MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 1, 1960.

On the structure tensor of G-structure

By

Atsuo Fujimoto

(Received April 14, 1960)

Introduction

The theory of G-structure on differentiable manifolds has been recently studied by several authors. In the present paper, we shall give the definiton of the structure tensor of G-structure and investigate some properties concerning it. After some preliminaries, we define the structure tensor of G-structure. In § 3 we introduce the concept of G-connexion and establish the relation between the structure tensor and the torsion tensor of G-connexion. Finally in § 4 we obtain, concerning the automorphisms of G-structure, some results which contain a generalization of Riemannian case.

The author wishes to express his sincere thanks to Professor J. Kanitani for his constant encouragement.

§1. Preliminaries and notations¹⁾

1. Let X be a differentiable manifold. The differentiability class of all manifolds, mappings, vector fields, differential forms, etc. will be understood to be C^{∞} . We denote by $T_x(X)$ the tangent vector space of X at $x \in X$. Any differentiable mapping f of X into another manifold X' induces a linear map $f_*: T_x(X) \to T_{f(x)}(X')$. We denote by f^* the dual map of f_* .

Let P(X, G) be a differentiable principal fibre bundle over a base space X with projection p and structural Lie group G. For each $g \in G$, we denote by R_g the right translation of P(X, G) corresponding to g. A tangent vector $t \in T_b(P)$ at $b \in P(X, G)$ is said to be *vertical* if it is tangent to the fibre through b.

Let (r, F) be any differentiable representation of G on a vector

¹⁾ For many of the notions introduced in this section, see [5].

space F and (\bar{r}, F) be its induced representation of the Lie algebra \mathcal{G} of G. An F-valued l-form φ on P(X, G) is called a *tensorial* l-form of type (r, F), if it satisfies the following conditions:

(i)
$$R_{g}^{*}\varphi = r(g^{-1})\varphi$$
 for any $g \in G$.

(ii) $\varphi(t_1, \dots, t_l) = 0$ if t_1 is vertical.

In the case l=0, a differentiable mapping $\varphi: P(X, G) \rightarrow F$ is called a *tensor of type* (r, F), if it satisfies the condition:

$$\varphi \cdot R_g = r(g^{-1})\varphi$$
 for any $g \in G$.

Let Λ be a \mathcal{Q} -valued 1-form on P(X, G) and φ be an F-valued l-form on P(X, G). The F-valued (l+1)-form $\overline{r}(\Lambda)\varphi$ is defined as follows: for $t_1, \dots, t_{l+1} \in T_b(P), b \in P$,

(1.1)
$$\bar{r}(\Lambda)\varphi(t_1, \cdots, t_{l+1}) = \sum_{a=1}^{l+1} \frac{(-1)^{a-1}}{l+1} \bar{r}(\Lambda(t_a))\varphi(t_1, \cdots, \hat{t}_a, \cdots, t_{l+1}).$$

2. Let G be a closed subgroup of the general linear group GL(n, R) in n variables, and \mathcal{G} be its Lie algebra. We assume dim G=s. We shall denote by (ad, \mathcal{G}) the adjoint representation of G. Let E be an n-dimensional vector space over the field of real numbers. We consider the representation (ρ, E) of G defined by

(1.2)
$$\rho(g)e_j = \sum_{i=1}^n g_j^i e_i \quad \text{for any} \quad g = (g_j^i) \in G,$$

where (e_1, \dots, e_n) is a base of E.

We put $V=E^*\otimes \mathcal{G}$ and $W=(E^*\wedge E^*)\otimes E$, E^* being the dual space of E. From the representations (ρ, E) and (ad, \mathcal{G}) , we obtain the representations $(\rho^*\otimes ad, V)$ and $((\rho^*\wedge \rho^*)\otimes \rho, W)$, where ρ^* is the dual representation of ρ . For the sake of simplicity, we shall denote these representations by (α_1, V) and (α_2, W) respectively.

