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Introduction

The theory of G-structure on differentiable manifolds has been
recently studied by several authors. In the present paper, we shall
give the definiton of the structure tensor of G  structure and inves-
tigate some properties concerning it. After some preliminaries,
we define the structure tensor of G-structure. In § 3 we introduce
the concept of G-connexion and establish the relation between the
structure tensor and the torsion tensor of G-connexion. Finally in
§ 4 we obtain, concerning the automorphisms of G-structure,
some results which contain a  generalization o f  Riemannian case.

The author wishes to express his sincere thanks to Professor
J . Kanitani for his constant encouragement.

§ 1 . Preliminaries and notations' )

1. Let X  be a differentiable manifold. The differentiability
class o f a ll manifolds, mappings, vector fields, differential forms,
etc. will be understood to be C. We denote by T ,(X ) the tangent
vector space o f X  at x E X .  Any differentiable mapping f  o f X
into another manifold X ' induces a linear map f* : T x (X)—>T f ( x ) (X ').
We denote by f *  the dual map of f * .

Let P(X , G) be a  differentiable principal fibre bundle over a
base space X  with projection p  and structural Lie group G .  For
each g E G, we denote by .1?, the right translation of P(X , G) corres-
ponding to g .  A tangent vector t E T b (P)  at b E P(X , G ) is said to
be v ertical i f  it is tangent to the fibre through b.

Let (r, F) be any differentiable representation of G on a vector

1 )  For many of the notions introduced in this section, see 151
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space F  and f r ,
 F )  be its induced representation of the Lie algebra

g  o f G .  An F-valued /-form q i on P(X , G ) is called a tensorial
1-form of type (r, F), i f  it satisfies the following conditions :

( i )  R p  = r(g - ')(p for any g e G .
(ii)  cp (t„ ••• ,t 1 )  = 0 if t ,  is vertical.

In the case 1=0 , a differentiable mapping p : P(X , G)— >F is called
a tensor of type (r, F), i f  it satisfies the condition :

.7, • Rg r (  g - 1 ).p for any gEG .

Let A  be a g-valued 1-form on P(X , G) and 99 be an F-valued
/-form on P(X , G ) . The F-valued (1+ 1)-form i(A)q) is defined as
follows : for t „  •  , t , , ,  E  TAP), b E  P,

1 (1.1) r(A )P(li, tr+,) = ( - 1 ) a  j '- (A(t a))P(li, , t a ,, 11+1) .a-1 1+1

2. Let G  be a  closed subgroup of the general linear group
GL (n, R ) in  n  variables, and g  be its L ie  algebra. W e assume
dim G = s .  We shall denote by (ad, g )  the adjoint representation
of G .  Let E  be an n-dimensional vector space over the field of real
numbers. We consider the representation (p, E) of G defined by

(1.2) p ( g ) e ;  =  g i j e i  f o r  a n y  g  =  ( ei ) EG ,

where (e„ ••• , en )  is a base of E.
W e put V= E * O g  and W= (E* A E * )0 E , E *  being the dual

space of E .  From the representations (p, E) and (ad, g ) , we obtain
the representations (p*Oad, V ) and ((p* A p*)®p, W), where p* is
the dual representation o f p. For the sake of simplicity, we shall
denote these representations by (a„ V ) and (a 2 , W ) respectively.

Taking a base (ë„ •• • , és ) of g, we can express ad(g) by a matrix
I agg)112 )

(1. 3) ad(g)e,. = E a (g )e .

Since me,) is an endomorphism of E , p(ê) can be represented by
a matrix 11 ,411:

(1.4)1 5 ( J , ) e ;  =

2 )  Unless otherwise stated, we use the following ranges of indices :

j ,  k  =  1 , 2 ,  ••• ,n , T  =  1 ,2 , • • • , s .
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From the well-known relation

(1.5)p ( g ) 5 ( X ) p ( g - 1 )  = P(ad(g)X )

for g E G  and X E g ,  it follows that

(1. 6) glaL : = E af.k a(g )g l for g  = (gli ) E G.

