and X’ are num-
erically equivalent to each other. When X— X’ <€G;(A), we write
X—X'=0 mod G}(4). We shall omit », when there is no danger
of confusion.

We are going to define three types of homomorphisms at-
tached to cycles. Let Z be a cycle on a product AxB of two
Abelian varieties such that dim Z=dim A. Z defines a homo-
morphism &« of A into B by S(Z(u)) =a(u)+c, where ¢ is a constant
(cf. Weil [8], Th. 1, Th. 9). In particular, when U and V are
A-cycles of complementary dimensions, there is a cycle Z of the
same dimension as A on AxA such that

ux U-V,=Z-(uxA).
Then the endomorphism « of A defined by this Z is such that
S(U-V,)=a(u)+c. We shall denote this «@ by a(U, V).

Let W be a divisor on Ax B and B be the canonical homo-
morphism of the group G,(B) (of B-divisors algebraically equivalent
to 0) onto P(B), the Picard variety of B. Then W defines a homo-
morphism v of A into P(B) such that

¥(u) = B(W(u)— W(u,))+c,
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where #, is a fixed point such that W(x,) is defined and ¢ is a
constant. Let us consider a special case when A=B and let X be
a positive non-degenerate divisor on A. Let T be the transform
of ZxX on AxAxA by the automorphism (x, y, 2) —(x, y, y—2).
When we put W=pr,,T, we have

riZ-(Ax X)) xu=W-(Axu);
WewxA) =wx2mX",,,

where Z-(wx A)=w x>m;@®;), and X is the transform of X by
the automorphism —& of A (cf. Weil [8], Th. 4, Prop. 2). Let v be
the homomorphism of A into P(A) determined by W, then we shall
denote it by y(Z; X). If Z is the cycle on AxA such that
ux U-V,=Z(ux A), where U and V are complementary dimensional
A-cycles, then we shall denote v by ¥(U, V; X).

Finally, since X is non-degenerate, X~ is also non-degenerate ;
therefore the homomorphism By- of A into P(A), defined by
Bx-(u)=B(X ,—X"), is surjective.

Lemma 1. Let U and V be two A-cycles of complementary
dimensions on A and let X be a positive non-degenerate A-divisor.
Then we have

YU, V; X)=Bx -a(U, V).

Proof. Let Z be the transform of Ux V by the automorphism
(x, ) > (y—x,y) of AxA and T be the transform of Zx X by the
automorphism (x, 3, 2)—>(x, ¥, y—2) of AxAxA. If we put W=
pr,, T, we have

priZ - (Ax X)) xu=W-(Axu),

with We(wxA)=wx>m;X;,, Z-wxA)=wx2m;w)=wxU-V,,
whenever every intersection-product involved is defined. Then we
have

a(U, VY(w) = S(U-V,)+c = S(Z(w))+c,

where ¢ is a constant. Putting U, V)=«a, d=deg(Z(w))=
deg (U-V,), we have

2mX . —d- X ~X i o— X (cf. Weil [8], Cor. 2, Th. 30).

On the other hand, the homomorphism y=v(U, V; X) of A into
P(A) determined by W is such that y(w)=B(W(w)— W(t))+c =
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BX wewrre— X )—B(X weree— X )+, where t, ¢, ¢/, are constants.
Hence v(w)=Bx--a(w)+c”’ with a constant ¢”’. Our lemma is
thereby proved.

Lemma 2. Let W and W be two divisors on a product of two
Abelian varieties A and B°. Let B be the canonical homomorphism
of G:"Y(B) on the Picard variety P(B) of B. Let v (vesp.’) be the
homomorphism of A into P(B) determined by W (vesp. W). If W
and W' are numerically equivalent to each other on Ax B, we have
v=".

Proof. We shall show that we may assume W and W’ to be
both non-degenerate and algebraically equivalent on A x B. There
is a positive integer m such that m(W—W)=0 mod G,(A xB)
(cf. Matsusaka [3]); it is easy to see that mW and mW’ define
my and mvy’ respectively. If my=mvy’, then we have y=v'. There-
fore, we may assume that W and W’ are algebraically equivalent
to each other. It is also easy to see that there is a positive divisor
T such that W+ T and W+ T are non-degenerate. Let v* be the
homomorphism of A into P(B) determined by 7. W+ T and W+ T
determine +v* and ¢’ +* respectively. Hence we may assume
that W and W’ are non-degenerate.

There is a point #=(u, v) on A xB such that W ~W,. We
have (wx B) W,=wx W/ (w)~wx W{(w) on wxB by Weil [6],
VIII, Cor. 1, Th. 4. On the other hand, we have W/ (w)= W(w—u),.
Hence

W (w)— W (w,)~Ww—u),— Ww,—u),~Ww—u)— Ww,—u),

since W/(w)— W (w,)=0 in the sense of Weil (cf. Weil [8], Cor.
1, Prop. 3), where w, is a constant. Thus we have v (w)+c=
y(w)—y(w,)+c’. Since u, ¢, ¢’ are constants, our lemma is proved.

