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The main purpose of this note is to establish the following
theorem on an abstract abelian variety :

Let A be an abelian vaviely of dimension n, and let X be a
divisor on it; then the degree v(py) of the homomorphism @y of A .
into its dual A® is equal to [(X™)/n\T, where (X) means the
n-fold intersection number of X.

If X is positive and non-degenerate, then the dimension /(X)
of the complete linear system |X| is given by (X“)/n! (cf. Nishi
[6], Th. 3). Therefore, our theorem extends the classical Frobenius
Theorem. The method used in this note is purely algebraic and
is valid not only for the classical case but also for the modular

case. The so-called Duality Theorem “the double dual fl of Ais
isomorphic to A” can be obtained as a simple corollary of the
Frobenius Theorem.

I have received kind advices from Matsusaka and also from
Nakai to whom I wish to express here my hearty thanks.

§1. Preliminaries.

Let A" be an abelian variety and let X be a divisor on it;
the set &4 of all points # of A such that X,~X is a subgroup of
A. By A we shall denote the dual of A (ie. the Picard variety
of A). Then it is well known that the two abelian varieties A

and A are isogenous. The mapping @x:u—#, where # is the

1) We shall use freely the notations and the results in Weil [9]. Numbers in
brackets refer to the bibliography at the end.

2) See the definitions in §1,
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point of A corresponding to the linear class of X,— X, defines a
rational homomorphism of A into A; we can readily see that the
kernel of @4 is exactly the subgroup &,. We shall say that X
is non-degenerate, following Morikawa |5], if the homomorphism
@y is surjective, in other words, if the subgroup Gy is finite. If the
subgroup &y consists only of the unit element of A, then &, will
be called trivial. Let now B be another abelian variety and Y be

a divisor on it. Then the dual of the product Ax B is A x B : more-
over we can represent the homomorphism @yxp.4xy by a matrix,

Pxxpraxy = (?x 0 )
0 Py/ .

Thus we can see that v(Pxxp.axy)=2(P@Px)v(Py).

Let &(A) be the additive group of all divisors on A. Then
the set &,(A) of all divisors algebraically equivalent to zero is a
subroup of ®&(A4). Recently it was shown that the quotient group
S(A)/G,(A) is a free group of finite type; this- implies that the
three equivalences—the algebraic equivalence, the numerical equiva-
lence and the equivalence =in Weil's sense—coincide. In what
follows, we shall denote by = these equivalences. Let X, Y, Z .- be
divisors on A”; we define the intersection number (XY PZ® ...y
where i+j+k+ .- =mn, as follows: There exist » points a,, -,
a;, b, ,b;, ¢, -, ¢, - of A such that the intersection product
XX Yy Yy o Z - Z, -+ is defined; then deg(X, - --- - X,,- Y,
e o Yy oZ, oo Z,,- ) is independent of the choice of the points
@, ,a;,b, -, b;,¢, ¢, -+, and we denote it by (XPYPZ® ...y,
If X',Y' Z’, .- are divisors on A such that X=X Y=Y, 7=
Z/, ---, then we have (XY PZ® ...)= (X' DY DZ/b...),

Let A be a homomorphism of A into B; let Y be a divisor
on B. If A is not surjective, then A"'(Y) may not be defined. But
there exists a point & of B such that A" (Y,) is defined; further-
more if b and ¢ are such points, then A "(Y,)=A"%(Y,) and in
addition, when Y=0 on B, then A" (Y,)~Xx"%(Y,)=0 on A. Thus
we know that A induces homomorphisms A7': &(B)/G,(B) —
&(A4)/6,(A) and A7 : S,(B)/S,(B)—G,(A)/®,(A). The latter defines
a rational homomorphism of B into A which will be called the
transpose of A and will be denoted by ‘A. The divisor Y being

3) This result is originally due to Barsotti [1]. Serre [7] gives another proof.
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arbitrary and the point b being as above, we denote by A7'(Y) a
representative of the class of A7'(Y,) in &(4)/,(A4). Throughout
this paper we shall use this convention. Notations being as above
we have the following formula® :

Pa-ly> = NPy

Finally, let A: A, X -~ XA,—B,X --- B, be a homomorphism

of a product of » abelian varieties A,, ---, A, into a product of s
abelian varieties B,, ---, B,. Then )\ can be represented by a
matrix,

A= (A, e >\‘lr>
)‘sl o >"sr ’

where X;; is a homomorphism of A; into B, for each pair of 7
and j. We can see that, by straight-forward computations, the
transpose A of A can be represented as follows:

§2. Frobenius Theorem on Jacobian varieties.

