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It is well known [1, P .  200], [4, p. 188] that, if a hypersurf ace
of an euclidean space is of type more than two, then the second
fundamental form (II) is uniquely determined by its first funda-
mental form (I). O n  th e  other hand, in 1945, T. Y. TH O M A S [5]
shaw that the form (II) of a surface is determined in  general by
its form (I) and the mean curvature M .  Therefore the imbedding
of a 2-dimensional Riemannian space, which is assumed to be of
type two, is uniquely determined by giving the mean curvature
M, within rigid motions.

These results lead us to consider the imbedding of an n(>2)-
dimensional Riemannian space of type two by giving the mean
curvature M .  Thus our problem is to f in d  the expression of the
f orm  (H) in terms of the form  (I), the scalar M, and their derivatives.
The methods, by means of which Thomas deduced the expression
of the form (II) of a surface, are not applicable to a  hypersurface
of general dimensional number, because he did not use the process
o f tensor-calculus, and further the simple equations (1. 1) giving
the curvature tensor of a surface do not hold good fo r a  hyper-
surface, except when the hypersurface is  of constant curvature.

In the first part of this paper the problem of Thomas [5 ] is
treated by the process of tensor-calculus. We shall show that the
determination of the form (II) will be done by solving a  system
of linear equations (1. 13).

The second part of this paper is devoted to generalize the
problem to the case of dimensions n > 2 .  The expressions of the
covariant derivatives of the second fundamental tensor H i ;  a re
also obtained, but, in this time, their symmetry leads us to some
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equations, which are linear with respect to  H u . W e shall show
that, in virtue of a system of those equations, 111 ; shall be already
determined in  general, and we need not the conditions of inte-
grability. Consequently, we see that the problem of possibility of
imbedding an  n-dimensional Riemannian space in an euclidean
(n+1)-space rests in general upon the existence of a single scalar
(the mean curvature M ), which must satisfy a certain system of
differential equations.

I. O n the case o f surfaces in  an  ordinary space.

§ 1 .  The covariant derivatives of the second fundamental tensor.

W e consider a  non-developable surface S  o f a n  euclidean
3-space and denote by

( I ) g i ; (x)dxi dxf , (II) H i ; (x )dx i dx j , (i, 1, 2)

the first and second fundamental forms o f S  respectively. The
curvature tensor R h i j k  of S  is written in the form
(1.1)R h i j k K  (g h j g i k —  g h le g i j )

where the scalar K (x ) is called the Gaussian total curvature of S,
which does not vanish on S  identically by our hypothesis. The
scalar g a b H a b  is called  the m ean curvature o f S  and we denote it
b y  M .  It is w ell know n that the components H i ;  s a t is f y  the
equations of  Gauss and Codazz i as follows.

R h i j k  =  H h : j  H =  0  .

We shall deduce some equations, which will be used in the
following discussions. It follows from (1. 1) and the Gauss equa-
tion that
(1. 2) Kgrk g i k -  —  I l h [ j H i k 3

On contracting (1. 2) by g"3 , w e  have

(1.3)M H i k - 1 1 7 1 1 a k  •
where we put H7_ gab H b i .  Multiply (1. 3) by 113 1 ,  interchange the
indices k, 1, and subtract ; using (1. 2), we obtain
(1. 4) g i  k  HIT k  g j l , ±  M  g i  k  g i n  •

* The symbols [ i k ]  and ( i k )  are used to express, for instance,
H ,,r; H ik ) = H hjH ik — H i i
H(7 'H ak),z I z +Hi, Hai .
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M ext, we take a  skew-symmetric tensor Si ;  arbitrarily. Contrac-
tion of (1. 4) by gi a gib Sk ,  gives us easily

(1.5) S Ika =  M S k l  •

Now, it fo llow s from  th e  Codazzi equation that g ab l iab , i

g a6  H ia.b =  M i  •  in  which, for sim plicity, w e have omitted the
"comma" denoting covariant differentiation of the mean curvature
M .  Differentiating (1. 3) covariantly by x', we obtain

K l g i k  = - -ak ) .l*

where K , is  the covariant derivative of the total curvature K .  It
follows from the above equations that

(1. 6) g i) K k g l i  =  M H i k , i

+ MaHok —  Mk •

Multiply (1. 6) by H i m  and  subtract from it the equation obtained
by interchange of the indices k , m . Then, in virtue o f (1. 2), we
have

(KU g i)ie  K  . k g  l i ) 1 1 K M C I  g i k

—(MH, k ,i — H i l 4 k ) 1 1 ;,„ —2K gi  k lim ) = O.

We contract the above equation by g ik  and change the indices.
The resulting equation is written in the form

M InH a ,,, + (2K — M 2 ) ( MM k — Ma llak )1 11,
— (MK(,— KM( i )g„ k ±(K a H k̀t— MKk )g,, = O.