Theorem 1. Let U, V, U, V' be four cycles on an Abelian
variety A such that dim U+ dim V=dim A, U=U mod G,(A),
V=V mod G,(A). Then we have

aU, V)=a(U, V).

Proof. Let X be a positive non-degenerate A-divisor. By
lemma 1, we have (U, V; X)=8Bx--a(U, V), (U, V'; X)=
By (U, V). By our assumption, we have UxV=UxV
mod G,(A x A). Let Z and Z’ be the transforms of Ux V and U’ x V’
by the automorphism of A x A defined by (x, y)—(y—x, y). Then
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Z=Z7Zmod G,(AxA) and consequently Zx X=27'x Xmod G,(Ax A
x A). Thus, the transforms T, T of Zx X, Z’ x X by the automor-
phism of AXAxA determined by (x,y, 2)—>(x, y, y—2) are such
that T=T"mod G,(AxAxA). By lemma 2, we have y(U, V; X)=
wU, V'; X), since W=pr,T=pr,,T’=W mod G,(AxA). Since X
is non-degenerate, Bx- is an isogeny, i.e. a surjective homomor-
phism with a finite kernel. Our theorem is thereby proved.

Corollary. Let B and B’ be two Abelian subvarieties of A such
that B=B’ mod G,(A). Then B=DHB'.

Proof. Let X be a positive A-cycle such that B-X and B’-X
are both defined. Then since B and B’ are numerically equivalent
to each other, we have deg(B-X)=deg (B’-X). «(B, X) is an
endomorphism of A, mapping A onto B; «a(B’, X) is also an
endomorphism of A, mapping A onto B’ (cf. Weil [8], Prop. 25).
Since we have «a(B, X)=«a(B’, X) by our theorem, it follows that
B=PF.

Thus we have seen that «(X”, Y" ") is a bilinear mapping of
G (A)xG* "(A) into the rving N of endomorphisms of A, and it is O
on Gi(A)xG*"(A) as well as on G'(A)x G (A). We shall prove
a few formulas for «(X, Y) which we shall need later (these
formulas are not new and are originally due to Morikawa, cf.
Morikawa [4]).

Proposition 1. (i) Let X and Y be two A-cycles of com-
plementray dimensions-on A, then we have a(X, Y)+a(Y, X)=
I(X, Y)-8, where (X, Y) denotes the intersection number of X and
Y. (i) Let T,Z,, -+, Z, be r+1 cycles on A such that T-Z, Z,
is defined on A and is a zero-cycle, then we have

a(T’ Z1 te Z;) = Ei “(T'Z1 ot Zifl'Zi-—H e Zr) Zl) .

(iii) Let X,, -, X, be r cycles on A such that X, --- X, is defined
and is a zero-cycle, then we have

Ei a(Xiy X1 Xi—l'Xi+1 Xr) = ()’—"1) I(Xl? ) Xr)'S P

where I(X,, .-, X,) denotes the intersection number of our r cycles.
(iv) Let X,, -, X, be divisors on A such that X, --- X, is defined
and that X;=X, mod G,(A) for all i, then we have

“(Xl Xr» Xr+1 Xn) = ((n'—r)/n) I(Xn R Xn)'B .
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Proof. To see the first formula, first we replace Y by a
translation of it such that the intersection-product X-Y is defined
(cf. Weil [8], Th. 3). Then «(X, Y)#)=S(X-(Y,—Y))=S(X-Y,)
—S(X-Y)=S(X-Y,)_)+IX, Y)t—S(X-Y) and our formula (i) is
an immediate consequence of this.

To prove our (ii), we proceed as follows. Let T, X, Y be
three A-cycles such that T-X-Y is defined and is a zero-cycle.
(T, XYW u)=S(T-(X,- X,— X-Y)=S(T-(X,-Y,— X,-Y)+
T (X, Y—X-Y)=T-X, Y)u)+(T-Y, X)(u) by Theorem 1.
Hence &(T, X-Y)=«a(T-X, Y)+«a(T-Y, X) and our case follows from
this by induction.

When =2, (iii) coincides with (i). Hence we assume that
(iii) is true for »r—1 A-cycles. Putting Y=2X,_,-X,, we then get

Z’l‘—za(Xi’ X1 ot Xl'—l.Xi+1 ot Xr—z' Y)+a(Yy X1 ot Xr—z) -
(r_Z)I(Xl, Tty Xr)8 .

Using (ii), we have

a(Y; X1 oo Xr-z) = I(le Sty Xr)'B—'a(Xl Xr—z: erl'Xr)
= I(Xn Sty Xr)'s—a(Xl Xr—z'Xr—n Xr)_a(Xl Xr-z'er Xr—l)
= —-IX, -, X)) 0+ax(X,, X, - X, )+aX,_,, X, X, _,-X,).

(iii) is thereby proved. (iv) is an immediate consequence of (iii)
and Theorem 1.

§ 2. A criterion for numerical equivalence.