DEFINITION 1. 1. Let (ei, ••• ,e ,) be a base of g, and let (e„••• ,
en )  be a base in  E  and  (e1 ,••• ,e") its dual b a se . We define the
linear map a: V  W  as follows :

(1. 7)2 (E5r,ek0e,) = E a%(;)ej A ek Oe i  .

It is straightfoward to verify that this definition does not depend
on the choice of the base. By making use of (1. 5), we have

(1. 8) aocti(g) = ce,o(g)ct for any g E G.

We put N-a(v) and Q =  W / N .  Let q  denote the natural projec-
tion: W.--> Q .  Then, it follows from (1. 8) that the subspace N  of
W is invariant under ce,(g). Therefore c 2 (g )  induces an automor-
phism c 3 (g )  of Q .  Thus we obtain the representation (ce,, Q) which
satisfies the relation

(1. 9) cf,(g)oq = qoa,(g) for any g E G.

DEFINITION 1. 2. We say that the group G has the Property  (I)
i f  there exists a  linear map h : N—> V, satisfying th e  following
conditions

( i ) a o h  =  /N .

( i i )  hoce,(g) = a 1 (g)oh for any g EG

DEFINITION 1. 3. We say that the group G  has th e  property
(II) if  there exists a  linear map k: Q—> W, satisfying the follow-
ing conditions

( i ) qok  = IQ .
(ii) k oa,(g) = ce,(g)ok for any gEG .

The following two propositions are easily proved, and so we
omit the proofs.

PROPOSITION 1. 1. I f  the kernel o f  a is  zero, then the grout G
has the property  (I). In the case Ker a = k o ,  the group G  has pro-
perty  (I)  if  and  only  if  there ex ists a  subspace B  o f  V  such that
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( j )  V  Ker LI+ B (direct sum) .
(ii) c e i (g )B  B f o r any g EG  .

PROPOSITION 1. 2. T he group G  has the property ( II)  if  an d
only i f  there exists a  subspace Z  o f  W  such that

( j )  W  = N + Z (direct sum).
( i i )  a2(g )Z C Z for any g EG

§ 2. G-structure and its structure tensor

3 .  In  this and following sections we denote by G  a closed
subgroup of GL(n, R) and assume dim G==s.

DEFINITION 2. 1. We say that an n-dimensional differentiable
manifold M  possesses a G-structure when the structural group of
the frame bundle o f M  is reducible to G .  We shall denote the
reduced bundle by H(M, G).

Hereafter we shall use the following notations :
For the principal fibre bundle H(M, G),

U„„ Uo , U .,  denote the coordinate neighborhoods for H(M, G) ;
denotes the projection of H(M, G) ;

q,„ denotes the coordinate function of H(M, G) ;
j5 the cross-projection of H(M, G) ;
g 0 d en o tes  the coordinate transformation of H(M, G) ;
R , denotes the right translation corresponding to g EG ;
X (b) denotes the admissible map corresponding to b E H(M, G).

For the Lie group G,
g denotes the Lie algebra of G ;
' d e n o t e s  the Maurer-Cartan form of G.
As is well-known", it holds that

(2.1)P „, ( R g b )  = p (b )• g fo r  g  G and b E p - i( u  .
(2. 2) p 8 (b) =  g 8 (0 ) ) p ( b ) ,  p ( b )  E

An element b E H(M, G), such that p (b )=x , is called a distin-
guished frame at x.

Define the mapping T . : U . X G by

'r (x) =  (x, e)
for x E Uo„ e  being the neutral element of G .  I f  we put

3 )  C f. [4].
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(2. 3) Y
O S —  P 0 1

7
03

then 17 ,6 is  a local cross-section o n  I Hence Y ( x )  can be ex-
pressed in the form

(2. 4) 17(x) = (x, zco,h(x), z(c.).(x))
for x E U, , w here z ( „0 1 , • • ,  z ( ) „ are linearly independent vector
fields on U .  L e t  6 ,  • ,  0 : be the 1-forms on U,„ such that

(2. 5) 0 '.(z(ao; ) =
Define the E-valued 1-form on / / a,  by

0 0, E

I f  Ua,r-NU0 +0 ,  then it holds that 4)

(2. 6) p(go,a(x))0,,,x for x E U„r\U 0 .