Taking a base $(\tilde{e}_1, \dots, \tilde{e}_s)$ of \mathcal{G} , we can express ad(g) by a matrix $||\alpha_{\sigma}^{\tau}(g)||^{2_2}$:

$$(1.3) ad(g)\tilde{e}_{\sigma} = \sum_{\tau} \alpha_{\sigma}^{\tau}(g)\tilde{e}_{\tau} \,.$$

Since $\overline{\rho}(\tilde{e}_{\sigma})$ is an endomorphism of E, $\overline{\rho}(\tilde{e}_{\sigma})$ can be represented by a matrix $||a_{\sigma_j}^t||$:

(1.4)
$$\overline{\rho}(\tilde{e}_{\sigma})e_{j} = \sum a_{\sigma j}^{i}e_{i}.$$

$$i, j, k = 1, 2, \dots, n, \qquad \sigma, \tau = 1, 2, \dots, s.$$

²⁾ Unless otherwise stated, we use the following ranges of indices:

From the well-known relation

(1.5) $\rho(g)\overline{\rho}(X)\rho(g^{-1}) = \overline{\rho}(ad(g)X)$

for $g \in G$ and $X \in \mathcal{G}$, it follows that

(1.6)
$$\sum_{k} g_{k}^{i} a_{\sigma_{j}}^{k} = \sum_{\tau,k} a_{\tau_{k}}^{i} \alpha_{\sigma}^{\tau}(g) g_{j}^{k} \quad \text{for } g = (g_{j}^{i}) \in G.$$

DEFINITION 1.1. Let $(\tilde{e}_1, \dots, \tilde{e}_s)$ be a base of \mathcal{G} , and let (e_1, \dots, e_n) be a base in E and (e^1, \dots, e^n) its dual base. We define the linear map $\mathfrak{A}: V \to W$ as follows:

(1.7)
$$\mathfrak{A}(\sum_{\sigma,k} \xi^{\sigma}_{k} e^{k} \otimes \tilde{e}_{\sigma}) = \sum_{\sigma,i,j,k} (a^{i}_{\sigma j} \xi^{\sigma}_{k} - a^{i}_{\sigma k} \xi^{\sigma}_{j}) e^{j} \wedge e^{k} \otimes e_{i}.$$

It is straightfoward to verify that this definition does not depend on the choice of the base. By making use of (1.5), we have

(1.8)
$$\mathfrak{A} \circ \alpha_1(g) = \alpha_2 \circ (g) \mathfrak{A}$$
 for any $g \in G$.

We put $N=\mathfrak{A}(V)$ and Q=W/N. Let q denote the natural projection: $W \to Q$. Then, it follows from (1.8) that the subspace N of W is invariant under $\alpha_2(g)$. Therefore $\alpha_2(g)$ induces an automorphism $\alpha_3(g)$ of Q. Thus we obtain the representation (α_3, Q) which satisfies the relation

(1.9)
$$\alpha_3(g) \circ q = q \circ \alpha_2(g)$$
 for any $g \in G$.

DEFINITION 1.2. We say that the group G has the property (I) if there exists a linear map $h: N \rightarrow V$, satisfying the following conditions

(i)
$$\mathfrak{A} \circ h = I_N$$
.
(ii) $h \circ \alpha_2(g) = \alpha_1(g) \circ h$ for any $g \in G$.

DEFINITION 1.3. We say that the group G has the property (II) if there exists a linear map $k: Q \rightarrow W$, satisfying the following conditions

(i)
$$q \circ k = I_Q$$
.

(ii) $k \circ \alpha_3(g) = \alpha_2(g) \circ k$ for any $g \in G$.

The following two propositions are easily proved, and so we omit the proofs.

PROPOSITION 1.1. If the kernel of \mathfrak{A} is zero, then the group G has the property (I). In the case $Ker \mathfrak{A} \neq 0$, the group G has property (I) if and only if there exists a subspace B of V such that

Atsuo Fujimoto

- (i) $V = Ker \,\mathfrak{A} + B$ (direct sum).
- (ii) $\alpha_1(g)B \in B$ for any $g \in G$.

PROPOSITION 1.2. The group G has the property (II) if and only if there exists a subspace Z of W such that

- (i) W = N + Z (direct sum).
- (ii) $\alpha_2(g)Z \subset Z$ for any $g \in G$.

\S 2. G-structure and its structure tensor

3. In this and following sections we denote by G a closed subgroup of GL(n, R) and assume dim G=s.

DEFINITION 2.1. We say that an *n*-dimensional differentiable manifold M possesses a *G*-structure when the structural group of the frame bundle of M is reducible to G. We shall denote the reduced bundle by H(M, G).

