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Introduction

The theory of G structure on differentiable manifolds has been
recently studied by several authors. In the present paper, we shall
give the definiton of the structure tensor of G -structure and inves-
tigate some properties concerning it. After some preliminaries,
we define the structure tensor of G-structure. In §3 we introduce
the concept of G-connexion and establish the relation between the
structure tensor and the torsion tensor of G-connexion. Finally in
§4 we obtain, concerning the automorphisms of G-structure,
some results which contain a generalization of Riemannian case.

The author wishes to express his sincere thanks to Professor
J. Kanitani for his constant encouragement.

§1. Preliminaries and notations”

1. Let X be a differentiable manifold. The differentiability
class of all manifolds, mappings, vector fields, differential forms,
etc. will be understood to be C”. We denote by T,(X) the tangent
vector space of X at x€ X. Any differentiable mapping f of X
into another manifold X’ induces a linear map fy : T.(X)— T s5(X).
We denote by f* the dual map of fi.

Let P(X, G) be a differentiable principal fibre bundle over a
base space X with projection p and structural Lie group G. For
each g € G, we denote by R, the right translation of P(X, G) corres-
ponding to g. A tangent vector £ € T,(P) at b€ P(X, G) is said to
be vertical if it is tangent to the fibre through b.

Let (7, F) be any differentiable representation of G on a vector

1) For many of the notions introduced in this section, see [5].
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space F and (7, F) be its induced representation of the Lie algebra
G of G. An F-valued /-form ¢ on P(X, G) is called a tensorial
I-form of type (r, F), if it satisfies the following conditions :

(i) Rrp=rEghe for any g€G.

(ii) ot,,-,t) =0 if ¢, is vertical.
In the case /=0, a differentiable mapping @ : P(X, G)—F is called
a tensor of type (r, F), if it satisfies the condition :

PR, = r(g e for any geG.

Let A be a G-valued 1-form on P(X, G) and ¢ be an F-valued
/-form on P(X, G). The F-valued (/+1)-form 7(A)p is defined as
follows : for ¢, -+, ¢,., € To(P), bEP,

I+1 (¢ a-1_ A
LD AWl -t = 230 FACNPE, oyt

2. Let G be a closed subgroup of the general linear group
GL(n, R) in »n variables, and G be its Lie algebra. We assume
dim G=s. We shall denote by (ad, @) the adjoint representation
of G. Let E be an n-dimensional vector space over the field of real
numbers. We consider the representation (p, E) of G defined by

(1.2) plgle; = Sge;  for any g =(g)€GC,

where (e,, -+, ¢,) is a base of E.

We put V=E*®¢&G and W=(E*AE*)QE, E* being the dual
space of E. From the representations (p, E) and (ad, G), we obtain
the representations (p*®ad, V) and ((p* A p¥)Qp, W), where p* is
the dual representation of p. For the sake of simplicity, we shall
denote these representations by («,, V) and («,, W) respectively.

Taking a base (¢,, -+ , &) of G, we can express ad(g) by a matrix
llag(@)II”
(1.3) ad(g)é, = 2 az(g)e, .

Since p(é,) is an endomorphism of E, p(é,) can be represented by
a matrix |lag;l|

(1. 4) f—)(éq)ej = 2 aéjei .

2) Unless otherwise stated, we use the following ranges of indices:

Lhk=1,2,,n, o,r=1,2,,s.
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From the well-known relation

(1.5) p(g)p(X)p(g™") = plad(g)X)
for geG and X € G, it follows that
(1.6) 2igias; =2 a,5(8)g;  for g = (g9 €G.

DeriniTION 1.1, Let (¢,, ---,é,) be a base of G, and let (e, -,
e,) be a base in E and (¢',---,¢e") its dual base. We define the
linear map @ : V— W as follows:
1.7 A E3e*QR8,) = 2 (al £ —akE5e’ Ae*Re; .

D',k O’,x’,j,k

It is straightfoward to verify that this definition does not depend
on the choice of the base. By making use of (1.5), we have

1.8) Qo (g) = a0(QX for any g€G.

We put N=&(V) and Q=W/N. Let ¢ denote the natural projec-
tion: W—@Q. Then, it follows from (1.8) that the subspace N of
W is invariant under «,(g). Therefore «,(g) induces an automor-
phism a,(g) of Q. Thus we obtain the representation («,, @) which
satisfies the relation

(1.9 a,(g)eq = goa,(g)  for any g€G.