For any Jacobian variety J, we may assume that J is self-dual,

ie J= ] and that @y, where X is a divisor on J, coincides with
the endomorphism &y ; in particular, if ® is the canonical divisor
on J, then @y is nothing else but the identity endomorphism §,
of J. From now on we shall go on with these assumtions.

Let X be a positive non-degenerate divisor on J. Then the
Frobenius Theorem on J can be stated as follows: »(8y)=/(X)%
Morikawa’s idea in his paper [5] is very usefull. First we shall
sketch the outline of a proof based on his idea. There exists a
natural number ¢ such that c¢6;=A}+A}+Aj+2\}, where each ), is
a symmetric endomorphism and X \;=X\;\; for each pair of ¢ and
j. We put

A= ( A, A, A A,
N VD Y

\ VD P VD

)\'4 7\'3 _7\'2 _7\'1

4) Note the fact that ¢ =0 if and anly if X=0.
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Then A\ is an endomorphism of JX X JXJ. By the statement in
§1, and by the fact that each X\, is symmetric, we have®
DY U VD YD TR
e e —h |
[PYRND S W Y
IV VR VRN W i
Therefore the diagonal matrix

¢S 0
¢S
6%

0

c6%

is equal to the product AA. On the one hand the above diagonal
matrix represents the endomorphism @,y of Jx JXJX]J, where
XP= XXX JXJ+ XXX IXJ+JXJX XX J+]JXJXxJxX; on the
other hand, we have ‘AA=@,-1®,, where @™ has the same mean-
ing as in the case of X®. Hence ¢X* is algebraically equivalent
to AN (O®) on Jx JXJxJ. According to Nishi [6], we have

[(cX®) = I (O™),
and
[(cXP) = [(cX)
= c®l(X)* (g=dim])
[(AHOD)) = »(A)(OD) = v(N)
= V() = »(c8%)*
= " u(8%)°.

It follows from these relations that v»(6%)=/(X)* as asserted.
In the rest of this §, we shall give another proof of our
Theorem which is more elementary than the preceding one.

ProrosiTiON 1. Let X be a divisor and Y be a non-degenerate
divisor on an abelian variety A”. Then mY+X, where m is an
integer, is degenerate only for a finite number of values of m. In
addition, if 'Y is positive, then the complete linear system |mY + X|
exists, i.e. [(mY+X) >0, whenever m is sufficiently large.

5) Note the fact that the involution coincides with the transpose operation.
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Proor. We know that mY+ X is non-degenerate if and only
if the homomorphism @,y x: A— A is surjective, i.e. v(@,, v x) >0.
By linearity we have ¢, y,x=m@y+@y; vimp,+@y) is a poly-
nomial in m of degree 2x, and the coefficient of the leading term
is v(py) (cf. Weil [9], Th. 33). Since Y is non-degenerate, v(py)
is not zero. Therefore this polynomial is not identically zero;
this implies the first assertion.

The latter half in our Proposition follows immediately from
the fact that the complete linear system |mY| is ample for
sufficiently large values of m (cf. Weil [8]).

PROPOSITION 2. Let J be a Jacobian variety and let X be a
divisor on it. Let © be the canonical divisor on J. Then, for any
integer n, we have

85l (@) = O+ 2nX+£7(O)
and
8 xre-1x(@) = 4nE () +4nf (X)) +(8) (@),

where & denotes the endomorphism 8.

Proor. Let A be an endomorphism of Jand let Z be a divisor
on J. Then, by Weil [9], Th. 25, we have 8,_,,,=7'8,1; and the
necessary and sufficient condition that Z=0 is 8}=0.

As to the first assertion, let us put Z,=831x(®) and Z,=#°®
+2nX+£57(@). Then 87 =28/¢,x8/0. x=n0+2nE+&, and 85,=nd+
2nE+£&. This shows that Z,=Z,. As to the second assertion we
can prove it quite similarly.