Hereafter we shall use the following notations:

For the principal fibre bundle H(M, G),

- $U_{\alpha}, U_{\beta}, U_{\gamma}$ denote the coordinate neighborhoods for H(M, G);
- p denotes the projection of H(M, G);
- φ_{α} denotes the coordinate function of H(M, G);
- p_{α} denotes the cross-projection of H(M, G);
- $g_{\alpha\beta}$ denotes the coordinate transformation of H(M, G);
- R_g denotes the right translation corresponding to $g \in G$;

 $\chi(b)$ denotes the admissible map corresponding to $b \in H(M, G)$. For the Lie group G,

- \mathcal{G} denotes the Lie algebra of G;
- γ denotes the Maurer-Cartan form of G.

As is well-known³⁾, it holds that

$$(2.1) p_{\mathfrak{a}}(R_g b) = p_{\mathfrak{a}}(b) \cdot g for g \in G and b \in p^{-1}(U_{\mathfrak{a}}).$$

$$(2.2) p_{\beta}(b) = g_{\beta\alpha}(p(b))p_{\alpha}(b), \ p(b) \in U_{\alpha} \cap U_{\beta}.$$

An element $b \in H(M, G)$, such that p(b) = x, is called a *distinguished frame at x*.

Define the mapping $\tau_{\alpha}: U_{\alpha} \rightarrow U_{\alpha} \times G$ by

$$\tau_{\omega}(x) = (x, e)$$

for $x \in U_{a}$, e being the neutral element of G. If we put

3) Cf. [4].

160

$$(2.3) Y_{a} = \varphi_{a} \tau$$

then Y_{ω} is a local cross-section on U_{ω} . Hence $Y_{\omega}(x)$ can be expressed in the form

(2.4)
$$Y_{\alpha}(x) = (x, z_{(\alpha)_1}(x), \cdots, z_{(\alpha)_n}(x))$$

for $x \in U_{\alpha}$, where $z_{(\alpha)_1}, \dots, z_{(\alpha)_n}$ are linearly independent vector fields on U_{α} . Let $\theta^1_{\alpha}, \dots, \theta^n_{\alpha}$ be the 1-forms on U_{α} such that

(2.5)
$$\theta^i_{\alpha}(z_{(\alpha)j}) = \delta^i_j.$$

Define the *E*-valued 1-form on U_{α} by

$$\theta_{\mathbf{a}} = \sum_{i} \theta^{i}_{\mathbf{a}} \otimes e_{i}$$
 .

If $U_{\alpha} \cap U_{\beta} \neq 0$, then it holds that⁴)

(2.6)
$$\theta_{\alpha,x} = \rho(g_{\alpha\beta}(x))\theta_{\beta,x}$$
 for $x \in U_{\alpha} \cap U_{\beta}$.

Now we define the *E*-valued 1-form ω_0 on H(M, G) by

(2.7)
$$\omega_{0,b} = \rho(p_{\alpha}^{-1}(b))p^*\theta_{\alpha,x}, \qquad x = p(b) \in U_{\alpha}.$$

From (2, 2) and (2, 6) it follows that this definition is independent of the choice of coordinate neighborhood.

By the definition of ω_0 , the following proposition is obvious.

PROPOSITION 2.1. The form ω_0 is a tensorial 1-form on H(M, G) of type (ρ, E) and satisfies the following condition:

(2.8) If
$$\omega_0(t) = 0$$
, then t is vertical.

4. Let Λ be a tensorial 1-form on H(M, G) of type (ad, \mathcal{G}) . The *E*-valued 1-form ω_0 and the \mathcal{G} -valued 1-form Λ can be expressed by

$$\omega_{_0} = \sum_i \omega^i \otimes e_i \quad ext{and} \quad \Lambda = \sum_{\sigma} \Lambda^{\sigma} \otimes ilde{e}_{\sigma} \,,$$

where ω^i and Λ^{σ} are real valued 1-forms on H(M, G). By making use of (2.8), it is easily seen that the forms $\omega^1, \dots, \omega^n$ are linearly independent. Hence we can set

$$\Lambda^\sigma = \sum_i \lambda^\sigma_i \omega^i \; ,$$

where λ_i^{σ} are functions on H(M, G). If we put

$$\lambda = \sum_{\sigma,i} \lambda^{\sigma}_i e^i {\otimes} ilde{e}_{\sigma} \, ,$$

4) Cf. [1], [3].

then λ becomes a tensor on H(M, G) of type (α_1, V) . The tensor λ thus obtained is called the *tensor corresponding to* Λ . It is easily seen that this correspondence is one-to-one.