On eliminating the term 1111a ,,, from the above equation and
(1. 6), we then have

(1.7) 611 113 , k (2KM( 1 — MK( 1)g i )
k +(M K k -2K a H,)g1 f

+(2K, 1 — MM( ,)I » k ±(2Ma lF,' — M M ,)H 13 ,

where the scalar 0 = 4K— /1/ 2 .
Consequently, if  0 does not vanish, then the covariant deriva-

tives H i j , k  are  expressed by (1. 7) in  terms of the metric tensor
g u ,  the mean curvature M , their derivatives, and H, J . We notice
h e re  th a t th e  equations (1. 7) a re  tensorial ex pressions of  the
equations (2. 2) and (2. 3) of  Thomas's paper [5 ].

W e can see easily that th e  right-hand member o f (1. 7) is
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symmetric with respect to  the three indices. In order to verify
the symmetry with respect to the indices j ,  k , we obtain from (1. 7)

-2- -- (KM ;  — MKci) gk) + K  ;H c i

+ Ka  H  jg c a l l ( ( ; H k ) i  .

The last two terms are rewritten, in virtue o f (1. 2) and (1. 4), in
the forms

K a II i gk : i
— 111„ H :1 H k : j —  — 114-JgC i •

Therefore we establish 111 1 , v =  O.

§ 2. The conditions of integrability o f th e equations (1. 7).

We now deduce the conditions of integrability derivable from
the system (1. 7). Using the formula of Ricci and (1. 1), we find

k.1 K g ( 1  h H j) 1  •

Let us differentiate (1. 7) covariantly by x', subtract from it the
equation obtained by interchange of the indices k , 1 , and then
make use of the equation o f Codazzi and the above. When the
substitution i s  made from (1. 7), after considerable reduction, the
resulting equation becomes

(1.8) (MQ(ick — 2Pcick)Hp + 2 (g 1 1 PaC k  H ij Q a:k )  H 7 1

KM&—( 2
KQ(i:k —

 M P ( Î ,k 2  gC1C.k +  S ( i C k ) g p l )

—20 S , g 11 =  O,

where s i1 = A i K1 , and symmetric tensors P i ;  and Q i ;  are defined
by

K 02

=  K u — 4K i KJ + M M c i 2   g,, ,

OM i i -P2M M 1 M i - 2 M (1 K ; ) ,

these being the same essentially as the one used by Thomas
[5 , p. 394].

It is desirable for the requirements of the following calcula-
tions to put the equation (1. 8) into a more contracted form . To
do this, we contract (1. 8) by g i l  and then obtain
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MQa(k117,- 0  Q ik ± ( 2 P — M Q )H ik

+(2K Q — M P)g i k - 2 Q a k HZI-P +2 Q a bH 7 H Z  0,
where putting P=g ab Pa b  and Q=gabQ a b . In  virtue of (1.2) and
(1. 3), the last two terms are rewritten in the forms

Q ahlitb ' M  = MQak 117 — Qik

Q ab 1 7 H b k  Q a b H a b H i k + K Q i k — K Q g i k

Thus the above contracted equation becomes

(1. 9) M Q a c i l n )  M2 (2 ik — M P g ik ± ( 2 Q ab li ab + 2 P — M Q )H ik  •
Now, we introduce the quantities 111i ,  which are the cofactors

of the elements H i ;  in the determinant Ha s, d iv ided  by g = I gab •
It follows from  (1. 2) that H i k  hii = .  Contract (1. 2 )  b y  hi"
we then have

g ab lrb  g ik  g ai g b k h ab = H ik  •

Furthermore, on contracting by g ,  w e  f in d  ga b  hak M ,  and so
the above equations give immediately

(1. 10) H ik Mg ik  h i k

We contract (1 . 9) b y  hik , and m ake use of those equations as
above obtained. It follows that  = M Q — P . H ence the
equation (1. 9) becomes

(1. 11) Qa(ilg)— MClik — Pgik

provided that the m ean curvature M  does not vanish.
We remark lastly that the equation Qa b liab =M Q —  P becomes

Q ab h ab  P , by means o f (1. 10). The latter equation was obtained
b y  Thomas [5 , (3 . 4) o r (5 . 1 )] as the integrability conditions of
(1. 7), and p la ied  a  role in  order to determine H u . But w e do
not use this equation in the following.

§ 3. Explicit determination of the second fundamental form.

In  th is section w e shall restrict our discussions to a  region
of the surface, where the mean curvature M  does not vanish. Let
us deduce the equations from the Gauss equation and (1. 11),
which w ill be used to determ ine Hu . M ultiply (1. 11) by H 3 1 ,
interchange the indices k , 1, and subtract ;  when we make use of
o f (1. 2), then the equation
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KQ1 ( ag1i3+Q 0,k1171111: = Q  K g ,,. g 113 + A i 1k1111)

is obtained, where by definition A i k  is the right-hand member of
(1. 11). By making use of (1. 2), the second term of the left-hand
side of the above equation becomes

Qa kH711.", = kgp)

Hence the equation as above shown is written as

(1. 12) Q0ck 1173H11— 1 3  = K(Q gi c h -2 Q i c k ) gm  .

