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Introduction

The purpose of the present paper is to give a global foundation
of connections in Finsle r spaces by means o f the general theory
of connections in differentiable fibre bundles.

Since the notion of connections in fibre bundles has been given
a modern formulation, many authors have tried to establish the
theory of Finsler geometry from this new point of view. Recently,
T . Otsuki [8 ;  9 ;  10 ] d ea led  with our subject in  detail, and his
treatment seems to be rather complicated. Besides, M. Hashiguchi
[4 ]  discussed the parallel displacements and showed that the eucli-
dean connection determined by E. Cartan [ 2 ]  is  the shortest and
the fittest from a  natural standpoint. Further, L. Auslander [1]
generalised to Finsler geometry some global theorems concerning
positive curvature. His starting point was also the connection for
a Finsler manifold as calculated by E. Cartan and used the equa-
tions of structure which were given by S . S . C h e rn  [3 ] . This
theory of connections in  a  Finsler space given by S. S. Chern was
formulated rigorously by S . Kashiwabara [5] in the viewpoint of
theory of connections in fibre bundles.

Roughly speaking, the euclidean connection considered by E.
Cartan is  the one in the principal bundle over the line bundle of a
given manifold. If we try to define such a connection in a general
differentiable fibre bundle, it is quite natural to pay attention to
the centre Z  of the structural Lie group G .  Because the centre of
the general linear group G L(n, R ) is  th e  se t o f matrices, which
are o f the form (A ), where a e R - 0 ,  and  8", ( i, j = 1 , • ••  ,n ) are
the Kronecker's d e ltas . In  th is point of view, we shall define,
in  Chapters I and  II, a  general Finsler bundle Z2 an d  a  Finsler
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connection, which is  invariant under central transformation. That
is, given a  differentiable fibre bundle 0 over a  differentiable mani-
fold M , we consider the associated principal bundle T . Then, the
Finsler bundle 2, is defined as the principal bundle over the bundle
space B  of 0  induced from T . The central transformation of the
bundle space Q  of C  b y  an  element of Z  will be defined in  § 2.
In Chapters III and IV, we shall develop the theory of linear Finsler
connection, where the original fibre bundle 0  is the tangent bundle
of M .  In  the last section, we shall devote ourself to the study
of the euclidean connection determined by E. Cartan.

In conclusion, I w ish to express my sincere gratitude to Dr.
J. Kanitani for his continued encouragement. I  have also had
invaluable assistance and criticism by Dr. S . Takizawa.

Chapter I. Fins le r  bundles and trivial connections

§ 1 .  Differentiable fibre bundles Z, and i3

We consider a  differentiable manifold M  of dimension n. By
differentiability we shall always understand that of class W e
denote by 0= {B, T, l t f ,  V, GI a  differentiable fibre bundle over the
base space M .  The differentiable mapping T  of the bundle space B
onto M  is the projection of 0 .  The structural group G is the Lie
group which acts differentiably on the standard fibre V to the left.

Let T = {P, p, M, G, G I be the principal bundle associated with
0 [12, p. 35 ]. The mapping p is the projection P—> M .  Each point
p E P  may be considered as an  admissible mapping of V onto the
fibre V(x) over the point x= p(P) E M .  We denote by R g  the right
translation of P by an element g E G .  Let {U„} be an open covering
of M  by coordinate neighborhoods and X :  p ' ( U )  th e
coordinate functions corresponding to U , .  Then the right trans-
lation R g  is expressed by

Rg (p) = p.g = x ; , m p ) . g )  , x  =  p ( p )  E  U 0, .

Next, we construct the principal bundle 7- - '(1 ) induced from
T  b y  the projection T  B—*M  o f  0 , and we denote 7'01_9 by
2= {Q, 0-, B, G, G}, [12, p. 47 ]. The bundle space Q  is  the sub-
manifold of the product B x  P and is defined by

Q = p) E B x  P : , r(b) = p(p)}  .

The projection c r  of 2, is the canonical mapping Q  B ,  such that
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cr((b, p ))=  b. Let R  b e  the right translation of Q  by an element
g E G .  If we take an open set V - 7 - 1 (U„), then { V „} is  an open
covering o f B  considered as the base space of Z , and coordinate
functions qr„ corresponding to V„ are given by

g) (b, X „(T(b), g)) , b E  V, ,  g  E G ,

where X„ are the coordinate functions of T .  Since a  right trans-
lation R of Q is expressed by the similar equation to the one of a
right translation .1?, of P in terms of * 04 , then we obtain immediately
( 1 ) q. g = (0-(q), g) , q E Q , g  E G ,

where 97 is  the canonical mapping Q--->P, such that 77((b , p ))=  p .

W e consider next the fibre bundle = {B, B, V , GI over
the manifold B , which is associated with Z. and h as  V  as the
standard fibre. In  order to construct th e  bundle space B , we
introduce an equivalence relation in the product Q x V as follows :
(q ,v )E Q X V  is equivalent to (q', 2/) E Q x V if  an d  only i f  there
exists an element g E G such that q ' q •  g  and v'= g - l•v. We define
now the space B  as the quotient space o f Q x V b y  th e  above
equivalence relation, and write simply by qv the equivalence class of
(q, v). The projection a- of is given by d- (qv) = cr(q). Each point
q E Q  is considered as an admissible mapping of V onto the fibre
V (b) of i3 over the point b=0-(q) E B , such that q(v)= qv, v E V.

Now, we shall show that the bundle space B m ay be identif ied
w ith UV (x ) X V (x), where V (x ) is  a  fib re over a point x  E M  of

-rem
the original bundle 0 .  In order to prove this, we shall introduce
a  mapping i :B x  B ,  such that

( 2 ) i(qv ) =  (cr(q), (n(q))(v)), qv E B .

If we put q= (b, p ) ,  then the mapping i  is expressed simply in the
form i ((b , p)v)= (b, p(v)). Since T (b) = p ( p ) ,  the mapping i  transforms
B  into V(x) x V(x). It is easily  seen  that i  a s  thus defined is

xE.3f
one-to-one, and hence the above statement is established. On using
the identification i, the projection is rew ritten  in  th e  form
o-(qv)=b, where qv = (b, b'), b, b' E V(x), x  = (b) (I/ ) E M.

§ 2 . F insler f ib re  bundles

We shall define, in this section, central transformations Cz  and
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C ; of the manifolds B  and Q respectively, which will be important
in the following. Let Z  be the centre of the structural Lie group
G of the original bundle B. A  central transformation Ç .  of the
bundle space B  o f 0  by an element z E Z  is given by

C(b) z • b  =  p ( z - P - 1 (b)) , p  E p - 1 0 T ( b ) ,

where p  c  P  is to be considered as an admissible mapping of O.
I f  w e take account o f the fact that z E Z  commutes with any
geG, then we see that the definition of Cz is independent of the
choice of pc p - i °T (b ) .  It is clear that Ç. a c ts  on each fibre and
gives an  equivalence relation in B .  Therefore, i f  we denote by
B * the quotient space of B  b y  central transformations, then we
have naturally a fibre bundle 3*= {B*, T*, M ,V *,G IZ } , where the
projection 7

-* i s  the mapping induced from T ,  and the standard
fibre V* is  the quotient space o f V by Z.

The central transformation Cz  induces naturally a  transforma-
tion C; of the bundle space Q of 2, over B , which is given by

C(q) z • q  ( z - 0 - ( q ) ,  ( q ) ) , q  E  Q

This is called also the central transformation of Q  by an element
z E Z .  From the relation croC;=C z oo-, it follows that Ç. i s  a  map-
ping of G(b) onto G(z•b), where G(b) is  a fibre over b E B  o f C.
Furthermore, we see easily that Ç. commutes with a  right trans-
lation R 'g  o f Q.

In the first section, we defined the principal bundle 2, as the
induced bundle 7- - 1 (T ) .  Similarly, we can introduce a n  induced
bundle 1-*- 1 (1 ) from b y  the projection  T * :  B *  M ,  and denote
it by 2,*= {Q*, c*, B*, G, G}. We write by h* the equivalence class
of b E B  given by central transformations, and define the mapping

r: B  B *  ,  r ( b )  =  b*, b e B .

Let r :  Q  Q *  b e  the induced mapping from r, such that F(q)—
(rorr(q), n(q)), q G Q .  We can easily prove that the mapping r  gives
the bundle mapPing such that all o f the mapping trans-
formations are equal to the identity [12, p. 9 ] .  The induced bundle
C *  w ill be called the Finsler f ibre bundle of the manifold M  con-
structed from  the fibre bundle 0  over M.

We constructed, in  § 1, the associated bundle w i t h  C .  W e
have now  sim ilarly  th e  f ib re  bundle =  { * ,  (3

-*
,  B *, V, G}

associated with the Finsler bundle 2 * .  In this case also, a point
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of the bundle space B *  is identified with a  p a ir  (b*, b'), b* E B*,
b'E B , such that 7*(b*)=7 - (b1 ). Then the projection (3-* is given by
(3-*((b*, b'))=b*, and b* is called the element of  support of  b ' [2 , p. 4].

§ 3. Trivial connections in the principal bundle 2,

L e t  = IP, p, M , G, G I be the principal bundle as mentioned
in  § 1. A  connection 7  in is a differentiable distribution pE P—> 71,
( =subspace of the tangent space P p  a t  p  of P )  which satisfies the
following two conditions [7, p. 25]

1) The tangent space P p  a t  p E P  i s  the direct sum of the
subspace 7 i ,  and G(x) p ,  where G(x ) p  i s  the tangent space at the
point p  of the fibre G(x) over the point x E p ( p )  ;

2) The distribution 7  is right invariant : R g (7)=1», where R ,
is  a  right translation of P  by gE G.

The subspace G(x) p  o f  P p  is ca lled  the vertical subspace and
y p  the horizontal subspace. According to 1), if  we take a tangent
vector X  E P p ,  then we have the decomposition

X  = v(X )+ h(X ) , v ( X )  E G(x) p , h(X ) E  y .
The vector v (X ) (resp. h(X )) is called the vertical (resp. horizontal)
component of X.

We shall define next so-called connection forms of connections.
W e denote by 6. th e  L ie  algebra of G, and identify '6 with the
tangent space Ge a t  th e  identity e  of G .  Using the right trans-
lation Rg ,  we have the mapping

L p : G G ( x )  ,  L ( g )  =  p • g ,  p  E  P , x=  p (p )em .

