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The main purpose of this note is  to  estab lish  the following
theorem on an abstract abelian Variety:

L e t A  be an  abelian variety  of  dim ension n, an d  le t  X  be a
divisor on it; th e n  the degree v(q),) of  the homornorphism Tx  of  A
in to  its  d u al A "  is  e q u al to  [(Xc"))1ni] 2 ,  w here (X (")) means the
n-fold intersection number o f  X.

If X  is  positive and non-degenerate, then the dimension 1(X)
of the com plete linear system  X1 is given by (X(n))/n! (cf. Nishi
[6 ], Th. 3). Therefore, our theorem extends the classical Frobenius
Theorem . The method used in  th is note is purely a lgebraic and
is  v a lid  n o t o n ly  fo r the classical case but also for the modular

case. T he so-called Duality Theorem "the double dual A  of A  is
isomorphic to A "  can be obtained a s  a  sim ple corollary of the
Frobenius Theorem.

I  have received kind advices from Matsusaka and also from
Nakai to whom I  wish to express here my hearty thanks.

§  1 .  Preliminaries.
Let A " be an  abelian variety and let X  b e  a  divisor on it ;

the set (3„ of a ll points t of A  such that X t —X is  a  subgroup of
A .  B y A we shall denote the dual of A  (i.e . the Picard variety
of A ) .  T h en  it is  w e ll kn o w n  th at the two abelian varieties A
and A  are  isogenous. The mapping p , :  u  w h ere  û  is  the

1) We shall use freely the notations and the results in  W e il [9 ]. Numbers in
brackets refer to the bibliography at the end.

2) See the definitions in § 1.
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point of A  corresponding to the linear class of X ,4 — X , defines a
rational homomorphism of A  into Â; we can readily see that the
kernel o f cpx  is exactly the subgroup 63x . We shall say that X
is non-degenerate, following M orikaw a [5 ], if the homomorphism
p x  is surjective, in other words, if the subgroup O x  is finite. If the
subgroup 03, consists only of the unit element of A . then (s3x  will
be called triv ia l. Let now B  be another abelian variety and Y be
a divisor on  it. Then the dual of the product A x B  is Â x h  ; more-
over we can represent the homomorphism X x B  -A x y  by a matrix,

PX x B (AX Y  =  9 3 X

0

Thus we can see that v (P x x s-A x  y)=P (Px»)(Py).
Let 03(A) be the additive group o f all divisors on A .  Then

the set ( A )  o f all divisors algebraically equivalent to zero is a
subroup of 6 ( A ) .  Recently it was shown that the quotient group
05(A)/6 a (A )  is a free group o f finite type ;  this implies that the
three equivalences—the algebraic equivalence, the numerical equiva-
lence and the equivalence in W eil's sense— coincide. In  what
follows, we shall denote by these equivalences. Let X, Y, Z • • • be
divisors on A's ;  we define the intersection number (X (i)P -i)Z (k ) • •-),
where i+  j+ k+  • • • n ,  as follows : There exist n  points a„ • • • ,
a i , b„  •••  , b , c 1 , ,  c k ,  • • •  o f A  such that the intersection product
X a i  • • • X a i - Ybi • • • Yb i -Z • • Z • is defined; then deg (X a i  • • • • - Xai • Y51
• • • • • 17 -53•Ze1 • •• • • Z  c k

• •  •  • )  is independent of the choice of the points
a„ • •• , a 1 , b„ • • • ,b 3 , c ,, •  ,  c k , • • • , and we denote it by (Xci)Y(i)Z(k) • • •).
I f  X', Y', Z ' ,  • • •  are divisors on A such that Y=--171,
Z', • • • , then we have (Xci)Yci)Z(k)• • •)--- (X " i)Y " j)Z " k )-• • ) .

Let X  be a  homomorphism o f A  into B ; le t  Y  be a divisor
on B .  If X is not surjective, then X - '( Y )  may not be defined. But
there exists a point b  of B  such that X- 1 ( Y b ) is defined ;  further-
more i f  b  and c  are such points, then X '(Y ,, )= ---X - 1 ( Y , )  and in
addition, when Y -= 0  on B ,  then X - 1 ( Y b )—X - i( Y,)--=-0 o n  A . Thus
w e k n ow  th a t X  induces homomorphisms :  63 (B )103 ,(B )
3(A)/(53,(A) and : 03a (B)/63/(B)--.(Y . a (A )/ 0 3 ,(A ). The latter defines

a  rational homomorphism o f h into A  which will be called the
transpose of A, and will be denoted by 'X. The divisor Y  being

3 )  This result is originally due to Barsotti W. Serre [7 ] gives another proof.
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arbitrary and the point b being as above, we denote by X- '( Y) a
representative of the class of X '( Y b )  in 03(A)/6„(A). Throughout
this paper we shall use this convention. Notations being as above
we have the following formula " :

P À - 1 ( Y )  =  i X(PYX •

Finally, let X : A , X  •  • •  X B ,x  •  B. b e  a  homomorphism
of a product o f r  abelian varieties A, , ••• , A r in to  a product o f s
abelian  varieties B„ •-• , B .  Then X  can be represented by a
matrix,

X — (X II X lr

Xs i

where X L ; i s  a  homomorphism o f A ;  in to  B , fo r each pair of i
and j. W e can see that, by straight-forward computations, the
transpose 'X of X can be represented as follows :

IX /tX 11 tX s i

ttx1 x
Sr

§  2 . Frobenius Theorem on Jacobian varieties.