DeriNITION 1.2. We say that the group G has the property (I)
if there exists a linear map h: N—V, satisfying the following
conditions

(i) Qoh=1,.

(i1) hoa,(g) = a,(g)oh for any ge€G.

DerFINITION 1.3. We say that the group G has the property
(IT) if there exists a linear map k: Q@ — W, satisfying the follow-
ing conditions

(i) gqok=1I.

(i1) koa,(g) = a,(g)ok for any g€G.

The following two propositions are easily proved, and so we
omit the proofs.

PropPOSITION 1.1. If the kernel of & is zero, then the group G
has the property (I). In the case Ker X==0, the group G has pro-
perty (I) if and only if theve exists a subspace B of V such that
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(i) V=KerZ+B (direct sum) .
(ii) «,(g)BCB for any geG.

ProposITION 1.2. The group G has the property (II) if and
only if there exists a subspace Z of W such that

(i) W= N+2Z (direct sum).
(ii) ayg)ZcZ for any g€G.

§2. G-structure and its structure tensor

3. In this and following sections we denote by G a closed
subgroup of GL(n, R) and assume dim G=s.

DerFiniTION 2.1. We say that an #-dimensional differentiable
manifold M possesses a G-structure when the structural group of
the frame bundle of M is reducible to G. We shall denote the
reduced bundle by H(M, G).

Hereafter we shall use the following notations:

For the principal fibre bundle H(M, G),

U,, Ug, U, denote the coordinate neighborhoods for H(M, G) ;

b denotes the projection of H(M, G) ;

@, denotes the coordinate function of H(M, G);

D, denotes the cross-projection of H(M, G);

g.s denotes the coordinate transformation of H(M, G);

R, denotes the right translation corresponding to g€G;

X(b) denotes the admissible map corresponding to b € H(M, G).
For the Lie group G,

q denotes the Lie algebra of G;

¥ denotes the Maurer-Cartan form of G.

As is well-known®, it holds that

2.1)  pu(Rb) = pb)-g  for g€G and bep(U,).
(2- 2) pﬁ(b) = gﬂm(p(b))pm(b)f p(b) € UanB .

An element b € H(M, G), such that p(b)=x, is called a distin-
guished frame at x.
Define the mapping 7,: U,—U,XG by

T,(x) = (%, €)

for x € U,, e being the neutral element of G. If we put

3) Cf. [4].
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@. 3) Ym = PuTs

then Y, is a local cross-section on U,. Hence Y,(x) can be ex-
pressed in the form

2.4 Y, (%) = (%, 2¢n(%), -+, 2carn(%))
for x€ U,, where 2., -, 2, are linearly independent vector
fields on U,. Let 0, ---,0% be the 1-forms on U, such that
(2.5) 0%(2cw;) = 85
Define the E-valued 1-form on U, by
0, =2 0,Qe;.
If U,nUg==0, then it holds that®
(2.6) 0ux = P(Z48(x))05, - for xe U,NUs,.
Now we define the E-valued 1-form o, on H(M, G) by
2.7) @, = p(Pa'ONP*0,., x=pb)eU,.

From (2.2) and (2.6) it follows that this definition is independent
of the choice of coordinate neighborhood.
By the definition of ®,, the following proposition is obvious.

PrOPOSITION 2.1. The form o, is a tensorial 1-form on H(M, G)
of type (p, E) and satisfies the following condition .
(2. 8) If o t)= 0, then t is vertical.

4. Let A be a tensorial 1-form on H(M, G) of type (ad, G).

The E-valued 1-form o, and the &-valued 1-form A can be ex-
pressed by

®, = Z Cl)i®e,‘ and A= EAU®EG ’

where o« and A°® are real valued 1-forms on H(M, G). By making

use of (2.8), it is easily seen that the forms ', -, o™ are linearly
independent. Hence we can set
A% =DV Nwf

where AJ are functions on H(M, G). If we put
A =21\ ®e,,

4) Cf. [17, [3].
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then A becomes a tensor on H(M, G) of type («,, V). The tensor
A thus obtained is called the tensor corresponding to A. It is easily
seen that this correspondence is one-to-one.

A tensorial 2-form E on H(M, G) of type (p, E) can be written as

B =3Bl e AotQe; , ’
i,7,k
where Ej, are functions on H(M, G) satisfying the relation
BEYW+ElL; =0.
Putting
&= Ek Bl NeFQe;
we obtain the tensor & on H(M, G) of type («,, W). We call this
tensor & the tensor corresponding to a temsorvial 2-form E of type
(p, E). In this case, we define the correspondence +» by E=E.
Then, as is easily seen, » is a one-to-one correspondence between
the set of all tensorial 2-forms of type (p, E) and the set of all
tensors of type («,, W).