The fundamental vector field A  on P  corresponding to an element
A E 'G is  the vertical vector field, such that the value A p  o f  A  at
a point p E P  is given by  L ( A ) .  Now, the connection form 7 r  of
the above connection 7  is a  6-valued differentiable 1-form, which
satisfies the following two conditions :

1 * )  If A  is  a  fundamental vector field on P  corresponding to
an element A E 6, then 77- (A) = A.

2 * ) For any horizontal vector X E 7 15 , we have z (X )=0.
It is well-known that R ,(A ) is  the fundamental vector field

1 )  Later on, for the differential Sy9 of a differentiable mapping (p, w e  sh a ll use
the sam e le tte r ço in case th ere  is  no danger of confusion. The letter y9* means the
dual of the differential ay.
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corresponding to ad(g 1 )•2 21 E 6, from which it follows the further
property of 7-e- a s  follows :

3 * )  The connection form r is of ad(G)-type : R1(70= ad(g - ')•7r.
Conversely, given a  differentiable 1-form r on P  with value

in 6 satisfying 1*) and 3*), we can define a  connection 7 whose
connection form is this 7r. In  this case, the horizontal subspace
71,  a t p E P  is defined as the set of tangent vectors at p  which
are  mapped by n-  in to  zero . This correspondence of connections
and connection forms is one-to-one.

We shall treate mainly a  connection r  in the principal bundle
C , which is defined in the similar manner to the case of 7.

Theorem 1.1. L et 97 be the  canonical mapping Q--->P, and  n-

a  connection form o n  P .  Then the induced 1-form  0)=97*(70 is  a
connection form on Q.

Pro o f . It is sufficient to show that the sim ilar conditions to
1*) and 3*) are  also satisfied by (0. Let A ' be the fundamental
vector field on Q  corresponding to A E Ô. T h e  v a lu e  A ', of A ' at
qEQ  is  A',— L(A.), where the mapping L', is defined by means of
Rig  in  the similar manner to the case of L .  I n  virtue of (1), we
get n o L = L p , p= n(q), and hence we obtain

co(A) = n-(97 0 L (A )) =  n (A ) = Â ,  p  =  n(q).
Next, using 770.R-- -R g on, we get

R ( a )  (no R )* (z )  y*oRV 7t) a d (g l•  .

Thus it concludes the proof.
If there is a  connection 1' in C  and its connection form co is

the induced one by 97 from the connection form n of the connec-
tion 7  in  'IA, then the connection and its connection form co are
called to be trivial.

We consider next a connection r in 2., which is not necessarily
to be triv ia l. T he horizontal subspace r a of the tangent space Q,
a t  q E Q is isomorphic to the tangent space B b a t b = 0-(q) of the
base B .  B y th is  isomorphism, for a tangent vector X E B b ,  we
obtain the horizontal vector 4,(X ) a t  a point q EG - - '(b), such that
X and 4,(X) are o--related: 0 - ( / , ( X ) )  = X .  The vector /,(X) is called
the lift a t q of X  [7, p. 2 6 ]. Let X  be a vertical vector at bEB,
that is , T (X )=0 , and BT, the set o f vertical vectors at b. The
set o f lifts a t q E o- - 1 (b ) of vertical vectors is clearly a  subspace
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o f th e  horizontal subspace F , which is called the zero-horizontal
subspace o f  Q, and denoted by 1 .  I t  is easily seen that rr ocr(X )  = 0
for FC G .

L em m a 1.1. L e t  97 be the canonical mapping Q—>P.
1) The vertical subspace at q E Q  is isomorphic to the vertical

subspace at (q) =p  E P  by the differential o f  97.
2) We suppose that a connection is given in Z .  Then, for any

zero-horizontal vector X  G at q E Q, n(X ) is vertical at 97(q) —p E P.
P ro o f. 1 )  is a d irect result from the definition of Z. From

Too-= po  it follows that T o o - ( X ) =  13.97(X )= 0, X E F .  H en ce  97(X)
is vertical and this proves 2).

The trivial connections in Z. have particular properties among
general connections in Z. W e shall give som e o f them in  the
following theorem.

T h eo rem  1. 2. L et 1 ' be a triv ial connection in Z. induced from
a connection y  in  T, and w  and 7-1-  th e  connection forms of  F  an d  7
respectively.

1) 97(1' a ) = 7 p ,  p= 97(q) E P;
2) The connection form w is central invariant : C*(co)= w , where

C ; is any central transform ation of  Q.
3) The kernel of  the differential an is  the zero-horizontal subs-

Pace P.
4) I f  we take q— (b, p) E Q  an d  v =P - 1 ( b ) E V ,  an d  define a

mapping
Q,( P V ) ,  P ' )  ,  P '  E P  ,

then the horizontal subspace IF', is the direct sum o f  7.4(7p )  and
P ro o f. 1 ) I f  we take X E rg , then we have 7r(97(X))= co(X)=0,

and  hence n(X ) is  horizontal and thus we see n(r,)  c 7p . Con-
versely, i f  we take X E 7p , then there exists X  E Q , such that
97(X ) =  X .  Then we have v(X)=71(v(X))+ 97(h(X ))= X .  In  virtue of
Lemma 1. 1, 1), we see that 7/(v(X)) is vertical. On the other hand,
97(h(X )) is horizontal as above shown. Since X  is  horizontal, we
h ave  97(v(X))= 0 , an d  hence v ( X ) = O. There fore  X  is  horizontal
and consequently, we have n(l',) r y p .

2 )  By means of noC",— 97, we obtain

C *(w ) =  (2/ . 0 * (7 r) y *(7z-)

This prove 2).
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3) We take X  E Qq ,  such that v (X )=0 . It is easily seen that
0-(X) is  vertical a t  b=a-(q) E B .  I f  w e take th e  lif t /,(0-(X)) a t q,
then X— l,(0-(X )) i s  vertical a t  q. O n the other hand, 97(X )=
97(v(X ))+71(h(X ))=0, and hence 97(v(X))= 0 , from which it follows
that v (X )=0 and X  is  horizontal. Therefore X— lq (0 (X )) is hori-
zontal at q. Then we have X = 4(0-(X )). Consequently the kernel
o f  97 a t  q  E Q  is contained in I .  C onverse ly , y(X), X E q ,  is
vertical by means of Lemma 1. 1, 2), and horizontal by 1). Thus
we have 97(X )=0.

4) W e sh a ll f irst show th a t ft,„(yp ) r q . In  fac t, we take
X* E yp  and then, according to 97./.6„ =  identity, we have

a(,a,,(X *)) =  7r(970/4(X*)) =  71- (X *) =  O.
Hence p,,(X *) i s  horizontal a t  q. Next, le t X  be any horizontal
Vector at q. In  virtue o f 1), n(X ) is horizontal at p=77(q) and
hence i on(X ) is horizontal a t q. Since n(X — po97(X ))= 0, we have
X— ii,„0?)(X)= YE ro, by means of 3). Thus we obtain the decom-
position r q = 11,„(y p )± With the a id  of consideration of dimen-
sions, we see easily that this decomposition is direct sum, and
then we prove 4).

T h e o re m  1. 3. T he necessary and  sufficient condition th at a
connection r  in the principal bundle b e  triv ial is that

1) f or any q, q' EQ, such that n(q)---- n(q'), we obtain n(1",)=7)(1'0.
2) (1 ')= O, q  E Q.
Pro o f . The necessarity is clear from 1) and 2 ) of the above

theorem, and hence we show the sufficiency. Given a  connection
in Z  satisfying the above conditions, we take a point q E Q  for

a  given point p  E P , such that n(q)=p, and define 7 p -91(r q ). The
subspace y p  of the tangent space P, is independent of the choice
of a po int q E Q , n(q )=p , in  consequence o f 1). W e shall show
that the distribution y : fi—>yp  o f  P  is  a  connection in F o r  a
tangent vector X  E P p ,  we take a vector X  E Qa , such that v(X )=X .
T he vector X  is w ritten in  the d irect sum X = v (X )+h(X ) with
respect to the connection P. Then we obtain X =(v(X ))+97(h(X )),
and n(v(X )) is  vertical in  virtue of Lemma 1. 1, 1), while we see
n(h(X)) E y p  in consequence of the definition of y. Thus we get the
decomposition P p —G(x) p + yp . If we put dim. M =n  and dim. V= v,
then we have dim. r q =n+v and dim. 11=v. By applying 2) we see
dim. y p < n .  Because of the possibility of the above decomposition,
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it follows that the decomposition is d irect sum . Furthermore we
obtain

Rg.(7p) = Rey(r,) = 9 70 r a) = 71(1',.0 =

and hence 7 is right invarian t. Therefore r y  is a  connection in  T.
It is easily seen that the original connection form w on Q is induced
from the connection form 7T. of the connection 7 as above defined.

Chapter II. F in s le r  co n n ec tio n s

§ 4 .  C e n t r a l  in v a r ia n t  c o n n e c t io n s  in  th e  p r in c ip a l  bundle Z

In §2, we have defined the Finsler bundle Z.* of the manifold
M  constructed from the fibre bundle 0 over M, and we have shown
that P : C  ---> C *  is the bundle mapping. The Finsler connection of
M  is defined to be a  connection in the Finsler bundle Z*.

On the other hand, a connection F in  Z  is called to be central
invariant, i f  C;(1') F  fo r any central transformation C  of Q by
an element z E Z .  If we use its connection form w, then the central
invariance of the connection is clearly expressed by C*(c0)-- co.

Theorem 2 . 1 .  T h e re  is  a  natural one-to-one correspondence
between the set of  central invariant connections in C  and the set of
Finsler connections in Z.* by the bundle mapping P: C--->C*.

Before proving the theorem, we shall define the central-hori-
zontal subspace l'f„ qEQ, of the zero-horizontal subspace F .  We
consider a point b E B and the equivalence class r(b)—b* E B * .  The
point b* may be thought o f  a s  a  submanifold of the fibre V(x),
x=7 - (b), through the point b, and hence th e  se t o f th e  lifts  at
q G a 1 (b) of tangent vectors at b of the submanifold b* is a  subspace
Vf, of F ,  which is called the central-horizontal subspace at q E Q.
The mapping r : B --> B* is constant on b * ,  and hence, in consequence
of the definition of P, we have immediately

Lemma 2 . 1 .  The dif ferential of the bundle mapping P:
carries a central-horizontal subspace to zero.