In this section, we limit our discussions to the case of divisors
and l-cycles on A”. We say that a curve C on A is a generating
curve of A, when any point of A can be written as a sum of
points on C. In other words, let ¢ be a point on C, then C is a
generating curve of A if and only if A is the smallest Abelian
subvariety of A containing C_.,. Let X be a divisor on 4 and C
be a generating curve of A, then we shall show that X is numer-
ically equivalent to O if and only if «a(C, X)=0 or a(X, C)=0.
Thus we get a faithful repersentation of G*'(A)/G, '(A) in the
ring A by X—a(C, X) or by X—a(X, C). Next, let X be a positive
non-degenerate divisor on A and Z be a l-cycle on A. We shall
show that «(X, Z)=0 or «(Z, X)=0 if and only if Z is numerically
equivalent to 0. Hence we have a faithful representation of
G'(A)/GM)A) into the ring U of endomorphisms of A, by the
correspondence Z—«(X, Z) or by Z—a(Z, X).
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We are going to introduce some conventions and notations,
which will be kept fixed throughout this section. Let C,, .-, C,
be m curves on A; let the J; be the Jacobian varieties of the C;,
the f; be birational correspondences between the complete non-
singular models C¥ of C; and the C;, the ®; be canonical map-
pings of the C¥ into the J; and finally let the I, be the graphs
of the f;. f; can be extended to a homomorphism B; of J; into A
such that

fi=BiPi+c;,

where ¢; is a constant (cf. Weil [8], Th. 21). Put B=],x---x ],
and C=>7q;C;, where the coefficients ¢; are either +1 or —1.
Then we can define a homomorphism £ of B into A by B(x,, -+, x,,)
=>"a.B:;(x;). We fix also a common field k£ of definition for
A, and for C;, C¥, f;, ®;, J; A1 <i<m). Then the B; and also 8
are defined over k (cf. Weil [8], Th. 3).

Let now X be a divisor on A and K be a field containing &
over which X is rational. Put

% = S[Ppres(U;+(C x X)) .

The point (x,, ---, x,,) is rational over K(u) (cf. Weil [8], Th. 1),
and hence there is a homomorphism By of A into B such that

tBX(u) = (xly Sty xm)+cy

where ¢ is a constant (cf. Weil [8], Th. 9).

Lemma 3. We have a-'By=ca(C, X).

Proof. Let K be a field containing k, over which X is rational,
and # be a generic point of A over K. It is easy to see that
every component of I';-(C¥x X,) is a generic point of I'; over K
(cf. Weil [8], Th. 3). Hence

F,'(Cik XXu) = (Fx'(cikxc1'-Xu))C’}(>(C, ’

by Weil [6], Chap. VII, Th. 18, From this and from our defini-
tions, our lemma follows immediately.

Weil defined the symbol d(8;, X) by d(B;, X)=deg (I';-(C¥ x X,)))
(cf. Weil [8], no. 44). Using a similar remark to the one
in the preceding proof, we see also that

d(IBiy X) =I(Cz') X) = (1/2)'Tr(a(cn X)) ’
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by Weil [8], Th. 31. and Cor. 1 to Th. 36. From this we see
that I(C, X)=(1/2)- Tr(a(C, X)), and hence we have the following
Corollary. Tra(C, X)=2-I(C, X)
and Tra(X, C)y=(2n—2)-1(C, X).
The latter half of our Corollary follows from (i), Prop. 1.

Proposition 2. Let @ be the canonical homomorphism of Gi~'(A)
onto the Picard variety P(A) of A and ®x be the homomorphism of
A into P(A) defined by (X,—X)=Px(u), in terms of a divisor X
on A. Then there is a homomorphism Ay of P(A) into B such that
tBx=nAx*Px. When X is non-degenerate, the image of A by 'Byx
contains the image of ‘By, for any A-divisor Y.

Proof. Let K be a field containing 2 over which X is rational.
Let # and v be independent generic points of A over K and put
m,(u) = prox(I';+(C¥ x X)), then we have

Bx(t) = (S, (m,+2) =, (), -+, S0+ 2) =, D)) -

We can find a rational divisor Z in G,(A) over K(®x(u)) such that
P ZL)y=p(X,—X)=®x(u). Let T be a non-degenerate A-divisor,
then Z~T,— T for some s on A, and consequently Z,~Z for any
t on A (cf. Weil [8], Cor. 2, Th. 30). Therefore we can find a
point ¢ on A such that n;=pre(l';+(C¥xZ,)) is defined and that

‘Bx(u) = (-, S(@;(ny)), -++),

by Weil [8], Th. 3, Th. 19, Th. 21 and Cor. 2 to Th. 30. Taking
K to be algebraically closed, if necessary, we may assume that ¢
is rational over K. Then since every n; is rational over K(®x(u)),
it follows that *Bx(«) is rational over the same field (cf. Weil [8],
Th. 1). Thus the first part of our assertion is proved.

Now let us assume that X is non-degenerate and Y is an
arbitrary A-divisor. For any given point # on A, there is a point
v on A such that

Y, —Y~X—X.