For any Jacobian variety J,  we may assume that J is self-dual,
i.e. J=.1 and that p x ,  where X  is  a  divisor on J ,  coincides with
the endomorphism 4 ;  in particular, if ( i s  the canonical divisor
on J,  then q,„ is nothing else but the identity endomorphism
of J. From now on we shall go on with these assumtions.

Let X  be a  positive non-degenerate divisor on J. Then the
Frobenius Theorem on J  can be stated as follows : v(4 )=l(X ) 2

.

Morikawa's idea in  his paper [5 ]  is very u se fu ll. First we shall
sketch the outline of a  proof based on his idea. T here exists a
natural number c such that c X 2, + +  Xi + xq , where each X,. is
a symmetric endomorphism and Xi X; =X; X , for each pair of i  and
j. We put

X = XI X2 X3 X 4  \

—X 2 x i  —x4 x2
X3 — X 4 — X , x2

4 )  Note the fact that çox = 0  if  an d  anly if

X
4 X3 X2 — X11  •
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Then X is  an endomorphism of Jx Jx Jx J. By the statement in
§ 1, and by the fact that each Xi is symmetric, we have"

= ( — X2 X 3  X 4
X, X ,  — X, X,
X3 — X4 —X2

, X1 X3 X 2 — XI

Therefore the diagonal matrix

c8fc

cal
c8k

c8jf  ,

is equal to the product 'XX. On the one hand the above diagonal
matrix represents the endotnorphism c x ( 4 ) o f  Jx Jx / x i ,  where
X( 4) — X x jx Jx J+Jx X x Jx J+Jx Jx  X x J+Jx Jx / x  X ; on the
other hand, we have 'XX p ,--1 ( , (4 ) ) , where 0( 4) has the same mean-
ing as in  the case of X( 1). Hence cX ") is algebraically equivalent
to X- '(0( 4 )) on Jx Jx  Jx J .  According to Nishi [6 ] ,  we have

l(cX (4 )) l(X - (e 4 ))
and

l(cX( 4 ) ) = l(cX ) 1

= c i(X ) 4( g  = dim J)
1R-1(00))) v(X)1(®(4)) v(X)

= -Vv(tXX) = v(c 8 1) 2

c4 g•v(8.,02
.

It follows from these relations that v(8k) = /(X) 2 a s  asserted.
In  th e  re s t o f  th is  §, we shall give another proof of our

Theorem which is more elementary than the preceding one.

PROPOSITION 1. Let X  be a divisor and Y be a non-degenerate
div isor on an abelian variety  A " .  T hen mY +X , w here  m  is  an
integer, is degenerate only  for a  f inite number of values of  m . In
addition, i f  Y  is positive, then the complete linear system 1m Y+ Xf
ex ists, i.e. l(m Y +X )>O, whenever in is sufficiently large.

5 )  Note the fact that the involution coincides with the transpose operation.

0
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P R O O F . W e know that m Y  +X  is non-degenerate if and only
if  the homomorphism p m : A — , 14. is surjective, i.e. v(Pmy+x)>0-
B y lin earity  w e have P m Y + X  = mg" y+ P x  v (F r iP y + P x )  i s  a  poly-
nomial in m of degree 2n, and the coefficient of the leading term
is  1)(cpy ) (cf. W eil [9 ], Th. 33 ). Since Y  is non-degenerate, v(p y )
is  n o t zero. Therefore this polynom ial is not identically zero ;
this implies the first assertion.

The latter h a lf in  our Proposition follows immediately from
the fa c t  th a t  the com plete  linear system  im r  i s  ample for
sufficiently large values of m  (cf. Weil [8]).

PROPOSITION 2. L et J  be a  Jacobian variety  an d  le t  X  be  a
divisor o n  it . L e t  0  be the canonical divisor on J. Then, for any
integer n , we have

(%-0- 1+x(e) n 2 0 +2nX + e - 1 (0)
and

4n2 - 1 (0)+4n - i(X) + W r 1 (0) ,

w here denotes the endomorphisni

PROOF. Let X be an endomorphism of J and let Z  be a divisor
on J. Then, by Weil [9], Th. 25, w e have 1 ( 2 ) =X ' .X ; and the
necessary and sufficient condition that Z-=0 is  4= 0.

As to the first assertion, let us put Z ,= (®) and Z 2 = n 2 0
+2nX + - 1 ((.-3). Then 4 i = 8; 0 ,A 0 , x = n 2 8 + 21,/ +&..2, and .8.2 = n28+
2n “ 2 . This shows that Z 1 Z 2 . A s  to  the second assertion we
can prove it quite similarly.