Now we define the E-valued 1-form wo on H(M, G ) by

(2. 7) (60,„ = P(P; 1 (b))P*0  „, , x = P(b) E U .

From (2. 2) and (2. 6) it follows that this definition is independent
of the choice o f coordinate neighborhood.

By the definition of w , the following proposition is obvious.
PROPOSITION  2. 1. The form w o is  a tensorial 1-form on H(M, G)

of tyPe (p, E) and satisf ies the following condition :

(2. 8) I f  wo (t ) = 0 , then t is vertical.

4 .  Let A  be  a  tensorial 1-form on H(M, G ) of type (ad, g).
The E-valued 1-form co, and the g-valued 1-form A can be ex-
pressed by

coo = E co10 e 1 a n d  A =

where wi and A " are real valued 1-forms on H(M, G ) .  By making
use of (2. 8), it is easily seen that the forms ( 0 1 , •  • •  (O n are linearly
independent. Hence we can set

A  =  E  x7,01

where X7 are functions on H(M, G ).  I f  we put

X = E  x7eioe, ,

4 )  C f . [1 ],
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then X becomes a tensor on H(M, G ) of type ( a „  V ) .  The tensor
X thus obtained is called the tensor corresponding to A .  It is easily
seen that this correspondence is one-to-one.

A tensorial 2-form E on H(M, G) of type (p, E) can be written as

E = E  El k wi A cok O e i  ,
,k

where Es,, are functions on H(M, G) satisfying the relation

E E  =  0  .
Putting

=  E A e k O ei

we obtain the tensor on H(M, G) of type (a 2 , W ) .  We call this
tensor the tensor corresponding to a  tensorial 2-form  E  of type
(p , E ) . In  this case, we define the correspondence Jr by
Then, as is easily seen, i s  a  one-to-one correspondence between
the set of all tensorial 2-forms of type (p, E ) and the set of all
tensors of type (a 2 , W).

Since p - (U o, )  is regarded as a principal fibre bundle over base
space U,,,, we can consider tensorial forms on p — i( u n,). We call
them local tensorial forms over (1,,„ We obtain, in the same way
as above, a one-to-one correspondence between the set of all local
tensorial 1-forms over U o, of type (ad, g )  and the set of all local
tensors over U,,, of type (al, V ), and a one-to-one correspondence
,p, o,  between the set of all local tensorial 2-forms over U,„ of type
(p , E ) and the set of a ll local tensors over of type ( a „  W).
When we restrict ourselves to local tensorial forms over U „nU o ,
then we denote the latter correspondence by ,tif„,.

LEMMA 2. 1. Let X be the tensor o f  type (a l , V ) corresponding
to a tensorial 1-form  A  of type (ad, g ) .  T hen the 2-f orm  p(A).w o

i s  the tensorial 2-form  o f  ty pe (p , E ) corresponding to the tensor
1 Lt(x) of type ( a „  W ) .  The same result holds for local tensorial
2

forms.
Pro o f . From the definition (1. 1), it follows that the form

P(A)w 0 i s  a  tensorial 2-form of type (p , E ) . The forms wo and A
can be written as

= ei , A A,0k-cok eo..

Then, by virtue of (1. 4), we have
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p(A),00— E  (ai 4„X°1-)coi A cok  e i .

This implies that the tensorial 2-form -
15(A)(00 goes under the cor-

1respondence 'tp, in to  the tensor — 
 2

5. We define the E  valued 2-form f2 , on p - 1(U )  by

(2. 9) p(p;i(b))p*deo,,,„„) for p(b) E U .

From (2. 1) we see that the E-valued 2-form n o, is a local tensorial
form over U of type ( p ,  E ) .  We denote by S „  the local tensor
over U  type ( c ,  V )  corresponding to no,. Applying exterior
differentiation to the equation (2. 6) and taking account o f (2. 2),
we have

(2.10) f2s (ad( P  V )e g ttry)0.), on (U U R) •

It is easily verified that ad(pV )p*gt„7  is  a local tensorial 1-form
of type (ad, _6') over U r\ U , and hence we denote by /to o, the local
tensor over U r\U s  of type (a „  V) corresponding to ad(pV )p*gt,7
By Lemma 2. 1, the equation (2. 10) goes under the correspondence
Jr  into the equation

(2.11)s o , 2
1 a ( 1." 04) .