This implies ‘By(u) =*!Bx(v) and the second assertion is proved.
Theorem 2. Let X be a divisor and C be a 1-cycle on A.
(i) When X is positive and non-degenerate, a(C, X)=0 or a(X, C)=0
is a necessary and sufficient condition that C is numerically equivalent
to 0. (i) When C is a generating curve of A, «C, X)=0 or
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(X, C)=0 is a necessary and sufficient condition that X is numer-
ically equivalent to O.

Proof. First, let us observe that ®(C, X)=0 and «(X,C)=0 imply
each other. If «(C, X)=0, then Tr(a¢(C, X))=0 and I(C, X)=0 by our
Corollary to Lemma 3. Hence «(C, X)+a(X, C)=I(C, X)-6 implies
a(X, C)=0. Conversely, if &(X, C)=0, then Tr(a(X, C))=(2n—2)-
I(C, X)=0 (cf. Cor. to Lemma 3) implies I(C, X)=0 and we have
a(C, X)=0 by the same reason.

Therefore, let us assume that a(C, X)=0, assuming that X is
a positive non-degenerate divisor on A. Let C=>'7Pa;C; be the
reduced expression for C, with ;== 1 and let us use the same
notations and conventions explained in the beginning of this 8.
Let D be the image of A by ?By. Since a(C, X)=28-!8x by
Lemma 3, it follows that D is contained in the kernel of 8. Let
Y be an arbitrary divisor on A, then the image of A by ‘85 is con-
tained in D by Proposition 2. Since «(C, Y)=pB-‘8, again by
Lemma 3, we have «(C, Y)=0. Thus we have shown that
a(C, X)=0 implies «¢(C, Y)=«a(Y, C)=0 for any A-divisor Y and
hence Tr(a(C, Y))=2I(C, Y)=0 for any Y, which proves C=0
mod G, (A). Our first assertion follows from, this and from
Theorem 1.

Let P(A) be the Picard variety of A and # be the canonical
rational homomorphism of G~ *(A) onto P(A). Let us assume now
that C is a generating curve of A; from the universal mapping
property of @, we have

S(prL'-(C*x 2))) = v-P(Z), Z Gy (A),

where v is a homomorphism of P(A) into J=], (putting C=C,,
C¥=C*, I''=1"). Therefore, we have

ZBX': ’Y'(pX,

and ¢ is independent of X. «(C, X)=0 implies B-'8x=0 and we
are going to show that ‘85=0 in such a case.

Assume, for a moment, that there is a positive non-degenerate
A-divisor T such that «(C, T) is a surjective endomorphism of A.
Then from the relation «(C, T)=pB-'8; and the fact ¥, is an
isogeny, it follows that v is an isogeny and B induces on (P(A))
an isogeny. Therefore B-‘8x=0 implies ‘8x=0 and (ii) follows
from Theorem 1 and from Weil [8], Th. 30. As to the existence
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of a positive non-degenerate T such that «(C, T) is surjective, it is
easy to see that the subvariety of A of dimension #—1, consist-
ing of sums of n—1 points on C, has the required property.

Corollary. Let C be a positive 1-cycle on A, which is a
complete intersection of positive non-degenerate divisors. Then a
divisor X on A is numerically equivalent to O if and only if «(C, X)
=0 or (X, C)=0.

This is an easy consequence of our Theorem 2 and Weil [9].

§ 3. A Characterization of a Jacobian variety.

Proposition 3. Let Jé be the Jacobian variety of a complete
non-singular curve U', @ be the canonical mapping of U into J, and
O be the corresponding canonical divisor on J. Then we have

deg(®u1 ®ug) = g' ’
0, 0, =(@—1! o) mod GX]) .

Proof. The first equality is an immediate consequence of
the theorem of Riemann-Roch (cf. Nishi [5] and /(®)=1 (cf. Weil
[10], Th. 1). By Weil [8], Th. 20, we have «(@(I'), ® =§&; on the
other hand, we have ®(®,, --- 0,, , ®) =(g—1)!8 by (iv), Proposition
1. Our second relation follows then from Theorem 2.

Theorem 3. Let A" be an Abelian variety and X be an ir-
reducible divisor on A such that X, - X., \=n—1)! C mod G(A),
C>0, and deg(X., -+ X.,)=n!, then C is irreducible, A is the Jacobian
variety of C, C is canonically embedded into A and X is a cor-
responding canonical divisor on A.