Now we can state the Frobenius Theorem on Jg in the follow-
ing form

THEOREM 1. Let X  be a divisor on a Jacobian variety J g •  Then
we have

where e  is  the canonical divisor on J .  In particular, if  X  is positive
and non-degenerate, then we have 2)(4)=1(X ) 2 .

PROOF. First we show that i f  X  i s  a  divisor of the type
X- 1 (( )  where X  i s  an endomorphism such  that v(X)> 0  and that
X'= X, th e n  the formula in our T heorem  holds. In  fact, since
( e ) = g !  (cf. Matsusaka [4]) and (X - '(0)( )=1)(X)(0(g)), w e have
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(X- 1 (0)( ) = g! (X ). O n  t h e  other hand, since 8-1 ( 0 )  = X iX (cf.
Weil [9 ], Th. 25), we have

(8 ;,=1( , ) (eVg ) ) =  «X 2 ) - 1 (0) ( g ) )
= v(X2 )(e ( g ) )
=  g! (X ) 2 .

These relations settle our assertion.
L et now X  be any divisor on J ;  we denote by If we

put f (n ; X) = g! ( 8 %1- x(e) ( 8 ") ) —  “ne+ X ) ( 9 2 ,  where n  is an integer,
then we know from Proposition 2 that

f (n ; X ) = g! ((n2 0 +2 n X + - 1 (0)) ( g ) )— ((no + X )() 2

We can consider f (n ; X ) as a polynomial in n  as  follows :

f (n ; X) =  
g

A r(X )nr ,
=--2

where

A r (X ) g! E  2 - 1 ( g ) ( g  i ) ( 0 ( i )X -(i) - 1(0 )(g - i - j))
2,4 J= r 2

0< i,j,i- j-< _g

-  E  ( g ) e ( i ) X ( g -  i ) ) ( 13 ( D X ( g -  i ) )
i+.1=r Z / ( f ) (

In  what follows, we shall show that each coefficient A r (X )
must vanish. First we can see immediately that A 2 g (X )=g ! (e) ( g) )

— (4 ) ( 6 ) ( )= 0  an d  k g  _,(X ) 2g • g! (6), (g- ')X) — 2g - g! (C)(" X ) =  O.
Consider now a  function g(n ; X ) of n :

g(n ; X) = g! c-1(0)(H)(g)) — ((n20 +2nX  + - 1 (0)) ( g ) )2 •

Then similarly g(n ; X )  also becomes a  polynomial in  n. In fact,
since g(n ; X) = f(n 2 ; 2nX  + - l(e))), we have

g(n ; X) A r(2nX  +e - 1 (e)))n2 r ,

and each coefficient A r (2nX  + '- '(e ) )  is also a polynomial in  n:

A r (2nX-F -- '(c-)))

= g! , 21 ( 1 ) ( g  i )( i ) (2nX  + - 1 (C-)1))( -1 ) .%,7.k i  t ic ,„) (0)(g -  i - j))

— _, ( g
i

. )( (e ( i) (2nX + - - 1 (0)) ( g . -  i ) )(0 ( j ) (2nX + ---i (6)) ( g - - - - i ) ) •



The Frobenius theorem and the duality theorem 339

and, using the second formula in Proposition 2, we have

A ,,(2nX + - 1 (6), )) 22 ' A ,-(X )n 2 g- r +h,.(n) ,

where h r ( n )  is  a polynomial of degree <2g—r--1, with coeffi-
cients of intersection numbers of divisors 6 ,  - 1 (C)), X ,  - - '(X )  and
( ) - i(0) ; therefore we have

g(n ; X ) = 2 2 .11.2 g _2 (X ) e -  + • • • .

Since 81„,31 x (H ) =n 2 6)+2nX -1- - '((7)) by Proposition 2  an d  8;0 _x  is
symmetric, it follows from Proposition 1 and the statement at the
beginning of this proof that g(n; X) =0  for almost all values of n.
Therefore the polynomial g(n ; X )  must be identically zero ; this
implies that A 2 g _2 (X )= O.

The X  being arbitrary, A2g _2(2nX + - 1 (0))= 0 for all integers n.
Thus g(n ; X ) can be witten in the form,

g(n; X ) = A r(2nX +-1(0))n" .
, = 2g  - 3

Continuing the same process, we can get

A 2 g _3 (X ) = • •• = A o (X ) = O.

This completes the proof of the first half.
Since g! v(8 „i)= (4 -  (eV )), the second half follows immediately

from the first half combined with the fact that l ( X ) = ( X ) / g !
(cf. Nishi [6]).

§ 3. The constant f ( A ,  B).