We shall prove now the theorem. Given a central invariant
connection I' in  Z  and take a point q E Q for a given point q* E Q*,
such that P ( q ) =q * . W e p u t r q *----P(1-',). T h e subspace re is
independent of the choice of a point qEQ,f(q)— q*, in  virtue of
the central invariance of F. W e shall show that the distribution

:  q* e  of Q* is a connection. In fact, given a tangent vector
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X * at q* of Q* and take X E Qg  , such that Y (X )= X * .  Let X=
v (X )+ h (X ) be the decomposition of X  with respect to F . Then
we get X *---F (v (X ))+F (h (X )). The vector r(V(X)) is clearly vertical,
while P(h(X)) E l',,* by the definition of l',*. That the above de-
composition of X * is direct sum is immediately seen in  consequence
of Lemma 2. 1. Next, let be the right translation of Q* by
gEG, and then it follows that n o r—  foR 'g , where Rig  is the right
translation o f Q .  Hence we obtain

=  R'g ' of(r) 0 R  (F) = F(r) = .

Therefore we prove that r* is a  Finsler connection.
Conversely, if  we have a Finsler connection r* , then we define

w =F*(co*), where w* is the connection form of r* . We shall show
that w is a  connection form on Q .  Let A (resp. A l be the funda-
mental vector field on Q  (resp. Q *) corresponding to A E G. W e
see easily ( A ) = A*, and  then we obtain

w(A) = w*(r(A)) =  co* (A *) -- Â.

Also we get, for a right translation f?',

ig * ( w )  = ( r 'g )* (w*) = F*.R',1*(0)*) = ad(g 1 )•w.

Hence the form w is a connection form on Q .  Next, for any central
transformation C  of Q, we have

C;*(w) (17.00*(0)*) = =  ,

and thus co is central invariant. Hence we have a central invariant
connection l ' ,  whose connection form is co as above defined. It is
easily verified that the connection in  Z.* constructed from r by
the process as shown in the first step coincides with the original
Finsler connection F * .  This concludes the proof of our theorem.

The structure of the principal bundle Z  seems to be simpler
than that of the Finsler bundle Z.*, especially on local coordinates.
And the above theorem shows that the study of the Finsler con-
nection is equivalent to that of the central invariant connection of
Z. Because of these points of view, our attention will be confined,
in  subsequent sections, to the principal bundle Z. with a central
invariant connection. It is understood hereafter that Z. w ill b e
ca lled  the Finsler bundle of  the m an ifo ld  M  con s tru cted  from  s-8 and
a central inv ariant connection in Z  a Finsler c o n n e c t io n . From this
standpoint, for a point b=(b, b') E B , we shall say that the point
o-(b)—b E B  i s  the elem en t of  support o f  b'.
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As a result o f Theorem 1. 2, we see that a trivial connection
of 2, is considered as one of the Finsler connection, and hence the
existence of a Finsler connection is assured [7, p. 4 1 ] .  By means
of the well-known theorem [6 , p. 68], we have

Theorem 2. 2. Suppose that w e have a trivial connection form
wo  in  the Fin s le r bundle  Z . T hen  there  is  an one-to-one correspo-
ndence between the set o f  Fin s le r connections and the set { lk}
of 6-valued, ad(G )-ty pe, central invariant, tensorial 1-form s on the
bundle space Q , and the correspondence is given by

=  0 + t k

where co is the connection form  of  the connection 17 e IFI correspo-
nding to the f orm  fk E

We consider the local expressions of the connection form (0.
Let U „ and V „=T - i( U o s )  be coordinate neighborhoods o f M  and B
respectively, which were considered in § 1. W e suppose that we
have a local section p,,: U0, —>p - 1 (U,,,) o f 13, and then we obtain
the induced local section c a,: V 0-- '(17,)  o f  Z., such that

(b, p  05 0,r(b)) , b  E Va, .

We denote by (0„, (00 0,  and p,,„ the local expressions on V o, o f (0, (00

and p, respectively in the above theorem [6 , pp. 60, 67], which are
defined by

w a = (T t(w )  , w 0 a, = 01 ( w 0) P a, =  1-1') •

Let n- be the connection form on P , from which coo is induced, and
7c,„ the local expressions p ( 7 r ) .  Making use of 77 00 . =  p . o 'r  ,  we get
(00 „—q- *(7r0,). Thus we have the equations

( 3 ) co. =  T * ( 71 P a )  •

It is easily verified that the f orm s wo„  7r*
 c , ) and  t hr„ on V a, are

all central invariant w ith respect to  C .

§  5 . Various parallel displacements

Throughout the remainder o f this chapter it is understood that
we have a Finsler connection in the Finsler bundle Z. Given
a  (piece-wise differentiable) curve C = {bt , 0 < t <  1 }  in the base
space B , we have a  lift o f  C  to  the bundle space Q  issuing from a
point q,—(b0 , E 0-- 1 (/),), which is a horizontal curve C = l q „  <
t < 1 1 ,  such that 0-(qt ) =b 1 [7, p. 2 7 ].  The existence and uniqueness
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are proved, and it is well-known that the curve C •g, gE G , is also
a  lift  o f C  to  Q  issuing from the point qo•g. We say that the
end point qi o f C  is obtained from  qo by parallel displacement along
the curve C .  Furthermore we have the definition o f a holonomy
group (1)

q  with reference point at q, which is the set {g} of elements
of the structural group G, such that the point q•g, g E {g}, is obtain-
ed from q  by parallel displacement along a closed curve at b = 0-(q).
Since the base space B  of 2 , is the bundle space of the original
fibre bundle 0 ,  we have a special subgroup (1), of the holonomy
group (1)

,7* That is, if a curve C  in B  is contained in a fibre V(x)
over x EM, then C  is said to be vertical. Then, the subgroup
(II is defined as the set of elements of (13 q  corresponding to all of
closed vertical curve at b=0-(q), and we shall call (14 the vertical
subgroup of the holonomy group (13

.

We shall define next the parallel displacement of points of P
along a curve C= {b„ 0 < t  < 1 }  in B , where P is the bundle space
o f  T . T a k e  a point p o E p - '• , r(bo)  o f P ,  we have a point q0- - (b0,
Po) E Q . Then we obtain the lift C = I q t — ( b t , P f ) , 0 < t < 1 1  o f C to Q
issuing from qc) . Then we obtain the curve 7/(C)=C*= {p t , o < t
<1} issuing from the given point p o . The curve C* is determined
by C  and the starting point p o ,  and we call C* the lif t  o f  C  to P
issuing from p o . It is clear that the lift of C  to  P  issuing from
p =p e g , gE G , is then given by C * . g .  Now we say that the end
point p ,  of the l i f t  C* is obtained from p o by parallel displacement
along the curve C.

We consider two curves C = {b0 , 0 < t  < 1}  and {14, 0 < t < 1}
in B , such that there exists an element z  E Z  and b ;=z •b , for any
t E  [0 , 1 ]. Then C and C ' are called to be z -re late d . Since T (b)
=7- (b )=x , E M , we can define the parallel displacements of a point
Po E 19- '(x 0 )  along both o f C  and C'. We take the lifts C =  „ p ,)}
and C '= {(b;, pit ) } to  Q of C and C' respectively. Since the Finsler
connection is central invariant, the curve z• C = {(b;, A )}  is also
horizontal and covers C'. From the uniqueness of a lift, it follows
that z • e  is to coincide with C ',  and hence we obtain Pt=A  •
Therefore we have

Theorem 2. 3. The parallel displacements of a point o f  P  along
curves C  and C ' coincide, if  C  and C ' are z-related.

We consider next the associated fibre bundle -0  with the
Finsler bundle 2, as defined in § 1. The bundle space -8" of 0" has
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been identified with V  V (x) x V(x). It is well-known [7 , p. 43]
that there is a natural one-to-one correspondence between the set
of connections in Z. and the set of connections in . Hence we
have a  l i f t  o f  a  curve C= Ib„ O < t < 1 1  in  B  to  B , and we can
define a parallel displacement of a point of B along C.

Let C= { q t= (1) P t), 0 ‹t <1}  and e 0  ‹t <1}
be lifts of C  to  Q  and n respectively. The relation between C
and C is given by

( 4 ) qtaq'("60) = bt , 0 < t  < 1 .

The end point b, of is  sa id  to  be obtained from bo by  parallel
displacement along C .  I f  w e  put v0 =q6- 1 (b0) E V , th en  w e  have
(bo ,bO= TA= (b o , N O ) ,  and hence v o ---N y a  Thus we obtain
qt°q0 1 (b0)=qtv0= (b t , P t(v o)). It follows from (4) that

( 5 ) Pt°PcTi(N) = b ,  0  < t  < 1 ,

where C*= { p , ,0 < t< i}  is  the lift of C to P.
In virtue of the equation (5), we can define the parallel dis-

placement of points of B .  Let C be a curve in B  as above con-
sidered, and 14 a point of the fibre through b „ which is the starting
point of C .  Then we have a curve C'= 0 ‹ t  < 1 }  in B  issuing
from N , which is given by (5). W e say that C' is parallel to C,
and the end point bÇ of C' is obtained from N by parallel displacement
along the curve C o f  its element of  support b o .

Theorem 2. 4. I f  a  curve C' in  B  be parallel to a  curve C in
B , then C' is also parallel to any  z -related curve w ith C .  T hat is,
let M EB  be obtained from  b E B  by  the parallel displacement along
C  of  its elem ent of  support b o . Then M  is obtained from b,/, by the
parallel displacement along z•C, z E Z, o f  its element of  support z•b o .

This theorem is a direct result from Theorem 2. 3 and the
equation (5).

Theorem 2. 5. I f  a  curve C' in  B  be Parallel to a  curve C in
B , then a z -related curv e w ith C ' is also parallel to C .  T hat is,
let b  E B be obtained from N E B  by  the parallel displacement along
C  of  its elem ent of  support b o . Then a point z•14, z E Z, is obtained
from  z•N , by  the same parallel displacement along C.

Pro o f . From the definition of the central transformation Cz of
B , it follows that
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z•p - 1 (b) p(z •v )= z •P(v ), pE P , bE B , v E V  ,
P(P) = T(b).

Making use of (5), we see that, for any t,

Pr°P(71 (z•N) = Pt(z•PV - (b)) = z• (PtoPV(N)) z•b', .

This proves the theorem.