We introduce so-called contravariant e-tensor e13 [2 ,  P .  77],

components o f  which a r e  e"—  e"=0, e"= — e" 1=    (g= gabl).g
Then, on contracting (1. 12) by e "  we find

(1. 13) X H i ;  2   (A „H i , —A i2 11; ,) = 2K V 1 ; ,
g

in  which we put

=  Qack1173 e" ,

Vi;  =  —
2

- (Qgick - 2 Qick)gline" •

If we choose a  system of coordinates (x)p , such that, at a point P,
we have g u =a i i ,  then the components V i ;  a re  given in  particular
by

1 7 ,1  -  
2

Q12 V 1 2  -  
17

2 1  -  Q 2 2  Q 1 1  7  1 7 2 2  - 2Q12

at the point P .  Therefore V 11 can be also defined by

V13 g ib + Q j a g i b ) e a b  •

Hence this tensor V 11 is essencially the same as the one used by
Thomas [5, p. 397].

Now, we solve the equations (1. 13) with respect to Hu ,  by
Cramer's rule. First, when we take i = j= 1 and i = 2, j = 1 in
(1. 13), we then obtain

H „ =
2W  WN/ g
X  

2W 2+ W V
1

, V „A ,— V „A ,2),
g
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where we put W =  1 ( v + 41A ab ). Next, taking i =1, j = 2 and2K \
i= j= 2 ,  we then have

X 1 
H 1 2  — V

v

 12 - I -  (  1
7

12 A i2  —  V 2 2  A i i )
2W g

1 
H 2

2

 =  
2 W "

V  +  
147V  

( V i2  A 2 2  —  V 2 2  A„) .
g

I f  we refer to the coordinates (x)p a s  above mentioned, then we
see that, at the point P, we have

A 2 2  2 V 1 2  A i2  ±  V 2 2  A l i  —  0  •

Hence the two equations giving H„ a s  thus found are written in
the single form

X  1-7 1 i A
22

H
12 — V 12 k 1 1  " V 22 A l l )  •2 W  2 W V g

v

A s a consequence of these equations expressing H i f ,  we have the
invariantive form of H .  as follows.

(1. 14)

where the last term is defined by

1= —
2  

( V ia A jb+V  j a  A i b )
eab

We show that Vi'fi are linear combinations of g i ;  and Q i i . In fact,
i f  we refer again  to th e  coordinates (x) p ,  then the components
viy are given, at the point P, by

• =  PQ-2M 1Q a z , +(M Q -2P)Q „,
• = ±(mQ_2P)(212,
• = PQ -2M IQ 0bl± (M Q -2P) Q 2 2  •

Thus the tensor is also expressible in the form

(1. 15)V  =  R g i f +U Q i i ,

in  which the coefficients R  and U are defined by

R  = PQ -2M 1gab lU  =  M Q - 2 P .
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The scalars X and W in (1. 14) are unknown y e t .  To determine
these, we recall the definition of the mean curvature M . Then
we contract (1. 14) by g-11 and make use of g ab  K b _  0  and (1. 15).
In virtue of the definitions of R and U, we obtain

W = Q 2 4  I QablX = —  W  —  U 2 ,

the latter being obtained from the defining equation of W.
Consequently, on substituting for X and W  in  (1. 14) from the

expressions as above found, we establish the explicit determination
of the second fundamental tensor H i ;  by  the f irst fundamental tensor
g i 1 ,  the m ean curvature M , and their deriv ativ es. We see from
(1. 15) that our expressions (1. 14) are the same as the one obtained
by Thomas [5, (5. 10)].

§ 4 .  On the case o f the mean curvature being constant.

The equations (1. 11) were obtained under the restriction, that
the mean curvature M  does not vanish. A nd, if M  is  constant,
we then see that Qi ;  vanish, and hence W= 0, so that the expres-
sions (1. 14) are of no avail.

Now we return to the equations (1. 8) and suppose that the
mean curvature M  is constant. Then (1. 8) becomes

— PcickHD /3 j r  g ij  P aC k  H 7  —  •

On referring to th e  coordinates (x) p ,  th e  above equations are
written in the simple form

M P 1 2  - -  0,P 1  1  H 2 2  P 2 2 1 1 1 1  -  0

at the point P .  From the second equation it follows that

MP„— PH„= 0 , M P 2 2 — PH22 = 0.

Then these equations can be combined into

(1. 16) M P i i  -  P r i i i  •

First, we consider a minimal surface S, which is characterized
by M = 0 identically. It follows from (1. 16) that P1111 = 0, and
hence we have P=0, because S is assumed to be non-developable.
Thus we prove

Theorem 1. The Gaussian total curvature K  of a  non-develop-
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able, minimal surface satisf ies the differential equation

gab(KKa b —Ka K a ) = 41C.

Next, we treate  a surface, such that the mean curvature M
is constant -I- O. If the scalar P  does not vanish, we then have

Besides, i f  P = 0 ,  then we see P i , =O. Consequently

we have

Theorem  2. Let S  be a non-developable, -minimal surface, such
that the m ean curvature M  is  constant. If

p  _  g a b (0  K a b — 4Ka  Kb ) — KO2 4=0 ,

then the second fundam ental tensor H i ,  is proportional to

KO'P i ,  = OK- 15 -4K , K, 2  g , 5 .

