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Introduction

The purpose of the present paper is to give a global foundation
of connections in Finsler spaces by means of the general theory
of connections in differentiable fibre bundles.

Since the notion of connections in fibre bundles has been given
a modern formulation, many authors have tried to establish the
theory of Finsler geometry from this new point of view. Recently,
T. Otsuki [8; 9; 10] dealed with our subject in detail, and his
treatment seems to be rather complicated. Besides, M. Hashiguchi
[4] discussed the parallel displacements and showed that the eucli-
dean connection determined by E. Cartan [2] is the shortest and
the fittest from a natural standpoint. Further, L. Auslander [1]
generalised to Finsler geometry some global theorems concerning
positive curvature. His starting point was also the connection for
a Finsler manifold as calculated by E. Cartan and used the equa-
tions of structure which were given by S. S. Chern [3]. This
theory of connections in a Finsler space given by S.S. Chern was
formulated rigorously by S. Kashiwabara [5] in the viewpoint of
theory of connections in fibre bundles.

Roughly speaking, the euclidean connection considered by E.
Cartan is the one in the principal bundle over the line bundle of a
given manifold. If we try to define such a connection in a general
differentiable fibre bundle, it is quite natural to pay attention to
the centre Z of the structural Lie group G. Because the centre of
the general linear group GL(n, R) is the set of matrices, which
are of the form (adj), where ¢a€ R—0, and &} (7, j=1, ---, n) are
the Kronecker’s deltas. In this point of view, we shall define,
in Chapters I and II, a general Finsler bundle Q and a Finsler
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connection, which is invariant under central transformation. That
is, given a differentiable fibre bundle B over a differentiable mani-
fold M, we consider the associated principal bundle . Then, the
Finsler bundle Q is defined as the principal bundle over the bundle
space B of B induced from . The central transformation of the
bundle space @ of Q by an element of Z will be defined in §2.
In Chapters III and IV, we shall develop the theory of linear Finsler
connection, where the original fibre bundle B is the tangent bundle
of M. In the last section, we shall devote ourself to the study
of the euclidean connection determined by E. Cartan.

In conclusion, I wish to express my sincere gratitude to Dr.
J. Kanitani for his continued encouragement. I have also had
invaluable assistance and criticism by Dr. S. Takizawa.

Chapter I. Finsler bundles and trivial connections
§1. Differentiable fibre bundles Q and B

We consider a differentiable manifold M of dimension #. By
differentiability we shall always understand that of class C*. We
denote by B={B, , M, V, G} a differentiable fibre bundle over the
base space M. The differentiable mapping 7 of the bundle space B
onto M is the projection of B. The structural group G is the Lie
group which acts differentiably on the standard fibre V to the left.

Let L= {P, p, M, G, G} be the principal bundle associated with
B [12, p. 35]. The mapping p is the projection P— M. Each point
p€ P may be considered as an admissible mapping of V onto the
fibre V(x) over the point x=p(p) € M. We denote by R, the right
translation of P by an element g€ G. Let {U,} be an open covering
of M by coordinate neighborhoods and X,: U,xG—p (U,) the
coordinate functions corresponding to U,. Then the right trans-
lation R, is expressed by

R (p) = p-g = X,(x, X L(p)-8), x=p(p)eU,.
Next, we construct the principal bundle =7'(*) induced from
B by the projection 7: B—-M of B, and we denote 77 () by
Q=1{Q, o, B, G, G}, [12, p. 47]. The bundle space @ is the sub-
manifold of the product BX P and is defined by
Q = {(b, p) € BXP: 7(b) = p(p)} .

The projection o of Q is the canonical mapping @ — B, such that
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a((b, p))=b. Let R be the right translation of @ by an element
g€G. If we take an open set V,=7"'(U,), then {V,} is an open
covering of B considered as the base space of Q, and coordinate
functions 4, corresponding to V, are given by

Valb, g) = (b, X,(r(0),8), beV,, geqG,

where X, are the coordinate functions of . Since a right trans-
lation R} of @ is expressed by the similar equation to the one of a
right translation R, of P in terms of 4r,, then we obtain immediately

(1) qg-g = (0(q), 7(9)-8), q€Q, geq,
where 7 is the canonical mapping @ — P, such that #((5, p))=p.

We consider next the fibre bundle B = {B, &, B, V, G} over
the manifold B, which is associated with X and has V as the
standard fibre. In order to comstruct the bundle space B, we
introduce an equivalence relation in the product @ X V as follows:
(g, v) €Q XV is equivalent to (¢, 7)€ @QXV if and only if there
exists an element g € G such that ¢=¢-g and v/=g"'.v. We define
now the space B as the quotient space of QX V by the above
equivalence relation, and write simply by ¢v the equivalence class of
(g, v). The projection & of B is given by &(qv)=0(q). Each point
g € Q is considered as an admissible mapping of V onto the fibre
V() of B over the point b=o(g) € B, such that g(»)=qv, v€ V.

Now, we shall show that the bundle space B may be identified
with \JV(x)x V(x), where V(x) is a fibre over a point x €M of

=

the original bundle B. In order to prove this, we shall introduce
a mapping 7: B— BXx B, such that

(2) i(qv) = (o(q), ((@)@)), queB.

If we put g=(b, p), then the mapping 7 is expressed simply in the

form i((b, p)v)= (b, p(v)). Since 7(b)=p(p), the mapping ¢ transforms

B into \JV(x)x V(x). It is easily seen that i as thus defined is
xeﬂ'

one-to-one, and hence the above statement is established. On using
the identification 7, the projection & is rewritten in the form
&5(qv)=b, where qu=(b, V'), b, V' € V(x), x=7(b)=7(b') € M.

§2. Finsler fibre bundles

We shall define, in this section, central transformations C, and
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C, of the manifolds B and @ respectively, which will be important
in the following. Let Z be the centre of the structural Lie group
G of the original bundle B. A central transformation C, of the
bundle space B of B by an element z € Z is given by

C.b) = z:b = p(z-p7'(b)), pEpoT(d),

where p€P is to be considered as an admissible mapping of B.
If we take account of the fact that z€Z commutes with any
g€G, then we see that the definition of C, is independent of the
choice of p€ p~tor(h). It is clear that C, acts on each fibre and
gives an equivalence relation in B. Therefore, if we denote by
B* the quotient space of B by central transformations, then we
have naturally a fibre bundle B* = {B*, v* M, V* G/Z}, where the
projection T* is the mapping induced from =, and the standard
fibre V* is the quotient space of V by Z.

The central transformation C, induces naturally a transforma-
tion C, of the bundle space @ of Q over B, which is given by

Cig) = 2-.q = (2-0(q), 7(q)) , g€Q.

This is called also the central transformation of Q by an element
z€Z. From the relation ¢oC,=C,oq, it follows that C, is a map-
ping of G(b) onto G(z-b), where G(b) is a fibre over b€ B of Q.
Furthermore, we see easily that C, commutes with a right trans-
lation R% of Q.

In the first section, we defined the principal bundle Q as the
induced bundle = '(%). Similarly, we can introduce an induced
bundle =*7'(P) from R by the projection =*: B*— M, and denote
it by Q* = {Q*, o*, B¥, G, G}. We write by b* the equivalence class
of be B given by central transformations, and define the mapping

r: B— B*, r(b) = b*, b € B.

Let 7: Q—@Q* be the induced mapping from 7, such that 7(g)=
(roo(q), 7(q)), g € Q. We can easily prove that the mapping 7 gives
the bundle mapping Q—Q*, such that all of the mapping trans-
formations are equal to the identity [12, p. 9]. The induced bundle
Q* will be called the Finsler fibve bundle of the manifold M con-
structed from the fibre bundle B over M.

We constructed, in §1, the associated bundle B with Q. We
have now similarly the fibre bundle B*= {B* &* B* V, G}
associated with the Finsler bundle *. In this case also, a point
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of the bundle space B* is identified with a pair (4%, &), b* € B¥,
U’ € B, such that 7*(b*)=7(0). Then the projection &* is given by
X ((b*%, b'))=0b*, and b* is called the element of support of v’ [2, p. 4].

§3. Trivial connections in the principal bundle Q

Let R={P, p, M, G, G} be the principal bundle as mentioned
in §1. A connection « in Y is a differentiable distribution p € P—«,
(=subspace of the tangent space P, at p of P) which satisfies the
following two conditions [7, p. 25]:

1) The tangent space P, at peP is the direct sum of the
subspace v, and G(x),, where G(x), is the tangent space at the
point p of the fibre G(x) over the point x € p(p);

2) The distribution « is right invariant: R, (y)=+", where R,
is a right translation of P by ge€G.

The subspace G(x), of P, is called the vertical subspace and
v, the horizontal subspace. According to 1), if we take a tangent
vector X € P,, then we have the decomposition

X = oX)+h(X), oX)eGx),, HX)€Ery,.

The vector v(X) (resp. #{X)) is called the vertical (resp. horizontal)
component of X.

We shall define next so-called connection forms of connections.
We denote by G the Lie algebra of G, and identify G with the
tangent space G, at the identity e of G. Using the right trans-
lation R,, we have the mapping

LP:G—)G(x)) Lp(g)zp'g,pep,x:P(P)EM-

The fundamental vector field A on P corresponding to an element
A eG is the vertical vector field, such that the value A, of A at
a point p€P is given by L,(A). Now, the connection form = of
the above connection « is a G-valued differentiable 1-form, which
satisfies the following two conditions :

1*) If A is a fundamental vector field on P corresponding to
an element A €G, then =(A4)=A.