Now we can state the Frobenius Theorem on J¢ in the follow-
ing form :

THEOREM 1. Let X be a divisor on a Jacobian variety J¢. Then
we have

g1 @x7(@)®) = (X,

where O is the canonical divisor on J. In particular, if X is positive
and non-degenerate, then we have v(8%)=I(X)

Proor. First we show that if X is a divisor of the type
A"Y(®) where A is an endomorphism such that »(A) >0 and that
A=, then the formula in our Theorem holds. In fact, since
(@¥)=g! (cf. Matsusaka [4]) and (A7'(@)®)=r(A)(O®), we have
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AY(®)*®) = g!v(A). On the other hand, since & -1 =N\ (cf.
Weil [9], Th. 25), we have

(0, 216,(®)F) = (W) H(@®)®)
= v(A*)(O¥)
= glv(A).
These relations settle our assertion.
Let now X be any divisor on J; we denote 6% by & If we

put f(n; X)=g! (8,51 x(®)*)—((n®+ X)*)?, where » is an integer,
then we know from Proposition 2 that

Fin; X) = g1 (0 +2nX+E(@)®) — (n + X)) .

We can consider f(n; X) as a polynomial in # as follows :
fins X) = 3 A,X0m
where
A(X) = gr Z 2i<§><g;Z>(®(i)X(J')§—1(®)(g"£—j))
j=
- (g)(g>(@<i)Xcg—i))(@(j)X(g~j)) .
J

i+ j=r 1
0</,j<8

In what follows, we shall show that each coefficient A,(X)
must vanish. First we can see immediately that A,,(X)=g!(®@%)
—(@®)(@®)=0 and A,,,(X)=2g-g! (6FX)—2g-g! (6F>X)=0.
Consider now a function g(n; X) of n:

801 X) = 81 (07 ane o100/ O) ) — (FO+ 20X +E @) )

Then similarly g(n; X) also becomes a polynomial in #. In fact,
since g(n; X)=f(n?; 2nX+£7%(®)), we have

gn; X) = Z LCnX+EO)n

and each coefficient A,(2nX+£%(®)) is also a polynomial in #:
A,2nX+EY(0))
-8l 2 21( )(g]TZ>(®(D(2nX+§ H(©)) 8% %4 £-1005(@) €77 7)

2/ j=r

- < >< > AP (2nX +E (@) 4 ) OP2nX +E1(@))E 7).

i+j=r
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and, using the second formula in Proposition 2, we have
A,CnX+EY@) = 2%57A(XWE T+ h(n),

where h,(n) is a polynomial of degree <(2g—r—1, with coeffi-
cients of intersection numbers of divisors ®, £(®), X, £ %(X) and
(8)~4®) ; therefore we have

gn; X) = 24, (X)n* "+ -

Since 6/g} x(®)=n*@+2nX+&'(®) by Proposition 2 and &)y, x is
symmetric, it follows from Proposition 1 and the statement at the
beginning of this proof that g(n; X)=0 for almost all values of .
Therefore the polynomial g(z; X) must be identically zero; this
implies that A,, ,(X)=0.

The X being arbitrary, A,, .,(2nX+&7(®))=0 for all integers »n.
Thus g(x#; X) can be witten in the form,

gn; X) = zi 3A,(ZnX+é&"(@)))nz’ .
r=24 -
Continuing the same process, we can get

Azg»a(X) = = AO(X) =0.

This completes the proof of the first half.

Since g!v(65) = (65 '(®)*), the second half follows immediately
from the first half combined with the fact that /(X)=(X“)/g!
(cf. Nishi [6]).

§3. The constant f(A, B).