§ 6 . Property D  o f a  Finsler connection

Let C= { b , 0  <t <1}  be a  vertical curve contained in the fiber
V(x 0)  in  B , an d  C= { q,=(b„ p ,) , 0  t 1 }  th e  l if t  o f  C  to  Q.
Since we have

p (p )=p o (q )  =  Too-(q) =  T(b) =  X,,

the lift C* —97(C) of C to  P  is also vertical and contained in the
fibre G(x o ). Therefore there exists a  curve CG= {gt , 0 t 1} in
the structural group G, such that p t —po • g ,  for any t. The curve
CG is called the development of the v ertical curve C with reference
point at p o E P .  It is clear that any development of C in  G is given
by g - i•CG •g , g E G . On the other hand, if  we take a  curve C ' in
B , which is parallel to C , then C ' is also vertical and contained
in the above fibre V(x o ).

Now, in order to determine so-called euclidean connection in
a  Finsler manifold by means of the fundamental function, E. Cartan
introduced five postulates A, B, C, D and E  [2, p . 1 0 ] .  The fourth
of them is expressible as follows [11, p. 68] :

"If the direction of a vector with fixed components coincides
with that of its element of support, then its covariant differential
corresponding to an infinitesimal rotation of its element of support
about its own centre vanishes identically".

In our case of general Finsler bundles, the centre of the element
of support bE B  of a point b 'E B  is to be defined as the point
x=9 - (b) 3 M, and hence the rotation of b means that b moves along
a vertical curve in  B .  Therefore we shall give the property D  of
a  Finsler connection as follows :

D efin ition . The Finsler connection is said to have the property
D, w hen any  curve issuing from  a Point b o an d  being parallel to a
'v ertical curv e C  is a single point b o ,  i f  the  starting poin t o f  C
coincides with 1 ,

0 .
That is , a  p o in t obtained from bo by parallel displacement



A  global foundation of  Fins le r geometry 185

along any vertical curve C  of the element of support bo coincides
with the original point bo at any time t. Hence, by virtue 01 (5),
the analytic expression of the property D is that

( 6 ) Pt°N1(b0) 1 ) 0 ,
where C* = { p„ 0 < t < 1 }  is a lift to P  of a vertical curve C = {b„
0<t<1 } issu ing from  bo . In  this case C *  is also vertical and
expressed as p ,=p o •g t , where CG = {g„ 0  <1< 1 } is the development
of C in G with the reference point p o E P .  If we put p -0- 1(b0)=v 0 E V,
then (6) is written in the form P o ( g t • v o ) = P o ( v o ) ,  and hence we get
gt•vo — vo. Consequently the development CG is  a  curve in an
isotropy subgroup G(vo )  o f G , the elements o f  which map vo into
itself. It is clear that any development g - 1 •CG •g  is contained in
an isotropy subgroup G(g - l •vo).

Conversely, if a development CG= { g„ 0 < t <  1} of any vertical
curve C= { b„ 0 < t  < 1 }  with reference point p o be contained in
an isotropy subgroup Gv0),1),= N i (b0), o f G , then we take a lift
C*= { p t , 0 < t < 1 }  to  P  issuing from po ,  and we have Pt  =Po-gt
and hence

Pt•Pnbo) = Po(gt-vo) = Po(vo) = bo,

from which it follows that (6) is satisfied. Thus we establish
Theorem 2. 6. A  Finsler connection has the property D, if  and

only i f  a  development o f  any vertical curve in B  is  a  curve contained
in  an  isotropy subgroup G(v), v E V , o f  the structural group G.

In the last section we have defined the vertical subgroup of
the holonomy group (I),. From the above theorem we have

C orollary. I f  a Finsler connection has the property  D, then the
vertical subgroup of  the holonomy group with reference point q=(b, p)
is contained in  an  isotropy subgroup G(v) of  G, where v =p - 1 (b).

Chapter H I .  Linear Finsler connections

§  7 . Canonical coordinates

Throughout the remainder of this paper we shall confine ourself
to  the case where the original fibre bundle l3 is the tangent
bundle of the n-dimensional differentiable manifold M , so that the
structural Lie group is the general linear group GL(n, R) and the
standard fibre V is the n-dimensional vector space over the real
field R .  Then the associated principal bundle i s  the bundle of
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frames on M , and a point q=(b, p ) of the bundle space Q  of the
Finsler bundle 2. is a pair of a tangent vector b E B  and a frame
P = (Pi, ,  E P, such that b, P1, '• • ,P„ are tangent vectors at
the same point of M .  Then Z. is called the linear Fins le r bundle
o f  M .  A point of the bundle space B  of the associated bundle 0
with Z. can be considered as a pair of tangent vectors at a point
of M . In  th e  follow ing it is understood that the element of support
b  of  h ' is not a zero vector.

The centre of G L (n, R ) is  the set of n-matrices, which are
expressed in the form s ((z)•), w here (z) E R - 0  and 81

j , (i, j = 1 ,

•• • , n )  are the Kronecker's deltas. Thus there is an  one-to-one
correspondence between elements of Z  and real numbers +0. We
denote by (z ) the real number corresponding to an element z  E Z.

Let (xi), (i=1, ••• ,n )  be the local coordinates of a point in the
coordinate neighborhood I/0,  o f  M , and (e 1 ), (i=1, • • • , n) a  fixed
base of V . A  tangent vector b  E B  at T (b )  E Uo,  is expressed
b y  the canonical frame (a/axi) in  the form b=bi(a/ax i) x

2 ) and
hence (xi, bi) are considered as coordinates of a point in V 0,=7 . - '( U0,)
of the base space B  o f C . W e sh a ll ca ll (xi, b i )  th e  canonical
coordinates in V 0,. O n  th e  other hand, a vector p i  , (i= 1 , • • • ,n), of
a frame p=cP,, ••• ,Pn) E P(P)=x  EV a„  is expressible in the form
p i = p(a lax i) x ,  and hence a point q= (b, p)EQ, b EV o, ,  is expressed
by the set of real numbers (x i, b i,  p i ) ,  which are called also the
canonical coordinates in cr- '( Va). I f  we take q= (b, p)— (xi, bi, Q,
then p - '(b)=v EV  is  o f the form v =py "b i•e i ,  where the matrix
(p .T ") is the inverse of ( p i ) .  Thus the central transformation C z

of B  by z  E Z  is given by

C (b ) = (x 1, (z)bi) , where b  = (xi, b ').

Now we consider a connection form 71" on P .  It is well known
[6, p. 85] that the local expressions 7c0 , of n - are given by

= , •• • , x")dx k -k i,i ,  j, k  = 1, • • • ,n ,

where ( kl) is a fixed base of the Lie algebra o f G L (n , R ). I f  we
write the 1-form p,a,  in the equations (3) by

p c,  =  [ 1 4 , ( x 1 ,  • • •  , x n , b ', • • •  ,b n )d x ii , • • , x", b', • • • , bn)dbl•

j , k = 1, • • • ,n ,

2 )  We make free use of the summation convention.
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then, in virtue of (3), the local expressions w„ of a general linear
Finsler connection form ( f )  are expressed in  terms o f  canonical
coordinates as follows :

0)  = ( 1)k d e d - Cikdbk)-k ;( 7 ) j, k  = 1 , •-• ,n

where we put

r',„ T imxi ,• , x n )+ 14,(xi , ••• , xn, b', • •• , bn ) .

Since /..6 is central invariant, it is immediately verified that, with
respect to the variables b ', ••• ,bn, the coefficients p i

., k and  C'j k  are
homogeneous o f degree 0 and — 1 respectively. Therefore co o, as
above are the local expressions of Finsler connection form, if and
only if, with respect to  the variables b', ••• , bn ,  the coefficients
and Ck  are homogeneous of degree 0 and —1 respectively, and further
the well-known formula of transformation [6, P .  60] is satisfied.

It can be easily shown that th e  lift  /,(X ) of a tangent vector
x =x ip la x o b +x ("(alab i), with respect to the Finsler connection
(7) is given by

( 8 ) /,(X ) x i( a
a
x ,) ,, + x ")( a

a
b i ) , — p'i(1:,(b)xt

+c 1,;,(b)x(")(w i
a  ) , ,

j, k, = 1 , • • • ,n

Now, we shall treat parallel displacements. Let C : 1), =(x i(t),
bi(t)) be a curve in B .  Making use of (8), we have the condition
for C : q t =(x i(t),b i(t), Ay» to be a lift of C  as follows

( 9 )

dpij ± ,„( 1,1, 0 ) dx' ±cL(b)dbi 0.
dt i k dt dt I

In particular, when C is vertical, then x i(t), i=1, • •• , n , are identical
to xi(o), and pm, i, j=1, , n ,  are written in the forms p ( t ) =
p'„(o)• gl(t), where CG : g 1 — (g(t))  is a development of C in GL(n, R).
Hence the lift C  is given by

dgk(10) pf„(0_ + p;:(0) g r„,(b t)  —

d b '  

= 0dt dt

We consider the property D of a Finsler connection. In consequence
of Theorem 2. 6, given a vertical curve C : b t = (4 , b i( t)) , we take
its development CG : g t =(g1(t))  with reference point (4,, Pia) and
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a vector v= vi•e i ,  where v i=P .To'b i(o ) .  Then we obtain gi(t)vi =vk,
and hence contraction of (10) by v i gives easily

(11) biCtik(b) = 0 , k = 1, ••• ,n ,

which is the well-known equation [4, (10)], [11,  P .  69].
Theorem 3. 1. In  terms o f  canonical coordinates,

D  o f  the Finsler connection (7) is written in the form
Finally we shall find the geometrical meaning

known equation [ 1 1 , p. 15]

(12) eik(b)bk = 0,i , j , k  = 1 , - • •  , n .

For this purpose, we consider curves C= {bf }  and C'= {14 } in  B.
I f  there exists a curve Cz = {z,} in Z , such that b =z t •b, for any t,
then we say that C and C' are central-related. In particular, when
Cz  is  a single point z, then C and C' are simply z-related, as defined
in § 5. We shall show that

Theorem 3. 2. L e t C ' be a  curve in  B , w hich is parallel to a
curve C in  B . T h e  curve C' is also parallel to any  curve, w hich is
cental-related w ith C, if  and  only i f  (12) be satisfied.

Pro o f . First we shall find the equation which shows that C'
is parallel to C .  I f  we put C : b t = (xi (t), bi(t)) and C ' : b it =- (xi (0,
b'i(t)), then we have from (5) that

PMPIT l i (o)b'k (0) ,
where P ( t )  satisfy (9). Therefore we have

(13) db'i dx ' db'
dt dt dt11,(b) +C1 1 (b)  —  0 .