Since p~'(U,) is regarded as a principal fibre bundle over base
space U,, we can consider tensorial forms on p~'(U,). We call
them local tensorial forms over U,. We obtain, in the same way
as above, a one-to-one correspondence between the set of all local
tensorial 1-forms over U, of type (ad, G) and the set of all local
tensors over U, of type («,, V), and a one-to-one correspondence
4, between the set of all local tensorial 2-forms over U, of type
(p, E) and the set of all local tensors over U, of type («,, W).
When we restrict ourselves to local tensorial forms over U,n Uy,
then we denote the latter correspondence by r,g.

LEMMA 2.1. Let N\ be the tensor of type («,, V) corresponding
to a tensorial 1-form A of type (ad, G). Then the 2-form p(A).o,
is the temnsorial 2-form of type (p, E) corresponding to the tensor

—%&(X) of type (a,, W). The same result holds for local tensorial

forms.

Proof. From the definition (1.1), it follows that the form
p(Aw, is a tensorial 2-form of type (p, E). The forms o, and A
can be written as

0, =20 Qe;, A=2No*Qe,.
i o,k
Then, by virtue of (1.4), we have
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p(A)o, = — ;, UZj k(af',ﬂn'l— al el Aot Qe; .

This implies that the tensorial 2-form p(A)w, goes under the cor-

respondence +» into the tensor ——%,f/()&).

5. We define the E-valued 2-form £, on p7'(U,) by
(2° 9) Qw,b = p(pgl(b))p*dgm,p(l)) for p(b) € Um .

From (2.1) we see that the E-valued 2-form {2, is a local tensorial
form over U, of type (p, E). We denote by S, the local tensor
over U, of type («,, V) corresponding to 2,. Applying exterior
differentiation to the equation (2.6) and taking account of (2.2),
we have

(2.10) Qg = O, +plad(p )b gk )0,  on p(U,NU).

It is easily verified that ad(p;')p*gf,y is a local tensorial 1-form
of type (ad, §) over U,nUg, and hence we denote by ug, the local
tensor over U,n U of type («,, V) corresponding to ad(p')p*gi.y -
By Lemma 2.1, the equation (2.10) goes under the correspondence
YJrg, into the equation

@.11) Sy =S, — é X pa) -

We define the differentiable mapping S: H(M, G) —Q by
(2.12) Sp) = ¢q-S,) for bep~'(U,).

Then, from (2.11) we see that S is globally defined. Moreover
from the fact that S, is a local tensor of type («,, W) and from
(1.9), we get for bep(U,) and g€G

S(Rgb) = Q'Sm(Rgb) = (I°“2(g41)sm(b) = as(g_l)q'sm(b)
= a,(g7)S(O) .

This shows that S is a tensor on H(M, G) of type («,, Q). Fol-
lowing Bernard®, we shall call the tensor S the structure tensor of
G-structure. Thus we have the following :

PROPOSITION 2.2.2 The structure tensor of a G-structure is of
type (@, Q).

5) Cf. [1].
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§3. G-connexion and its torsion tensor

6. From now on we shall suppose a G-structure to be given
in an n-dimensional differentiable manifold M.

DerFiNITION 3.1. By a G-comnexion on M we mean a connexion
on the reduced bundle H(M, G).

A G-connexion on M is given by a differential 1-form o,
satisfying the following conditions®

(i) @, is a 1-form on H(M, G) with values in the Lie algebra
G of G.

(ii) If a vector ¢ € T,(H) is vertical, then o, (f)=X(b)5t.

(iii) For any g€G, Rfw,=ad(g"o,.

We shall call the form o, the connexion form of G-connexion
or merely the G-connexion.

A G-connexion on M is also given by a system == {=,} of
G-valued 1-forms in M satisfying the following conditions”

(i) Each component =, is defined in the coordinate neigh-
borhood U,.

(ii) If U,nUg==0, then =, and =, are related by the equation

(3.1) 7, = ad(ggy) s+ ghyy -

The relation between above two definitions of G-connexion is
given by?”

(3.2) o, = ad(p)p¥7 .+ phy .
The torsion form £, of a G-connexion o, is given by
(3.3) Q, = dwo+ plo)o, .