Let A” and B” are isogenous abelian varieties; let A: A—B
be an isogeny. It is well known that there exists an abelian
variety C such that AXC and BXC are both isogenous to a
Jacobian variety J. Let u:J—AXC be an isogeny; we consider
an isogeny

r0°
( ); AXC — BXC,
0 &

where 6. is the identity endomorphism of C. Then

d:(?\. 0)/1,
0 o,
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is @ homomorphism of Jonto BX C. Furthermore, if Y is a positive
non-degenerate divisor on BXC, then we have 0i-iy,='ap,a;
hence v(8s-1yy) =v(*a)v(py)v(a). Since a (Y) is positive and non-
degenerate, we have, by using Theorem 1, v(0,-1y,)=0(a ' (Y))%
According to Nishi [6], Th. 4, (a"(Y))=v(«x){(Y) and hence
v(84-1cp) =v(c)?/(Y)%. Now on the one hand, ‘a is equal to the
composition map of the transpose of

(6 2)

0 é&¢

and ‘w; therefore we can easily see that v(*a)=v(*A)-v(*z). On the
other hand, v(a)=v(\)v(1z). Hence we have

VN _ HYY i)
v(A)  v(py) v(fp)

This implies that the ratio »(*A)/v(\) is independent of the choice
of . .

Next we shall prove that the above ratio is a power of p.
There exists a homomorphism y: B—A such that fA=p(r)d,.
(cf. Weil [9], Th. 27). Since the transpose of »(A)6, is »(A)84 by
linearity, and since *(y\)='Ay, we get »("A)v(*y)=r(N)>.

First suppose that v(A) is not divisible by p. Then we can
see that, by using Morikawa’s idea in the proof of Th. 4, Morikawa
[51, »(*AM)>v(\); the proof as follows. We may assume that »(A)=/
is a prime number different from p. Let Y be a non-degenerate
divisor on B; then we have E,A"Y(Y))='M,) E,(Y)M,(\). There
exist /-adic vectors y,, ---, ¥, modulo 1 such that *M,(A)y,=0 (mod
1) and y,;2=0, y,==y; (i<=j), (mod 1) (¢,j=1, ---,/); let v, be points
of g,(B) such that the corresponding /-adic vectors are congruent
to E(Y) 'y; modulo 1. Since X is a surjective homomorphism, there
exist / points u; of g,(A) such that Mu,)=wv,. If x, are [-adic
vectors modulo 1 corresponding to the points #;, then we can
easily see that E,(A"'(Y))x;=0 (mod 1). This implies that X (Y,,)
=A"(Y),;~A"(Y) for i=1,.-,/; furthermore it is clear, by
definitions, that any two of the divisors Y, , --+, Y,, are not linearly
equivalent to each othgr. From these we have v(*A)_>u(\); since
v(y) is also not divisible by p, v(*y) >v(y). We can now conclude
that, in this case, v(*A)=v(\).

Next we consider the case where v(A) is a power of p. From
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the preceding formula: »(*A)v(*y)=v(A)*, v(*\) is also a power of
p. Hence, in this case, v(*\)/v(X) is obviously a power of p.

Now we proceed to the general case. We know that A can
be written as A=2A\,, where X, is such that »(,) is not divisible
by p and A, is such that »(\,) is a power of p; then we have

v(A) _ v (M)
() () v(Xy)
v(",)

B l)O"z) .

Thus we have proved that »(*A)/v(\) is a power of p.

If we put »(*A)=p A By(\), then f(A4, B) is an integer not
depending on the choice of the homomorphism A of A onto B.
In the last part of this paper we shall prove that f(A, B)=0 for
any A and B.

§4. The constant f(A).

LEmMA 1. Let X be a divisor on an abelian variety A”. If a
point a of A is of order q (q may be divisible by p) and X,~X,
then there exists a divisor Y on A such that Y~X and Y,=Y; in
addition, when X is positive, Y can be chosen to be positive.

Proor. We put (p)=X,—X; we may assume that @ is not
a constant. Consider® ¢ functions e, ¢T", e, @T“"”"; then we
have (@"%) = X;\p,—X;o, and (p@p'® - @"i@) = X, ,,,—X. Since
((prpT“ oo Ty () the function @@’ .. @ @ 1% ig a constant ; we
may assume that, without loss of generality, pp™® ... p @ %=1,

If 1,9, @p @ @ @ are linearly dependent and 1, , pp’*
v pp"® . @™ are linearly independent over an algebraically
closed field k over which A, @ and a are defined, where 0<r<(q—2,

then there exists a non-trivial relation:
Cot CP+CPP A e Oy PP e PTTHE — (

with coefficients ¢; in k. Here ¢, must not be zero; for otherwise
rp(cl+cz<pT"+ e Gy e P % 0 and this implies a relation

6) In general, for any function ¢ on A and for any point @ of A, we define a
function @7« in the following way. Let k£ be a field over which ¢ is defined and a is
rational ; let x be a generic point of A over k If we put ¢Te(x)=¢(x—a), then ¢Ta
is a function defined over k and clearly (¢T<)=(¢),.
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GHCP+ ey PP e p =0, which is a contradiction. We
may thus assume that ¢,=1.