Let An  and B " are  isogenous abelian varieties ; let X :  A—).B
b e  a n  isogeny. It is well known that there exists an  abelian
variety C  such that A x C  an d  B x C  a re  both isogenous to a
Jacobian variety J. Let [6 A xC  be an isogeny ; we consider
an isogeny

( X  0
0  8 c ) : A xC ---). 13xC ,

where 8 c  is the identity endomorphism of C .  Then

ce ( X  0  )p ,

8c)
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is a homomorphism of J onto Bx C . Furthermore, if Y  is a positive
non-degenerate divisor on B x C , then  w e have 8',6 -1,,,,=tcup y a;
hence v(8L-1,,,,)---= v(ta) v(cp v ( a ) .  Since a - 1 (Y ) is positive and non-
degenerate, we have, by using Theorem 1, 1)(  /(a'(Y))2.
According to N is h i [6 ], T h . 4 ,  1(ce'(Y))=1., (a )1 (Y ) and hence
v(80,' -1( , ) ) u(a) 2 /( Y) 2 . Now on the one hand, 'a  is equal to  the
composition map of the transpose of

OX 8c)

and tit, ; therefore we can easily see that v(tce) v(tX )•u(t,u). On the
other hand, v (a )= (X )v (p ).  Hence we have

v(fX) 1( Y) 2 (p )  
1)(X) P(Py) v( t ,a)

This implies that the ratio v(tX)/1)(X) is independent of the choice
o f X.

Next we shall prove that the above ratio i s  a power of p .
There exists a  homomorphism B.--> A  such  that ryX= v(X)8A .
(cf. Weil [9 ],  Th. 2 7 ). Since the transpose of v(X)8,, is  p(x).3,i by
linearity, and since t(7X)= 'X'7, w e get v(tX)v(t7)=1)(X)".

First suppose th at v(X) is not divisible by p .  Then we can
see that, by using Morikawa's idea in the proof of Th. 4, Morikawa
[5], p(iX)>v(X); the proof as follows. We may assume that p(X)=-1
is  a prime number different from p .  L et Y  be a  non-degenerate
divisor on B ; then w e have E i (X '(Y ) )=  'MAX) E i ( Y)/14-,(X). There
exist /-adic vectors y„ ••• , 3, ,  modulo 1 such that tilf,(X)y, =0 (mod
1) and y,  I   0, yi  I   yi j ) ,  (mod 1 ) (i, j=1, ••• , 1); let y, be points
of g 1 (B ) such that the corresponding /-adic vectors are congruent
to E t ( Y r y i modulo 1. Since X is a surjective homomorphism, there
exist 1 points ui  o f  g ,(A ) such that X(u 1) = v ; . I f  x ,  are /-adic
vectors modulo 1  corresponding to the points ui ,  then we can
easily see that E 1 (X - 1 ( Y ))x 1 = .--0 (mod 1). This implies that X- 1 ( Y,,)
-x - im u i -X-1(Y) fo r  1=1, ••• , 1; furtherm ore it is clear, by
definitions, that any two of the divisors Y z,„  • • •  1 1 ,,1 are not linearly
equivalent to each oth9r. From these we have ( 'X )>  (X ) ; since
1)(7) is also not divisible by p ,  ( t  7) >  v ( 7 ) .  We can now conclude
that, in this case, v(tX)— v(X).

Next we consider the case where v(X) is  a power of p .  From
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the preceding formula : p(tX)2.,(e7 ) =2.,(X) 2fl, v (J X ) is also a power of
p .  Hence, in this case, p (tX )/ (X ) is obviously a power of p .

Now we proceed to the general case. W e know that X  can
be written as X— X,X,, where X, is such that 1.)(X1)  is not divisible
by p  and X, is such that v (X 2)  is  a power of p ;  then w e have

v( t X) v( t X2)1, ( t X,)

P(X) v(X1) u(X2)
tX 2 )

2)0■,2)

Thus we have proved that v (IX )/ (X ) is  a power of p .
I f  w e put vCX)—p-RA.B)v(X), then f  (A, B )  i s  an integer not

depending on the choice of the hom om orphism  X o f A  onto B.
In the last part of this paper we shall prove that f  (A , B) =  0  for
any A  and B.

§ 4. The constant f (A ) .

LEM MA 1. L et X  be a  div isor on an abelian variety  A .  I f  a
p o in t  a o f  A  i s  o f  order q  (q  may be divisible by p )  and X a — X ,
then there ex ists a  div isor Y  on A  such that Y — X  and Y a =Y  ; in
addition, when X  is positive, Y  can be chosen to be positive.

PROOF. We put (T) = X a — X ; w e  m ay  assume that (7) is not
a constant. Consider" q  functions ( p ,  ( 1 7 . ,( p T a  ; then we
have (p T ia) i +0 a  X i  a  , and ((7)(pr a ••• (7)T ia) X .  Since
( (p p  T (p T  _ 1 ) )

may assume that, without loss of generality, ppTa

I f  1 ,
( p r p T  a cpT are linearly dependent and 1, q), P P T  a ,

a ra• pepT •• • q).T.a r e  linearly independent over an  algebraically
closed field k over which A , q) and a are defined, where 0 <r <q  — 2,
then there exists a non-trivial relation :

6 .2 (pp T a + r + 2 (p (p T a (pT cr ± i ) a  =
Co + cap

with coefficients c i  in  k. Here c , must not be zero ; for otherwise
c r ( p T  cr. -1-1)a•

(13 (C c2PT  a ) 0  and this implies a relation

6 )  In general, fo r any function (/) on A  and for any point a of A, we define a
function çOr a  in  the following w ay . L e t k  be a field over which ço is defined and a is
rational ;  le t x  be a  generic point of A  over k. If we put 0 ' , (x)=-ço(x — a ) ,  then cpr a
is  a  function defined over k  and clearly (ÇoT,)=-(yo)„.