This is the condition that C' be parallel to C  [4 ,  ( 1 1 ) ] .  Now we
take a  central-related curve C : b,=(x i(t), (z (t))bi(t)) with C  and
then, in virtue o f (13), the condition that C' be also parallel to C
is given by bikC(b)bi((z)')(d(z)1 dt)— 0 , and hence the theorem is
immediately proved.

§ 8. Vertical vector bundle and characteristic vector field

We have denoted, in § 3, by B ; the set of vertical vectors at
a point b of B .  We put now By= \./BL' and then define a mapping

X: f l =  V(x) x V (x )  B y  as follows :
,E

Thus we get
the property

(11).
of the well-
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X((b,b')) = 8p((p - 1 (b/)),,)EB , p E (b) , y  = p - '(b) .
The letters in the right hand side will be explained in the following.
Given a point 13 (b, b') En, w e take an arbitrary point p E p - 1 07(b),
which is considered a s  a n  admissible mapping o f  V  onto V(x).
Hence p - '(b') i s  a po in t o f V , namely, a  vector, so that we can
identify p - '(b') with a tangent vector at v=p - '(b)E V in the ordinary
manner, and d en o te  it b y  (p - J(11)„. Then the differential 8p of
the admissible mapping p  maps this to the vertical vector at b of
B .  It is easily verified that the vertical vector a s  thus obtained
is independent of the choice of p.

Conversely, given a vertical vector X E M ,  w e have a tangent
vector 8p- '(X ) a t  v = p '(b ) ,  and then can identify w ith a point of
V . Hence p(8p - 1 (X )) is  a point of the fibre through b , and thus
we obtain the point (b, p(Sp - - 1 (X))) E B .  It is easily seen  that X((b,
p(8p - 1 (x))))= X .  Therefore B can be identified with 13" by the map-
ping X, and we shall call the vertical tangent bundle of B.

Next, we consider a tangent vector X  E  B b  and put X ' =X((b,
T (X ))),  where 7- (X ) is  a tangent vector at x=-7-(b) of M , which is
considered as a point of the fibre over x .  Thus, for a vector XE B b,
w e have an unique vertical vector X ", w hich w ill be called the
induced vertical vector from X. In terms of canonical coordinates,
if X = Xi(a/axi) b + x ( "(alabo b , then we have xv=xi(alabo b .  The
next lemma is a direct result from the definition

Lemma 3. 1. L et X  and Y  E B b , and f  be a real function on B.
1) The mapping X—> X" is linear :

(X+ Y )" =  X "+ 1 7 . " , ( f • X ) "  =  f -X "  .

2) X "= 0 , if  an d  only i f  X  be vertical.
The relation between the mapping X—)-Xv and central trans-

formations of B  is  g iven  by the following lemma.
Lemma 3. 2. L et C2 be a central transformation of  B by z E Z.

T hen, for X E Bb ,  we obtain (C 2 (X))"— (z) - 1 •C,(X").
P ro o f. If we identify a point u E V with a tangent vector u„

a t v E V , then it is immediately obtained that

(14) g•u„ = (g•u),.„.

It follows from (14) and the definition of X—> X ", that, for X E B b,
p E 10- 1 0,r(b), and v=p'(b),
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( c , ( x ) ) v  = 8 P((p - 1 07(Qx)))2.„)= 8P((p - i .T (x ) )„ ,)
= 8p(2. ( z i - p i ( T ( x ) ) ) )  =  c z oap((z - i-p - (T(x)))„)=G z ((z) - .x v ).

Thus we have proved the lemma.
We shall now define a special vertical vector field on B, which

will play a role in the following. Let h = (b , h) be a diagonal point
of B, and then we have a vertical vector X((b , b)) a t b of B, which
will be denoted by b. The vector field b EB—>b is  ca lled  the
characteristic vector f ie ld  on  B . In terms of canonical coordinates,
the vector b a t b is given by biolabo b ,  where b=(xe , be).

Lemma 3. 3. T he characteristic vector f ield 7) i s  inv ariant by
central transformations of  B .

Pro o f . In virtue of the definition o f - )b. and (14), we get

Cz (i;) =  Cz o8p(v„) =  ap(z•vv ) =  8p((z•v) z .„) =  (z•b) ,

where v =p - 1 (b). This prove the lemma.
The following two lemmas can be easily verified, using canon-

ical coordinates.
Lemma 3. 4. L et X  an d  Y  be vector f ields o n  B .  T hen the

bracket o f  X ' and  Y" is w ritten as follows:

[X", = [X , Y v]v +[.X° , Y ] " .

Lemma 3. 5. Let X be a vector f ield on B and -1; the character-
istic vector f ie ld  o n  B . Then we obtain

[1), XT = [7), Xv]+ Xv

The inverse mapping o f X— > X ' is not uniquely determined.
But we shall denote by Xh a vector, from which the vertical vector
X  is induced. By m eans o f Lemma 3. 1 , 2 ), we see that such
a  vector X " is determined within vertical vector. X " is called a
vector inducing the vector X .

Lemma 3. 6. L et X  be a vector f ield on B, and then the vector
X + [b", X " ] is  vertical.

Pro o f . In consequence of Lemma 3. 1, it is sufficient to show
that Xv+[gh, Xv]" = 0  identically. It follows from Lemma 3.4 that

Xt1 XVT XT

Then the lemma is assured by Lemma 3. 5,
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§  9 . Horizontal forms and tensors

Let a  be a  s( > 1 ) - f o rm  B  and X „ ••• , X, E B b , such that one
at least of X „ ••• , X , is vertica l. If a(X „ ••• , X s ) — 0  for any point
b  of B ,  then a  will be called to be horiz ontal. For such a  form
a, we put

a 0 (X 2 , • • • , X s ) =  a(bh, X „ ••• ,X s ) , X 2 , ••• , X  e B , .

Since a  is horizontal, the ( s - 1 ) - f o rm  a o a s  thus defined is inde-

pendent of the choice of bh. The form a o will be called the reduced
form  from  a  for s > 1 ,  which is clearly horizontal. If s = 1 ,  then
a o will be called the reduced function from a  [2 , p. 1 8 ] .  For s > 1 ,
we get

a(X „ • • • , b h ,  - •  •  ,  X s ) =  ( - 1 ) '  •  a o (X „ •  •  •  , , • • • ,
(i)

where X „ • • • , , •-• , X s  E
Next, le t X „ ••• , X  E M ., b e  a  se t o f tan gen t vectors at x.

Then we have tangent vectors X „ ••• , X, G B b , b G V(x), such that
T(X i ) =  X i ,  i =1 ,• • •  ,s .  Such X i a r e  determined within vertical
vectors, and hence we can define a(b )  uniquely as follows :

a(b)(X „••• , X s ) a(X „ •••  ,X ,) .

The mapping a(b )  as thus defined will be called the projection of
the horizontal form  a.

Next, we consider a  s( 1 )  form 3 on B , which is not neces-
sarily to be horizontal. If we put

3 4 (X „ •• • , X s ) =  0 (X , •  • •  , x„ • • • E Bb

then we obtain a  s - f o r m  o f i  on B ,  which is horizontal by virtue
of Lemma 3 . 1 , 2 ). We shall call reh the horizontal form  induced
from  3 . It is clear that

Lemma 3. 7. I f  a  i s  a horizontal s( >1 ) - f o rm  on  B ,  then the
induced horizontal f orm  a h  vanishes identically.

The above notions and processes for forms on B  can be applied
equally well to covariant s( > 1 ) - t e n s o r s  o n  B .  We can define
notions of a horizontal tensor and induced horizontal tensor, and
further we obtain the projection of a tensor. On the other hand,

3 )  The sign ( i )  under a letter indicates that we replace X , to this letter, and
the sign ( A  )  over a letter does that this letter is to be omitted.
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in the case of horizontal covariant s - t e n s o r  T ,  we have to remark
that T  is not necessarily skew-symmetric, so that we obtain from
T  reduced tensors of different type, and hence we shall write

To(i)(X, , • • • kJ, • • • X q )  -  T (X ,  • •• rgh , • • • X,)

X , ••• , X i ,••• , X, E Bb

§  1 0 . Covariant vertical derivatives

E. Cartan introduced a simple process of a covariant differen-
tiation [2 , p . 1 2 ] .  We shall define such a  process in  our case.
In the first place, we consider a  real function f  on B , and put

f(X ) =  X v ( f) , X E Bb

This covariant vector AV' is clearly horizontal in virtue of Lemma
3 . 1 , which will be called the covariant vertical derivative, or, for
brevity, covariant v-derivative of  f .

Generally, let T  be a horizontal covariant s( > 1 ) - t e n s o r  on B
and put, for X „•••  ,X s ,  Y E Bb,

A v T (X „• • •  , X Y )

= Y v (T (X „ - -  , X 2 )) + T(X„ ••• , EX i , r 1 ,• - •  ,X s ),-1
We shall verify that A vT  as thus defined is a  c o n v a r ia n t  (s +  1)-
tensor. In fact, we can easily show that

A v T (X +X ', X „  • • •  ,X ,,Y )=  A v T (X ,• -•  ,X s ,Y )+ A v T (X ,••• ,X s ,
Av T(X„••• , X Y + Y ' ) =  A v T (X „•••  ,X Y )+ A v T (X • • • ,
where X ,X ',X „ • -•  ,X s , Y, Y' e B b . Next, let p  and Jr be functions
on B, and X  and Y vector fields on B . Then it is well-known [7 , p. 4 ]
that

E P X ,* Y i - - - - P - 4 P • [X , Y ]+  • (X(*)) • 17 - 111*(Y (0).X .
Making use of this we obtain immediately, for X„ ••• ,X„ Y  EB b ,

LV T (pX „X „••• p•qP•AvT(X„••• , X 2 , Y )

+ q )* (X ,(+ ))•T (r ,  x -2, , X2) + q X 1 (+)• T(X ,,••• ,Yv,••• ,X ,).

Since T  is assumed to be horizontal, then the last two terms of
the above equation vanish, and hence we conclude that A "T  is
a  covariant tensor. Since [X 1 , Y v ]  is  vertical for any vertical
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vector X ,,  then it is easily seen that A V T  is  horizontal. Then we
have the horizontal covariant (s+ 1)-tensor AvT, which will be
called the covariant v -deriv ativ e of  T .

Lemma 3 . 8 .  1 )  I f  T  is a horizontal covariant symmetric tensor
o n  B ,  th e n  its  covariant v -deriv ativ e A " T  has the property  that
A vT(X ,,••• X „  Y  EB,„ is sym m etric w ith respect to

••• X .
2) Let f  be a  real function on B , and then w e hav e the hori-

zontal covariant s - te n so r A" • • •  A 7 .  T his tensor is sym m etric for
2.