Proof. From (iv), Proposition 1, we have «(C, X)=46. We have
also I(C, X)=mn. Hence, in the reduced expression for C, every
component has the coefficient 1. Let C=3>'7C; be the reduced
expression for C, the J; be the Jacobian varieties of the C;, the
C¥ be non-singuiar models of the C;, the f; be birational trans-
formations of the C¥ onto the C;, the ®; be canonical mappings
of the C¥ into the J; and the B; be linear extensions of the f;
(cf. Weil [8], Th. 21). Put B=],x---x ], and define B, ‘Bx as
we did in § 2. By lemma 2, we have B-!By=«a(C, X)=246, and
so !By is an injective isomorphism of A to B and B induces a
surjective isomorphism on ‘Bx(A). We are going to show that By
is actually surjective. In order to do so, it is sufficient to show
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that B, x is surjective for 1<(7<m, since we have ‘Bx=('8,x, ***, ‘B.x).
Let K be a common field of definition for A and for all subvarieties
of A, varieties and mappings we have introduced in the proof.
Let # be a generic point of A over K, then from «(C, X)=3$,
I(C, X)=mn, dim A=n» and from Weil [8], Th. 1, it follows that
C;-X, consists of independent generic points of C; over K, each
being counted once. The relation

fi—l((Xu-{—v_Xu_Xv_"X)‘Ci)~0

determines, on the symmetric product of C; of order I(C;, X), a
law of composition which makes it birationally equivalent to an
Abelian variety (cf. Weil [8], Th. 16, Cor. 2, Th. 30). Since J;
is the Albanese variety of C; (cf. Weil [8], Th. 21), it follows that
IC;, X)> genus (C,)=dim J;, Hence 8;x is surjective and con-
sequently !By is surjective.

Let us put ' =0, % - O;,_, x®;(C¥) xO;,, x -+ x O,,, where the
O; are neutral elements of the J;, and also put R;=J, x-+xJ;_,
X®; % J;.,x-x],, where 8, is a canonical divisor on J; correspond-
ing to ®;(C¥). Since B(x,, -, x,)=271B:(x,), we have B(I')=C;
mod GL(A). By Proposition 3, we have «a(®;(C¥), ®,)=3,, where &,
is the identity automorphism of J;. Therefore we have a3 7L,
S@,)=065. When Z is a l-cycle and T is a divisor on A, we have
a(BUZ), BUT))=R*'a(Z, T)-B. Hence (B C), B (X))=206z=
a3 7w, B7Y(X)) by Theorem 1. From this we see that B7'(X)=
SR, mod G, (B). Since > I'R; is positive and non-degenerate on
B, there is a point & on B such that 8 Y(X)~(3"7R;),, which can
be proved in the following way. Let (u,, -, u,) be a set of in-
dependent generic points of J,, -+, J,, over K and put V,=u,x---
Xu; X J;}u;,, ¥+ Xu,. Denoting by pr; the operation of alge-
braic projection on the i-th factor J; of B, we have pr.(8 4(X)-V))
=pr,('R)-V)mod G,(J,). Hence there is a point b; on J;
such that pr (8 Y(X)- V)~ pr:((ZTR:)s;+ V) by Weil [8], Th. 32, Cor.
2. Putting b=(,, ---, b,,), we see that pr (B (X)- V)~ pr.(TR;),-
V) for any choice of 7, which proves our assertion (cf. Weil [6],
Chap. VIII, Th. 4, Cor. 1 and Chap. VII, th. 12 (ii)). Since B8 %(X)
and PR, are positive, and since /(8 1(X))=I3>"TR;)=1, it follows
that 87Y(X)=(rR;),. This is possible if and only if m=1. Our
theorem is thereby proved.
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APPENDIX

Let J¥ be the Jacobian variety of a complete non-singular
curve I’ We may assume, without loss of generality, that a
canonical mapping of I' into J is the injection (cf. Weil [8], Prop.
16, Prop. 18). Let W’ be the subvariety of J, consisting of points
S%x;, where the x; are points on I', then W#™' is a canonical
divisor ® on J. We shall denote by W the variety W#™*. Let ¢
be a canonical divisor on I', then the mapping #—S(f)—# is an
automorphism of the underlying variety of our Abelian variety J.
When U is a cycle on J, we shall denote by U* the transform of
U by the automorphism mentioned above. In this Appendix, we
are going to show that

0,0, =(@Eg-n!W modGi)),
deg (@)"1 e ®ug) :g! ’

where 0, , .-+, ®,, are g translations of ® on J such that ®, - b,,
is defined. The idea of our proof is based upon that of Weil,
which was communicated to the writer by him. Originally, what
we needed was O, ---0,, =(g—1)!1'mod G)(J), and as we have
seen, it is an easy consequence of our criterion for numerical
equivalence. But since the general formula is sometimes usuful,
and since there is no existing proof for it except for the classical
case, we are going to include it here.

Throughout this Appendix, we shall fix a common field & of
definition for J and I', and all fields shall be assumed to contain
k. We shall fix also a positive rational canonical divisor f on I,

1. Let x,,--, x,_, be g—r independent generic points of I'
over k. Put m=3'{"(x;), which is a positive I'-divisor of degree
g—r, and also put t=>%"x;. Let v be the I'-differential of the
first kind such that (y)=%. Let M be the module of the I'-dif-
ferentials o’ of the first kind such that (y)>m, then dim M=~

and we can find a basis v,, -, v, of MM such that the «; are
defined over k(x,, -+, x,_,) (cf. Weil [7], §II, no. 8). Lety,, -,
be 7 independent generic points of I' over k(x,, -, x,,) and let