A tensorial 2-form Ξ on H(M, G) of type (ρ, E) can be written as

$$\Xi = \sum_{i,j,k} \Xi^i_{jk} \omega^j \wedge \omega^k \bigotimes e_i ,$$

where Ξ_{jk}^{i} are functions on H(M, G) satisfying the relation

$$\xi = \sum_{i,j,k} \Xi^i_{jk} e^j \wedge e^k \otimes e_i ,$$

 $\Xi^i_{jk} + \Xi^i_{kj} = 0.$

we obtain the tensor ξ on H(M, G) of type (α_2, W) . We call this tensor ξ the *tensor corresponding to a tensorial 2-form* Ξ of type (ρ, E) . In this case, we define the correspondence ψ by $\psi \Xi = \xi$. Then, as is easily seen, ψ is a one-to-one correspondence between the set of all tensorial 2-forms of type (ρ, E) and the set of all tensors of type (α_2, W) .

Since $p^{-1}(U_{\alpha})$ is regarded as a principal fibre bundle over base space U_{α} , we can consider tensorial forms on $p^{-1}(U_{\alpha})$. We call them local tensorial forms over U_{α} . We obtain, in the same way as above, a one-to-one correspondence between the set of all local tensorial 1-forms over U_{α} of type (ad, \mathcal{G}) and the set of all local tensors over U_{α} of type (α_1, V) , and a one-to-one correspondence ψ_{α} between the set of all local tensorial 2-forms over U_{α} of type (ρ, E) and the set of all local tensors over U_{α} of type (α_2, W) . When we restrict ourselves to local tensorial forms over $U_{\alpha} \cap U_{\beta}$, then we denote the latter correspondence by $\psi_{\alpha\beta}$.

LEMMA 2.1. Let λ be the tensor of type (α_1, V) corresponding to a tensorial 1-form Λ of type (ad, \mathcal{Q}) . Then the 2-form $\overline{\rho}(\Lambda) \cdot \omega_0$ is the tensorial 2-form of type (ρ, E) corresponding to the tensor $-\frac{1}{2}\mathfrak{A}(\lambda)$ of type (α_2, W) . The same result holds for local tensorial forms.

Proof. From the definition (1.1), it follows that the form $\bar{\rho}(\Lambda)\omega_0$ is a tensorial 2-form of type (ρ, E) . The forms ω_0 and Λ can be written as

$$\omega_{_0} = \sum_i \omega^i \otimes e_i \,, \quad \Lambda = \sum_{\sigma,k} \lambda^\sigma_k \omega^k \otimes { ilde e}_\sigma \,.$$

Then, by virtue of (1.4), we have

On the structure tensor of G-structure

$$ar{
ho}(\Lambda) \omega_{_0} = -rac{1}{2} \sum_{\sigma,i,j,k} (a^i_{\sigma\,j} \lambda^\sigma_k - a^i_{\sigma\,k} \lambda^\sigma_j) \omega^j \wedge \omega^k \otimes e_i \,.$$

This implies that the tensorial 2-form $\bar{\rho}(\Lambda)\omega_0$ goes under the correspondence ψ into the tensor $-\frac{1}{2}\alpha(\lambda)$.

5. We define the *E*-valued 2-form Ω_{α} on $p^{-1}(U_{\alpha})$ by

(2.9) $\Omega_{\alpha,b} = \rho(p_{\alpha}^{-1}(b))p^*d\theta_{\alpha,p(b)} \quad \text{for } p(b) \in U_{\alpha}.$

From (2.1) we see that the *E*-valued 2-form Ω_{σ} is a local tensorial form over U_{σ} of type (ρ, E) . We denote by S_{σ} the local tensor over U_{σ} of type (α_1, V) corresponding to Ω_{σ} . Applying exterior differentiation to the equation (2.6) and taking account of (2.2), we have

$$(2.10) \qquad \Omega_{\beta} = \Omega_{\alpha} + \bar{\rho}(ad(p_{\alpha}^{-1})p^*g_{\beta\alpha}^*\gamma)\omega_0 \qquad \text{on } p^{-1}(U_{\alpha} \cap U_{\beta}).$$

It is easily verified that $ad(p_{\sigma}^{-1})p^*g_{\beta\sigma\gamma}^*$ is a local tensorial 1-form of type (ad, \mathcal{G}) over $U_{\sigma} \cap U_{\beta}$, and hence we denote by $\mu_{\beta\sigma}$ the local tensor over $U_{\sigma} \cap U_{\beta}$ of type (α_1, V) corresponding to $ad(p_{\sigma}^{-1})p^*g_{\beta\sigma\gamma}^*$. By Lemma 2.1, the equation (2.10) goes under the correspondence $\psi_{\beta\sigma}$ into the equation