I f  P =0 , then the tensor P i ,  vanishs.

II. On the case of hypersurfaces of general dimensions.

§ 5. The covariant derivatives of the second fundamental tensor.

In the first place, we shall generalize the equations (1. 7) to
the case of a hypersurface S " (n> 3) of an euclidean (n+1)-space.
We denote also by  g 15 (x ) and H ( x )  the first and second fund-
amental tensors of S  respectively. The components H i ;  satisfy the
equations o f Gauss and Codazz i as follows.

R h i jk H h C jH ik ' H iC j ,k )  =  (1) •

The scalar g a b  7 '  a bn  is called the mean curvature of S  and is denoted
by M.

Contraction of the Gauss equation by g k i gives

(2. 1) R z k  =  lVIf I I k H 1 I I k

where R ik =  g a b  R a i b k  is called the Ricci tensor o f S .  Differentiate
(2. 1) covariantly by x ' ; we then have

(2.2)R i k a M N ik +M I -Lka - 1-1".i,r1/7, — Hak./1/7 •
We introduce the tensor S i i k  ,  components of which are defined by

S  jk  —  R i i ,k  ±  R ik , j —  R fk , i  .

We remark that the tensor S i n i b  is symmetric with respect to the
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last two indices. When the substitution is  made from (2. 2) in
the right-hand members of the above, the equation

(2. 3) 1/„;, k MH if, k H i ( j M k )
—

 H j k M i
—

 S i lk

is obtained. Multiply (2. 3) by 1 1 , ,  interchange the indices i, 1,
and subtract ; when use is made of the Gauss equation, we then
obtain

(2.4)2 R h '.1 iH a i ,k = M 1 1 - k :1 1 1 0  j , k +  M ( j R k ) h i l

I 1 jk 1 4 [ iF I f l h U h : i S i J jk  •

First, we contract (2. 4) by g "  and substitute from (2. 3). Then
the resulting equation is written in the form

M
(2.5) 2R1 k

2
2k  ±  M a H 7  H jk —

 M ( i  H j k )
*

± R k ) i +  H 7 S a j l e - 1 1
:  S i j k  •

Next, we contract (2.4) by g " ,  and substitute from (2. 1) and (2. 3).
Then, after change of the indices, we have

(2. 6) 2Ri:'bi k
 M

2
2 Hi i ,k +  R V

1
2  Mu II Jo

H i J R, k + M , j R V  i +  R  j e
:k i

—  S j k ,  M
2  S i j k

where R, k  is  the covariant derivative o f th e  scalar curvature
R _  g a b  T 'a bIc of S.

We shall use some equations, which will be deduced from the
equation of Gauss directly. Those equations have been used by
Thomas [4, (8. 2)] in the theory o f  Riemannian spaces o f  class
one. That is, multiply the Gauss equation by Hi m ,  interchange
the indices m , k , and subtract ; when use is  made of the Gauss
equation, we then obtain

H, : „,R k , H  j:k R i l  ln a k  =  O.

* W e use the sym bol ( i j k ) ,  which means, fo r  example,

Mc; H15) =  M i  I  jk + M j I lk i+ M k
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On contracting by gh"gih , we have

R„o 1/7— RH„+MR„,H-R k 4̀/ H , =  O.

Differentiate this equation covariantly b y  x3 and change the
indices ; the resulting equation is

R I a j , k + R i ! b i H k + M k R i i — R , k11,-;

R a i,k111 - F R I .b j ,k H + M R if,k — R H if,„ O.

We substitute from (2. 5) and (2. 6) for the first two terms of the
above equation, and then establish the final equation

(2. 7) 0 Hi f ,k = 211/1„H7Hi k -2 R k f a M +2 R a i ,, H";
+2R i ?1,; ,k M — M M „Hi k ,—R, k  H i j

± M S ik i - F2 M c iR k )i

where we put R k i a = R, ; ,„1 and  0=2R— M 2. Consequently, i f  the
scalar 0  does not vanish, then the covariant derivatives o f  the
second fundamental tensor H i ;  are expressed by (2. 7) in terms of
the first fundamental tensor g11 ,  the mean curvature M , their
derivatives, and H o .

The covariant derivatives 1113 ,„ are sym m etric with respect to
the three indices, by means of the Codazzi equation. In this case
o f  general dimensions, contrary to the remark at the end of the
first section, the right-hand member is not symmetric automatic-
a lly . F irs t, the symmetry with respect to the indices i ,  j  is given
by the equation

(2. 8) H  S 3 k a  —  M a R k i i k R k ii

where we made use of the Gauss equation. Next, the symmetry
with respect to the indices j, k  is given by the equation

Ra i kH7+R a i ,,; H; +.1?1 k ,b.W— 2
1  R , c ; Hv i  = MRine

The latter equation can be written in the simpler form, making
use of the equation (2. 8). That is, adding to (2. 8) similar equa-
tions obtained from (2. 8) b y cyc lic  permutation on the indices
1, j, k , we obtain Ra c i ; H L = 0 .  Hence the above equation is written
in the form
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(2.9)R a i , k 1 - 1 3 ) +  R . 1 3 , b 12 R, :AD  k MRki ;  .