2*%) For any horizontal vector X €y,, we have #(X)=0.

It is well-known that R,(A) is the fundamental vector field

1) Later on, for the differential 8¢ of a differentiable mapping ¢, we shall use
the same letter ¢ in case there is no danger of confusion. The letter ¢* means the
dual of the differential d¢p.
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corresponding to ad(g™)-A € G, from which it follows the further
property of = as follows:

3*) The connection form 7 is of ad(G)-type : R¥(7)=ad(g™")-.

Conversely, given a differentiable 1-form = on P with value
in G satisfying 1*) and 3*), we can define a connection v whose
connection form is this 7. In this case, the horizontal subspace
v, at p€P is defined as the set of tangent vectors at p which
are mapped by = into zero. This correspondence of connections
and connection forms is one-to-one.

We shall treate mainly a connection 1' in the principal bundle
Q, which is defined in the similar manner to the case of «.

Theorem 1.1. Let 7 be the canonical mapping Q— P, and =
a connection form on P. Then the induced 1-form o=y*(7) is a
connection form on Q.

Proof. It is sufficient to show that the similar conditions to

1*) and 3*) are also satisfied by . Let A’ be the fundamental

vector field on @ corresponding to A€G. The value A, of A’ at

g€ Q is A,=L}(A), where the mapping L/ is defined by means of

¢ in the similar manner to the case of L,. In virtue of (1), we
get noL;=L,, p=7(q), and hence we obtain

o(A) = 7(goLi(A) = 7(A) = A,  p= ().
Next, using noRz= R, o7, we get
Ri(w) = (noR*(w) = n*oR¥(7) = ad(g™")-w.
Thus it concludes the proof.
If there is a connection !' in Q and its connection form o is

the induced one by % from the connection form = of the connec-
tion v in B, then the connection ' and its connection form o are
called to be trivial.

We consider next a connection L' in Q, which is not necessarily
to be trivial. The horizontal subspace !', of the tangent space Q,
at g€ @ is isomorphic to the tangent space B, at b=o(g) of the
base B. By this isomorphism, for a tangent vector X € B,, we
obtain the horizontal vector /,(X) at a point g €o7'(b), such that
X and /,(X) are o related : o(/,(X))=X. The vector /,(X) is called
the lift at ¢ of X [7, p. 26]. Let X be a vertical vector at b€ B,
that is, 7(X)=0, and B; the set of vertical vectors at b. The
set of lifts at g €o7'(b) of vertical vectors is clearly a subspace
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of the horizontal subspace I',, which is called the zero-horizontal
subspace of @, and denoted by I'). It is easily seen that Too(X)=0
for XelY.

Lemma 1.1. Let 5 be the canonical mapping Q— P.

1) The vertical subspace at q € Q is isomorphic to the vertical
subspace at 5(q)=p € P by the differential of 7.

2) We suppose that a connection ' is given in Q. Then, for any
zero-horizontal vector X € 1) at g€ Q, »(X) is vertical at n(q)=p e P.

Proof. 1) is a direct result from the definition of Q. From
Toc=pon it follows that Tog(X)=poy(X)=0, X€ 9. Hence 7(X)
is vertical and this proves 2).

The trivial connections in Q have particular properties among
general connections in 2. We shall give some of them in the
following theorem.

Theorem 1.2. Let ' be a trivial connection in Q induced from
a connection  in B, and o and = the connection forms of ' and «
respectively.

1) 9(U)=v, p=nlq) €P:

2)  The connection form o is central-invariant . C,*(0)=w, where
C, is any central transformation of Q.

3) The kernel of the differential 8y is the zero-horizontal subs-
pace 1°,

4) If we take q=(b, p)€Q and v=p'0)eV, and define a
mapping

ot P—Q, p(p)=(p),p), pEP,

then the horizontal subspace U, is the direct sum of w,(y,) and 17.

Proof. 1) If we take Xe€l',, then we have 7(5(X))=w(X)=0,
and hence 7(X) is horizontal and thus we see #(l%,)Cy,. Con-
versely, if we take Xe€q,, then there exists X€@, such that
7(X)=X. Then we have 7(X)=9w(X))+h{X))=X. In virtue of
Lemma 1.1, 1), we see that n(»(X)) is vertical. On the other hand,
n(R(X)) is horizontal as above shown. Since X is horizontal, we
have 7(®(X))=0, and hence v(X)=0. Therefore X is horizontal
and consequently, we have (1)) Dv,.

2) By means of 5oC,=1, we obtain

CH(@) = (noC)¥(7) = y*(7) = ©.

This prove 2).
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3) We take X€Q,, such that 7(X)=0. It is easily seen that
o(X) is vertical at b=o(q) € B. If we take the lift /(o(X)) at g,
then X—1,(c(X)) is vertical at g. On the other hand, 7(X)=
7(0(X))+7(h(X))=0, and hence 7((X))=0, from which it follows
that #(X)=0 and X is horizontal. Therefore X—/,(c(X)) is hori-
zontal at ¢. Then we have X=/,(s(X)). Consequently the kernel
of n at g€ @ is contained in I'. Conversely, #(X), Xe€ly, is
vertical by means of Lemma 1.1, 2), and horizontal by 1). Thus
we have 7(X)=0.

4) We shall first show that pg,(y,) Cl;. In fact, we take
X* €y, and then, according to 7ou,=identity, we have

o(p(X*)) = 7(nop,(X*)) = =(X*) = 0.

Hence u,(X*) is horizontal at g. Next, let X be any horizontal
Vvector at ¢g. In virtue of 1), #(X) is horizontal at p=17(g) and
hence p,on(X) is horizontal at ¢. Since 7(X— p,07(X))=0, we have
X — pon(X)=Y el by means of 3). Thus we obtain the decom-
position 1';=s,(y,)+ 1. With the aid of consideration of dimen-
sions, we see easily that this decomposition is direct sum, and
then we prove 4).

Theorem 1.3. The necessary and sufficient condition that a
connection U in the principal bundle Q be trivial is that

1) for any q, ¢’ €Q, such that 5(q)=n(q’), we obtain n(';)=n(l',/).

2) n(I')=0, g€Q.

Proof. The necessarity is clear from 1) and 2) of the above
theorem, and hence we show the sufficiency. Given a connection
I' in £ satisfying the above conditions, we take a point g € @ for
a given point p € P, such that 5(g)=p, and define v,=»(l",). The
subspace v, of the tangent space P, is independent of the choice
of a point g€ @, n(qg)=p, in consequence of 1). We shall show
that the distribution 4: p—v, of P is a connection in . For a
tangent vector X € P,, we take a vector X € Q,, such that 7(X)=X.
The vector X is written in the direct sum X=u(X)+A(X) with
respect to the connection 1. Then we obtain X= (X)) + 7(h(X)),
and 5»(®(X)) is vertical in virtue of Lemma 1.1, 1), while we see
n(h(X)) € v, in consequence of the definition of . Thus we get the
decomposition P,=G(x),+v,. If we put dim. M=# and dim. V=v,
then we have dim. [,=#n+v and dim. I'Y'=v. By applying 2) we see
dim. v,=#n. Because of the possibility of the above decomposition,
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it follows that the decomposition is direct sum. Furthermore we
obtain

Ry(yp) = Reon(l'y) = noRe(ly) = n(L'0.)) = v,pg,

and hence y is right invariant. Therefore ¢ is a connection in .
It is easily seen that the original connection form o on @ is induced
from the connection form = of the connection y as above defined.

Chapter II. Finsler connections
§4. Central invariant connections in the principal bundle Q

In §2, we have defined the Finsler bundle Q* of the manifold
M constructed from the fibre bundle B over M, and we have shown
that 7: Q— Q* is the bundle mapping. The Finsler connection of
M is defined to be a connection in the Finsler bundle Q*.

On the other hand, a connection 1' in Q is called to be central
invariant, if C,(1)=I" for any central transformation C, of @ by
an element z2€ Z. If we use its connection form o, then the central
invariance of the connection is clearly expressed by C.*(w)=w.

Theorem 2.1. There is a natural one-to-one correspondence
between the set of central invariant connections in 0 and the set of
Finsler connections in Q* by the bundle mapping 7. Q— QF.

Before proving the theorem, we shall define the central-hori-
zontal subspace 'z, g€ Q, of the zero-horizontal subspace I';. We
consider a point b € B and the equivalence class »(b)=b* € B*. The
point &% may be thought of as a submanifold of the fibre V(x),
x=7(b), through the point b, and hence the set of the lifts at
g € o7'(b) of tangent vectors at b of the submanifold b* is a subspace
Iz of I'Y, which is called the central-horizontal subspace at q € Q.
The mapping r : B— B* is constant on #*, and hence, in consequence
of the definition of 7, we have immediately

Lemma 2.1. The differential of the bundle mapping 7. Q — Q*
carries a central-hovizontal subspace to zero.