Pro o f . From the definition of the operator A v ,  1 )  is clearly
satisfied, and hence we shall prove 2 ) by the process o f  mathe-
matical induction. W e observe first that, for X , YE B,„

A vA vf i x ,  y )  y r  ( x v  ( f ) )  + Ex', y v r  ( f )

In consequence of this and Lemma 3. 4, it is easily seen that A "A l f

is symmetric. Next, we assume that A" • •• A uf  be symmetric for

r =2, ••• , s. I f  we write A" • •• =  T , then, by direct calculation,
we obtain

A v A vf  (Y, X2, Xs, X) — . . •  Avf(X, X 2 , ••• , X „Y )

TX" , Y "]+E Y  , X l v —EX, Y"]") (T(X2, • • • , X5))

+ T (X „••• ,Z 1 ,•••

where X, Y , X 2 , • • • , X , E B ,,, and we put

[Xi Xviv] + EEXi X v i ,  111—  [X i , EX, Y y r ]

—[[X,, Yv], X "] .

As a result o f Lemma 3. 4, we see that the first term of the right
hand members vanishes and that Z i are equal to zero by means
of the Jacobi's identity for the brackets. Thus we establish the
lemma.

Lemma 3 . 9 .  L et T  and  T ' be horizontal covariant tensors or
functions on B  and T - T ' their product. Then we have

A v (T •T ') = A v T •T ' +T •A v T ' .

The proof o f this lemma is quite easy. Now, the next lemma
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gives the relation between the convariant v-differentiation and the
dual of central transformation of B.

Lemma 3 . 1 0 .  L et T  be a horizontal covariant tensor or a func-
tion o n  B . Then we obtain

A v(Cz* (T ) ) =  (z )•C°*(A v T ) ,

where ( z )  is a real number corresponding to the element z  E Z.
P ro o f. We remark first that C ,* ( T )  is horizontal, because Cz

maps a vertical vector into a  vector of the same kind. We shall
prove the lemma for a horizontal covariant s( 1)-tensor T .  For
X „ ••• Y  E B b ,  we have

(Av(C z *(T  ))) (X, • • • , X ,,Y ) = r( T ( C ° ( X ,) , • • •  ,C .( X ,) ) ° C z )

+ T  (C ,(X ,), • • • EC ° (X i), Cz (r ) ] ,  •  ,  Cz(X s)) .

According to Lemma 3. 2, this is rewritten in the form

=  (z )•(C ,(Y ))v (T (C ,(X ,) , •  ,C ,(X ,) ) )

+ (z )• T (C  (X ) ,  • EC (Xi ), (C (Y  ))v], • • • , C ,(X ,))

= (z )•A v T (C ,(X ,), ••• ,C ,(X ,),C ,(Y )) .

This concludes the proof of the lemma.
Lemma 3. 11. 1 )  F o r a real function f  o n  B ,  we have the

reduced function (A v f ) ,  from  the cov ariant v  derivative A v f  o f  f .

Then we obtain (417 ) 0 (b) 4 ( f ) ,  b  E B.
2 )  L e t  T  be a horiz ontal cov ariant s (>_ 1 ) - te n s o r on B ,  and

then we have, for X „ ••• , , •  •  •  , X , Y E B b , and i =1, -• • , s,

(A v T)0(i)(X ,, , Xs
= (A v (T o ( i ) ) ) (X „•••  ,  t , • • •  , X ,,Y )— T (X „ • • •  ,Y ,• • •

P ro o f. Since (bh)v= b, we have 1) easily. We shall show 2).

0_2 a-,
+ T ( X „• • •  ,E b h , r1 , • • •  , X )

+ T ( X  • - •  b h  • • •  EX ••• X )
(,) (a)

In  th e  third term of the right hand members, we can replace
(1;h, Y1 by — Y in  virtue of Lemma 3. 6 and hence 2) is proved.

( A V
T ) 0 ( i ) ( X I  •  •  •  ± i  3  •  •  •  3

 X ,  Y) — A v T (X , ' •  ' g .h , • • • , X ,

r( T ( X „ • • • ••• , X „))+ T (X „ ••• , X s)(a) (i)
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Chapter I V .  Euclidean connections in linear Fins l e r  bundles

§ 1 1 .  T he fundamental function and  metric tensor

We consider a covariant s( 0)-tensor T  on B , and suppose
that T  satisfy the equation

C ?(T ) = (z )r•T  ,

where Ç. is  a n y  central transformation of B .  Then T  will be
said to be r-hom ogeneous. In particular, that T  is 0-homogeneous
means that T  is  central invariant. W e write by R ±  the set of
positive numbers, and if the above equation holds for any z , (z) E R+
only, then T  will be said to be positively r-hom ogeneous. We shall
define the hom ogenity for differentiable forms similarly. On
making use of the covariant v-derivative, the Euler's theorem for
homogeneous functions leads us to the fact that a covariant s-tensor
T  is  r-hom ogeneous, if  an d  only if  the  equation

(A ° T)0(5+1) ---- r - T

be satisf ied (cf. Lemma 3. 11, 2)).
Lemma 4 . 1 .  L et T  be a  r-hom ogeneous covariant s(>1)-tensor

o n  B . Then the induced horizontal tensor Th is (r— s)-homogeneous.
The sam e is true for a form .

Pro o f . From the definition of the horizontal tensor T h, we
have

(C'zi'( T h))(X, --• Th(C.(X i),•-• ,Cz(X s))
= T((Cz(X i)) v ,••• , (Cz(X s)) r ) ,X 1 , ••• , X .E  B b  •

From Lemma 3. 2, we can rewrite this in the form

(z)  • T (C z (X ), • • • , C (X )) (z) - S • (C? (T)) (X - , • • • , X';)
= (z )r'•T h  (X „ •-•

This proves the lemma.
Now we consider the local expressions w„ on V o, of the Finsler

connection form w. Since we have shown that w o, i s  central
invariant, we obtain, a s  a  result o f Lemma 4. 1, th e  following
theorem.

Theorem 4 . 1 .  L e t  (00,  b e  the local expressions on V 5 , of  the
F in s le r connection form  co. T he local horizontal f orm s (w„)h are
(-1)-hom ogeneous.
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The forms (6)0,)" are called the local horizontal connection forms.
Let w  (00 be local expressions of co on V,,, and V , respectively.
Then it is well known that we obtain the equations

w  - =  ad(a ) +  g : fl•Sgo, f3 ,

where g o : V ob r\V„— G  satisfy the equations 0-0 = (7 •g o,0 fo r  the
local sections a- 0 - 0 . Since we obtain

y o0-0 (b) =  pgx) =  p,„(x)- g(b) , b E V 0,r■V,, x = T(b)

the mappings g o,0 are constant on each fibre V(x), and hence the
differentials 3g-

0,0 carry a vertical vector to zero. Then we see

((00 )h (X ) =  ad(a ) • (0 )h (X ) , XE  Bb.

This means that the local horizontal connection forms are of ad(G)-
type. Making use of (7), we have easily that

( )h = ••• , x", b', • , b") dxh • .

That (c0„,)h is  o f ad(G )-type means that the set of obeys the
transformation of the well-known tensor-type by the transformation
o f canonical coordinates. And the above theorem shows that e i k

are ( -1 )-h o m o g e n e o u s  functions with respect to  the variables
b', ••• ,b" (cf. § 7).

We shall return to the considefation o f general homogeneous
tensors and prove that

Lem m a 4. 2 . Let T  be a r-homogeneous covariant s( 1)-tensor
o n  B . Then the reduced tensors T o ( i ) , i=1,••• ,s, are (r+1)-homoge-
neous. The same is true of a form.

P ro o f. From Lemmas 3. 2 and 3. 3, it follows that

((z)•C 2.(bh)r =  Cz (b) =  (z.b), b E B,

and hence we can choose (z )-C 3 h ) a s  a  vector inducing the
characteristic vector (z•b) a t the point z • b .  Therefore we obtain,
for X,, ••• , X, E 13,,

(C?( T o ( , ) )) (X,,, • , X,)=  T ((z•b )h , C ,(X 2 ), - -  ,C ,(X ,))

= (z) • T (C ,(bh), C ,(X2 ), • • • , C ,(X,)) (z)r± 1 • T (b", X 2  •  "  X ,)

=  ( z )
+ 1  • T 0 0 ) (X 2 , ••• , Xs ) .

This proves the lemma.
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Lemma 4 .  3 .  Let T  be a  r-homogeneous covariant s( 0)-tensor
on B .  Then A v  ••• A v T  is (r—u)-homogeneous.

Pro o f . It follows from Lemma 3. 9 that

Av(C?(T)) = ((z)r • T) = (z)r • Av T .

On the other hand, it follows from Lemma 3. 10 that

v(CNT)) = (z)•C?(A "T) .

Hence A vT is (r— 1)-hom ogeneous. The lemma will be established
if we repeat the above process.

We are now in a position to define the fundamental function
o f a  F insler manifold. W e suppose that we are given a positive
valued function L  on B, which satisfies

1) L  is positively 1-homogeneous.
I f  we put F = -

1  
12, then we see that A"A"F is positively 0-homoge-2

o u s horizontal symmetric covariant 2-tensor on B ,  in  virtue of
Lemmas 3 . 8 , 2 )  and 4. 3. Hence we can define the projection
( " 7 )(b )  on the base manifold M .  We impose upon L  the further
condition :

2) (A vA 7)(b) is positive-definite, that is,

(A "A T)(b)(X , X ) 0,X  E M ,  b E T lx )  ,

and the equality holds i f  and only if X =0.
The function L  (or F )  satisfying the above two conditions will

be called the fundam ental function o f  th e  Finsler bundle C ,  and
then M  the Finsler m anif old. The value L (b) o f L  at a point b E B
is called the Finslerian length of  the tangent vector b E Mx , x —r (b).
Since L  is positively 1-homogeneous, then we obtain L(z-b)—
(z)- L(b), (z) E R ' .

Next, we shall introduce the metric tensor. W e suppose that
a field of covariant 2  tensor m  is given on B , which satisfies the
following conditions :

1) m  is  horizontal and symmetric,
2) m  is 0-homogeneous.
3 )  the projection m(b) on M  is positive-definite.