We define the differentiable mapping S: H (M , G) —.IQ by

(2. 12) S(b) =  q•S (b) for b E P - 1 ( U )  .

Then, from (2. 11) we see that S  is globally defined. Moreover
from the fact that S  a local tensor of type (.12 W )  and from
(1. 9), we get for bE p - i( u os)  and gE G

S(Rg b) = q•S,„(Rg b) = q•ce 2( g - 1 ).5 (b) =  ce,(g - ')q•S,„(b)
=  ce,(g - ')S(b).

This shows that S  is  a  tensor on H(M, G ) of type (ce,, Q). Fol-
lowing Bernard", we shall call the tensor S  the structure tensor of
G-structure. Thus we have the following :

PROPOSITION 2. 2. 5 ) The structure tensor of a G-structure is  of
type ((t„ Q).

5 )  C f. DJ
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§ 3. G - c o n n e x io n  and its  torsion tensor

6 .  From now on we shall suppose a G-structure to be given
in  an  n-dimensional differentiable manifold M.

DEFINITION 3. 1. By a G-connexion on M we mean a connexion
on the reduced bundle H(M, G).

A G-connexion on M  is  g iven  by a  differential 1-form (0,
satisfying the following conditions"

( i )  (0 ,  is a  1-form on H(M, G) with values in the Lie algebra
g  of G.

(ii) I f  a  vector t E Tb(H) is vertical, then (01(t)=X (b), 1 t.
(iii) For any gE G , R :(0 1 =ad (g - ')(01 .
We shall call the form (0, th e  connexion f orm  of G-connexion

or merely the G-connexion.
A G-connexion on M  is also given by a  system 7-1- = In- 0,1 of

g-valued 1-forms in  M  satisfying the following conditions')
( i ) Each component 7t, defined in  th e  coordinate neigh-

borhood U .
(ii)) If U,r\LIA --k 0, then 7-To, and 7z), are related by the equation

(3. 1) 7-rt, =  ad ( g ) 7 r o +g L y .

T he re lation  between above two definitions of G-connexion is
given by"

(3. 2) (01 = ad(PV )P * 7 r.+P t 7
The torsion f orm  no of a G-connexion (0, is given by

(3.3)( 1 0 +  P(coi) , 00 .

A s is well-known, the torsion form no i s  a  tensorial 2-form of
type ( p ,  E ) .  The tensor of type (cf„ W ) which corresponds to  no

is called the torsion tensor of the G-connexion.
PROPOSITION 3 . 1 ." L et T  and T ' denote the torsion tensors of

two G -connexions co, and co respectiv ely . T hen it holds that

q o T  = g o r .

P ro o f .  L e t f 2 ,  and S-4  be the to rsion  forms o f  (0, an d  04
respectively. Then by (3. 3) we have

6) C f. [2 ], [ 5 11
7) C f. [2].
8 )  C f. [5].
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(3.4) no— nô = P( 0 ,— (0 i)(0 0 •

From the first definition of G-connexion, we see that the form
co is a tensorial 1-form of type (ad , g ). Therefore we denote

by F the tensor of type (a 1 , V ) corresponding to a), ctq . Then, by
Lemma 2.1, (3. 4) goes under the correspondence in t o  the equation

1 ,T — T' = (./(1 ) .
2

Hence proposition is proved.
PROPOSITION 3. 2. Let S be the structure tensor of the G-struc-

ture, and T be the torsion tensor of any G-connexion. Then it holds
that

qoT  = S .

P ro o f. Using the relation (3. 2), we obtain

(3.5)d P (  X i ) — 16 (6),)P(PV) + p(PV)/5(P*71- 0,) .

Taking the exterior derivative o f (2. 7) and using (3. 5), we get

dwo = — p(wi )(00 -1--i)(ad(xl)p*7r)w o d-S2a, on P - '( U ) .

Thus we get

(3. 6) = P(ad(PV/P*7z-„,)coo+na, on p — i( U o3 ) .