We shall prove now the theorem. Given a central invariant
connection ' in & and take a point ¢ € @ for a given point ¢* € @*,
such that 7(g)=¢*. We put U'px=#(,). The subspace l'g is
independent of the choice of a point ¢ € @Q, 7(¢)=g*, in virtue of
the central invariance of I We shall show that the distribution
I*; ¢*—T x of @Q*is a connection. In fact, given a tangent vector
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X* at ¢* of @* and take X€@Q,, such that 7(X)=X* Let X=
v(X)+h(X) be the decomposition of X with respect to I Then
we get X*=7w(X))+7(h(X)). The vector #(v(X)) is clearly vertical,
while 7(2(X)) €' ;x by the definition of I';)x. That the above de-
composition of X* is direct sum is immediately seen in consequence
of Lemma 2.1. Next, let RY be the right translation of @* by
g€G, and then it follows that Ry o7=7oR;, where Ry is the right
translation of @. Hence we obtain

RY(1%) = Ry or(l) = PoRG(L) = 7(1) = I'*,

Therefore we prove that I'* is a Finsler connection.

Conversely, if we have a Finsler connection I'*, then we define
o =7*(w*), where «* is the connection form of 1I'*, We shall show
that © is a connection form on Q. Let A (resp. A*) be the funda-

mental vector field on @ (resp. @*) corresponding to AeG. We
see easily 7#(A)=A*, and then we obtain

o(A) = o¥(F(A)) = o*(A¥) = A.
Also we get, for a right translation Ry
| Ri¥() = (FoRp¥(0¥) = PXoRY*(w*) = ad(g)-o.

Hence the form o is a connection form on Q. Next, for any central
transformation C, of @, we have

CHw) = (FoCO)¥(0*) = 7H(0*) = o,

and thus o is central invariant. Hence we have a central invariant
connection l', whose connection form is @ as above defined. It is
easily verified that the connection in Q* constructed from L' by
the process as shown in the first step coincides with the original
Finsler connection I*. This concludes the proof of our theorem.

The structure of the principal bundle Q seems to be simpler
than that of the Finsler bundle Q%*, especially on local coordinates.
And the above theorem shows that the study of the Finsler con-
nection is equivalent to that of the central invariant connection of
L. Because of these points of view, our attention will be confined,
in subsequent sections, to the principal bundle £ with a central
invariant connection. It is understood hereafter that Q will be
called the Finsler bundle of the manifold M constructed from B and
a central invariant connection in Q a Finsler connection. From this
standpoint, for a point b=(b, ') € B, we shall say that the point
a(b)=b € B is the element of support of b'.
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As a result of Theorem 1.2, we see that a trivial connection
of L is considered as one of the Finsler connection, and hence the
existence of a Finsler connection is assured [7, p. 41]. By means
of the well-known theorem [6, p. 68], we have

Theorem 2.2. Suppose that we have a trivial commnection form
w, in the Finsler bundle Q. Then there is an one-to-one correspo-
ndence between the set {U'} of Finsler connections and the set {u}
of G-valued, ad (G)-type, central invariant, tensorial 1-forms on the
bundle space Q, and the correspondence is given by

0 = 0y+ 4,

where o is the connection form of the comnection U' € {1'} correspo-
nding to the form u€ {u}.

We consider the local expressions of the connection form o.
Let U, and V,=7"'(U,) be coordinate neighborhoods of M and B
respectively, which were considered in §1. We suppose that we
have a local section p,: U,—p (U, of ¥, and then we obtain
the induced local section o,: V,—a¢ (V) of Q, such that

o (0) = (b, pyorh)), beV,.

We denote by o,, o, and w, the local expressions on V, of o, v,
and s respectively in the above theorem [6, pp. 60, 67], which are
defined by

Dy = 0’;’:((0) y @gy = Uﬁ(“’o)’ Mo — ‘T:(F!) .
Let = be the connection form on P, from which e, is induced, and

7, the local expressions p%(z). Making use of yoa,=p,oT, we get
w,,=T*(7,). Thus we have the equations

(3) 0y = THT ) + g -

It is easily verified that the forms w,, #=¥=x,) and p, on V, are
all central invariant with respect to C,.

§5. Various parallel displacements

Throughout the remainder of this chapter it is understood that
we have a Finsler connection 1' in the Finsler bundle Q. Given
a (piece-wise differentiable) curve C={b,,0<¢t<1} in the base
space B, we have a lift of C to the bundle space @ issuing from a
point ¢,=(b,, p)) € = '(b,), which is a horizontal curve C={g,, 0<
t< 1}, such that o{q,)=0b, [7, p. 27]. The existence and uniqueness
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are proved, and it is well-known that the curve C.g, g€G, is also
a lift of C to @ issuing from the point ¢,-g. We say that the
end point q, of C is obtained from q, by parallel displacement along
the curve C. Furthermore we have the definition of a holonomy
group ®, with reference point at ¢, which is the set {g} of elements
of the structural group G, such that the point ¢-g, g€ {g}, is obtain-
ed from ¢ by parallel displacement along a closed curve at b=o(q).
Since the base space B of Q is the bundle space of the original
fibre bundle B, we have a special subgroup ®; of the holonomy
group ®,. That is, if a curve C in B is contained in a fibre V(x)
over x € M, then C is said to be vertical. Then, the subgroup
®? is defined as the set of elements of ®, corresponding to all of
closed vertical curve at b=d(q), and we shall call ®; the vertical
subgroup of the holonomy group @,.

We shall define next the parallel displacement of points of P
along a curve C={b,, 0<¢<1} in B, where P is the bundle space
of B. Take a point p,€p'-7(b) of P, we have a point ¢,=(b,,
p) €Q. Then we obtain the lift C= {q,= (b, p,), 0=t <1} of Cto Q
issuing from ¢,. Then we obtain the curve 5(C)=C*={p,, 0<¢
<1} issuing from the given point p,. The curve C* is determined
by C and the starting point p,, and we call C* the lift of C to P
issuing from p,. It is clear that the lift of C to P issuing from
p=p0,8 £€G, is then given by C*.g. Now we say that the end
point p, of the lift C* is obtained from p, by parallel displacement
along the curve C.

We consider two curves C= {b,,0<¢<1} and C'={b;,0<¢t <1}
in B, such that there exists an element z€ Z and b,=2z.b, for any
t€[0,1]. Then C and C’ are called to be z-related. Since T(b,)
=7(b;)=x,€ M, we can define the parallel displacements of a point
b€ p'(x,) along both of C and C'. We take the lifts C={(b,, p,)}
and C'={(b,, p7)} to Q of C and C’ respectively. Since the Finsler
connection is central invariant, the curve z-C={(b}, p,)} is also
horizontal and covers C’. From the uniqueness of a lift, it follows
that z-C is to coincide with C’, and hence we obtain p,=p;.
Therefore we have

Theorem 2.3. The parallel displacements of a point of P along
curves C and C’ coincide, if C and C' are z-related.
We consider next the associated fibre bundle B with the
B

Finsler bundle Q as defined in §1. The bundle space B of B has
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been identified with X\@/{V(x)xV(x). It is well-known [7, p. 43]

that there is a natural one-to-one correspondence between the set

of connections in Q and the set of connections in B. Hence we
have a lift of a curve C=1{b,,0<¢t<1} in B to B, and we can
define a parallel displacement of a point of B along C.

Let C=1{g,=(,, p), 0=t=<1} and C = {b,=(b,, b)), 0=<t=1}
be lifts of C to @ and B respectively. The relation between C
and C is given by

(4) g095*b) = b,, 0=<t<1.

The end point 5, of C is said to be obtained from b, by parallel
displacement along C. 1f we put v,=¢;'(d,) € V, then we have
(by, b8)=q,=(b,, Po(v,)), and hence v,=py'(b;). Thus we obtain
7,005 (b) = q.v,= (b, p,(v,)). It follows from (4) that

(5) ptopo_l(b{))zbéy O_S_.tgl’

where C*={p,, 0=t <1} is the lift of C to P.

In virtue of the equation (5), we can define the parallel dis-
placement of points of B. Let C be a curve in B as above con-
sidered, and ) a point of the fibre through b,, which is the starting
point of C. Then we have a curve C'={b;, 0<¢<1} in B issuing
from b4, which is given by (5). We say that C’ is parallel to C,
and the end point b of C’ is obtained from by by parallel displacement
along the curve C of its element of support b,.

Theorem 2.4. If a curve C' in B be parallel to a curve C in
B, then C’ is also parallel to any z-related curve with C. That is,
let b, € B be obtained from by€ B by the parallel displacement along
C of its element of support b,. Then b} is obtained from by by the
parallel displacement along z-C, 2€ Z, of its element of support z+b,.

This theorem is a direct result from Theorem 2.3 and the
equation (5).

Theorem 2.5. If a curve C' in B be parallel to a curve C in
B, then a z-related curve with C' is also parallel to C. That is,
let by € B be obtained from by € B by the parallel displacement along
C of its element of support b,. Then a point z-0;, 2z € Z, is obtained
from z-b} by the same parallel displacement along C.

Proof. From the definition of the central transformation C, of
B, it follows that
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Z'pul(b) = 1771(2, b) ’ p(z'v) = Z'P(v) ’ pEP, beB, vE V)
p(p) = 7(b).
Making use of (5), we see that, for any ¢,

DProbat(z-04) = P20t (by)) = 2+ (popat(bs)) = 2+t .

This proves the theorem.