0, the function q)(70T a ••• (P T ( q - 1 ) a  is  a constant ;  we
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c, + c2cP 
.+ cr 2,7 jy ra w r r a  0 ,  which is a contradiction. We

may thus assume that c 0 =1.
We can find out constants b„ ••• and b  which satisfy the

following condition :

1+1) 1(p+ b 2 w g i a  + ••• +b,- iqxPT a  •  ••  pT ra

(1 +  bip+b2WP T ' ± b1 p T ra ) T a b(1)

In fact, by the principle o f  undetermined coefficients, w e  have
only to solve the following system o f equations :

b i — b =  c„  b 2 —b1 b  =  c 2 , ••• , b  — b r b  =  c ,
= c 2

this system is equivalent to

b, = b + c „  b 2 = b 2 + c 1b+ c„  • • •  , b ,,—  b r± l+ c,b r+
•• •  + cb + c r _„  b r  2 + c 1br - ' +  • • •  + c„ ,b + c r + 2 = 0 ,

and the last equation in b  has a non-zero root ; i f  such a root is
determined, the other constants b„ ••• , b r f ,  are also determined.
For such constants b„ ••• ,b,-_ , and b, we put (1 +b,p+ ••• +br---1WP T a

••• r ra)=- Y— X ; here notice that, i f  X  is positive, then Y  is also
positive. It follows from the preceding relation that (Y—X)—
( Y —X)„=X a — X , and hence we have Ya = Y.

LEMMA 2. L et A  be an  a b e l ia n  v ariety . T hen there ex ists an
a b e l ia n  variety B , i s o g e n o u s  to A , such that there is a positive non-
degenerate divisor Y  on B  f o r which the g ro u p  y  is  trivial.

PROOF. Let X  be a positive non-degenerate divisor on  A.
Suppose that the order of the subgroup 03„ is greater than 1.
Let a  be a point of O x  ; let q  be the order o f a ( q > 1 ) .  Then, by
definition, Xa - - X ; Lemma 1 shows that there exists a positive
divisor Y, linearly equivalent to X , such that Y i a = Y  fo r  i= 1 , 2,
..• , q - 1 .  Consider the quotient variety A i —Al {a}, where
denotes the subgroup of A  generated by a, and consider the natural
separable homomorphism X , o f A  onto A , .  Then, by Weil [9],
Prop. 33, there exists a positive divisor X ,  o n  A ,  such that
Y=X1 1 (X 1) ; clealy X , is non-degenerate. It follows from Nishi [6],
Th. 4, that /(X)=7.)(X 1 )/(X1 ) ; and so l( X )= q l(X ,) .  If the order of
Ox i  is greater than 1, then we continue the same process as above ;
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by the condition that /(X )> / (X ,), after a finite number o f steps,
we can get an abelian variety asserted in our Lemma.

LEMMA 3. L e t A  be an  abelian variety  an d  le t  X  be a  non-
degenerate div isor o n  i t .  I f  th e  group 023x  i s  triv ial, then v(px )  is
a pow er of  p ;  furtherm ore, i f  X  is positiv e, then 1(X ) is  also  a
power of p.

PROOF. The first assertion follows immediately from the fact
that the kernel o f p x  is exactly the group

Now we suppose that X is positive and non-degenerate. There
ex ists an  abe lian  variety  B  such that A x B  is  isogenous to  a
Jacobian variety J ;  moreover, by Lemma 2 , we may assume that
there is a positive non-degenerate divisor Y  on  B  such that 0 ! l y

i s  trivial. Consider the divisor X x B + A x  Y  o n  A x B  and an
isogeny X : A x B  ;  then we have

1 (X x  B -A x  Y ) tX  (P  X

o
 O X

Using the second half o f Theorem 1 , we can compute the
degree of the left-hand side as follows :

1.(8 /A-1(xxn+Axy)) — 1(X 1 (X xB +  A x  Y)) 2

= v(X) 2 1(X x B + A x Y ) 2

vo.) 2 1(X ) 2 1(Y) 2 .

On the other hand, the degree of the right-hand side is equal to
v(tX) v(X) v(px ) v(931 ) ; therefore we have

1 (.70 21
( Y ) 2 _ p f ( J . A x B ) ( q ) x ) p (q )  ;

since the groups 03x - and 6 y  are both trivial, v(Tx) and P ( q ) 1 ' )  are
powers of p .  This implies that 1(X ) is  a power of p.