W e shall see that the former equations (2. 8) will play a role in
the following, to determine H i p

§ 6. The conditions of in te g ra b il ity  o f th e equatio n s (2. 7).

Let us rewrite (2. 7) in the form, which is symmetric with
respect to  the indices i, j. To do th is , w e sum  (2. 7) and the
equation obtained from  it by interchange of the indices i, j.
Making use of the Gauss equation, the resulting equation is
(2. 10) OHi." =  2M a in  H i ;  + S a k c i r r . ; ) — R ,  ,. H 15115

M M c i H ; 0+ T ijk  y

where T11,. d o  not involve explicitly the components I-In  of the
second fundamental tensor, such that

T u k  =  Ma &Ink  +M R i ,; k+ 2114Ci R  jk ) •

The process by means o f which from (1. 7) we obtained the con-
ditions o f integrability (1. 8 ) is  a lso  app lied  to  (2. 10), but the
resulting equations are rather complicated. In order to write these
equations, we now introduce the following quantities.

B h i p ,  =  S k i ( ; ,c — S  k i :j  k ) +  g a b  S a i ( jS h b k ) + 0 2  Rhijk •
Fk ijk lm °  R h jk i,J.m 7 +  R h 1 k 1 ,(1 ° m )+ 2 R k a•jb ,:lR hb1a,m )

+ S ha:1  R C A  m )±  S  a (j:1  R lhl•ak )  m )

G k i j k  +  T T  k ic j(3 M M k ) —  R, k ) )
_ 2 g " ++ g a b  S a(h[j

 T 1
 bl 1) k'n  "  C.1 c a k '

-I-2M Ma  M e ,,R i , ; ,

these being skew-symmetric with respect to the last two indices,
and furthermore

A i ;  — M  ; , Di ;  — .1VIM i R, ;) ,
Ci ;  = —  M M i ;  — 2(R + 1112 )M i M ;  + MM i R, ;

+ M gab Ma  Ski;
2Ma k 2 1 1 4 -k T 1 3 , .  M  S hk ( i M j)  •

Then the conditions of integrability are written in the forms
(2. 11) 2Aa(k H7- 1-11 ; — Baok111177)+C(iCk 1)

—  4 D k i  H 3  —  E a i ick 117- — 2 F a k ijk i H a b  G13,.1 =  0 .
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§ 7. The equations determining the second fundamental tensor.

We have the three systems of equations (2. 8), (2. 9) and (2. 11),
which must be satisfied by the components H i ;  of the second
fundamental tensor and will be useful to determine H, ; . In this
paper, w e shall trea te  the first system (2. 8) and denote by Uki;
the right-hand side of (2. 8), namely

[A i ./ —  M R k  — — R k  ; 8; + R k i 8 7 )

First we shall deduce from (2. 8) the system, which is more useful
to determine H i ;  explicitly. M ultip ly (2. 8) b y  H ,, ,  and take the
sum of this and the two similar equations obtained from it by
cyclic permutation of the indices i ,  j ,  ;  when we make use of the
Gauss equation, the equation

(2. 12) U k ( i j
11

1) 11 T h kl i j

is obtained, where T N ." ;  are the components of the tensor, which
is determined by the first fundamental tensor g i 1 ,  such that

T„kri; .

N ext, m ultiply (2. 12) b y  H p ,„ ,  sub tract from  it th e  equation
obtained by interchange of the indices h, m ,  and substitute from
the Gauss equation. We then have

(2.13) iCk T  j a b r Q lk i jabe 7

where by definition

Q  lk ijab r j ( a b R  c ) i k l  —  M R  jC ab R r)  ik l

M d (1 ? j
`
!(,,b

—
 R  j(a

8
1, R  j C b

8
D R  c ) ik  I  •

Throughout the remainder af this paper, capital indices A , B, C , ••• ,
are  used, for brevity, to  show the permutations o f  four Latin
indices, such that Th k , i ;  T h A 7  Q  lh ijab c

—
Q  t k i B l  •  •  By using these

capital indices, the equation (2. 13) can be written in the form

(2. 13') " 1 k  T  1A
—  H U L A  =  Q  l k iA  •

On multiplying (2.13') b y  T i B , th e  left hand m em ber of the
resulting equation becomes, in  virtue of (2. 13'),

H i k T 1 B T  IA —  H ilT jB T k A
(H 1 1 T  k g +  Q  jk iB ) T  IA —  ( H  i jT  1 B +  Q  j l iB )
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Hence we obtain

(2. 14) ( T I A T k B - T I B T k A ) H 1 1 T 1 B ( 2 1 k iA -  T ( k A Q I 3 j iB  •

Furthermore, we shall deduce another equations from (2. 13').
which will be used to determine Hu . M u ltip ly  (2. 13') by H h m  and
take the sum o f this and two equations obtained from it by cyclic
permutation of the indices 1, k, n i . W h en  the substitution is made
from the Gauss equation, we then obtain

H h ( m Q 1 k ) iA  — R ih ( m IT  k )  A  •

Multiply (2. 13') again by Hh „„ interchange the indices k, m, and
subtract. By means o f th e  equation of Gauss, (2. 13') and the
equation as above found, we then have

(2. 15) T h iQ k m h A - H 1 h Q k m 1 A T lA R ih k m  •

The process by means o f which from (2. 13') we obtained (2. 14)
is applied to (2. 15), and then the following equation is easily
established.