(2.11)
$$S_{\beta} = S_{\alpha} - \frac{1}{2} \mathfrak{d}(\mu_{\beta\alpha}) .$$

We define the differentiable mapping $S: H(M, G) \rightarrow Q$ by

(2.12)
$$S(b) = q \cdot S_{\alpha}(b) \quad \text{for } b \in p^{-1}(U_{\alpha}).$$

Then, from (2.11) we see that S is globally defined. Moreover from the fact that S_{α} is a local tensor of type (α_2, W) and from (1.9), we get for $b \in p^{-1}(U_{\alpha})$ and $g \in G$

$$S(R_g b) = q \cdot S_{\omega}(R_g b) = q \cdot \alpha_2(g^{-1})S_{\omega}(b) = \alpha_3(g^{-1})q \cdot S_{\omega}(b)$$

= $\alpha_3(g^{-1})S(b)$.

This shows that S is a tensor on H(M, G) of type (α_3, Q) . Following Bernard⁵, we shall call the tensor S the *structure tensor of* G-structure. Thus we have the following:

PROPOSITION 2.2.⁵⁾ The structure tensor of a G-structure is of type (α_3, Q) .

⁵⁾ Cf. [1].

Atsuo Fujimoto

\S 3. G-connexion and its torsion tensor

6. From now on we shall suppose a G-structure to be given in an *n*-dimensional differentiable manifold M.

DEFINITION 3.1. By a *G*-connexion on *M* we mean a connexion on the reduced bundle H(M, G).

A G-connexion on M is given by a differential 1-form ω_1 satisfying the following conditions⁶⁾

(i) ω_1 is a 1-form on H(M, G) with values in the Lie algebra \mathcal{G} of G.

(ii) If a vector $t \in T_b(H)$ is vertical, then $\omega_1(t) = \chi(b)_*^{-1}t$.

(iii) For any $g \in G$, $R_g^* \omega_1 = ad(g^{-1})\omega_1$.

We shall call the form ω_1 the *connexion form* of *G*-connexion or merely the *G*-connexion.

A *G*-connexion on *M* is also given by a system $\pi = \{\pi_{\alpha}\}$ of *G*-valued 1-forms in *M* satisfying the following conditions⁷

(i) Each component π_{α} is defined in the coordinate neighborhood U_{α} .

(ii) If $U_{a} \cap U_{\beta} = 0$, then π_{a} and π_{β} are related by the equation

(3.1)
$$\pi_{\alpha} = ad(g_{\beta\alpha}^{-1})\pi_{\beta} + g_{\beta\alpha}^{*}\gamma$$

The relation between above two definitions of G-connexion is given by⁷

(3.2)
$$\omega_{1} = ad(p_{a}^{-1})p^{*}\pi_{a} + p_{a}^{*}\gamma.$$

The torsion form Ω_0 of a G-connexion ω_1 is given by

(3.3)
$$\Omega_0 = d\omega_0 + \overline{\rho}(\omega_1)\omega_0.$$

As is well-known, the torsion form Ω_0 is a tensorial 2-form of type (ρ, E) . The tensor of type (α_2, W) which corresponds to Ω_0 is called the *torsion tensor* of the *G*-connexion.

PROPOSITION 3.1.⁸⁾ Let T and T' denote the torsion tensors of two G-connexions ω_1 and ω'_1 respectively. Then it holds that

$$q \circ T = q \circ T'$$
.

Proof. Let Ω_0 and Ω'_0 be the torsion forms of ω_1 and ω'_1 respectively. Then by (3.3) we have

⁶⁾ Cf. [2], [5]

⁷⁾ Cf. [2].

⁸⁾ Cf. [5].

(3.4)
$$\Omega_0 - \Omega_0' = \overline{\rho}(\omega_1 - \omega_1')\omega_0.$$

From the first definition of *G*-connexion, we see that the form $\omega_1 - \omega'_1$ is a tensorial 1-form of type (ad, \mathcal{G}) . Therefore we denote by Γ the tensor of type (α_1, V) corresponding to $\omega_1 - \omega'_1$. Then, by Lemma 2.1, (3.4) goes under the correspondence ψ into the equation

$$T-T'=-rac{1}{2}d\mathfrak{A}(\Gamma)$$
 .

Hence proposition is proved.