Now we can introduce a constant f (A ) attached to a given
abelian variety A .  Let X  be a positive non-degenerate divisor on
A .  There exists an abelian variety B such that A x B  is isogenous
to a Jacobian variety J ;  here we may assume that, by Lemma 2
and Lemma 3 , there is a positive non-degenerate divisor Y on B
such that /( Y ) a n d  (p y )  are powers o f p .  Let X : J—.-AxB be
an isogeny ; then similarly as in the proof of Lemma 3 , we have

/(X) 2 /( Y) 2 =  P f ( J 'A  x/ 3 ) v((Px)2)(q)
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hence
v(wx)//(x)2 =_ f i -fu,A.B)/ ( y ) 2/i,(„p y )

It follows from the above relation that th e  ra tio  v (q )/ l(X ) 2 is
independent of the choice of X .  Thus, if  we denote this ratio by
p " ) ,  then we know that, whenever a  divisor X  is  positive and
non-degenerate, v(px ) =p 1 4 )/(X) 2 . Here we need the following

PROPOSITION 3. Let X  be any  div isor on A .  T h e n  (X m ) is
a multiple of n! .

PROOF. When X  is  positive and non-degenerate, our assertion
is already known. Now let X  be arb itrary. Let Y  be a positive
non-degenerate divisor on A .  Then, b y  Proposition 1, m Y + X  is
linearly equivalent to a positive non-degenerate divisor, i f  m  is
sufficiently la rg e . Hence the polynomial ((mY + X) ( ") )1 n! in m takes
an integer value, whenever m is sufficiently la rg e . It is well known
that such a polynomial in m takes an integer value for arbitrary
integer m; in  particular the constant term (X ")/  n ! is  an integer.

Now let X  an d  Y  be as in Proposition 3. T hen w e have
v(pm y , x )--=p")/(mY+ X) 2 ,  i f  m  is sufficiently large . T h is implies
that two polynomials v(q) y , x )  and p " ) [((m Y +X )(" ) )1n!] 2 in m are
equal if  m  is sufficiently la rg e . Hence they coincide identically.
Comparing the costants terms of the both sides, we can get the
following formula :

( 1 ) v ( 9 ) x ) = P - R A ) E ( x ( n ) ) / w 1 2

Here notice that the formula (1) is valid for any divisor X on A",
in  other words, f (A )  is independent of the choice of divisors X.
In particular we have the following

COROLLARY. A  divisor X  on A" is non-degenerate if and only
i f  the integer (X )/  n !  is not zero.

In  the rest o f th is § , we shall see several relations between
the constants f(A , B ), f(A ) and f (B ) .  Let A" and Bn b e  isogenous
abelian varieties and let X : B  be an isogeny. Let Y be a non-
degenerate divisor on B .  Then we have v(rp, 1,,,)=1)( 1X)v(p y ) v(X).
Applying the results in  § 3 and the formula (1), we have

p f( A) [(x -  (y )n))1 p fC. A  B ) -  1-  1 3 )  p (X )2 [ ( y (n) ) / n  ,] 2

since (X - 1 ( Y ) ') )  v (X ) (  r " ) ) ,  we can get the following formula :
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( 2 ) f  (A , B ) = f  (A) — f (B) .

Next le t Am and B " a re  two abelian varieties ;  le t  X  and Y
be non-degenerate divisors on A  and on B respectively. Then we
have v(tPxxB+Ax 14 .-=  V ( P  V ( P  ;  applying the formula (1), we have

1)(Pxxin-Ax 
_,1 p f ( A [((X x B + A x ''')1(m+ n)!11 2

p f( A x li)E(X(m)) I i n !l2 E (y(n )) I n rI2

and similarly

v((i)x)1)(cPy) P")± f(B )E (X (m )) I M!:1 2(" ))  n r_ 1 2

Consequently we can get the following formula :

( 3 ) f  (A x B) = f  (A) + f (B) .

§ 5 . P r e l im in a r y  s t e p  o f th e  p r o o f  o f th e  M a in  T heorem .

In this § , we shall show that the constant f (A ) is not greater
than zero.

Let A  be an abelian variety and let A be its dual ;  hereafter
we shall denote by o  an d  ô  th e  u n it elements o f A  and A re-
spectively. There is a divisor P  on A x A, rational over a  suitable
common f ie ld  o f definition k  for A  and  A, with th e  following
properties : The point o x  ô  is not contained in  any component
o f P  and  therefore P(o), 1P(6) a re  both defined ;  moreover i f  a
point it of A is generic over k , then the linear class o f '13 (û)— tP(0)
corresponds to the point 12 of A . Let now u  be a generic point of
A  over k. The correspondence :  u —the linear class of P(u)— P(o)
defines a homomorphism K A  o f A  onto A , where A  means the
double dual of A .  If we put T = P— 'P(ô) x A—A x P(o), then we
have the following

PROPOSITION 4. The homomorphism : Ax:4—)41x À can be
witten as follows :

P T  =

— KA

PROOF. L et u x i b e  a  generic point of A x A over k. It is
well known that T„,,,;—  T — X x A+ A x  Y , where X  is  a  divisor
on A  such that X O  an d  Y  a  divisor on A such that Y O (cf.
Lang En Prop. 6, I V ) . We can determine the linear classes of X
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and Y exp lic itly . S ince T(o)= 0, 7 1 x , J 0 )  is also defined. W e may
assume ah a t, by m ak ing  a  suitable translation if necessary, any
component of X  does not contain the unit o ; th en  (Xx A + A x Y )-
(ox  is defined and equal to  ox  Y . T herefo re  T u x , ( 0 ) — Y  on
A . On the other hand, making a translation to  the intersection,
we can compute as  follows :

T   • (o  < =  [T . (( — u) x A)], ‘

L( —  u)x  T ( —  u)]„
= o x  T(— u) ;‘, .