F be the function on the product U of » curves equal to I' such
that

F(yl)”'7yr)zdet(fi(yj)), 1<i)j<7)
where f;=wv;/vy. Since (f;)>—t+m, it follows that
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(F) = T+27i.,j(i#j)Aij_Z;Di(f_m)) T>0,

where A,, is the locus of (y,,¥,,%, -, y,) over k, A;; is the
transform of A,, by the permutation of factors of U, which inter-
changes the 7-th factor with the first factor and the j-th factor
with the second factor; D;(f—m) denotes the divisor on U which
we obtain by replacing the 7-th factor of U by f—m (cf. Weil
[7], 81, §II of Premiére Partie and §I, nos. 12-13 of Deuxiéme
Partie). We shall point out here two properties of T; (i) T is
symmetric, i.e. T is invariant under any permutation of factors of
U, and (ii) every component of T has the coefficient 1 in the reduced
expression for it. In fact, permutations of factors of U either
leave F invariant or change its sign. Hence (F) is invariant by
any permutation of factors of U. Next, put u=>45"y;. We see
that T(y,, =, ¥,_)+ 25 (y;)+m~* by Weil [6], Chap. VIII, Th.
4, Cor. 1. Since T is symmetric, if we show that every component
of T(y,, -, ¥,_,) has the coefficient 1 in the reduced expression
for it, the same follows for every component of T (cf. [6], Chap. VI,
Th. 12). We have S(T(y,, -+, ¥,_,))=S({)—u—t and deg (T(¥,,*, ¥»-1))
—g—1. Since ® =0, S({f)—u—t is a generic point of ©
over k (cf. Weil [8], Prop. 19). Then every component of T(y,,
-, ¥,_,) has the coefficient 1 in the reduced expression for it (cf.
Weil [8], Prop. 16). Our assertions are thereby proved.

2. Let L” be the graph of the mapping (y,, -, ¥,)—=>21%:,
which maps U into J. The projection of L on U is everywhere
defined (cf. Weil [8], Th. 6), and L is non-singular (cf. Weil [6],
Chap. IV, Th. 15). Let x be a generic point of I' over k(x,, -+, x,_,).
We claim that the intersection-product

L'(Ux@)x—t)

is defined on UxJ. If W”" is contained in ©®,_,, then Wj_, is
contained in ®; since W7_, contains a generic point of J over k,
it cannot be contained in ®. This implies that L-(Ux®,_,) is
defined. We define Z to be the L-divisor such that pr,Z=0,
L-(Ux®,_,)—Z>0 and that every component of L-(Ux®,_,)—Z
has a non-zero algebraic projection on J.

Lemma 1. Let D,(x) be the subvariety of U, which we get by
replacing the i-th factor U' by x. Then we have

|pr(L-(Ux®,_)—2) || T| + [ 2:D:x) || pr L-(Ux B, ).
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Any point (z,,-+, 2z,) on |T| is such that (z,,--, 2,, 2312 €
LN\Ux®,_,, for all x on L.

Proof. Put K=k(x,, -, x,_,,x). Assume first that (z,,---, z,, v)
is a generic point of a component of LNUx®, , over the
algebraic closure of K, such that v+¢ is not a point of W*. Then
v+t—x is a point of ® if and only if x is a component of >Yi(2;)
(cf. Weil [8], Prop. 16). Therefore (z,, -+, 2,) is a point of a
component of >;D;(x). Conversely, let (z,, -, 2,) be a generic
point of Ui x) over K. Then v=3)2; is a point of ®,_, and
(2,,++, 2,, v) is contained in the intersection of L and Ux®O,_,.

Let (z,, -+, 2,) be a generic point of a component of T over
the algebraic closure of K. Without loss of generality, we may
assume that dimg(z,, -+, 2,_,)=7—1. Then we have

T(zu STty zr—l)""Z{_l (2;)+m~f, zre T(zl’ Ty zr—l) .

Hence >Yi(z;)+m~t—3, where 38 is a positive I'-divisor of degree
g—2. We have 2z, =S()—S@B)—t e W*,(0,_, for any point y on

I', since W*,(®. Conversely, let (z,, -, 2,, v) be a generic point
of a component of L-(Ux®,_,)—Z over the algebraic closure of K,
such that (z,, -+, 2,) is not contained in |>Y;D;(x)|. Then v+¢ is

a point of W*, We claim that none of the z; can be algebraic
over k. If z,, for instance, is algebraic over k, the locus of v
over the algebraic closure of K is W;™'. Since v+t is a point of
W+, we have W}, W* which implies ®, C W*. Therefore
none of the z; can be algebraic over £ and can be a component
of £. There is a positive I'-divisor 8 of degree g—2 such that
S(z;)+m+38~t. Let v be the U'-differential of the first kind
such that (v')=3>(z;,) + m+8 and put f'=«'/y. There is a set of
constants (c,, ---, ¢,), not all zero, such that f'=>Y¢;f;. Since
f(z;)=0 for all j and since f; is defined at z; for any pair (i, j)
of indices, it follows that Fi(z,,---, 2,) is defined and vanishes.
If (z,,+-, 2,) is a point, hence a generic point over K, of A,
then z;=z2;; but x,,-, x,,, together with »—1 points from
(z,, -+, z,), form a set of g—1 independent generic points of I' over
k and hence >Y(z;)+m+3 is a generic divisor of the complete linear
system ¥(f) determined by f, which cannot have a multiple point.
Thus (z,, -+, 2,) cannot be contained in A;; and this proves that
it is a point of |7T|. Our lemma is thereby proved.