PROPOSITION 3.2. Let S be the structure tensor of the G-structure, and T be the torsion tensor of any G-connexion. Then it holds that

$$q \circ T = S$$
.

Proof. Using the relation (3.2), we obtain

(3.5)
$$d\rho(p_{\alpha}^{-1}) = -\overline{\rho}(\omega_1)\rho(p_{\alpha}^{-1}) + \rho(p_{\alpha}^{-1})\overline{\rho}(p^*\pi_{\alpha}).$$

Taking the exterior derivative of (2.7) and using (3.5), we get

$$d\omega_{0} = -\overline{\rho}(\omega_{1})\omega_{0} + \overline{\rho}(ad(p_{\alpha}^{-1})p^{*}\pi_{\alpha})\omega_{0} + \Omega_{\alpha} \quad \text{on } p^{-1}(U_{\alpha}).$$

Thus we get

(3.6)
$$\Omega_0 = \overline{\rho}(ad(p_a^{-1})p^*\pi_a)\omega_0 + \Omega_a \qquad \text{on } p^{-1}(U_a).$$

We denote by ξ_{σ} the local tensor over U_{σ} of type (α_1, V) corresponding to the local tensorial 1-form $ad(p_{\sigma}^{-1})p^*\pi_{\sigma}$ of type (ad, \mathcal{G}) , and by S_{σ} the local tensor of type (α_2, W) corresponding to Ω_{σ} . Then (3.6) goes under the correspondence ψ_{σ} into the equation

$$T = -\frac{1}{2} lpha(\xi_{\alpha}) + S_{\alpha} \quad \text{on } p^{-1}(U_{\alpha}) .$$

Hence we have

$$q \circ T = S$$
.

LEMMA 3.1. Assume that the group G has the property (I). If a tensor u of type (α_2, W) satisfies

$$q\circ u=0$$
,

then there exists a tensor Γ of type (α_1, V) such that

$$u = \mathfrak{A}(\Gamma)$$
.

Prof. Take the linear map h described in Definition 1.2 and define Γ by

Atsuo Fujimoto

$$\Gamma(b) = h(u(b))$$
 for $b \in H(M, G)$.

Then Γ is a tensor with the desired properties. In fact, we have $\mathfrak{A} \cdot \Gamma(b) = \mathfrak{A} \cdot h(u(b)) = u(b)$,

and

$$\Gamma(R_g b) = h(u(R_g b)) = h \cdot \alpha_1(g^{-1})u(b) = \alpha_2(g^{-1})h(u(b)) = \alpha_2(g^{-1})\Gamma(b).$$

PROPOSITION 3.3. Assume that the group G has the property (I). Let R be a tensor of type (α_2, W) . In order that R be a torsion tensor of a G-connexion it is necessary and sufficient that R satisfies

 $q \circ R = S$,

where S is the structure tensor.

Proof. We need only to prove the sufficiency. Take an arbitrary but fixed G-connexion ω_1 , and let T denote its torsion tensor. According to Proposition 3.2, we have

$$q \circ T = S$$

Therefore we have

$$q \circ (R-T) = 0.$$

Hence, by Lemma 3.1, there exists a tensor 1' of type (α_1, V) such that

 $R = T + \mathfrak{A}(\Gamma)$.

Denoting by β the tensorial 1-form of type (ad, \mathcal{G}) which corresponds to 2Γ , we see that $\omega_1 - \beta$ is a *G*-connexion with torsion tensor *R*. q.e.d.

By Lemma 3.1 and Proposition 3.3, we have the following

PROPOSITION 3.4. Assume that the group G has the properties (I) and (II). Let k be the linear map $Q \rightarrow W$ satisfying the conditions in Definition 1.3. Let S denote the structure tensor. Then the torsion tensor of any G-connexion is written in the form

$$T = \mathfrak{A}(\Gamma) + k \circ S$$

with some tensor Γ of type (α_1, V) .

Conversely, for an arbitrary tensor Γ of type (α_1, V) there exists a G-connexion whose torsion tensor is $\mathfrak{A}\circ\Gamma + k\circ S$.

In particular, there exists a G-connexion whose torsion tensor is $k \circ S$. We call this G-connexion the *canonical G-connexion*.

166

COROLLARY 1. Under the same assumption of Proposition 3.4, the structure tensor vanishes if and only if it is possible to introduce a G-connexion without torsion.