This shows that Y—  T(—u) ---- T(—u); b y  th e  theorem of the
square, T(— u)---.--  T ( u ) .  T hus w e see that Y ---- T ( u ) .  Similarly
w e have X -- — T (W . This completes the proof.

Let now X  be a  divisor on A" ; the homomorphism K A :  A--)-11
being as above, we can see that ( p x = t P x / c A P  I f  w e assume that
X  is non-degenerate, then it follows from the above formula that
v(cPx)=1)( 1Px)v(KA ), an d  therefore that 2.4/cA )=P - f ( A. Â ) . U sing the
formula (2), we get

( 4 ) y(K A ) pf(4)- AA)

On the other hand, Proposition 4  shows th a t v(q),)= v(K A ) ;  since
v (PT )= P f ( A  A(T` 2") /(2n)!] 2, w e  h a v e  Pfii" ) [(T ( 2 ") )1(2n)!T  =
p f (Â ) - f(A ). It follows from the formula (3) that

( 5 ) [ ( T ( 2 n ) ) / ( 2 n ) ! T  =  p - f u o  .

Since (T " )  I (2n)! is  an integer, this shows that f (A ) O.

§ 6. The p r o o f  of the M ain T h eorem .

In th is § , we shall prove the final result : f(A )= 0.
LEMMA 4. L et A  and  B, x 132 b e  isogenous abelian varieties and

let x B , be an  iso g e n y . L et k  be a  f ield o f  definition f o r
t t ;  le t  x  be a  generic Point o f  A  over k. Putting ii,(x) = y ,x y , ,  we
def ine surjectiv e hom om orphism s X,: B ,  by X 1(x )=y 1 ( i= 1, 2).
Then th e  intersection Product XV -(00•X i i (02) is def ined an d  v(1-6) =
deg (XV(01) • X2 1 (0 2)), where o, and 02 are  th e  unit elements o f  B , and
B , respectively.

7 )  Cf. Lang. [ 3 ] ,  P ro p . 10, V.



The Frobenius theorem and the duality theorem 347

PROOF. Since ,a ( a) = i (a) xX 2 ( a )  fo r  a n y  point a  o f A , the
finiteness of the kernel o f /..6 implies that X,71 (01) n XV(02) is finite ;
consequently X V ( 0 1 ) • 7 T . 1 ( 0 2 )  is  d efin ed . As to the second assertion,
we define homomorphisms :  B 1 x132 —.B i  b y  tzi (y, xy2)=Yi(i=i, 2).
T h en  c lea r ly  w e  have i , , u =  X . S in c e  X71 (o 1) =-- p - 1 (1.671 (0 i ) ) ,  we
have

XV(01)-XY 1(02) = 11 - 1 0-ci- 1 (0 ,))-16 - 1 (1-6.11 (02))
= x B 2 ). [L - 1 (B ix  02)

P - 1 (0 ix  B2-13ix 02)
= P - 1 (0 ix  02) .

This completes the proof.

LEMMA 5 .  N otations being a s  in L em m a 4 , let 9 , xy'2 b e  a
generic point o f  hi x h2 . Then we have t p, (51i x  j)2)--- 'X i(j;i)+ eX 2i)2).

This is  a special case of the statement at the end of § 1.

LEMMA 6. L et A x B  be a  product o f  tw o abelian varieties A
an d  B . Then the canonical homomorphism K A . B : A x B — >A x B  can
be written by a matrix,

K A x B  =  ( IC A o
K J  •

The proof is easy and is omitted.
The following Theorem, due to Chow [2 ],  plays an essential

rôle in our proof.

For any  given abelian variety A , w e can f ind a product
of  Jacobian varieties J1, J2, • • •  J r ,  such that there is a
regular hon2omorphism" X of  J 1 x .f 2 x  ••• X Jr  onto A.