We denote by the local tensor over U,, of type (a „  V ) corres-
ponding to the local tensorial 1-form ad(pnp*71- ,„ of type (ad, g),
and by So,  the local tensor of type (a 2 , W ) corresponding to no,.
Then (3. 6) goes under the correspondence qp„ into the equation

1 T — (.%( )+S on p - 1(U ) .2 "
Hence we have

qoT  = S .

LEM M A 3. 1. Assume that the group G has the property (I). I f
a tensor u of type (a 2 , W) satisfies

qou O,

then there exists a tensor r o f ty Pe (a„ V ) such that

u = .

P r o f .  Take the linear map h described in Definition 1. 2 and
define r by
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(b) = h(u(b)) for b E H(M, G) .
Then F  is  a  tensor with the desired properties. In fact, we have

a .r(b ) =  a•h(u(b)) = u(b) ,
and

r(R g b) = h(u(kb)) = h•a,(g - ')u(b) = a 2 (g - ')h(u(b)) = a 2 (g - ')1:(b) .

PROPOSITION 3. 3. Assume that the group G has the property (I).
Let R be a  tensor o f  type (ct,, W ). In  order that R  be a torsion
tensor of a G-connexion it is necessary and sufficient that R satisfies

qoR = S ,

where S is the structure tensor.
P ro o f. We need only to prove the sufficiency. Take an arbi-

trary but fixed G-connexion co„ and let T  denote its torsion tensor.
According to Proposition 3.2, we have

q o T  S.

Therefore we have

qo(R— T) O.

Hence, by Lemma 3. 1, there exists a  tensor I: o f typ e  (a„ V)
such that

R = T + a(r) .

Denoting by b  the tensorial 1-form of type (ad, g )  which corres-
ponds to 217, we see that o— /9 is a G-connexion w ith  torsion
tensor R. q.e.d.

By Lemma 3. 1 and Proposition 3. 3, we have the following
PROPOSITION 3. 4. Assume that the group G has the properties

(I ) and (II). Le t k  be the linear map Q---> W satisfying the condi-
tions in Definition 1. 3. Let S denote the structure tensor. Then the
torsion tensor o f any G-connexion is written in the form

T  Lt(P)+koS

with some tensor F  o f  type (a„ V).
Conversely, fo r  a n  arbitrary tensor F  o f  type (ce„ V )  there

exists a G-connexion whose torsion tensor is aor+kos.
In particular, there exists a G-connexion whose torsion tensor

is  koS. We call this G-connexion the canonical G-connexion.
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COROLLARY 1. Under the same assumption of Proposition 3. 4,
the structure tensor vanishes if and only i f  it  is  possible to introduce
a G-connexion without torsion.

§ 4. Automorphism

7 .  Let M  be an n-dimensional differentiable manifold which
possesses a G-structure and let f  be a differentiable transformation
of M onto itself. f  induces a  natural differentiable transformation
of the frame bundle of M .  Thus any distinguished frame Y=
(x, t„ ••• ,t n )  at x E M  is mapped into the frame (f (x ) ,  f* t„ ••• , f* t„)
at f ( x ) .  B u t, in  general, th e  frame (f (x ) ,  fa „ • • •  , f4 „ ) is not
distinguished.

DEFINITION 4. 1. Given a G-structure on a differentiable mani-
fold M , a  differentiable transformation f  of M  is called an auto-
morphism of the G-structure if , fo r any distinguished frame Y=
(x, t„ , t , , )  at x  the frame (f (x ),  f* t„ ••• , f* t„ ) is distinguished.
In this case, we shall denote the distinguished frame (f (x ) ,  f* t„ •• • ,
f a n )  by f  Y  and call the mapping f  the prolongation of f .

The prolongation f  of an automorphism f  of the G-structure
is clearly an automorphism of the reduced bundle H(M, G) that is,
f  satisfies the conditions : p .f=  f .p  and f.12,-= Rg i .  for any g E G.

PROPOSITION 4. 1. I f  a  differentiable transformation f  o f M  is
an automorPhism of the G-structure, then the prolongation f  of  f
leaves the form co o inv ariant :

f *wo =  wo •

Pro o f . A s in § 2, we define a local cross-section Y,, on (Jo,  by

Y,,(x) = e) .