We can find out constants b,, ---, b,,, and b which satisfy the
following condition :

Tra

1+bptbpp 4 et bpp
A+b,p+bpp ™+ - +b, pp @ p"THTe

In fact, by the principle of undetermined coefficients, we have
only to solve the following system of equations:

b—b=c,, b,—bb=c,, -, b,.,—0,b=c,,
—b,b = Cpiz;

this system is equivalent to

b, =0b+c,, by=0+cb+c,, -, b, =0+ b+
e ebte, ., UV o e, b4, =0,

and the last equation in 4 has a non-zero root; if such a root is
determined, the other constants b,, ---, b,., are also determined.
For such constants &,, -, b,., and b, we put (1 +b,p+ - +b,. 09" *
. pr’“): Y— X ; here noctice that, if X is positive, then Y is also
positive. It follows from the preceding relation that (Y—X)—
(Y-X),=X,—X, and hence we have Y,=Y.

LemMmA 2. Let A be an abelian variety. Then there exists an
abelian variety B, isogenous to A, such that there is a positive non-
degenerate divisor Y on B for which the group Sy is trivial.

Proor. Let X be a positive non-degenerate divisor on A.
Suppose that the order of the subgroup &y is greater than 1.
Let @ be a point of Gy ; let ¢ be the order of a(¢_>1). Then, by
definition, X, ~X; Lemma 1 shows that there exists a positive
divisor Y, linearly equivalent to X, such that Y,,=Y for /=1, 2,
-, g—1. Consider the quotient variety A,=A/{a}, where {a}
denotes the subgroup of A generated by @, and consider the natural
separable homomorphism A, of A onto A,. Then, by Weil [9],
Prop. 33, there exists a positive divisor X, on A, such that
Y=\ Y(X,); clealy X, is non-degenerate. It follows from Nishi [6],
Th. 4, that /(X)=v»(A\) (X)) ; and so [(X)=¢q/(X,)). If the order of

®y, is greater than 1, then we continue the same process as above ;
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by the condition that /(X) >/(X)), after a finite number of steps,
we can get an abelian variety asserted in our Lemma.

LeEmMA 3. Let A be an abelian variety and let X be a non-
degenerate divisor on it. If the group Oy is trivial, then v(py) is
a power of p; furthermore, if X is positive, then [(X) is also a
power of p.

Proor. The first assertion follows immediately from the fact
that the kernel of @, is exactly the group &,.

Now we suppose that X is positive and non-degenerate. There
exists an abelian variety B such that AXB is isogenous to a
Jacobian variety J; moreover, by Lemma 2, we may assume that
there is a positive non-degenerate divisor Y on B such that &,
is trivial. Consider the divisor XXB+AXY on AXB and an
isogeny A: J—>AXB; then we have

8;“(x><B+A>< Y = '7\'(¢’X O)k
0 oy

Using the second half of Theorem 1, we can compute the
degree of the left-hand side as follows:

WS -1xxpraxy) = IMH(XXB+AXY))
= vAP/(XXB+AXY)
= v UX)UY) .

On the other hand, the degree of the right-hand side is equal to
v(*A) v(A) v(@y) v(@y) ; therefore we have

UXPUY) = pP TP upx) v(Py) 5

since the groups &y and &, are both trivial, v(py) and v(p,) are
powers of p. This implies that /(X) is a power of p.

Now we can introduce a constant f(A) attached to a given
abelian variety A”. Let X be a positive non-degenerate divisor on
A. There exists an abelian variety B such that A x B is isogenous
to a Jacobian variety J; here we may assume that, by Lemma 2
and Lemma 3, there is a positive non-degenerate divisor Y on B
such that /(Y) and »(@y) are powers of p. Let M: J—>AXB be
an isogeny ; then similarly as in the proof of Lemma 3, we have

UXYUY) = p/ TP upy)v(py) ,
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hence
vpx) [ UX) = p~TTABUY ) [ v(py).