As is well-known, the torsion form £, is a tensorial 2-form of
type (p, E). The tensor of type («,, W) which corresponds to £,
is called the torsion temsor of the G-connexion.

ProrosiTION 3.1 Let T and T’ denote the torsion tensors of
two G-connexions w, and o} respectively. Then it holds that

goT = qoT’.

Proof. Let Q, and Qf be the torsion forms of o, and o
respectively. Then by (3.3) we have

6) Cf. [2], [5]
7) Cf. [2].
8) Cf. [b].
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(3. 4) Q,— Q4 = plo,— oo, .

From the first definition of G-connexion, we see that the form
o,— o} is a tensorial 1-form of type (ad, G). Therefore we denote
by I' the tensor of type («,, V) corresponding to o,—w®;. Then, by
Lemma 2.1, (3. 4) goes under the correspondence ) into the equation

1 !
—T = — =&
T-T 2CE().

Hence proposition is proved.

PrOPOSITION 3.2. Let S be the structure tensor of the G-struc-

ture, and T be the torsion tensor of any G-connexion. Then it holds
that

qgeT = S.
Proof. Using the relation (3. 2), we obtain
(3.5) dp(p5") = —pl@)p(D1) +p(05")p(H*7,) .

Taking the exterior derivative of (2.7) and using (3.5), we get
dw, = — p(w,)o,+ plad(p, ) p*m o, + 2, on p7(U,).

Thus we get

3. 6) Q, = p(ad(p, ") p*7 z)o,+ 2, on p7(U,).

We denote by &, the local tensor over U, of type («,, V) corres-
ponding to the local tensorial 1-form ad(p;)p*=, of type (ad, G),
and by S, the local tensor of type (a,, W) corresponding to Q,.
Then (3.6) goes under the correspondence 4r, into the equation

T = —LaE)+S,  on p(UL).

Hence we have
goT =S.

LemmA 3.1. Assume that the group G has the property (I). If
a tensor u of type (c,, W) satisfies

gou =0,
then there exists a tensor U of type (a,, V) such that
u=a@l).

Prof. Take the linear map % described in Definition 1.2 and
define I' by
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') = h(u(d)) for be HM, G) .
Then !' is a tensor with the desired properties. In fact, we have
X-L'(0) = X-h(u(b)) = u®d),
and
L(Rb) = h(u(Rb)) = h-a,(g7ud) = a,(g )hub)) = a,(g HI'®) .
PrOPOSITION 3.3. Assume that the group G has the property (I).
Let R be a tensor of type (a,, W). In order that R be a torsion
tensor of a G-connexion it is necessary and sufficient that R satisfies
goR=S§,
where S is the structurve tensor.

Proof. We need only to prove the sufficiency. Take an arbi-
trary but fixed G-connexion »,, and let T denote its torsion tensor.
According to Proposition 3.2, we have

geT =S.
Therefore we have
qgo(R—T)=0.

Hence, by Lemma 3.1, there exists a tensor ' of type («,, V)
such that

R=T+aWl).

Denoting by B the tensorial 1-form of type (ad, G) which corres-
ponds to 2I', we see that w,—8 is a G-connexion with torsion
tensor R. q.ed.

By Lemma 3.1 and Proposition 3.3, we have the following

PrROPOSITION 3.4. Assume that the group G has the properties
(I) and (II). Let k be the linear map Q— W satisfying the condi-
tions in Definition 1.3. Let S denote the structure tensor. Then the
torsion tensor of any G-commexion is written in the form

T = ) + koS

with some tensor I of type («,, V).

Conversely, for an arbitrary tensor L' of type (a,, V) there
exists a G-connexion whose torsion tensor is &ol 4 koS.

In particular, there exists a G-connexion whose torsion tensor
is koS. We call this G-connexion the canonical G-connexion.
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COrROLLARY 1. Under the same assumption of Proposition 3.4,
the structure tensor vanishes if and only if it is possible to introduce
a G-connexion without torsion.

§4. Automorphism

7. Let M be an n-dimensional differentiable manifold which
possesses a G-structure and let f be a differentiable transformation
of M onto itself. f induces a natural differentiable transformation
of the frame bundle of M. Thus any distinguished frame Y=
(x, ¢, -+, t,) at x € M is mapped into the frame (f(x), fut,, ==+, ful.)
at f(x). But, in general, the frame (f(x), ful., -, f4l,) iS not
distinguished.