§6. Property D of a Finsler connection

Let C={b,, 0<¢t<1} be a vertical curve contained in the fiber
V(x) in B, and C={q,=(b,, p,),0<t<1} the lift of C to Q.
Since we have

p(p)=pon(g,) = Too(q,) = T(b;) = x,,

the lift C*=%(C) of C to P is also vertical and contained in the
fibre G(x,). Therefore there exists a curve Cgs={g,, 0<t<1} in
the structural group G, such that p,=p,-g, for any ¢£. The curve
C. is called the development of the vertical curve C with reference
point at p,€ P. It is clear that any development of C in G is given
by g'+Cgs-g, g€€G. On the other hand, if we take a curve C’ in
B, which is parallel to C, then C’ is also vertical and contained
in the above fibre V(x,).

Now, in order to determine so-called euclidean connection in
a Finsler manifold by means of the fundamental function, E. Cartan
introduced five postulates A, B, C, D and E [2, p. 10]. The fourth
of them is expressible as follows [11, p. 68]:

“If the direction of a vector with fixed components coincides
with that of its element of support, then its covariant differential
corresponding to an infinitesimal rotation of its element of support
about its own centre vanishes identically”.

In our case of general Finsler bundles, the centre of the element
of support b€ B of a point ¥ €B is to be defined as the point
x=7(b) > M, and hence the rotation of » means that & moves along
a vertical curve in B. Therefore we shall give the property D of
a Finsler connection as follows:

Definition. The Finsler connection is said to have the property
D, when any curve issuing from a point b, and being parallel to a
‘vertical curve C is a single point b,, if the starting point of C
coincides with b,.

That is, a point obtained from b, by parallel displacement
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along any vertical curve C of the element of support b, coincides
with the original point b, at any time ¢{. Hence, by virtue of (5),
the analytic expression of the property D is that

( 6 ) ptopgl(bo) = bo ’

where C*={p,, 0<t<1} is a lift to P of a vertical curve C= {b,,
0<t<1} issuing from b&,. In this case C* is also vertical and
expressed as p,=p,-g,, where Co= {g,, 0=t <1} is the development
of C in G with the reference point p,€ P. If we put pgl(b)=v,€V,
then (6) is written in the form p,(g,-v,) =p,(v,), and hence we get
g:°0,=v,. Consequently the development C; is a curve in an
isotropy subgroup G(v,) of G, the elements of which map v, into
itself. It is clear that any development g™*.Cs-g is contained in
an isotropy subgroup G(g '-v,).

Conversely, if a development Cs= {g,, 0=<¢<_1} of any vertical
curve C=1{b,, 0<t<1} with reference point p, be contained in
an isotropy subgroup G{v,), v,=ps'(b,), of G, then we take a lift
C¥={p,,0<¢t<1} to P issuing from p,, and we have p,=p, &,
and hence

P:'PFl(bo) = po(gt'vo) = po(vo) = bo »
from which it follows that (6) is satisfied. Thus we establish

Theorem 2.6. A Finsler connection has the property D, if and
only if a development of any vertical curve in B is a curve contained
in an isotropy subgroup G@), ve€ 'V, of the structural group G.

In the last section we have defined the vertical subgroup ®? of
the holonomy group ®,. From the above theorem we have

Corollary. If a Finsler connection has the property D, then the
vertical subgroup of the holonomy group with reference point q= (b, p)
is contained in an isotropy subgroup G@) of G, where v=7p"'(b).

Chapter III. Linear Finsler connections
§7. Canonical coordinates

Throughout the remainder of this paper we shall confine ourself
to the case where the original fibre bundle ¥ is the tangent
bundle of the #n-dimensional differentiable manifold M, so that the
structural Lie group is the general linear group GL(n, K) and the
standard fibre V is the n-dimensional vector space over the real
field K. Then the associated principal bundle %} is the bundle of
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frames on M, and a point ¢=(b, p) of the bundle space @ of the
Finsler bundle Q is a pair of a tangent vector 6 € B and a frame
p=(p,, -, p,) € P, such that b, p,,---,p, are tangent vectors at
the same point of M. Then Q is called the linear Finsler bundle

of M. A point of the bundle space B of the associated bundle B
with Q can be considered as a pair of tangent vectors at a point
of M. In the following it is understood that the element of support
b of v is not a zero vector.

The centre of GL(n, R) is the set of m-matrices, which are
expressed in the forms ((z)-8j), where (2) € R—0 and 9}, (7, j=1,
-..,n) are the Kronecker’s deltas. Thus there is an one-to-one
correspondence between elements of Z and real numbers==0. We
denote by (2) the real number corresponding to an element z € Z.

Let (x%), (=1, ---, n) be the local coordinates of a point in the
coordinate neighborhood U, of M, and (e¢;), (=1, ,n) a fixed
base of V. A tangent vector beB at T(b)=x€ U, is expressed
by the canonical frame (9/0x%) in the form b=0bi(0/0x?),” and
hence (x¢, b%) are considered as coordinates of a point in V,=7"(U,)
of the base space B of Q. We shall call (xf, bi) the canonical
coordinates in V,. On the other hand, a vector p;, (=1, ---, n), of
a frame p=(p,, -, D) €D, p(p)=x€V,, is expressible in the form
p:=pl(d/0x7),, and hence a point g=(b, p) €Q, beV,, is expressed
by the set of real numbers (x¢, b?, p{), which are called also the
canonical coordinates in o *(V,). If we take g=(b, p)=(x¢, b, p}) € Q,
then p7'(b)=ve€V is of the form v=p;*b’-¢;, where the matrix
(p7%) is the inverse of (p{). Thus the central transformation C,
of B by z€Z is given by

C,(b) = (x¢, (2)b?), where b = (x¢, b?).

Now we consider a connection form = on P. It is well known
[6, p. 85] that the local expressions 7, of 7= are given by

T, = oh(xt, o, x")dxk g, k=1 ,m,
where (g{) is a fixed base of the Lie algebra of GL(%n, R). If we
write the 1-form u, in the equations (3) by
B = Lpba(xt, oo, 27, b, oo BMYdx* 4+ Chy(x?, -, 2%, b, o, b™)db¥]- &1,
i, 5,k=1,,m,

2) We make free use of the summation convention.
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then, in virtue of (3), the local expressions w, of a general linear
Finsler connection form o are expressed in terms of canonical
coordinates as follows :

(7) w, = (' dx*+Cidb*) - gi, L k=1 ,m,
where we put
F_‘lk = '}'_'}k(xly"' )xn)_'_,u’;k(xl) Tty xn’ bl) Sty b”) .

Since p, is central invariant, it is immediately verified that, with
respect to the variables &', ---, 0", the coefficients uj, and Cj, are
homogeneous of degree 0 and —1 respectively. Therefore o, as
above are the local expressions of Finsler connection form, if and
only if, with respect to the variables &', .-, 8", the coefficients 1'%,
and C}, are homogeneous of degree O and —1 respectively, and further
the well-known formula of transformation [6, p. 60] is satisfied.

It can be easily shown that the lift /,(X) of a tangent vector
X=Xi(0/ox?),+ X“(o/2bi), with respect to the Finsler connection
(7) is given by

(8) L) = xi(2) +xo( 2)) —pnex

W i)
FCOXD(5)
i, j,kl=1,-,n.
Now, we shall treat parallel displacements. Let C: b,=(xi(?),

bi(t)) be a curve in B. Making use of (8), we have the condition
for C: q,=(xi(t), bi(t), pi(t)) to be a lift of C as follows:

dp VAN £ e/, N
(9) dtj+p§(l () d't_+c“(b)32> =0.
In particular, when C is vertical, then xi(¢),i=1, :--, n, are identical
to xi(0), and pi(t), i, j=1, ---,n, are written in the forms pj(t)=

pi(0)- gi(t), where Cs: g,=(g}(t)) is a development of C in GL(n, R).

Hence the lift C is given by
Py k 1
(10 P01+ piio) giClb) D = 0.

We consider the property D of a Finsler connection. In consequence
of Theorem 2.6, given a vertical curve C: b,=(x}, bi(¢)), we take
its development Cs: g,=(gj(t)) with reference point (x}, pj,) and
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a vector v=vi-¢;, where v:=p;)'b’(0). Then we obtain g’(¢)v’=v*,
and hence contraction of (10) by v’/ gives easily

(11) bjcf,k(b) = 0 y Z" j’ k = ]_, (EEIN n R

which is the well-known equation [4, (10)], [11, p. 69]. Thus we get
Theorem 3.1. [In terms of canonical coordinates, the property
D of the Finsler connection (7) is written in the form (11).
Finally we shall find the geometrical meaning of the well-
known equation [11, p. 15]

(12) LOWE=0, i k=1, ,n.

For this purpose, we consider curves C={b,} and C’'= {b;} in B.
If there exists a curve C,= {z,} in Z, such that ,=z,-b, for any ¢,
then we say that C and C’ are central-related. In particular, when
C; is a single point z, then C and C’ are simply z-related, as defined
in §5. We shall show that

Theorem 3.2. Let C' be a curve in B, which is parallel to a
curve C in B. The curve C' is also parallel to any curve, which is
cental-related with C, if and only if (12) be satisfied.