It follows from the above relation that the ratio v{py)/l(X)* is
independent of the choice of X. Thus, if we denote this ratio by
7, then we know that, whenever a divisor X is positive and
non-degenerate, v(py)=p"/(X).. Here we need the following

ProposITION 3. Let X be any divisor on A". Then (X™) is
a multiple of n!.

Proor. When X is positive and non-degenerate, our assertion
is already known. Now let X be arbitrary. Let Y be a positive
non-degenerate divisor on A. Then, by Proposition 1, mY+X is
linearly equivalent to a positive non-degenerate divisor, if m is
sufficiently large. Hence the polynomial (Y + X)™)/»n! in m takes
an integer value, whenever m is sufficiently large. It is well known
that such a polynomial in m takes an integer value for arbitrary
integer m; in particular the constant term (X“?)/#n! is an integer.

Now let X and Y be as in Proposition 3. Then we have
P, yix) =p P ImY+X)?, if m is sufficiently large. This implies
that two polynomials v(@,,y,x) and p/®[((mY +X)™)/xn!]* in m are
equal if m is sufficiently large. Hence they coincide identically.
Comparing the costants terms of the both sides, we can get the
following formula :

(1) v((pX):pf(A)[(X(”))/n!]z

Here notice that the formula (1) is valid for any divisor X on A",
in other words, f(A) is independent of the choice of divisors X.
In particular we have the following

CoroLLARY. A divisor X on A" is non-degenerate if and only
if the integer (X“)/n! is not zero.

In the rest of this §, we shall see several relations between
the constants f(A, B), f(A) and f(B). Let A” and B” be isogenous
abelian varieties and let A: A— B be an isogeny. Let Y be a non-
degenerate divisor on B. Then we have v(@,-icyy) =v(A) v(@y) v(N).
Applying the results in §3 and the formula (1), we have

PFOLOTY)P) [0l = pFaB® O [(Y) nlT 5

since A"Y(Y)™)=v(A)(Y™), we can get the following formula :
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(2) f(A, B) = f(A)—f(B).

Next let A” and B” are two abelian varieties; let X and Y
be non-degenerate divisors on A and on B respectively. Then we
have v(Pxxpiaxy)=v(@x) v(py); applying the formula (1), we have

V(Pxxpraxy) = PP PL(XXB+AX YY) ™)/ (m+n) ]
= prAB(X) [ m! Y™ /n! ]
and similarly
wpx) vipy) = pPBLX™) [m PLY)nl ]
Consequently we can get the following formula:

(3) F(AXB) = f(A)+f(B).

§5. Preliminary step of the proof of the Main Theorem.

In this §, we shall show that the constant f(A) is not greater
than zero.

Let A be an abelian variety and let A be its dual; hereafter
we shall denote by o and 0 the unit elements of A and A re-
spectively. There is a divisor P on Ax A, rational over a suitable
common field of definition k for A and A, with the following
properties: The point ox 6 is not contained in any component
of P and therefore P(o), *P(06) are both defined ; moreover if a
point # of A is generic over k, then the linear class of ‘P(#)—'P(d)
corresponds to the point # of A. Let now # be a generic point of
A over k. The correspondence : u —the linear class of P(u«)— P(0)

defines a homomorphism «, of A onto /f, where /i means the
double dual of A. If we put T=P—'P©6)xA—AxP(o0), then we
have the following

PROPOSITION 4. The homomorphism @p: AxA—AxA can be

witten as follows :
Pr = ( 0 _SA)
-k, 0 /.

ProOF. Let ux# be a generic point of AxA over k. It is
well known that Tuxi—T ~XxA+AxY, where X is a divisor
on A such that X=0 and Y a divisor on A such that Y=0 (cf.
Lang [3], Prop. 6, IV). We can determine the linear classes of X
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and Y explicitly. Since T(0)=0, T,.;(0) is also defined. We may
assume ahat, by making a suitable translation if necessary, any
component of X does not contain the unit o; then (XxA+AxY)-
(ox A) is defined and equal to ox Y. Therefore T..2(0)~Y on
A. On the other hand, making a translation to the intersection,
we can compute as follows :

Tyio(0xA) = [T-(—u) x A) ]z
= [(—u)x T(_u)]u?'fi
= oxX T(—u); .