We shall, in what follows, denote by IIJ the product J,x j, x • •• x
Let k  b e  an algebraically closed field of definition fo r X . I t  is
not so difficult to see that (X :

 —1.11)---11J i s  a regular injection,
i.e. k(5)=k(tX (X )), where is  a generic point of A over k  (In fact,
we can prove it by using the results in Nishi [6], §  3; a  detailed

8 )  Let A  be a homomorphism of an abelian variety A  into another abelian variety
B .  Then A is called a  regular homomorphism, i f  k (x ) is  a  regular extension over
k ( A ( x ) ) .  Obviously such a definition is independent of the choice of the field k.
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proof is also given in Lang [3], Th. 10, VIII). We put tX(A)=C ;
then C is an abelian subvariety of IV. We consider the quotient
variety IIJ IC =A , and the natural regular homomorphism X 1 : HJ

Since X is regular, X - !(o ) is  an abelian subvariety of 11J,
where o is the unit element o f A ; we set X - 1 (o )= B . We consider
the exact sequence :

X
0 ---> B 0 ,

where a is a  regular injection. We consider also the following
sequence

ta 'X0 4- -  / j - -4 J4----

Then, since tatX= i(Xa), we have ta 'X= 0; this implies" that C is con-
tained in the kernel o f t a .  We can readily see that 'a is surjective
(cf. Lang [3], Prop. 2, V) ; consequently C must be a component,
containing the unit element, of the kernel of 'a. Since face: B - 4
is surjective 1" , the subgroup B r \ C is finite.

The homomorphism 'a can be decomposed as follows :

0 4 - -  Ê 4" ' a

\  / x
A,

where 9 is an isogeny. Consider also the following sequence :

, a
---)."È -0 11J— +

to\  /
A ,

Then, as in the case of 'X, 'x, is a regular injection and "a='X,'0.
It is well known that the following diagram

9) The regu larity  of ta  is  no t p roved  at p resen t. But a fte r  a ll observations in
th is  § , the regularity w ill fo llow .

10) Let (4, be th e  canonical divisors on J1 for i----1, • •• , r and put 0 ( ' ) =  x  J 2 x
• x j r

- 1-  j i  X 0 2 x • • • x J, • • XJ,- 1 x f9,. T h e n , s in ce  Çoe(, ) =  5 R J , w e  have
tmr=Soa - ice ( )). N ow w e can easily see that a- 1 0 , W) )  is non-degenerate ;  this implies
our assertion.
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a
4 1 1  J

IC
B

 

Ku j

   

is commutative ; since Ki v  is  eq u a l to  the identity endomorphism
of 1IJ by Lem m a 6  (note th a t Kj  coincides with  fo r any

Jacobian variety J), w e have ce="ceK B . Consequently ce= i X1 t i3  KB•
Combining this with the fact that a  is  a regular homomorphism,
we know that KB  and '3 are both regular isomorphisms and that
B  is  the isomorphic image of A, by the regular injection 'X„ i.e.
'Xi (A,)= B.

Assume n o w  th a t a ll the varieties and the maps appearing
above are defined over a field K  containing k; le t x  be a generic
point of 11J over K .  I f  we define a homomorphism ih :1 1 J— *Ax
b y  tt(x )= X(x) x Xi (x), then ,  a  is  an isogeny ; for otherwise there are
infinitely many points a  o f II J  such that 1.1 a)=X (a)x X 1(a)— 0 and,
since B r \ C  is fin ite, th is is a contradiction. Lemma 4 shows that

/,) = deg (B•C).
On the other hand, let û x2) be a generic point of A x  Â, over

K ; then, according to the regularity of 'X and that of 'X„ we have
= K(tX (a), 9t,( )) ; Lemma 5 shows that '1.6(ti x 'WO+ 'X1(13).

By Weil [9], Th. 4, Cor. 2, we have [KVX(fi),  / X 1 ( ) ) :  KCX(a)+ tX(0)]
=deg (B • C). Since p(i/z) [K (û x e) : Kvx(a)+ , x1 (0)], w i t )  is equal
to deg (B • C ) .  Thus w e can get v(t,a)=1)(i4.

Using the notations in § 3, th is  shows that f(1I J, A x  A 1) =0.
It follows from the formula (2) that f (11J)=f (A x A,), and from

the formula (3), that f ( L ) = f ( A ) + f ( A , ) .  N ow Theorem  1
J=i

implies that each f ( L )  must vanish ;  consequently f (A )+f (A ,)= O.
Since f ( A ) <0  and f (A ,)< 0, we can obtain the final result : f (A )= O.

W e can thus state the following

MAIN THEOREM (FROBENIUS). L et A " be an  abe lian  variety and
let X  be a  divisor on it. Then we have

v(Px) [(X ( ") )1 n!]2

COROLLARY 1. Notations being the same as in the above Theorem,
assume that X  is a positive non-degenerate divisor. Then we have

2.)((px ) =1 (X ) 2 .
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Furthermore le t q  be a prime number different from p ;  th e n  qa

divides 1(X) if and only i f  q "  divides IEq (X)1, where e is a non-
negative integer.

PRO O F. The first assertion follows from our Theorem and
from N ish i [6 ]. W e proceed to the second assertion. B y the
statement in Weil [9 ], XI, the highest power of q  which divides
the order o f Ox  is equal to the highest power of q which divides
Eq (X ) I .  Since the kernel o f  px  i s  Ox ,  our assertion follows

immediately from the first assertion.

COROLLARY 2 . (DUALITY THEOREM) Let X be a  hornomorphism
of an abelian variety A" onto another abelian variety B. Then we
have v(1X) v(X).

Added in the p roo f. I hear that the duality theorem has
already been proved by Cartier in the Bourbaki Seminar, 1958.

Ochanomizu Univ.
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