DErINITION 4.1. Given a G-structure on a differentiable mani-
fold M, a differentiable transformation f of M is called an auto-
morphism of the G-structure if, for any distinguished frame Y=
(x, ¢,, -+ ,¢,) at x the frame (f(x), f«l,, -+, f«L,) is distinguished.
In this case, we shall denote the distinguished frame (f(x), fif,, -+
f«t) by fY and call the mapping f the prolongation of f.

The prolongation f of an automorphism f of the G-structure
is clearly an automorphism of the reduced bundle H(M, G) that is,
f satisfies the conditions: p-f=f-p and f-R,=R,f for any g€G.

ProOPOSITION 4.1. If a differentiable transformation f of M is
an automorphism of the G-structure, then the prolongation f of f
leaves the form o, invariant .

f*wozwo-

Proof. As in §2, we define a local cross-section Y, on U, by

’

Y, (%) = @u(x, €) .
If f(x)e U, for x€ U,, then fY,(x) can be written in the form
4.1) FYo(x) = Pl £ (), apa(f(x)) .
where ag, is a differentiable mapping f(U,)N\Uzs— G such that
4.2) Ag,(X) = Gpy(x')ay,(x") for ¥ € f(U,)nUgnU,.
Hence, we have
(4.3) S*0s = plag,of)o, .

For b=o,(x, g) € p7'(U,), we have b=R,Y ,(x). Since f is an auto-
morphism of H(M, G), we have
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F(B) = R F(Y (%)) = @a(f(x), apa(f(2))g) .
By virtue of (4.2), this expression is independent of the choice of
coordinate neighborhood. Thus we have
4.4) Pe(F (D)) = ago(fo(b))pa(b) for bep™(U,).
From (4.3) and (4.4) we see that f leaves o, invariant.
PrROPOSITION 4. 2. If a differentiable transformation f of M is
an automorphism of the G-structure, then the prolongation f of f
leaves the structure temsor S invariant
Sof = S.
Proof. Suppose x€ U, and f(x) € Ug. Using (4.3) and (4. 4),
we get
F*Qp 7y = Qg+ p(ad( 97 (D) ¥ (agy- F)¥y) @44, D) € Uy N f71(Uy) .
Since f leaves o, invariant, this equation goes under the corres-
pondence -, into the equation
Sof =S. q.ed.

LEMMA 4.1. Let o, be a G connexion with torsion form £, and
let f be the prolongation of an automorphism of the G-structure.
Then f*o, is a G-connexion with torsion form f*Q,.

Proof. Since f commutes with R,, we have
Rif*o, = fR}o, = ad(g™) f*o,.
On the other hand, it holds that X(f£(b))=foX(b) for b€ HM, G).

Since f4« maps any vertical vector into a vertical vector, it follows
that for a vertical vector ¢ € T,(H)

fHo,(t) = o,(fat) = X(FONFFat = X(B)3'2 .

Consequently f*w, is a G-connexion. Since f leaves o, invariant,
the torsion form of f*w, is given by

doy+p(f*e) 0, = f¥[do,+p(e,)o,] = f*Q,. q.ed.

Given a G-connexion ®,, an automorphism f of the G-structure
is called an automorphism of the G-connexion o, if its prolongation
f preserves the G-connexion o, : f*o,—=o,. If this is the case, f
leaves the torsion form 2, of o, invariant. Conversely we have
the following

PROPOSITION 4.3. Assume that the group G satisfies the condition
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Ker &=0. If the prolongation f of an automorphism f of the G-struc-
ture leaves the torsion form of a G-commexion invariant, then f is
an automorphism of the G-connexion.

To prove this we need the following lemma.

LemMA 4.2. Assume that the group G satisfies the condition
Ker &=0. Then two G-connexions o, and o) are identical if and
only if their respective torsion form 2, and Q4 coincide.

Proof. The condition 2,=Q; implies p(w,—w})w,=0. Denoting
by I' the tensor of type («,, V) corresponding to o,—w{, we have
()=0. By assumption we have 1'=0 and hence o,=o{. q.e.d.

Proof of Proposition 4.3. Suppose that f leaves the torsion
form Q, of a G-connexion o, invariant: f*Q,=€,. Then by
Lemma 4.1 the G-conexion f*o, must have the torsion form Q,,
so by Lemma 4.2 we have f*o,=w, and consequently f is an
automorphism of the G-—-connexion. q.ed.

According to Propositions 4.2 and 4.3, we have the following

PROPOSITION 4.4. Assume that the group G satisfies the condition
Ker &=0 and has the property (II). Then an automovphism of the
G-structure is an automorphism of the canonical G-connexion.
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