(2.16) ( T 1 B Q k m h A - T h B Q k m 1 A ) H i j

=  T i A T i g R i h k m + Q k m C h A Q I ) U B  •

Now, we obtained the systems (2. 14) and (2. 16) as the equa-
tions determining the second fundamental tensor H i ;  explicitly.
It is natural that, according as the coefficients of H i ;  in  these
equations are to be equal to zero or not, the hypersurfaces under
consideration are divided into the following four cases.

The case A :  Th e tensor T i jA B =
T i A T I R -

T i B T  j A  does not
vanish.

T h e  ca se  B : The tensor T i A  does not vanish, but the above
tensor T i j A B =  O. A n d  th e  tensor T i A  , j k l B - T I A Q j k i B  does not
vanish.

T h e  case  C : The tensor T i A  does not vanish also, but T i jA B

and T  0i A - . j k 1 B - T 1 A Q j k i B  are equal. to zero.

The case D :  The tensor T i A  is equal to zero.

In the remainder of this paper, we shall treate these four cases
separately. We shall see that hypersurfaces of type two shall
play a role in the following discussions.
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§ 8. On the case A.

In  this general case, there exists at least one component
T Ik A B - t

- 0 ,  and hence all o f th e  components H i ;  of the second
fundamental tensor are completely determined by the equations
(2. 14) in terms of the first fundamental tensor g 1 1 ,  the mean cur-
vature M  and their derivatives. The mean curvature M  has to
satisfy the differential equations

(2.17)
 

T  ik A B ( T 1 D Q q P iC  T C P C W  j iD )

—  T  apC D (T  jB Q lk iA —
 T ( k A Q 1 ) j iB )  —  0 1

because these equations mean the fact that (2. 14) can admit the
solutions H i i . Then, by means o f th e  definitions o f  T  i A  and
Q i i k A ,  the components H i ;  are expressible in the form

(2. 18) Hi; M L i f +M a L7;  ,

where L i ;  and / , ';  are components of the intrinsic tensors o f S,
namely, these are defined by the first fundamental tensor o f S  and
their derivatives. The condition that H i ;  as thus determined are
symmetric is given by

(2.19)
 

T ilA Q k lj) B —  T ( k B Q U I )  A  =

in which we have used the properties 0- ( i i ) k A —  0  and Q (ijk )A =O E
Consequently we obtain

Theorem 3 .  In the case A , the second fundam ental tensor H i ;

of  the hy persurface S  is determ ined by  the equations (2. 14). The
m ean curv ature M  o f  S  satisf ies the dif ferential equations (2. 17)
and (2. 19). Then H i ;  are  expressible in  the form  (2. 18), where L i ;

and L : 1 are  components of  the intrinsic tensors of  S.

We are solely interested here in determining the expressions
of H 11 . It should be remarked moreover that we have the equa-
tions of Gauss and Codazzi, and the equation M =g "H a b . These
are now looked upon as the differential equations, which have to
be satisfied by the mean curvature M , after substitution in these
equations from (2. 18). It is easy to w rite these equations
explicitly, using (2. 14). In fact, if we denote by Q , lk A B the right-
hand member o f (2. 14), then the equations of Gauss are written
in the form
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Rh i jk  T  P q A B T  rscp Q * r )*
k jPq A B 'Y  ik : rsC D  •

The equations o f Codazzi become

T P q A B ,k Q JV $ C D  =  rs C D O L 1 P Q A B ,k : •

Finally the equation defining the mean curvature M  is

MT . .i jA B  = W L ijA .1 3  •

§ 9 . On the case B.

Since T  ijA B =
 i A T 1 B —  T  i B T  j A =  0  in this case, we see clearly

that the components of the tensor T  iA  are decomposable to the form
(2.20)T  i A  =  Xi ILA .

In the following discussion, it is convenient to take an unit vector
X, satisfying (2. 20), and we then show easily that such a vector
X, is uniquely determined to within algebraic sign.

It follows from (2. 14)

(2.21)T i B Q I k i A k A Q I - f iB 0.