Then we shall call m  the metric tensor on B .  For a tangent vector
X-4= 0  a t  x  o f  M , we obtain a  positive number N/m(b)(X, X),
bET - '(x ) , which is called the relativ e euclidean length of  X  with
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respect t o  the e lem en t o f s u p p o r t  b .  From the definition of the
projection m(b) and the condition 2) of m, it follows immediately
that m(z• b) (X, X )=m (b) (X, X ), z E Z .  We construct the reduced
covariant vector m , from m , which is 1-homogeneous in virtue of
Lemma 4. 2. m o is called the ch a ra cte r is t ic  fo rm  and denoted by

b ,  Thus we have b(X )=m(7) 4 , X ), Xe B b . The reduced function

from b is given by b 0 (b) = m(bh , 1;k) = m(b)(b , b), b e B, from which it

follows that the value of bo a t b E B  is the square of the relative

euclidean length of b E M x , x with respect to the element of
support b  itse lf. The quantity N/b0 (b) is called the absolute length
of the vector b.

§ 1 2 .  P u re - h o r iz o n ta l subspaces

We consider the associated bundle with the Finsler bundle
C, which has been looked upon as the vertical tangent bundle of
B  as shown in  § 8. Hence we can define the covariant derivative
D X  of a vertical vector field X  on B  with respect to  a  vector
field Y on B  [7, p. 52 ]. That is, let C = {b„ 0 S t S 1 } be a inte-
gral curve o f  Y  issuing from b „E B  and e s  „  0 ‹ t  < 1 } a lift
to Q  o f C issuing from q,E 0- - Ab0 ). Then D X  is given by

1(D,X ) b o  =  l i m  ( q o oqT 1 (X b 1 )— Xb o ) .0,0 t

The vertical vector Xin  is expressed by a pair (b 0 , b )  and we put
qt =(b„ p0), and then we obtain

q0 oqT 1 (X b 0 ) = q,(pTi(bit )) = (b„ po opT'oa) .
Therefore we have the expression of  D X  as follows :

(15) (DyX)oo = (b o , lim (P0oPT 1 (b) — b )) .

We consider a vector field X  on B , which is not necessarily
to be vertical. Then we have the vertical vector field X' ,  and
hence we can define the convariant derivative D ,X ° , which will
be written in the form MX.

Next, we consider a horizontal covariant s-tensor T  on B, and
define the covariant derivative M T  o f  T  with respect to  Y as
follows [7, p. 55] :
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D1,T(X „ ••• , X )  = Y (T (X „ •-• ,X e )) — ••• ,(D3,X i )h, ••• , Xe ) ,

where X „••• , X s E B , , .  The covariant dif f eren tal D 'T  o f  T  is the
(s+ 1)-tensor, which is given by I I I .' (X„ • • • , X ,  Y  )= ( X „ •  •  •  ,
X e ), X i , ••• , X s ,  Y

Next, let X  be a vector field on M  and b „ 0 <t<1 , a vector
fie\id defined along a  curve C= {x ,,  0 < t  < 1 }  on M .  The curve
C= 0 ,1  is in B  and covers C .  Let C*— { p„ o< t <1 } be a life to
P  of C  issuing from a point po c 19- 1(x,), and we define

(D,X ) x 0 = urn ( P 0 ° K 1 ( X ) — X i )  ,

which is clearly a tangent vector at x0 . DbX  as thus defined will
be called the covariant derivative o f  X  w ith respect to  the  element
o f  support b,. W e take a tangent vector Y of the curve C  and
a vertical vector field X = ( b „X ) .  Then we have from (15) that
D y X = (b, Db X ) .  Making use of (9), we obtain easily

D b x  _  c lX i .1 dxk d b n l
(16) L d t  ± X j 1 d t ik

(
dt \ax i) x ,

where X =X i(a/a)x 0 x , b = (xi , bi).
In particular, we can consider the case where the curve C  is

a single point x , and C  a vertical curve in the fibre V(x0 ). Then
we obtain

(D,,X)
°

x  =  l i m  (po opTi(x)— x) , xE M x o  ,
 ( - > 0  t

and such a cov ariant derivative o f  a fixed vector X  for a rotation
of  the element of  support b ,  will be denoted by D gx. From (16)
it follows that DP,X=XlCii k (b)(dbk /dt) (a/ax0 x , where (bk(t)) is the
vertical curve C . In  terms of the local horizontal connection form
(00)k, this equation is written in the form

(17) D g x  

where Y  is the vertical vector tangent to (b,), and the dot denotes
the product of matrices (co,„)k(Y k) and X.

W e suppose now that the Finsler connection under considera-
tion has the property D .  W e take a  fixed point x ,E M  and a
curve C = Ix „ 0 < t< 1 1  on M  issuing form x , .  Then we shall
show that there exists an unique curve C= Ib„ O < t< 1 1  on B,
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covering C and issuing from a  given point be E 7- 1 (x0), such that
the covariant derivative Dbb  o f b with respect to the element of
support b itself vanishes identically. In fact, from (11) and (16),
we obtain the differential equations o f such a curve C as follows:

dbi 
+ b i q , ( b )

dxk
(18) —  0 ,

dt dt

with the initial condition b i(0 )= b , where (xk(t)) expresses the
curve C on M .  Therefore the curve C is uniquely determined by
the curve C on M  and the starting point of C .  The curve C will
be called the horizontal curve, covering C, or th e  lift o f  C  to  B.
Let H b  be a set of tangent vectors at b o f B, which are tangent
to lifts of curves on M  issuing from x = ,r(b). We shall call H b  the
horizontal subspace of B b .  It is clear that Bt, is the direct sum of

and B g .  For any X E Mx , there is an unique horizontal vector
/b (X )  a t b E T- i(x), such that ,r(lb (X ) )=  X .  The vector /b (X )  is
called the lift a t b  o f X .  In consequence of (18), the expression
of the lift /b (X )  at b= (x i,b i) o f a  vector X=Xi(a/axi) x  is given
by the equation

(19) /b(X) = X i(  
a  

)  — b ir ij k (b )x k (  3  

a
x

i  b abi)b •
For XE Bi„  we can write uniquely X = v (X )+ h (X ), where v(X)
is  vertical and h (X )  horizontal. I f  w e  put X —xiolaxo b +
x(i)(alabob, then h (X ) is given by the same equation (19), and
hence v (X ) is given by

(19') v(X ) =  (X (o+ b il) b (b)Xk)( abi)b •

It is to be noted here that the vertical component v (X ) is different
from the induced vertical vector X '.

We consider a s form a on B and put

a"(X„••• , X s ) = a(v(X,), ••• ,v(Xs )) ,
al(X,,••• ,X,) = a(h(X,), ••• ,h(Xs ) ) , X„ ••• , X s E B b .

Then we obtain two forms a° and a', the latter being horizontal.
The form a° (resp. a') is called the vertical (resp. horizontal) com-
ponent o f a .  Further we have the form a— a"—a', which is called
the mixed component of a .  It is clear that the mixed component
o f a  1-form is equal to zero.
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Let to, be local expressions of the Finsle r  connection form co.
The vertical and horizontal components of coo, are given by

(coc.)° = (rY „dxk+Ci k dbk)k i , (6),,)1 =  r t 'd x k e
where we put

r3,„
. Sk5 k

The coefficients IT  have been introduced by E. Cartan [2, p. 14]
and will p lay a role in  the following.

We consider next the bundle space Q  of the Finsler bundle
Z .. w e  have defined, in 3 , a zero-horizontal subspace / 1  of the
horizontal subspace r q  a t q E Q , which is the lift of vertical sub-
space Bg of B b , b =c r(q ) . W e have now the horizontal subspace
H b , and hence can define the subspace 11, which is the lift of H b .
We shall call r i, the Pure-horizontal subspace of Qq . It is clear
that r q  is  the direct sum of the zero-horizontal subspace FQ° and
pure-horizontal subspace F .  Thus we obtain the unique decom-
position of a vector X E Qq  a s  follows :

X =  v(X)+ h°( -X)+ 11 1(X ) , h°(X) E hl(X)E F .

If we put X =xiolaxi),-Fx , o(alabi),+ xi(aiap;)„, then the pure-
horizontal component h (X )  of X  is given, in  virtne of (8) by the
equation

(20) h(X ) X i( ) — bil",,(a.(q))X k( a

ax i q abi)q

_ pkirv (G-(q)))(1(aap,j),,

We consider a horizontal s-- form a  on Q , and then we have two
forms a° and a ', such that, for X „••• ,X ,E  Q q ,

a°(X ,, ••• , X s ) a(h°(X ,), ••• ,h°(X s )),

Xs) a(h l (X i), • , h'(X .,))

which will be called the zero and pure components o f  a  respectively.
The form a— a°— a' will be called the mixed component o f  a .  It
is clear that the mixed component of a 1-form vanishes.

We consider finally the principal bundle T .  Given a point
pE P , we take an arbitrary point bET - lop(p), and then we obtain
a point q= (b, p)E Q .  We now define the subspace H*(b) p  o f P p

a s  ,71 ( q ) ,  where n  is  the canonical projection Q --q3 . H * ( b ) p  is
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called the horizontal subspace of  P p  w ith  respect to  the point b E B.
Let X * be a tangent vector at p  and put hb(X *)= no/a o/bop(X*).
It is clear that p ( h b ( X * ) ) = P ( X * ) ,  so that X *— h b (X *) is vertical.
Hence P p  is  the direct sum of H*(b) p  and the vertical subspace
G(x) p ,  x =p ( p ) .  It is to be remarked that this decomposition of
Pp  will depend upon the choice of a point bET - lop(P) generally.
It is easily shown that, i f  w e p u t X* = X i(a/ax 0 p + X )(a/ap'i )p ,
then the horizontal component hb(X *) is given by

(21) hb(X*) X t ( — ( b ) X 1 (
a

P al)) P •

§ 13. T o rs io n  a n d  c u rv a tu re  fo rm s

In  this section, w e suppose also that the Finsler connection
under consideration has the property D, so that we have the notion
of pure-horizontal subspaces.

L et 0 *  b e  a  V -valued  1-form on  P ,  such that 67,- (X*) =
p - lop(X *), [7 , p. 4 9 ] .  Then we have the induced form 01 -9 7*(0*)
on Q , where n  is  the canonical mapping Q— >P, We see easily
that

0 (X )  =  P - '0 ,roo-(X) , q = (b, p ), X E Q, ,

from which it follows that 01 vanishes on the zero-horizontal sub-
space. We shall call 191 th e  pure-basic form  on Q.