Proof. First we shall find the equation which shows that C’
is parallel to C. If we put C: b,=(xi(¢), bi(t)) and C': b,=(x(¢),
b’i(t)), then we have from (5) that

Di@)pi (0)b™*(0) = b"i(2) ,
where pi(f) satisfy (9). Therefore we have
db’s
dt
This is the condition that C’ be parallel to C [4, (11)]. Now we
take a central-related curve C: b,=(x(¢), (z2(£))bi(t)) with C and
then, in virtue of (13), the condition that C’ be also parallel to C

is given by b*Ci,(b)b'((2) ")(d(2)/dt)=0, and hence the theorem is
immediately proved.

wondtt o db
7k, 1 12 —
(13) +b ( ,,,(b)—dt+C,,,(b)—-dt> 0.

§8. Vertical vector bundle and characteristic vector field

We have denoted, in §3, by B} the set of vertical vectors at
a point b of B. We put now B"=\/B} and then define a mapping
beB

A Bztu(x)X V(x)—B* as follows :
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M(b, b)) = Sp((pT NNV EB;, peolerh), v=p7'b).

The letters in the right hand side will be explained in the following.
Given a point b= (b, b') € B, we take an arbitrary point p € p~'o7 (D),
which is considered as an admissible mapping of V onto V(x).
Hence p~'(0') is a point of V, namely, a vector, so that we can
identify p~'(0’) with a tangent vector at v=p""'(b) € V in the ordinary
manner, and denote it by (p7'(?")),. Then the differential &p of
the admissible mapping p maps this to the vertical vector at b of
B. 1t is easily verified that the vertical vector as thus obtained
is independent of the choice of p.

Conversely, given a vertical vector X € By, we have a tangent
vector 6p (X)) at v=p"'(b), and then can identify with a point of
V. Hence p(6p (X)) is a point of the fibre through b, and thus
we obtain the point (b, p(8p~'(X))) € B. It is easily seen that A((b,
pBp (X)) =X. Therefore B can be identified with B” by the map-
ping N, and we shall call B the vertical tangent bundle of B.

Next, we consider a tangent vector X € B, and put X"=A((),
7(X))), where 7(X) is a tangent vector at x==(b) of M, which is
considered as a point of the fibre over x. Thus, for a vector X € B,
we have an unique vertical vector X', which will be called the
induced vertical vector from X. In terms of canonical coordinates,
if X = Xi(9/ox?),+ X(0/ab?),, then we have X’=Xi(0/3b?),. The
next lemma is a direct result from the definition X— X”.

Lemma 3.1. Let X and Y € B, and f be a real function on B.

1) The mapping X— X" is linear :

X+Y)Y =X"+Y", (fX)=fX".

2y X"=0, if and only if X be vertical.
The relation between the mapping X— X” and central trans-
formations of B is given by the following lemma.

Lemma 3.2. Let C, be a central transformation of Bby z€ Z.
Then, for X € B,, we obtain (C,(X))'=(2)"'-C(X").

Proof. 1If we identify a point # € V with a tangent vector #,
at v€ V, then it is immediately obtained that

(14) gy, = (& Uy

It follows from (14) and the definition of X— X°, that, for X €B,,
p€plor(d), and v=p""(0),
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(C.X))" = 6p((p1oT(C(X))),) = Sp((p™ o7(X))..0)

= Op(z+(z7"p7(r(X))),) = C.o8p((z -7 (T(X)N),) =C.(2) '+ X") .
Thus we have proved the lemma.

We shall now define a special vertical vector field on B, which
will play a role in the following. Let &= (b, b) be a diagonal point
of B, and then we have a vertical vector A((b, b)) at b of B, which

will be denoted by b The vector field beB—>b is called the
characteristic vector field on B. In terms of canonical coordinates,

5
the vector b at b is given by bi(o/9bi),, where b= (xi, b).

Lemma 3.3. The characteristic vector field b is invariant by
central transformations of B.

Proof. 1In virtue of the definition of b and (14), we get
C.B) = C.o8p(v,) = 8p(z+0,) = 8p((2+0)...) = (z+D),

where v=p"'(b). This prove the lemma.
The following two lemmas can be easily verified, using canon-
ical coordinates.

Lemma 3.4. Let X and Y be vector fields on B. Then the
bracket of X* and Y' is written as follows :
(X% Y] =[X Y PT+[X,Y].
Lemma 3.5. Let X be a vector field on B and b the character-
istic vector field on B. Then we obtain
5, XT = [b, X"]+X".
The inverse mapping of X— X" is not uniquely determined.
But we shall denote by X* a vector, from which the vertical vector
X is induced. By means of Lemma 3.1, 2), we see that such

a vector X” is determined within vertical vector. X* is called «
vector inducing the vector X.

Lemma 3.6. Let X be a vector field on B, and then the vector
X+ [l;", X"] is vertical.

Proof. In consequence of Lemma 3. 1, it is sufficient to show
that X "+[g”, X"]"=0 identically. It follows from Lemma 3.4 that

[b, X°1 = [B", X*P+[b, XT .

Then the lemma is assured by Lemma 3.5,
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§9. Horizontal forms and tensors

Let « be a s(=1)-form B and X, ---, X, € B,, such that one
at least of X, -+, X, is vertical. If «(X,, -+, X,)=0 for any point
b of B, then a will be called to be horizontal. For such a form
«, we put

ao(Xz, ’Xs) = a(zh, Xz» v st) ’ Xzy Tty XseBb .

Since « is horizontal, the (s—1)-form «, as thus defined is inde-

pendent of the choice of &*. The form «, will be called tke reduced
form from « for s >1, which is clearly horizontal. If s=1, then
«, will be called the reduced function from « [2, p. 18]. For s_>1,
we get

“(le o »;l;h) oo ;Xs) = (_1)t~1'ao(X1) o ,Xir Tty Xs)a) ’
where X, - ,X,-, -, X, €B,.

Next, let X,, -, X,€M, be a set of tangent vectors at x.
Then we have tangent vectors X, -, X, € B,, b€ V(x), such that
(X;)=X;,i=1,---,s. Such X; are determined within vertical
vectors, and hence we can define «(b) uniquely as follows :

“(b)(Xn Tty Xs) = “(Xn 7Xs) .

The mapping a(b) as thus defined will be called the projection of
the horizontal form c.

Next, we consider a s(=1)-form B on B, which is not neces-
sarily to be horizontal. If we put

Bh(le"'st):B(X;}y""-X:)) Xl)“';XsEBb,

then we obtain a s-form B3* on B, which is horizontal by virtue
of Lemma 3.1, 2). We shall call 8" the horizontal form induced
from B. It is clear that

Lemma 3.7. If & is a horizontal s(=1)-form on B, then the
induced horizontal form o vanishes identically.

The above notions and processes for forms on B can be applied
equally well to covariant s(=1)-tensors on B. We can define
notions of a horizontal tensor and induced horizontal tensor, and
further we obtain the projection of a tensor. On the other hand,

3) The sign (¢) under a letter indicates that we replace X; to this letter, and
the sign (A) over a letter does that this letter is to be omitted.
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in the case of horizontal covariant s-tensor 7, we have to remark
that T is not necessarily skew-symmetric, so that we obtain from
T reduced tensors of different type, and hence we shall write

To(i)(Xn ot th') v ’Xs) = T(X!» ot yZhy o 7Xs) ’
(€]

X) '“’Xi)“' )XeeBlv'

§10. Covariant vertical derivatives

E. Cartan introduced a simple process of a covariant differen-
tiation [2, p. 12]. We shall define such a process in our case.
In the first place, we consider a real function f on B, and put

A’f(X) = X(f), Xe€B,.

This covariant vector A”f is clearly horizontal in virtue of Lemma
3.1, which will be called the covariant vertical derivative, or, for
brevity, covariant v-derivative of f.

Generally, let T be a horizontal covariant s(=1)-tensor on B
and put, for X,,.--,X,, Y€B,,

AUT(XU o »Xs’ Y)
= YU(T(XU aXs))+ E‘l T(Xn tt, [Xi()')Y“]’ ’Xs)

We shall verify that A°T as thus defined is a convariant (s+1)-
tensor. In fact, we can easily show that

AUT(X+X,y Xz; oo st) Y) = AUT(Xv Tt Xs) Y)+AUT(X,, e ,Xs) Y) )
A’T(X,, -, X, Y+Y) = ATX,, -, X,, )+ A TX,, -, X,, Y,
where X, X', X,, -+, X,,Y, Y €B,. Next, let » and 4 be functions
on B, and X and Y vector fields on B. Then it is well-known [7, p. 4]
that
[eX, Y ]=pp:[X, Y]+ @ (X(Y))- Y =+ (Y(p))- X .
Making use of this we obtain immediately, for X,, ---, X,, Y € B,,
AuT((le»XZ) “tty Xs; ’\!}‘Y) = ‘P‘\’"'A')T(Xu ot )Xs) Y)
+P (X W) - T(Y", Koy o, X) 400 STX)- T(X,, oo, X2, X,

Since T is assumed to be horizontal, then the last two terms of
the above equation vanish, and hence we conclude that A'T is
a covariant tensor. Since [X;,Y"] is vertical for any vertical
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vector X;, then it is easily seen that A”T is horizontal. Then we
have the horizontal covariant (s+1)-tensor A”7T, which will be
called the covariant v-derivative of T.