Multiply (2. 21) by T h c ,  interchange the indices A, C , and subtract ;
when use is  made of (2 .20), w e then have Ci t  0• L

Qi i k A  are also decomposed to the form

(2. 22) Q ip e A Q ijk l l 'A  •

from which it follows that (2. 21) becomes

(2.23') = 0 •

Then we see that (2. 16) is written in the form

(2. 24) Qkm(h Xr: H i j  — X i X j R 1 h k m ± (2k m [it ( 2/) j i  •

Because of the hypothesis that Qk. , h Xi) does not vanish, then Hu

are uniquely determined by the above equations, but it seems to
be impossible that Hi ;  a re  expressed in the simple form similar
to (2. 18). The conditions that (2. 24) admits the solutions H i j  are
that
(2. 25') Q k m ( h X 1 ( X iX 1 R a b ,d +  Q d L b Q a )  f i )

,c1Lb X a '( X 1X 1 R i h k m + Q k n z L h Q 1 ) 1 i )  =  •

and further the symmetry of is given by

0. Hence,

(2. 26) Q k l m h Q j i i )  — 0 •



Determination of  the second fundamental form 275

Now, w e show that the equations (2. 23') are written in the
form

(2. 23) Q j k l X j O k l  X k O j I  •

In fact, contracting (2. 23') with X, we have the above equations,
where we putted O k i — X a

 Q ak l •  Conversely we can easily see that
(2. 23') is  a consequence o f (2. 23). Next, contracting (2. 26) with
XiXk, we have er)ni h O i l  =0, so that the matrix ( )  is of rank one.
W e see im m ediately that the condition of the matrix (0 u )  is
equivalent to (2. 26). M ake use o f (2. 23) ; then  the equations
(2. 25') are written in the form

(2. 25) Xi(Qkm(h X I) R ab c d cd b k t ) R lh k m ) Q  k  h Q I ) C a i  Q  , db) •

Thus we conclude that

T h e o r e m  4 .  For the hy persurf ace S  of the case B , the tensors
T  i A  and  Q i j k A  are  decomposable to the f o rm s (2. 20) an d  (2. 22)
respectively, and Q i i k  is w ritten in the f orm  (2. 23), where the rank
of  the m atrix  (0 1 ; )  is  one. T he second fundam ental tensor H i ;  is
uniquely determined by the equations (2. 24), and the mean curvature
M  satisf ies the dif ferential equations (2. 25).

It should be remarked lastly that we have further differential
equations satisfied by the mean curvature M , as mentioned at the
end of the last section. But we are not interested now in writting
these equations.

§ 1 0 .  O n  the case C.

W e have, in  th is case also, the equations (2. 20), (2. 22) and
(2. 23'). S in ce  th e  assumption T i A  Q./1,JB— T I A  Q jk iB

=  0  is th e n
w ritten in  th e  form  Xci Qi k r = 0 ,  th e  tensor 0- . j k l  is moreover
decomposed to the form Q 1  Q j k X lX .  T h u s  w e  have

(2. 27) Q ijk A Q i jk l l 'A Q i j k  =  Q i j X k

and the equation (2. 23') becomes

(2. 28) X ( iQ jk ) 0.

The coefficients of H i ;  in  (2. 24) vanish as a consequence of the
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hypothesis of the case C , from which it follows that the right-hand
side of (2. 24) is equal to zero . Therefore, with the aid of (2. 27)
and (2. 28), we obtain

(2. 29) R l h k m =  - ( 2 1 h Q k m  •

Consequently we see that the hypersurface under consideration is
of separated curvature [ 3 ] .  It is known [3 ]  that the skew-symmetric
tensor Q i i  is uniquely  determ ined by  the intrinsic quantities o f  S,
and the m atrix  (Q i i )  is  o f rank two.

Now, the equations (2. 13') and (2. 15) are written as

(2. 30)

Contract (2.30) by X' = gla ;  if  we put H i = H i a  Xa and Q i = Q i a X a ,
we then have

H ik  = H iX h— X iQ k

because we choosed X a  Xa-= 1. In virtue of the symmetry of
we obtain 1--1( i  XI? ) = X( i Qk )  from the above. Next, we contract (2. 30)
by X' and we have l i ck  X/ —  Q k l •  Therefore we obtain

(2. 31) X iQk— X kQi =  — Qik •

By applying the equation (2. 30) we show that

H i f X k X,/( H i k Xi —Xi Qik)Xr
(H k / Xi — X kQir)X i —  Xi Qk X/ •

I f  we contract this by g k l  and recall the definition of the mean
curvature, we then have

(2. 32) Hi; =

Gathering the foregoing results together, we have

T h e o re m  5. The h y p e rs u rf ac e  S  of the case C  is necessarily
o f  separated curv ature. The tensors T i A  and Q iik A  o f  S  are de-
composable to the f o rm  (2. 20) and (2. 27) respectively, where Q i ;  is
the intrinsic tensor of S ,  which is defined by (2. 29). Then the second
fundam ental tensor H i ;  is com pletely  determ ined by  the equation
(2. 32), where Q i=Q ia X"  •

It should be remarked that the components H i ;  a re  given by
the linear equations (2. 32), which do not involve the derivatives
of the mean curvature M.
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It is  easy  to  verify  th at H i ;  a s  thus determined by (2. 32)
satisfy the Gauss equation automatically, with the aid o f (2. 31),
and  furthermore th e  equation M=gabHa b  b y  m e a n s  o f  Qa
= Q a b Xa Xb = O. On the other hand, the Codazzi equation will be
looked upon as the differential equations, which have to be satisfied
b y  M .  These can be written explicitly by using the equations
(2. 32).