If f (x )E U 0 fo r x E then f  Y o,(x) can be written in  the form

(4. 1) f Y  0,(x) p a( f (x), aB.(fix))) .
where ao „  is a  differentiable mapping f (U J r\ U o -->G  such that

(4. 2) ao„(x') g o7 (.0 a 11„(x') for x' E f (U „) r U r' U .
Hence, we have
(4. 3) f*Go =  p(a 0 , , 0  f ) 0

For b = p (x , g) E p- (U c,) , we have b= Rg Y c„ (x ).  Since f  is an auto-
morphism of H(M, G), we have
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f  (b) = 1?,„! (Y  „,(x)) = q90 (f (x), (x))g) .

By virtue of (4. 2), this expression is independent of the choice of
coordinate neighborhood. Thus we have

(4.4)p , (  f  (b)) = a"( J.. Amp cd (b) for b E p - (Uc,) .

From (4. 3) and (4. 4) we see that f  leaves coo invariant.
PROPOSITION 4. 2. I f  a  differentiable transformation f  of  M  is

an  automorphism of  the G-structure, then the prolongation f  of  f
leaves the structure tensor S  invariant :

So( = S.

Pro o f . Suppose x E U   and f  (x) E U . Using (4. 3) and (4. 4),
we get

f*no,f,b, n.,b+ i3 (ad(P;6 1(b ))P * (C100 . -f) * 7) 6)0,b, P(b) E Uc„r\f - 1 (Us).

Since f  leaves coo in varian t, this equation goes under the corres-
pondence Aka, into the equation

S. f  =  S .q . e . d .

LEMMA 4. 1. Let co, be a G connexion w ith torsion form  f20 and
l e t  f  be the prolongation o f  an  automorphism  o f  the G-structure.
Then f*co, is a G-connexion w ith torsion form  . .(*(2° .

Pro o f . Since f  commutes with 1?,, we have

f *0), = fR ta), = ad(g - l)f*w , .
O n the other hand, it holds that X( f (b))=f0X (b) for b G H(M, G).
Since .6 maps any vertical vector into a vertical vector, it follows
that for a vertical vector t E  b(H)

f*.i(t) ---- (01( fa ) x( f(b)) -* 7 4  =  x (b )v t

Consequently f*co, is a G-connexion. Since f  leaves co, invariant,
the torsion form of /*col is given by

c1, 00 + -ti( f *wi) --- f*[choo+ ri(wi).0] ---= f *no . q.e.d.
Given a G-connexion o ,  an automorphism f  of the G-structure

is called an automorphism of  the G-connexion wl i f  its prolongation
f  preserves the G-connexion (01: f *col- wi • I f  this is the case, f
leaves the torsion form n o o f  co, in v arian t. Conversely we have
the following

PROPOSITION 4. 3. Assume that the group G satisfies the condition
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K e r = O. I f  th e  prolongation f  of an automorphism f of the G-struc-
ture leaves the torsion f orm  of  a G-connex ion inv ariant, then f  is
an automorphism o f  the G-connexion.

To prove this we need the following lemma.
LEMMA 4. 2. A ssume th at the group G  satisf ies the condition

K er (.1=0. Then two G-connexions co, and  04  are  identical if  and
only  if  their respective torsion form  n o an d  1-4  coincide.

Pro o f . The condition n o --= Q implies r)(a),— 64)0)0 = O. Denoting
by F  the tensor of type (a„ V) corresponding to W i  - we have

O. By assumption we have r =  0 and hence co l q . e . d .
Proof  of  Proposition 4. 3. Suppose that f  leaves the torsion

form  12, of a G-connexion w , invariant :  f*n o = n o . Then by
Lemma 4. 1  the G-conexion f*(0, must have the torsion form no ,
so by Lem m a 4.2 we have /*(0 1 = co, and consequently f  is  an
automorphism of the G  connexion. q.e.d.

According to Propositions 4. 2 and 4.3, we have the following
PROPOSITION 4. 4. Assume that the group G satisfies the condition

Ker Lt=o and has the property  (II). T hen an automorphism of the
G-structure is  an automorPhism o f  the canonical G-connexion.
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