Lemma 3.8. 1) If T is a horizontal covariant symmetric tensor
on B, then its covariant v-derivative A"T has the property that
A'T(X,, -, X, Y), X,, -, X,, YEB,, is symmetric with respect to
X, -, X..

2) Let f be a real function on B, and then we have the hori-
zontal covariant s-temsor A°---A"f. This tensor is symmetric for
s=2.

Proof. From the definition of the operator A®, 1) is clearly
satisfied, and hence we shall prove 2) by the process of mathe-
matical induction. We observe first that, for X, Y€ B,,

AAAX,Y) = YIXUN+LX YO .

In consequence of this and Lemma 3. 4, it is easily seen that A"A"f
is symmetric. Next, we assume that A” ... A”f be symmetric for

7

r=2 --,s. If we write A”..- A’f=T, then, by direct calculation,

we obtain .
A” ”'Auf(Y!XZ) “')-XS’X)—A’) “'Avf(X)XZ,“')Xs*vY)
S ta s+1

= ([X° Y ]+[Y, X' T-[X, Y'I)N(T(X,, -, X))
+ Z\; T(Xza o v(Z)i; A )Xg) )

where X,Y, X,, ---, X, € B,, and we put

Z; = [ X, [V, XTI+ [[X:, X1, Y7 1-[X;, [X, Y°T]
—[[X:, "], X°].
As a result of Lemma 3.4, we see that the first term of the right
hand members vanishes and that Z; are equal to zero by means
of the Jacobi’s identity for the brackets. Thus we establish the
lemma.

Lemma 3.9. Let T and T’ be horizontal covariant temsors or
functions on B and T-T’ their product. Then we have

A T-T) = AT-T'+T-AT".

The proof of this lemma is quite easy. Now, the next lemma
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gives the relation between the convariant v-differentiation and the
dual of central transformation of B.

Lemma 3.10. Let T be a horizontal covariant tensor or a func-
tion on B. Then we obtain
A*(CKT)) = (2)-CXA'T),
where (2) is a real number corrvesponding to the element z € Z.

Proof. We remark first that C,*(T) is horizontal, because C,
maps a vertical vector into a vector of the same kind. We shall
prove the lemma for a horizontal covariant s(=1)-tensor 7. For
X, ,X,, YeB,, we have

(ACHTN) (X, =+, X, Y) = YUT(CAX), -+, CX,))oC,)
+ 3 T(CAX), -, [CAXD), CY ], -+, CX) -
According to Lemma 3.2, this is rewritten in the form
= (2)«(CAY)N(T(CAX), -+, CAX))))
+@)- 3 TCX), -, [CX), (CYI'], -+, C(X)
= (2)-A’T(C.(X), -+, C.(X)),CY)) .

This concludes the proof of the lemma.

Lemma 3.11. 1) For a real function f on B, we have the
reduced function (A°f), from the covariant v-derivative A’f of f.

Then we obtain (A”f),(b) 2?)(f), beB.
2) Let T be a horizontal covariant s(=1)-tensor on B, and

A

then we have, for X,,-,X;,,X,, YE€B,, and i=1, .-, s,
(AvT)o(i)(le Tty XAi) ttty Xs’ Y)

= AT ) Xy, o, Xiy oo, X, V)= T(X,, o+, Y, 0, X))
C

i)

Proof. Since (l;")"z Z, we have 1) easily. We shall show 2).
(AvT)o(i)(XU Tt Xi; ot 7Xsy Y) = ADT(X) i ’gh’ i 7Xsy Y)

= YT, o, B, X+ ST, [ X, Y7o B X))
i) a=1 ay W
+ T(X1) Sty [bh) YV]’ ot >Xs)
s (i)—)
+ 2 T(le R ’bh’ R [Xa(v Yﬂ]v b st)'
ay

a=i+1 (€]
In the third term of the right hand members, we can replace
[6*, Y*] by —Y in virtue of Lemma 3.6 and hence 2) is proved.
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Chapter IV. Euclidean connections in linear Finsler bundles

§11. The fundamental function and metric tensor

We consider a covariant s(=0)-tensor 7 on B, and suppose
that T satisfy the equation

CHT) = (2T,

where C, is any central transformation of B. Then T will be
said to be r-homogeneous. In particular, that T is O-homogeneous
means that T is central invariant. We write by R* the set of
positive numbers, and if the above equation holds for any z, (z)€ R*
only, then T will be said to be positively r-homogeneous. We shall
define the homogenity for differentiable forms similarly. On
making use of the covariant v-derivative, the Euler’s theorem for
homogeneous functions leads us to the fact that a covariant s-tensor
T is r-homogeneous, if and only if the equation

(AUT)O(.H-D = T'T
be satisfied (cf. Lemma 3. 11, 2)).

Lemma 4.1. Let T be a r-homogeneous covariant s(=1)-tensor
on B. Then the induced horizontal tensor T"is (r —s)-homogeneous.
The same is true for a form.

Proof. From the definition of the horizontal tensor T* we
have
(C;k(Th))(Xl Tty Xs) = Th(cz(Xl) y "ty Cz(Xs))
= T((Cz(Xl))v) "ty (Cz(Xs))v) ) Xl’ ttt ‘XsE Bb .

From Lemma 3.2, we can rewrite this in the form

= (2)°-T(C.AX7), =+, CAXD)) = (2)°-(CHT) (XY, -+, X7)
=@)7TX,, L XD

This proves the lemma.
Now we consider the local expressions w, on V, of the Finsler
connection form . Since we have shown that o, is central

invariant, we obtain, as a result of Lemma 4.1, the following
theorem.

Theorem 4.1. Let o, be the local expressions on V, of the
Finsler connection form . The local horizontal forms (w,)* are
(— 1)-homogeneous.
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The forms ()" are called the local horizontal connection forms.

)

Let o, and w4 be local expressions of o on V, and Vg respectively.
Then it is well known that we obtain the equations

wp = ad(gap)* 00+ Zap *08as ,
where g, V,nVg—G satisfy the equations og=0,-g, for the
local sections o, and oz. Since we obtain
noosd) = palx) = pu(X)-Zus®),  bEV,AVs, x =),

the mappings g,s are constant on each fibre V(x), and hence the
differentials 6g,, carry a vertical vector to zero. Then we see

(we)"(X) = ad(g8) (0, )(X), XeB,.

This means that the local horizontal connection forms are of ad(G)-
type. Making use of (7), we have easily that
(@4)" = Cl(x?, ==+, 2™ 0", -, 0"y dx*- Bl

That (»,)* is of ad(G)-type means that the set of Cj, obeys the
transformation of the well-known tensor-type by the transformation
of canonical coordinates. And the above theorem shows that Cj,
are (—1)-homogeneous functions with respect to the variables
b, -, 0" (cf. §7).

We shall return to the consideration of general homogeneous
tensors and prove that

Lemma 4.2. Let T be a r-homogeneous covariant s(=1)-tensor
on B. Then the reduced tensors Ty;y, 1=1,---,s, are (r+1)-homoge-
neous. The same is true of a form.

Proof. From Lemmas 3.2 and 3.3, it follows that
((2)-C.(")" = C.b) = (z:0),  beB,

N
and hence we can choose {z)-C.,(b") as a vector inducing the

characteristic vector (z-b) at the point z-b. Therefore we obtain,
for Xz; E) Xs‘e Bby

(CHT o)) (X,, -+, X,) = T((z-0)", CAX,), -+ , CAX.)

= (&) T(C, (8", C.(X)), -+, CuX)) = @ 1-TE" X,, -, X,)
= (z)f-H. To(l)(X2> Sty Xs) .

This proves the lemma.
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Lemma 4.3. Let T be a r-homogeneous covariant s(=0)-tensor
on B. Then A® --- A°T is (r—u)-homogeneous.

u

Proof. It follows from Lemma 3.9 that
AYCHT)) = A%(2)-T) = (2)-A°T .
On the other hand, it follows from Lemma 3. 10 that
AYCH(T)) = (2)-CHA'T).

Hence AT is (r—1)-homogeneous. The lemma will be established
if we repeat the above process.

We are now in a position to define the fundamental function
of a Finsler manifold. We suppose that we are given a positive
valued function L on B, which satisfies

1) L is positively 1-homogeneous.

If we put F :%—Lz, then we see that A"A’F is positively 0-homoge-

ous horizontal symmetric covariant 2-tensor on B, in virtue of
Lemmas 3.8, 2) and 4.3. Hence we can define the projection
(A"AF)(b) on the base manifold M. We impose upon L the further
condition :

2) (A®A’F)(b) is positive-definite, that is,

(A*AF)O)X, X) =0, XeM,,ber'(x),

and the equality holds if and only if X=0.

The function L (or F') satisfying the above two conditions will
be called the fundamental function of the Finsler bundle Q, and
then M the Finsler manifold. The value L{b) of L at a point b€ B
is called the Finslerian length of the tangent vector be M,, x=b).
Since L is positively 1-homogeneous, then we obtain L(z-b)=
(2)-L(b), (e R™.

Next, we shall introduce the metric tensor. We suppose that
a field of covariant 2-tensor m is given on B, which satisfies the
following conditions :

1) m is horizontal and symmetric,

2) m is O-homogeneous.

3) the projection m{b) on M is positive-definite.