§ 1 1 .  On the case D.

We consider the exceptional case D .  By m eans of the as-
sumption T i A = 0 , we have Qu m = 0  from (2. 13'), and

(2. 33) U k ( i i H i ) h  =  O ,

in  virtue o f  (2. 12). M ultip ly (2. 33) b y  H p ., interchange the
indices 1, m, and subtract ;  when use i s  made of the Gauss equa-
tion and (2.33), we then obtain Uk,./RImhp= U k l m R j h p .  If the tensor
Uu h  does not vanish, we then can choose a vector X, such that
the tensor Xa U = Uu  does not vanish. Then w e have //i f  Ri „,h p

Uh aR,Jhp, from which it follows that Rhifk= P Uhi Ufh ,  where p

is  a  scalar. Therefore we see that the hypersurface under con-
sideration is o f  separated curvature, and so the curvature tensor
is written in the form

(2. 34) Rhip, e Q h iQ p , ( e  =  ± 1 )  .

The tensor U i ;  is proportional to Q i i ,  and there exists a vector
!Lk such that

(2. 35) U k i j  •

Consequently we have

T h e o re m  6 . For the hypersurface S of  the  case  D , the  mean
curvature M  satisfies the differential equations Q i j k A = 0 .  I f  M  does
not satisfy the differential equations U i ; k = 0 , S  is of separated cur-
vature, and  U i j k  is decomposable to the fo rm  (2. 35), where Q i ;  is
defined by (2. 34).

It is to  be noted  that a  hypersurface of the case D  is not
always to be o f separated curvature. To show this fact, we con-
sider a hypersurface S  o f constant curvature K .  Then we have

R h i jk  K g k C j g i k ? , R ik  =  (n -1 ) K g i k
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It follows that the Ricci tensor R i k  is  covariant constant, and hence
we obtain S 1 1 ,. =O.O . Thus w e see that T i A  = O. It is w ell know n
that, for the hypersurface S  of constant curvature, the second
fundamental tensor H i ;  is proportional to the metric tensor g u ,
such  th at H i 1 =-\/K g i 1 ,  and hence the mean curvature M  is
constant. Therefore we obtain U .1 ,.= O. T h u s  the hypersurface S
belongs to the case D .  Besides, S  is  of type n 3, and so is not
of separated curvature.

In  th is case D , we have further equations (2. 9), (2. 11) and
(2. 8). By means o f  these three systems o f equations, H i ;  m ay
be determined. But such discussion will be rather complicated.

§ 12. On symmetric hypersurfaces.

In the final section we consider a hypersurface, which is
symmetric in the sense o f E . C artan . That is characterized by
the property, that the curvature tensor R h i i k  i s  covariant constant.
For the symmetric hypersurface S , the equation (2. 9) is satisfied
identically, and we see that (2. 8) becomes
(2. 36) MaRk,;

Now, w e have only one system (2. 11), which involves H,7 ,  and
we shall study how to determine H i ;  by means of this system.

It is clear that the tensors Di ;  and Fh u k ,„„ which appear in
the equations (2. 11), are equal to zero, and further A u , and
E „ijk  become respectively

A i ;  =
Bhijk =  — 9 2 Rhijk

E hijh  = 2 M ,. T ,1 ,  •

The equations (2. 11) are now written in the form

22L k ii7 )H i1+0 2R k i.c ill;)+C u rk H .n n

+2Ma T i i C k M— G i f l a  =  O.
Making use of the Gauss equation and (2. 1), the second term is
rewritten in the form

R a HachH(:;111)1)
(MHck(i— R(k(I)Hon — — Ruckkon •

Therefore we obtain
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(2. 37) 2iLlack H7j + C t  , 1 -1» ,,

+2 M aT  j[k 1 1 7) — G i ik i  = 0 ,

where we put C,*k = C i k  — 02 R i k . Multiply (2.37) by and take
the sum o f it  and the similar two equations obtained from it by
cyclic interchange of the indices k, 1, ;  where use is m ade of
the Gauss equation, we then obtain

2AaciR":Ihrmk)Hii+CT(IRnik) j  -1- Ci c i  Rmk) ih
+ 2 7 . i j( i R ? I n lm k )M a —  G ij(k1 1 1

, n ) h  —  0  .

It follows from (2. 36) that Ma  R kr:c i i M,,,— 0, and further Ma u  RI
=0, in  virtue of Rh  i = O. H en ce  the coefficients of H 1 ; in the
above equations vanish, and we have

(2 *• 38) G //C H  H t n )  h C iC I R m k )  jh + C *j(1 R rn k )ih

+ 2 7 . j ( i hl mk) a  •

W e observe that the equation (2. 38) is clearly to be the similar
form with the equation (2. 12), and hence, the process by means
o f which from (2. 12) we deduced (2. 13), (2. 14), (2.15) and (2. 16)
successively, is applied equally well to the equation (2. 38). Thus
it is not difficult to obtain the similar equations, which are useful
in  general to determ ine the second fundamental tensor o f  S
explicitly. W e w ill have no occasion to study the detail o f those
theories.
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