This shows that Y~ T(—u);~ T(—u); by the theorem of the
square, T(—u)~— T(u). Thus we see that Y~ — T(»). Similarly
we have X~ —'T(@@). This completes the proof.

Let now X be a divisor on A”; the homomorphism « A:A—>;1A\
being as above, we can see that @y='pyr,.” If we assume that
X is non-degenerate, then it follows from the above formula that
vipy) =v('py)v(x,), and therefore that u(/cA)zp*ﬂA'A’. Using the
formula (2), we get

(4) Vi) = prhrrar

On the other hand, Proposition 4 shows that v(@,) =v(x,); since
V(¢T)=pf‘m"f’[(T(z”)/(Zn)!]‘*, we have pSAXD(T)/2n)! | =
prA A 1t follows from the formula (3) that

(5) [(Tcz"))/(Zn)!]Z — p‘zﬂm )
Since (T%®)/(2n)! is an integer, this shows that f(A4)<C0.

§6. The proof of the Main Theorem.

In this §, we shall prove the final result: f(A)=0.

LEMMA 4. Let A and B,X B, be isogenous abelian varieties and
let p: A—B, X B, be an isogeny. Let k be a field of definition for
wn; let x be a generic point of A over k. Putting pm(x)=y Xy, we
define surjective homomorphisms N, A—B; by A (x)=y; (i=1, 2).
Then the intersection product Ni*(0,)+A;'(0,) is defined and v(u)=
deg (A\7(0,)*Az%(0,)), where o, and o, are the unit elements of B, and
B, respectively.

7) Cf. Lang. [3], Prop. 10, V.
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Proor. Since pla)=2x(a)xN,(a) for any point a of A, the
finiteness of the kernel of x implies that A7'(o,) A AzY(0,) is finite;
consequently A7(o,)-A7Y(0,) is defined. As to the second assertion,
we define homomorphisms p; : B, xB,—B; by p,(y,x3.)=3,(i=1, 2).
Then clearly we have pu,u=2X\;. Since A;7Y0;)= p '(u7%(0;)), we
have

7\'1_1(01) * A‘51(02)

I

w7 (e 0)) - 57 (1231 (0,))
= N0, X By (B, X 0,)
= p (0, X B,*B, X 0,)

= p '(0,X0,).

This completes the proof.

LemMA 5. Notations being as in Lemma 4, let 3, %9, be a
generic point of B,xf?z. Then we have *1(9, X 3,) =N () +NA9.).
This is a special case of the statement at the end of §1.

LemMmAa 6. Let AXB be a product of two abelian varieties A

and B. Then the canonical homomorphism rxaxp: AxB—AXB can
be written by a matrix,
Kaxp = ("A 0)
0 «xg/.

The proof is easy and is omitted.
The following Theorem, due to Chow [2], plays an essential
role in our proof.

For any given abelian variety A, we can find a product
of Jacobian varieties ], J., ---, J,, such that there is a
regular homomorphism® X of J X J,X -+ X J, onto A.

We shall, in what follows, denote by 11] the product J, X J, X -+ X J,.
Let k£ be an algebraically closed field of definition for A\. It is
not so difficult to see that "A: A—>lf]=ll’ J is a regular injection,
i.e. k(#)=F('\(%)), where % is a generic point of A over k (In fact,
we can prove it by using the results in Nishi [6], §3; a detailed

8) Let A be a homomorphism of an abelian variety A into another abelian variety
B. Then A is called a regular homomorphism, if k(x) is a regular extension over
k(A(x)). Obviously such a definition is independent of the choice of the field k.
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proof is also given in Lang [3], Th. 10, VIII). We put MA)=C;
then C is an abelian subvariety of IIJ. We consider the quotient
variety 1IJ/C=A, and the natural regular homomorphism X,: 11J
—A,.

Since M is regular, A7'(0) is an abelian subvariety of 11J,
where o is the unit element of A; we set A7'(0)=B. We consider
the exact sequence:

« A
0 B 11y > A >0,

where « is a regular injection. We consider also the following
sequence
t

.t \
0 B I1] < A 0.