Next, we define a  V-valued 1-form 0 0 on  Q , such that

0 ( X )  = 4 - 1 (v(0-(X))), q = (b, p ), x  E Qq .

where v (0-(X )) i s  th e  v e rtica l component o f  0- (X ) E / 3 , ,  and
.p - '(v(0-(X))) is the tangent vector at p - ( b )  of V , which is identi-
fied with a po in t o f V . We shall call 0° the zero-basic form on Q.
It is clear that 60  vanishes on the pure-horizontal subspace.

The following equations can be easily verified.

/?*(0i) = • 0' , i  = 0, 1,
C,*(0°) =  oz.& , C'z *(01) 01 .

Thus the zero-basic form is not central invariant.
We shall now introduce the basic vector fields on Q [7, p. 49].

The pure-basic vector field B °(v ) corresponding to an  element v E V
is that the value of B °(v ) at q E Q  is given by

/3 1(v)q =  / , . / bop(v) , q = (b, p) ,
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where / b  (res. 1,) is the operation of taking a  life  to  B  (resp. Q)
o f  a  vector o n  M  (resp. B ). T he z ero-basic  vector f ield B°(v)
corresponding to v E V is given by

= leap(v) , q = (b, p) ,

where v E  V  is considered as the tangent vector at p - '(b). The
process which was used in  [7, p. 49] can be applied to our
i =0, 1, and then we see the zero- (resp. pure-) basic vector field X
is a  horizontal vector field on Q  such that 0°(X ) (resp. 0'(X )) is
constant. Making use of this fact, we can easily prove the follow-
ing equations.

R;(Bi(v)) = Bi(g - '•v) , i = 0, 1,
Cz (B°(v)) = B°(z-v) , C:(B 1 (v)) = Bi(v) .

Thus the zero-basic vector field is not central invariant. By means
of the above equations, we obtain [7, p. 50]

[A, Bqv)] = B i(Â •v) , i = 0, 1

where A is the fundamental vector field corresponding to Â E G.
We consider the covariant differential DO' = H i ,  i  =0 ,1 , of

O. 0 ° (resp . 0 1) will be called the zero (resp. Pure) torsion form .
Then we have the pure, zero and mixed components of 0i, which
are written by Oic", eg" and 0 1" "  respectively. It is easily seen
that the zero-component o f 0 '  is equal to zero, and hence we
have

0 0 0 0 ( 0 )  +  0 0 ( 0 1 )  ±  0 0 ( 1 )  ,

0 1 0 1 ( 1 )  ±  0 1 ( 0 1 )

T he pure component 0 1 ( 1 ) o f the pure torsion  form  0' w ill be
important in the final section. In terms of canonical coordinates,
the local expressions 0 1 ) are given in the form

(22) ( —  rv )d x k  dxj-e i ,
2

where (e1 )  is  a  fixed b ase  o f V . Since E. Cartan assumed that
the pure component 01(1) vanish, then he treated only the mixed
component 0 1 ( 0 1 )

 O f  H i  a n d  called it the torsion from [2, p. 33].
On the other hand the zero-torsion form  0 0 is not central invariant.

The additional structure equations [7, p. 51] are also obtained
for 0 0 and 0 1, which are immediately given in the following.
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1dei (X , Y ) = —(0)(Y ) • Oi (X) — 6)(X)•0i (Y )) +0i (X , Y ) ,
2

where i= 0, 1  and X, Y E (4.
We consider finally the curvature form n= Dw, and then we

obtain the pure, zero and mixed components of £2. E . Cartan
introduced the curvature forms of three kinds [ 2 ,  p. 33]. I n  our
treatment, we can obtain these forms by means of the notion of
pure- and zero-horizontal subspace of Qq . The curvature form £2
is, of course, central invariant.

§ 1 4 .  The euclidean connection defined by E. Cartan

E. Cartan introduced the elegant process in order to determine
an euclidean connection by the fundamental function. In the final
section of this paper, we shall discuss his five postulates.

W e have defined, in  § 11 , the fundamental function L  and
the metric tensor m . We give now a relation between L  and in
as follows :

Postu la te  I. The Finsler length L(b) and the absolute euclidean
length N/m(b)(b, b) of  any  tangent vector b E Mx ,  x—r(b), coincide.

In  terms o f th e  function F = 1 L 2 and  the reduced function2
b 0 of the characteristic form b , the above p o stu rate  is expressed+ +
by 2F=b 0 a t each  point of B .  Taking the covariant v-derivative+
of the both sides of this equation, we have

2 A 7 (X ) =  Xv(m(Eh, h ) ) , X  E B,,.

Taking account of the symmetry of m, we have

..6.5)/(Eh , g "  X ) -= X V (M(g"  , g" )) + 2M(Eg"  , Xl, g"),
and, according to Lemma 3. 6, we obtain

= Xv(m(bh, g"))— 2m(X, -Eh).

Hence, under the above postulate, we have

(23) 2.NvF = (Aym),0(1)0(2) + 24, •

Since m  is 0-homogeneous, we obtain (A"m) 0 0 , — 0 in  virtue of the
E u le r 's  theorem, while (Ym)0(1) is equal to (A ") are
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written by (Avm), simply. We give now the second postulate as
follows

Postulate II. The metric tensor m  satisfies the condition of
normality : (A"m)0= 0  [4 , p. 372].

When this postulate is satisfied, the equation (23) is reduced
to the simple form

(24) A"F = b .

It follows from Lemma 3. 11, 2) that, for X, YE B,„

A7)* (X, Y ) =  (A v (m.))(X, Y ) =  (A vm)0(X, Y)+m(X,  Y )

and hence Postulate II and (24) give

(25) A v A v F  m

Therefore, the metric tensor m  is determined by the fundamental
function F  under Postulate I and II. It is easily seen that the
properties 1), 2) and 3) imposed upon m are satisfied by means of
the properties o f L, and covariant v-differentiation.

The following postulate is the same as Postulate C of E. Cartan.
Postulate III. The covariant derivative DP,b' of a fixed vector

b' E M x  fo r  a  ro ta tio n  o f th e  element of support b  satisfies the
equation m(b)(Mb' , b")= m(b)(b' , DP,b").

In the following we shall use letters of matrices. It follows
from (17) that the left hand side of the above equation is written
in the form tb" • (m(a ))h(Y"))•b' ," Since m is symmetric, Postulate III
is expressible in the form

(26) t(.).)h m  _  m ( w o )h

In  terms o f  canonical coordinates, (26) is written in the well-
known form

= , i ,  j,k 1, ••• ,n , where -

In  order to give the following postulate, we consider the
covariant derivative D"m of m:

D"m(X, Y, Z) = Z(m(X Y ))— m((Dvz X)h , Y )— m(X, (D O  )h) ,

where X, Y, ZE B ,„  In  making use of canonical coordinates and
taking account o f (26), we obtain, from the above equation

4 )  The sign t on the left shoulder o f a  matrix indicates its transposed matrix.
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(27) (D"m)h = (dm)h —2m(co („)h

On the other hand, we shall write ,--‘ m(X, Y )=A 'm (X , Y, Z ) ,  for
X, Y, ZE 13,. Then we obtain

LS, m(X, Y ) — Z"(m(X, Y ))+m(X Z"— Z"X , Y)+m(X, Y Z"— Z"Y )
= Z"(tX mY )— m(ZvX , Y )—  m(X , Z"Y )
= fX Z"mY  =Z"(m)(X , Y )=(dm)h(Z)(X , Y).

Hence we have
(28) m =  (dm)h(Z).

Now we require the following relation between the Finsler connec-
tion and the metric tensor m.

Postulate I V .  The linear Finsler connection is metrical :
D"m=0.

In a Riemann manifold, the linear connection is determined
by the similar postulate. In our case, from (27) it follows first that
(dm)h =2m(0) (Oh . Further, in virtue of (28), we obtain Avm=2m(w.)'.
We have had the expression (25) of m , from which we obtain by
covariant v-differentiation that

(29) A"A"Az'F 2 m ( w y

In  terms o f canonical coordinates, (29) is  w ritten  in  th e  well-
known form

1 a 3 F  
C i j k

2  abiabjabk
j,k  = 1 , • • • ,n .

Consequently, the local horizontal connection forms (co)h are determined
by the fundamental function F  under th e  above f o u r postulates.
The coefficients C k  as thus obtained satisfy the equations (11) and
(1 2 ) .  Hence we have

Theorem 4 .  2 .  Let F  b e  the Fin sle r connection satisfying the
above f our postulates. Then we obtain

1) F  has the property D.
2) T he reduced functions (((.0,,,)h)0 o f  the local horiz ontal con-

nection forms vanish identically.
We had the definition of the Finslerian length of a tangent

vector on M , which coincides with the absolute length, in  con-
sequence of Postulate I. Therefore we can define the length of a



A  global foundation of  Finsler geometry 207

vector. We consider a  curve C= { x„  0 < t < 1 }  on M  and a curve
C= {b „  < t < 1}  which is a field of tangent vectors of C .  Let
C'= {bit , O < t <1 } be parallel to C .  The vector bit depends general-
ly upon the choice of C .  Under the above postulates, this parallel
displacement is independent of the choice of C, provided that C
is a field of tangent vectors of C, because the condition of Theorem
3. 2 is satisfied. Hence we have the notion of the parallel dis-
placement o f  a  vector b'0  alo n g  C, when C  is  a field of tangent
vectors of C .  Furthermore, we may define a  geodesic on M  in
the ordinary manner [4].

Finally, we consider the postulate E  o f E. Cartan, which is
expressed as follows [11, p. 68] :

"The coefficients 17.t; which appear in the covariant differen-
tial when the displacement is such that the element of support is
transported parallel to itself from x  to x + dx are to be symmetric
in  their lower indices."

The coefficients P ik :  a s  above mentioned coincide with the
one as defined in  § 12, and we can treate  the pure component of
the pure torsion form. Then, in our case, the above postulate is
expressible as follows :

Postulate V .  The Pure component 0 1 '"  of the Pure torsion form
0 1 vanishes identically.

Therefore 6 1 is equal to its mixed component H 1" • F rom
the definition of 01 ,  we have, for X , YE Qq ,

0 1(1 (X, Y) d0*(n(h1 (X)), 97(111 (Y ))).

Hence Postulate V means in 43 that c/0* vanishes on the horizontal
subspace H*(b) p  o f P p  w ith respect to a point b E B.

Under the above five postulates, we may determine uniquely
the Finsler connection, and the calculation in  order to show this
is well-known [2 ] ,  [11].
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