Then we shall call m the metric tensor on B. For a tangent vector
X0 at x of M, we obtain a positive number m(b)(X, X),
bex'(x), which is called the relative euclidean length of X with
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respect to the element of support b. From the definition of the
projection m(b) and the condition 2) of m, it follows immediately
that m(z-b) (X, X)=m(b) (X, X), z€ Z. We construct the reduced
covariant vector m, from m, which is 1-homogeneous in virtue of
Lemma 4.2. m, is called the characteristic form and denoted by

Q, Thus we have Q(X)zm(l;", X), Xe B,. The reduced function
b, from b is given by by(b)=m(b", b*) =m(b)(b, b), b€ B, from which it
follows that the value of é“ at be B is the square of the relative

euclidean length of be M,, x=(b), with respect to the element of
support b itself. The quantity \/p ) is called the absolute length
of the vector b. 7

§12. Pure-horizontal subspaces

We consider the associated bundle B with the Finsler bundle
£, which has been looked upon as the vertical tangent bundle of
B as shown in §8. Hence we can define the covariant derivative
DX of a vertical vector field X on B with respect to a vector
field Y on B [7, p.52]. That is, let C={b,, 0<<¢t=<1} be a inte-
gral curve of Y issuing from b,€ B and C={gq,, 0<¢t<1} a lift
to @ of C issuing from ¢,€oc7'(b,). Then DX is given by

(DyX),, = lim 1 (@eoqi {(Xp) — X,) -

The vertical vector X, is expressed by a pair (b,, b;) and we put
g,=(b;, p:), and then we obtain

40°q: (Xp,) = q(077(07)) = (by, oo (B7)) .

Therefore we have the expression of DyX as follows:
(15) (D3 X)s, = (bur lim 3 (piopi b)) —00))

We consider a vector field X on B, which is not necessarily
to be vertical. Then we have the vertical vector field X, and
hence we can define the convariant derivative DyX°, which will
be written in the form DX,

Next, we consider a horizontal covariant s-tensor T on B, and
define the covariant derivative DT of T with respect to Y as
follows [7, p. 55]:
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vT(X,, -, X,) = Y(T(X,, -, X)) — 3 T(X,, -, (DyX)*, -+, X.)
i=1 (€D)

where X, -, X;€B,. The covariant differental D'T of T is the
(s+1)-tensor, which is given by D*’T(X,, -, X,, Y)=D%T(X,, -
X), X,,,X,, YeB,.

Next, let X be a vector field on M and b,, 0<t<1, a vector
ﬁe\ld defined along a curve C={x,, 0<¢t<1} on M. The curve
C={b,} is in B and covers C. Let C*={p,, 0<¢=<1} be a life to
P of C issuing from a point p, € p~'(x,), and we define

)

(DX)., = lim - (ed? (X)X

which is clearly a tangent vector at x,, D,X as thus defined will
be called the covariant derivative of X with respect to the element
of support b,. We take a tangent vector Y of the curve C and
a vertical vector field X=(b,, X). Then we have from (15) that
DyX=(b, D,X). Making use of (9), we obtain easily

AXi | il v pndat o dBN] [ D
6 DX = [— Xf(l LB &,)] ( )
(16) S wO) G TERO) oxi/x

where X=Xi(0/29)xi),, b=(xi, b?).

In particular, we can consider the case where the curve C is
a single point x, and C a vertical curve in the fibre V(x,). Then
we obtain

(DX), = lim 3 (hop?(X)-X),  XeM,,,

and such a covariant derivative of a fixed vector X for a rotation
of the element of support b, will be denoted by DyX. From (16)
it follows that D)X= X’C/,(b)(db*/dt) (©/9x%),, where (b*(¢)) is the
vertical curve C. In terms of the local horizontal connection form
(»,)*, this equation is written in the form

(17) X = (0,)"(Y")-X,

where Y is the vertical vector tangent to (b,), and the dot denotes
the product of matrices (»,)*(Y*) and X.

We suppose now that the Finsler connection under considera-
tion has the property D. We take a fixed point x,€¢ M and a
curve C={x,, 0<¢<1} on M issuing form x,. Then we shall
show that there exists an unique curve C={b,, 0=<t<1} on B,
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covering C and issuing from a given point b,€ 7 '(x,), such that
the covariant derivative Db of b with respect to the element of
support b itself vanishes identically. In fact, from (11) and (16),
we obtain the differential equations of such a curve C as follows:
dbi | pire gyt
(18) 75”’ I',(0) 7 ,
with the initial condition b5¢(0)=50§, where (x*(f)) expresses the
curve C on M. Therefore the curve C is uniquely determined by
the curve C on M and the starting point of C. The curve C will
be called the horizontal curve, covering C, or the lift of C to B.
Let H, be a set of tangent vectors at b of B, which are tangent
to lifts of curves on M issuing from x=+{). We shall call H, the
horizontal subspace of B,. It is clear that B, is the direct sum of
H, and Bj;. For any X € M,, there is an unique horizontal vector
l(X) at ber'(x), such that 7(/,(X))=X. The vector /4(X) is
called the lift at b of X. In consequence of (18), the expression
of the lift /,(X) at b=(xf, b?) of a vector X=Xi(9/oxi), is given
by the equation
. i a __hilt k a
(19) LX) = X2 ) —prnex(2)
For Xe B,, we can write uniquely X=o(X)+A(X), where v(X)
is vertical and #/(X) horizontal. If we put X=X{3/oxi),+
X%(3/2bi),, then h(X) is given by the same equation (19), and
hence v(X) is given by
)
abi b

It is to be noted here that the vertical component »(X) is different
from the induced vertical vector X°.
We consider a s form « on B and put

ao(Xl, o ;Xs) = a(U(Xl), Tty U(Xs)) ’
al(Xlx oo )Xs) = a{h(Xl)) Tty h(Xs)) ’ Xl; Tty Xse Bb'

19) 2(X) = (X("’+bf1‘§k(b)Xk)<

Then we obtain two forms «° and «', the latter being horizontal.
The form «° (resp. «') is called the vertical (resp. horizontal) com-
ponent of «. Further we have the form a@—a’—a', which is called
the mixed component of «. It is clear that the mixed component
of a 1-form is equal to zero.
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Let o, be local expressions of the Finsler connection form o.
The vertical and horizontal components of o, are given by

(0,)° = (Midx*+ ChdbMgl, (o) = Miidx* g,
where we put
I = D= Clhd? I =T —T%.

The coefficients I}y have been introduced by E. Cartan [2, p.14]
and will play a role in the following.

We consider next the bundle space @ of the Finsler bundle
L. we have defined, in §3, a zero-horizontal subspace 1" of the
horizontal subspace I', at g€ @, which is the lift of vertical sub-
space B} of B,, b=o(q). We have now the horizontal subspace
H,, and hence can define the subspace I'}, which is the lift of H,.
We shall call '} the pure-horizontal subspace of Q,. It is clear
that I', is the direct sum of the zero-horizontal subspace 1 and
pure-horizontal subspace I';. Thus we obtain the unique decom-
position of a vector X € Q, as follows:

X = v(X)+ (X)) + h(X), PX)ell, (X)ell.
If we put X=Xi(9/2x%),+X(/2b"),+ X}(d/2p}),, then the pure-

horizontal component %#(X) of X is given, in virtne of (8) by the
equation

< ! i 2

= ‘ —bJI ¢ k<~7-—‘>

(20) WX) = X (ax)q WX =)
Al a

_ pELkRE 1< >

PEC@X( )
We consider a horizontal s-form « on @, and then we have two

forms «° and «', such that, for X, -, X,€@Q,,

a’(X,, -, X,) = all’(X), -, (X)),
a(X,, -, X)) = alh(X), -, (X)),

which will be called the zero and pure components of « respectively.
The form a—a’—«a' will be called the mixed component of «. It
is clear that the mixed component of a 1-form vanishes.

We consider finally the principal bundle 9%. Given a point
p€ P, we take an arbitrary point b€+ 'op(p), and then we obtain
a point ¢=(b, p)€Q. We now define the subspace H*(), of P,
as ('), where 7 is the canonical projection @ —P. H*(b), is
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called the horizontal subspace of P, with respect to the point b€ B.
Let X* be a tangent vector at p and put /72,(X*)=25o0l,0l,0p(X*).
It is clear that p(h,(X*))=p(X*), so that X*—h,(X*) is vertical.
Hence P, is the direct sum of H*(b), and the vertical subspace
G(x),, x=p(p). It is to be remarked that this decomposition of
P, will depend upon the choice of a point b€ s 'op(p) generally.
It is easily shown that, if we put X*=X/(0/0x),+X(0/2p)),,
then the horizontal component h,(X*) is given by

(21) i (X*) = X’(—a—.-)ff’spf‘“b)Xl(é%L-

§13. Torsion and curvature forms

In this section, we suppose also that the Finsler connection
under consideration has the property D, so that we have the notion
of pure-horizontal subspaces.