§4. Automorphism

7. Let M be an n-dimensional differentiable manifold which possesses a G-structure and let f be a differentiable transformation of M onto itself. f induces a natural differentiable transformation of the frame bundle of M. Thus any distinguished frame Y = (x, t_1, \dots, t_n) at $x \in M$ is mapped into the frame $(f(x), f_*t_1, \dots, f_*t_n)$ at f(x). But, in general, the frame $(f(x), f_*t_1, \dots, f_*t_n)$ is not distinguished.

DEFINITION 4.1. Given a G-structure on a differentiable manifold M, a differentiable transformation f of M is called an *automorphism of the G-structure* if, for any distinguished frame $Y = (x, t_1, \dots, t_n)$ at x the frame $(f(x), f_*t_1, \dots, f_*t_n)$ is distinguished. In this case, we shall denote the distinguished frame $(f(x), f_*t_1, \dots, f_*t_n)$ by $\tilde{f}Y$ and call the mapping \tilde{f} the *prolongation* of f.

The prolongation \tilde{f} of an automorphism f of the *G*-structure is clearly an automorphism of the reduced bundle H(M, G) that is, \tilde{f} satisfies the conditions: $p \cdot \tilde{f} = \tilde{f} \cdot p$ and $\tilde{f} \cdot R_g = R_g \tilde{f}$ for any $g \in G$.

PROPOSITION 4.1. If a differentiable transformation f of M is an automorphism of the G-structure, then the prolongation \tilde{f} of fleaves the form ω_0 invariant:

$$ilde{f}^*\omega_{_0}=\omega_{_0}$$
 .

Proof. As in §2, we define a local cross-section Y_{α} on U_{α} by

$$Y_{\alpha}(x) = \varphi_{\alpha}(x, e)$$
.

If $f(x) \in U_{\beta}$ for $x \in U_{\alpha}$, then $\tilde{f}Y_{\alpha}(x)$ can be written in the form

(4.1)
$$\tilde{f} Y_{\alpha}(x) = \varphi_{\beta}(f(x), a_{\beta\alpha}(f(x))) .$$

where $a_{\beta\alpha}$ is a differentiable mapping $f(U_{\alpha}) \cap U_{\beta} \to G$ such that

(4.2)
$$a_{\beta\alpha}(x') = g_{\beta\gamma}(x')a_{\gamma\alpha}(x')$$
 for $x' \in f(U_{\alpha}) \cap U_{\beta} \cap U_{\gamma}$

Hence, we have

(4.3)
$$f^*\theta_{\beta} = \rho(a_{\beta\alpha} \circ f)\theta_{\alpha}.$$

For $b = \varphi_{\alpha}(x, g) \in p^{-1}(U_{\alpha})$, we have $b = R_g Y_{\alpha}(x)$. Since \tilde{f} is an automorphism of H(M, G), we have

$$\tilde{f}(b) = R_g \tilde{f}(Y_{\alpha}(x)) = \varphi_{\beta}(f(x), a_{\beta \alpha}(f(x))g).$$

By virtue of (4.2), this expression is independent of the choice of coordinate neighborhood. Thus we have

$$(4.4) p_{\beta}(\tilde{f}(b)) = a_{\beta a}(f \circ p(b))p_{a}(b) for \ b \in p^{-1}(U_{a}).$$

From (4.3) and (4.4) we see that \tilde{f} leaves ω_0 invariant.

PROPOSITION 4.2. If a differentiable transformation f of M is an automorphism of the G-structure, then the prolongation \tilde{f} of fleaves the structure tensor S invariant:

$$S \circ \tilde{f} = S.$$

Proof. Suppose $x \in U_{\alpha}$ and $f(x) \in U_{\beta}$. Using (4.3) and (4.4), we get

$$\tilde{f}^*\Omega_{\boldsymbol{\beta},\tilde{f}(b)} = \Omega_{\boldsymbol{\alpha},\boldsymbol{b}} + \bar{\rho}(ad(p_{\boldsymbol{\alpha}}^{-1}(b))p^*(a_{\boldsymbol{\beta}\boldsymbol{\alpha}}\boldsymbol{\cdot} f)^*\gamma)\omega_{\boldsymbol{0},\boldsymbol{b}}, \ p(b) \in U_{\boldsymbol{\alpha}} \cap f^{-1}(U_{\boldsymbol{\beta}}).$$

Since \tilde{f} leaves ω_0 invariant, this equation goes under the correspondence ψ_{α} into the equation

$$S \circ \tilde{f} = S$$
. q.e.d.