Then, since *a*A=(A), we have ‘a'A=0; this implies® that C is con-
tained in the kernel of ‘a. We can readily see that ‘« is surjective
(cf. Lang [3], Prop. 2, V); consequently C must be a component,
containing the unit element, of the kernel of *e. Since ‘@a: B—B
is surjective'®, the subgroup B~ C is finite.

The homomorphism ‘@ can be decomposed as follows:

‘a

0«—B« Iy
R /

B8 \\ / A

A,
where B is an isogeny. Consider also the following sequence:

A a

0 B Iy

tB\\ / tk’]
A,

Then, as in the case of ’A, ‘A, is a regular injection and “"a=7'\ ‘83,
It is well known that the following diagram

9) The regularity of ‘e is not proved at present. But after all observations in
this §, the regularity will follow.

10) Let ©; be the canonical divisors on J; for i=1,---,7 and put O0)=0,%x J, X
e XA X0, % s X Jo Ao ]y X - X ], X6,. Then, since ¢e¢>=25dns, We have
tee=@y-1c0¢)y. Now we can easily see that a~!(®<) is non-degenerate; this implies
our assertion.
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(44
B > ﬂ]
o] e
VQ tey
B > 10

is commutative ; since «y; is equal to the identity endomorphism
8y; of IIJ by Lemma 6 (note that «, coincides with 8, for any
Jacobian variety J), we have a=*ax;. Consequently a="\, ‘Bxz.
Combining this with the fact that « is a regular homomorphism,
we know that «z; and ‘8 are both regular isomorphisms and that
B is the isomorphic image of A, by the regular injection “A,, i.e.
tk‘l(/L):B-

Assume now that all the varieties and the maps appearing
above are defined over a field K containing k; let x be a generic
point of IIJ over K. If we define a homomorphism w: IIJ->AX A,
by m{x)=A(x) XA (x), then x is an isogeny ; for otherwise there are
infinitely many points ¢ of 1IJ such that wm(e)=2A(a)xXX,(a)=0 and,
since BAC is finite, this is a contradiction. Lemma 4 shows that
v(p)=deg (B-C). o

On the other hand, let #x% be a generic point of AX A, over
K; then, according to the regularity of ‘A and that of ‘A,, we have
K(u, 9)= K("\Mu), ‘M () ; Lemma 5 shows that ?u(d X ) = "Ma) + ‘N, (D).
By Weil [9], Th. 4, Cor. 2, we have [ K{(*M#@), ‘A (D)) : K("M#@) + N, (D)) ]
=deg (B-C). Since »(*u)=[K(@ X ) : K("Ma) + A (D)) ], v(*u) is equal
to deg (B-C). Thus we can get v(‘p)=v(pu).

Using the notations in § 3, this shows that f(1IJ, Ax A)=0.
It follows from the formula (2) that F(IIJ)=f(AxA4,), and from

the formula (3), that Zf(]j)zf(A)+f(Al). Now Theorem 1

implies that each f(J;) must vanish; consequently f(4)+f(4,)=0.
Since f(A)< 0 and f(A,)< 0, we can obtain the final result : f(A)=0.
We can thus state the following

MaAIN THEOREM (FROBENIUS). Let A" be an abelian variety and
let X be a divisor on it. Then we have

vipx) = L(X™)/nlF

COROLLARY 1. Notations being the same as in the above Theorem,
assume that X is a positive non-degenerate divisor. Then we have

vpy) =1 (X)*.
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Furthermore let q be a prime number different from p; then ¢°
divides I(X) if and only if ¢ divides |E,X)|, where e is a non-
negative integer.

Proor. The first assertion follows from our Theorem and
from Nishi [6]. We proceed to the second assertion. By the
statement in Weil [9], XI, the highest power of ¢ which divides
the order of Gy is equal to the highest power of ¢ which divides
|E,(X)|. Since the kernel of @y is &y, our assertion follows
immediately from the first assertion.

CorOLLARY 2. (DuALITY THEOREM) Let N be a homomorphism
of an abelian variety A" onto another abelian variety B*. Then we
have v(*\)=v(\).

Added in the proof. I hear that the duality theorem has
already been proved by Cartier in the Bourbaki Seminar, 1958.

Ochanomizu Univ.
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