Lemma 2. Every component of L-(Ux®,_,)—Z has the coefficient
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1 in the reduced expression for it.
Proof. Let V"' be a component of L-(Ux®,_,)—Z, then the
projection ¥V’ of V on J has the dimension »—1 by our definition

of Z. Let (z, -, 2,,v) be a generic point of V over the algebraic
closure K of K. In order to prove our lemma, we are going to
show that L and Ux®__, are transversal to each other at (z,, -+, 2,, v)

on UxJ. The point is simple on L. We have to show that
the point is also simple on UxO,_,.

Assume first that v+¢ is not a point of W*. Since v+¢t—x €8,
one of the z;, say z,, must coincide with x (cf. Weil [8], Prop. 16)
and (z,, -, 2,, %,, "+, %,_,) is a set of g—1 independent generic
points of I' over k(x). Hence v+¢—x is a generic point of ® over
k, and v is a simple point of ®,_,. Next assume that v+¢ is a
point of W*. There is a positive I'-divisor 8 of degree g—2 such
that ¥'=>%(z;)+m+8~%. The points «x,, -, x,_,, together with
suitably chosen »—1 points from (z,, ---, 2z,), form a set of g—1
independent generic points of I' over k(x). Since {(f)=g, it fol-
lows then that f’ is a generic divisor of the complete linear system
L(f) over k(x). Let us assume, for the sake of simplicity, that
dim pe5(2,, =+ 5 2,, %3, o+, %z, )=g—1. Then >%z;+¢ is a generic
point of ® over k(x) and hence S(f)—z,—S(8) is also over k(x). This
implies (z,)+8 is a positive I'-divisor of degree g—1, consisting
of independent generic points over k(x) (cf. Weil [8], Th. 20), and
8 is a positive I'-divisor of degree g—2, consisting of g—2 indep-
endent generic points of I' over k(x). From this, it follows that
v+t is a generic point of W* over k(x) and v+{—x is also such
over k. Thus v is a simple point on ®,_,.

Let us assume, for simplicity, that z,, -+, 2,_, are —1 indep-
endent generic points of I' over K. Put C=L-((z,, -, 2z,_,)xD),
then C is a simple curve on L, and (z,, -+, 2z, v) is a simple

point of C (cf. Weil [6] Chap. IV, Th. 15). Putting z,+ - +2z,_,=u,
I’, is the projection of C on J and v is a point of I',. By Weil
[6], Chap. IV, Prop. 24 and Chap. VI, Th. 6, in order to prove
that L and Ux®,_, are transversal to each other at (z,, -, z,, v)
on Ux]J, it is sufficient to show that C and Ux®,, are
transversal to each other at the point on UxJ. Since z,, -, 2,_,,
%X, , %,_, are g—1 independent generic points of 1" over k(x),
u+x—t is a generic point of J over k; therefore I', is not con-
tained in ®,_,. On the other hand, the projection from C to I,
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is an isomorphism. Thus C-(Ux®,_,) and I',.0,_, are defined on
UxJ and J respectively, and i(',-®,,, v; J)=1 implies
i(C(Ux®,_ ), (2,,,2,,v); Ux J)=1 (cf. Weil [ 6], Chap. VIII, Th. 16).
Since x—¢—u is a generic point of J over k, “i(I',-®, ,,v; J)=1"
follows from Weil [8], Th. 20 and Prop. 16.

3.

Lemma 3. Let o be a surjective homomorphism of an Abelian
variety A" to an Abelian variety B*. Let X be a subvariety of A,
G be the graph of & and G’ be the graph of the rational mapping
of X into B, which is induced by @ on X, and Y be the projection
of G’ on B. Then we have

a(Y)=@a)/[G: Y])-XmodG,A).

Proof. It is easy to see that the point set |a™(Y)|is \J|X,]|
with a(@)=0. We have a™(Y)=pr,(G-(AxY)). Let X be a
subvariety of G having the projection X on A. Then X’ is deter-
mined uniquely and the coefficient of X in the reduced expression
for a™(Y) is the same as the coefficient of X’ in the reduced ex-
pression for G-(AxY) (cf. Weil [6], Chap. VII, Th. 17, Cor. 3).
On the other hand, G is invariant by translations T, correspond-
ing to the points @ on A with a(a)=0. Therefore every component
of G-(AxY) is of the form X’,, and has the same coefficient
as X’ in the reduced expression for G-(AxY). Let g be the
group of points @ on A such that @(a)=0 and ¢ be the subgroup
of g, consisting of those points @’ such that X,,=X. ThenG-(Ax7Y)
=m+>X't,/y0», Where the summation is extended over a set of
complete representatives of g modulo ¢. Since prg(G-(AxY))=
w@)-Y (cf. Weil [6], Chap. VII, Th. 16), it follows that m[g: g¢']-
[G': Y]=u(a). From a(Y)=m->'X,, we see that a }(Y)=
m-[g: ¢ ]-Xmod G,(A) and our lemma is thereby proved.