LEMMA 4.1. Let ω_1 be a G-connexion with torsion form Ω_0 and let \tilde{f} be the prolongation of an automorphism of the G-structure. Then $\tilde{f}^*\omega_1$ is a G-connexion with torsion form $\tilde{f}^*\Omega_0$.

Proof. Since \tilde{f} commutes with R_g , we have

 $R^*_{g}\tilde{f}^*\omega_{\scriptscriptstyle 1}=\tilde{f}R^*_{g}\omega_{\scriptscriptstyle 1}=ad(g^{\scriptscriptstyle -1})\tilde{f}^*\omega_{\scriptscriptstyle 1}$.

On the other hand, it holds that $\chi(\tilde{f}(b)) = \tilde{f} \circ \chi(b)$ for $b \in H(M, G)$. Since \tilde{f}_* maps any vertical vector into a vertical vector, it follows that for a vertical vector $t \in T_b(H)$

$$\tilde{f}^*\omega_1(t) = \omega_1(\tilde{f}_*t) = \chi(\tilde{f}(b))_*^{-1}\tilde{f}_*t = \chi(b)_*^{-1}t.$$

Consequently $\tilde{f}^*\omega_1$ is a *G*-connexion. Since \tilde{f} leaves ω_0 invariant, the torsion form of $\tilde{f}^*\omega_1$ is given by

$$d\omega_0 + \overline{\rho}(\tilde{f}^*\omega_1) \cdot \omega_0 = \tilde{f}^*[d\omega_0 + \overline{\rho}(\omega_1)\omega_0] = \tilde{f}^*\Omega_0$$
. q.e.d.

Given a *G*-connexion ω_1 , an automorphism *f* of the *G*-structure is called an *automorphism of the G*-connexion ω_1 if its prolongation \tilde{f} preserves the *G*-connexion $\omega_1: \tilde{f}^*\omega_1 = \omega_1$. If this is the case, \tilde{f} leaves the torsion form Ω_0 of ω_1 invariant. Conversely we have the following

PROPOSITION 4.3. Assume that the group G satisfies the condition

168

Ker $\mathfrak{A}=0$. If the prolongation \tilde{f} of an automorphism f of the G-structure leaves the torsion form of a G-connexion invariant, then f is an automorphism of the G-connexion.

To prove this we need the following lemma.

LEMMA 4.2. Assume that the group G satisfies the condition Ker $\mathfrak{A}=0$. Then two G-connexions ω_1 and ω'_1 are identical if and only if their respective torsion form Ω_0 and Ω'_0 coincide.

Proof. The condition $\Omega_0 = \Omega'_0$ implies $\bar{\rho}(\omega_1 - \omega'_1)\omega_0 = 0$. Denoting by 1' the tensor of type (α_1, V) corresponding to $\omega_1 - \omega'_1$, we have $\mathfrak{X}(\mathbf{l}) = 0$. By assumption we have $\mathbf{l}' = 0$ and hence $\omega_1 = \omega'_1$. q.e.d.

Proof of Proposition 4.3. Suppose that \tilde{f} leaves the torsion form Ω_0 of a *G*-connexion ω_1 invariant: $\tilde{f}^*\Omega_0 = \Omega_0$. Then by Lemma 4.1 the *G*-conexion $\tilde{f}^*\omega_1$ must have the torsion form Ω_0 , so by Lemma 4.2 we have $\tilde{f}^*\omega_1 = \omega_1$ and consequently f is an automorphism of the *G*-connexion. q.e.d.

According to Propositions 4.2 and 4.3, we have the following

PROPOSITION 4.4. Assume that the group G satisfies the condition Ker $\mathfrak{A}=0$ and has the property (II). Then an automorphism of the G-structure is an automorphism of the canonical G-connexion.

College of Science & Engineering, Nihon University.

BIBLIOGRAPHY

1) D. Bernard; Sur les G-structures complexes. C.R. Acad. Sci. Paris 243 (1956), pp. 1821-1824.

2) S.S. Chern; Topics in differntial geometry, mimeographed notes, Institute for Advanced Study, 1951.

3) ————; On a generalization of Kähler geometry. Algebraic geometry and topology. A symposium in honour of S. Lefschetz, pp. 103–121. Princeton Univ. Press, 1957.

4) N. Steenrod; The topology of fibre bundles. Princeton Univ. Press, 1951.

5) S. Takizawa: On Cartan connexions and their torsions. Mem. Coll. Sci. Univ. Kyötö 29 (1955), pp. 199-217.