Let 6* be a V-valued 1-form on P, such that 0}(X*)=
P lop(X*), |7, p.49]. Then we have the induced form &'=q*(6%*)
on @, where 7 is the canonical mapping Q@ - P, We see easily
that

0y(X) = ploroa(X), qg=(b,p), X€Q,,

from which it follows that €' vanishes on the zero-horizontal sub-
space. We shall call 8' the pure-basic form on Q.
Next, we define a V-valued 1-form €° on @, such that

03(X) = op~'(v(c(X))) , g=(,p), X€Q,.
where v(c(X)) is the vertical component of o(X)€B,, and
8p~'(v(o(X))) is the tangent vector at p~'(b) of V, which is identi-
fied with a point of V. We shall call ° the zero-basic form on Q.
It is clear that 6° vanishes on the pure-horizontal subspace.
The following equations can be easily verified.
R*(0)) = g6, i=0,1,
CX(6) = z.60°, C*©0) = 6".
Thus the zero-basic form is not central invariant.
We shall now introduce the basic vector fields on @ [7, p. 49].

The pure-basic vector field B'(v) corresponding to an element veV
is that the value of B'(») at g€ Q is given by

Bl(v)q = lqolb°p(v) ) q = (b) P) ’
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where /, (res. /,) is the operation of taking a life to B (resp. Q)
of a vector on M (resp. B). The zero-basic vector field B°(v)
corresponding to v€ V is given by

B'()y = l,00p(0), q= (b, D),

where v€ V is considered as the tangent vector at p~'(b). The
process which was used in [7, p. 49] can be applied to our Bi(v),
7=0,1, and then we see the zero- (resp. pure-) basic vector field X
is a horizontal vector field on @ such that 6°(X) (resp. 8'(X)) is
constant. Making use of this fact, we can easily prove the follow-
ing equations.

Ry(B*(v)) = Bi(g*+v), i=0,1,
CiB°(v)) = Bz-v),  CiB'(v)) = B'(v).

Thus the zero-basic vector field is not central invariant. By means
of the above equations, we obtain [7, p. 50]

[4, Bi(w)] = Bi(A-v), i=0,1,

where A is the fundamental vector field corresponding to A € G.

We consider the covariant differential DO =6/ {=0,1, of
6i. ©° (resp. ®") will be called the zero (resp. pure) torsion form.
Then we have the pure, zero and mixed components of ®¢ which
are written by @i @i gnd &Y respectively. It is easily seen
that the zero-component of ©®' is equal to zero, and hence we
have

@° — @0(0)_|_®0(01)+@0(1) ,
@' — AW L @

The pure component ©'” of the pure torsion form ®' will be
important in the final section. In terms of canonical coordinates,
the local expressions ®LY are given in the form

(22) O = L —TE)de* nde-c,

where (e¢;) is a fixed base of V. Since E. Cartan assumed that
the pure component ® vanish, then he treated only the mixed
component ® of @' and called it the torsion from [2, p. 33].
On the other hand the zero-torsion form ©° is not central invariant.

The additional structure equations [7, p. 517 are also obtained
for ® and ®', which are immediately given in the following.
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doi(X, Y) = %(w(Y)-H‘(X)—w(X)ﬁ"(Y))+@"(X, Y),

where 1=0,1 and X, Y€ Q,.

We consider finally the curvature form Q=Dw, and then we
obtain the pure, zero and mixed components of Q. E. Cartan
introduced the curvature forms of three kinds [2, p. 33]. In our
treatment, we can obtain these forms by means of the notion of
pure- and zero-horizontal subspace of @,. The curvature form Q
is, of course, central invariant.

§14. The euclidean connection defined by E. Cartan

E. Cartan introduced the elegant process in order to determine
an euclidean connection by the fundamental function. In the final
section of this paper, we shall discuss his five postulates.

We have defined, in §11, the fundamental function L and
the metric tensor m. We give now a relation between L and m
as follows:

Postulate I. The Finsler length L(b) and the absolute euclidean
length ~/m(b)(b, b) of any tangent vector b€ M,, x=(b), coincide.

In terms of the function Fz%L2 and the reduced function
é" of the characteristic form é, the above posturate is expressed
by 2F :Qo at each point of B. Taking the covariant v-derivative
of the both sides of this equation, we have

OAF(X) = X m@", b)), XeB,.
Taking account of the symmetry of m, we have
A'mbr, B, X) = X*0m(b*, ) + 2m([b*, X*], 0¥)
and, according to Lemma 3.6, we obtain
= X"(m(b", b)) —2m(X, b*) .

Hence, under the above postulate, we have
(23) 2A0F = (Aum)o(l)ow) +2{)’-

Since m is 0-homogeneous, we obtain (A"#m).;,=0 in virtue of the
Euler’s theorem, while (A’m)y,, is equal to (A"m)y,,. These are
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written by (A’m), simply. We give now the second postulate as
follows :

Postulate II. The metric tensor m satisfies the condition of
normality : (A"m),=0 [ 4, p. 372].

When this postulate is satisfied, the equation (23) is reduced
to the simple form

(24) A"F = Q

It follows from Lemma 3.11, 2) that, for X, Y€ B,,
AH(X,Y) = (A" (m))X, Y) = (A’m)(X, Y)+m(X, Y),

and hence Postulate II and (24) give

(25) ANF =m.

Therefore, the metric tensor m is determined by the fundamental
Sunction F under Postulate 1 and II. It is easily seen that the
properties 1), 2) and 3) imposed upon m are satisfied by means of
the properties of I, and covariant v-differentiation.

The following postulate is the same as Postulate C of E. Cartan.

Postulate III. The covariant derivative DWW’ of a fixed vector
VeM, for a rotation of the element of support b satisfies the
equation m(b)(D3’, b"'y=m(b)(b’, D%b").

In the following we shall use letters of matrices. It follows
from (17) that the left hand side of the above equation is written
in the form *”-(m(w,)*(Y"))-b’,” Since m is symmetric, Postulate III
is expressible in the form

(26) Hwy)" m = m(w,)".

In terms of canonical coordinates, (26) is written in the well-
known form

C”k = Ctjk 5 i,j,k = ]., b ,n, Where Cz’jk = g]-,C§k.

In order to give the following postulate, we consider the
covariant derivative D"m of m:

D'mX,Y,Z)y = Zm(X, Y))—m((DyX)", Y)—m(X, (DY),

where X,Y,Z€ B,. In making use of canonical coordinates and
taking account of (26), we obtain, from the above equation

4) The sign ¢ on the left shoulder of a matrix indicates its transposed matrix.
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(27) (D"m)* = (dm)"—2m(w,)" .

On the other hand, we shall write Aym(X, Y)=A"m(X, Y, Z), for
X, Y ZeB,. Then we obtain

Aywm(X,Y) =Z"m(X, Y)+m(XZ'—2°X, Y)+m(X, YZ'—-Z"Y)
=72 XmY)—m(Z°X, Y)—m(X, Z'Y)
= ' XZ'mY=Z"m\(X, Y)=dm"(Z)X, Y).
Hence we have

(28) Aym = (dm)*(Z) .

Now we require the following relation between the Finsler connec-
tion and the metric tensor m.

Postulate IV. The linear Finsler connection is metrical :
D'm=0.

In a Riemann manifold, the linear connection is determined
by the similar postulate. In our case, from (27) it follows first that
(dm)"=2m(w,)*. Further, in virtue of (28), we obtain A'm=2m(w,)".
We have had the expression (25) of m, from which we obtain by
covariant v-differentiation that

(29) A'A'A'F = 2m(w,)" .

In terms of canonical coordinates, (29) is written in the well-
known form
1 o’F

EWZC”ky i,j, k=1, ,n.

Consequently, the local horizontal connection forms (o,)* are determined
by the fundamental function F wunder the above four postulates.
The coefficients Cj, as thus obtained satisfy the equations (11) and
(12). Hence we have

Theorem 4.2. Let ' be the Finsler commection satisfying the
above four postulates. Then we obtain

1) T has the property D.

2) The reduced functions ((o,)*), of the local horizontal con-
nection forms vanish identically.

We had the definition of the Finslerian length of a tangent
vector on M, which coincides with the absolute length, in con-
sequence of Postulate I. Therefore we can define the length of a
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vector. We consider a curve C={x,, 0<¢<1} on M and a curve
C={b,, 0<t<1} which is a field of tangent vectors of C. Let
C'={b;, 0=<t<1} be parallel to C. The vector b; depends general-
ly upon the choice of C. Under the above postulates, this parallel
displacement is independent of the choice of C, provided that C
is a field of tangent vectors of C, because the condition of Theorem
3.2 is satisfied. Hence we have the notion of the parallel dis-
placement of a vector b along C, when C is a field of tangent
vectors of C. Furthermore, we may define a geodesic on M in
the ordinary manner [4].

Finally, we consider the postulate E of E. Cartan, which is
expressed as follows [11, p. 68]:

“The coefficients I'#} which appear in the covariant differen-
tial when the displacement is such that the element of support is
transported parallel to itself from x to x+dx are to be symmetric
in their lower indices.”

The coefficients I'}{ as above mentioned coincide with the
one as defined in §12, and we can treate the pure component of
the pure torsion form. Then, in our case, the above postulate is
expressible as follows :

Postulate V. The pure component ® of the pure torsion form
®' vanishes identically.

Therefore ®' is equal to its mixed component @', From
the definition of ', we have, for X, Y€ @Q,,

ODX, Y) = do*(n(h'(X)), n(h'(Y))) .

Hence Postulate V means in 8 that d6* vanishes on the horizontal
subspace H*(b), of P, with respect to a point &€ B.

Under the above five postulates, we may determine uniquely
the Finsler connection, and the calculation in order to show this
is well-known [2], [11].
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