Lemma 4. Let C be a curve on an Abelian variety A®. Let m
be a positive integer and let G be the graph of the rational mapping
of C into A induced by mé=«a. Denote by C' the image of C by «,
then we have

[G: C']C = m*C mod GL(A) .
Proof. It is easy to see that a™(X-Y)=a '(X)-a™(Y) when-

ever X and Y are positive A-cycles such that X.Y is defined (cf.
Weil [6], Chap. VII, Th. 18, Cor.). Let now X be any positive
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A-divisor such that X.C’' is defined. We have a (X.C)=
a (X).a™(C’). We have also a {(X)=wm’X mod G: ' (4A) by Weil
[8] Prop. 31 and a™{(C")=(m*"/[ G : C'])-C mod GX(A) by lemma 3 and
by Weil [8], Th. 33, Cor. 1. Therefore deg (¢™'(X-C’)) =m*"deg(X-C’)
=m*"*"?/[G: C'])-deg (X-C). Consequently deg (X-[G: C']-C)=
deg (X-m*C) and our lemma is thereby proved.

Lemma 5. Let J& be the Jacobian variety of a complete non-
singular curve U' and we assume that 1' is embedded canonically into
J. Let y,,-, ¥,_,., ¥ be r—m~+1 independent generic points of I
over a common field k of definition for J and V'. Let V be the locus
of 2™y, +~my over k and let G be the graph of the mapping of
U into J, which is induced by mS. When IV is the image of ' by
md, we have

[G: VY]-V=mwr—m+1)-W ™" mod G,~"*'(]),

provided limy)=1, g >r_>m.

Proof. 1" is the projection of G into J, or the locus of my
over k, which satisfies [G: IV]-1Y=wmw’l"mod GX(J) by lemma 4.

/r—1N

Let U=1'x---x1'xJ and let B be a rational mapping of U into J
defined by (z,, -+, 2,_,, u)>> 2;+u. Let T be the graph of 3 and
denote by pr* the operation of algebraic projection to J on UxJ.
Then we have

AU x U xmte L' x J)e T) = (r—m+1) L m2- W+

On the other hand, since I(my)=1, we have /((»,)+ - +(¥,_,.)
+(y)=1 and

DA% xUx[G: ] 1% ])-T) = (r—m)[G: 17]-V D

3) This can be seen as follows. (I'x---XI'XTI"x J).T is irreducible and is
defined over k. Let (y,,--*, ¥,-., my, v) be a generic point of it over k. Then
v=7""y,+my. Let us assume, for the sake of simplicity, that 0 is on I" and that &
is large enough so that we can find a rational I'-divisor of degree zero over k(») such
that its class with respect to linear equivalence is v. Since the class of {7 ™(y,)
+m(y) —r(0) with respect to linear equivalence is v, and since /(3] ~™"(3,)+m(y))=1,
it follows that 331 ™(y,) +m(y) itself is rational over k(v) (cf. Weil {67, Chap. VIII,
Th. 10). Hence k(y:,*:-, -, my) is a separable algebraic extension of k(»), and
since my is not a point of I' (because of /(m(y)=1), it follows that my must be rational
over k(v). Our formula follows from this easily.
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Since I'x «-- xI'sxm?l'x J and I'x -+ x ' [G: 1"]-1” x J are numeri-
cally equivalent, we see that
m(r—m—+1)-W""H"=[G: IV]-V modG,]).
Our lemma is thereby proved.

4. Proof of the main theorem.
Theorem. We have

Ou, - @ug_rE(g—r)! W” modG,(]).

Proof. We have pr,(L-(Ux®,_))=r-W7".0,_, by Weil [6], Chap.
VII, Th. 16. By lemma 1 and lemma 2, we have also the follow-
ing relations :

prL-(UxO, )—Z)= pr(L-(T+2:D(x)) xJ) = pr(L-(Ux©,_,) .
By a result in no. 1, we know that T x> A; ~>%;D;(ft—m). Hence
I W0, , = pr(L-(Z:Dix)+2:D(fE—m)—>3A; ) x J)  mod G,(]).
We have
pr(L-2D;(x)x ) =rIW" mod G,(]),
prL-C:D(f—m)x)=r!(g+r—2)-W" modG,]),
AL i phi x ]y = () =D)L IG: 111V,
where V consists of points >;72y;+2y with the y;,,y on I', and

where G is the graph of the rational mapping of ' into J, which
is induced by 26. By our lemma 5, we have

[G: V] V=2(r—1)-W"' modG,]J).
Hence .
®x—t'WrE(g—r+1)°Wr_l mOd Gn(]))

and our theorem follows from this immediately.

Northwestern University
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