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Introduction

Let B(#), 0=<<t< oo, be an additive real Gaussian process
with E(B(t))=0 and F(¢, ) be a real-valued function of (¢, #). The
process X(#) defined as

©.1) X = S:F(t, )dB(x)

is a real Gaussian process with mean 0, and enjoys the property
(0. 2) EJJZ,(X) < M,(B), 0t <°° ,

where IM,(X) and IM,(B) denote the closed linear manifolds generated
by {X(r); 7t} and {B(r); v <t} respectively. Given a Gaussian
process X(¢), P. Lévy called the expression (0.1) a representation of
X(¢), if X(¢) is version of X(f) and he introduced the concept of
canonical representation. Roughly speaking, a canonical representa-
tion is one for which the equality holds instead of the inclusion
relation in (0. 2) (cf. Definition I. 2 and Theorem I.2). In this case,
F(t, u) is called a canonical kernel.

P. Lévy has recently published several important papers con-
cerning the canonical representation of Gaussian processes. However
his pioneering works contain some points difficult for us to follow.
The main aim of this paper is to establish his theory systematically
and to prove some new facts.

We shall here give a brief account of the contents of this
paper. In this paper we shall treat only real Gaussian processes
and often omit the adjective “real Gaussian”,
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Section I. General theory.

As P. Lévy proved in [4],° a canonical representation of any
process is uniquely determined if it exists. We shall prove this
fact in detail in §1.2. Further we shall give a necessary and
sufficient condition for the existence of the canonical representa-
tion, using Hellinger-Hahn’s Theorem in the theory of Hilbert Space.
This fact is not found in Lévy’s paper.

As to whether a given representation is canonical or not, Lévy
gave a criterion using Hellinger integral (P. Lévy [6]). But we
shall give another criterion which proves to be a generalization of
Karhunen's kernel criterion for the moving average representation
of stationary processes.

Section II. Multiple Markov process.

J. L. Doob (for stationary processes) and P. Lévy defined N-
ple Markov processes® using the derivatives up to the (N—1)-th
order of the processes. We generalize this notion to treat the
processes which are not always differentiable.

The main results obtained here are as follows. The canonical
kernel of the N-ple Markov process is a Goursat kernel of order
N. This generalizes the fact obtained by Lévy. In §II. 3, we shall
prove that the stationary N-ple Markov process is the sum of
special simple Markov processes which are to be called general
Ornstein-Uhlenbeck’s Brownian motions. This also generalizes
Doob’s Theorem [1].

Section III. Levy’s M(#) process.

Let X(A), Ae EYN (EV is N-dimensional Euclidean space), be
an ordinary Brownian motion with N-dimensional parameter (cf.
P. Lévy [4]) and My(¢f) be the average of X(A) over the sphere
with center O (origin of EYV) and radius #(=0) in the parameter
space EN. My(?) is clearly a Gaussian process with time parameter
t. Lévy discussed the canonical representation and the multiple
Markov property for this process Mu(¢) only in the case N is odd.
We shall simplify his proof by transforming My(¢) into a stationary

1) Numbers in square brackets refer to the list of references at the end of the
paper.
2) In Lévy’s terminology “Markov process of order N in the restricted sense”.
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process. Our present method is applicable to the case N is even.
We shall prove that M,,(f) is not a multiple Markov process but
the limiting process of multiple Markov processes. Furthermore
we shall prove that there are 2?7' different representation of
M,, ,(¢), which provides an affirmative answer to Lévy’s problem
(Lévy [4, p. 146])

I would like to express my hearty thanks to Professor. K. It6
for his encouragement and valuable suggestions and to Mr. N.
Ikeda who helped me with valuable discussions in overcoming the
difficulties in the course of this paper; in particular, the idea of
using the reproducing kernel in the proof of Theorem I.4 is due
to Mr. Ikeda.

Section I. General theory of representation.
§1.1. Definitions.

In order to define a representation of the given Gaussian
process precisely, it is necessary for us to consider integrals with
respect to certain random measures. The parameter space T ofa
process that will be treated here may be a closed interval, (— oo,
o) or [0, o). The symbol B, denotes the Borel field of subsets
of T.

Let B(M), Me B,, be a real Gaussian random measure such
that

(I1.1) EBM)) =0 and E(B(M)?) = v(M) for every M€ By,

where v is a (non-negative) measure defined on B;. Then, B(M)
can be decomposed into two parts in the following way

B(M) = B(M)+ 3 X4,

where B,(-) is a random measure associated with the continuous
measure v,(+)=E(B,(-)*) and X:;s are mutually independent Gaussian
random variables with mean 0, each one of which corresponds to
the jump point ¢; of v(m)=v((—co, u]NT). B(-) and {X:;} will
be called the continuous part and discontinuous part of B(-)
respectively.

Let f(x) be a Borel measurable function. Then, if f€ L),
that is, f€ L*v,) and ;Z fE)EX fj)< oo, then

7
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| rwdB@ and 3 rit)x:

are well defined for any Borel set M. The integral of f over M
may be written in the form

1.2) [, fuodBe) = | fwdB+ 3 fE)Xs,,

where the integrals which appear are interpreted in the usual way
with respect to random measures dB, dB,, Doob [2; pp. 426-433.]
Now we can give

Definition 1.1. Let Y(¢), £€ T, be a real Gaussian process with
E(Y(#)=0 for every t€T. Then the triple (dB(f), W,, F(¢, u)),
or simply the pair (dB(¢), F(t, u)), is called a representation of
Y@, if

i) B(:) is a random measure satisfying (I.1);
il) F(¢, u) is a real Borel measurable function of « vanishing for
u >t and belonging to L*(v) for every ¢;

i) X(t) = S'F(t, w)dB(u)®

is a version of Y(?);

iv) 9, is the closed linear manifold generated by {X(r); v<{¢}.
The function F(f, u) is called a kernel of the representation.

There are many examples of processes which have no represen-
tation. Furthermore, even if a process has a representation, it may
not be uniquely determined. The following examples will serve
to illustrate such circumstances.

Example 1.1. Let Y,(¢) be a Gaussian process with covariance
function 1'(s, £)=1 for s=¢, and =0 for s==¢, and with E(Y,(f))=0.
Then Y,(f) has no representation.

Example 1.2, Let B,(t) and B,¢), 0=<t¢< o, be standard
Brownian motions which are independent of each other. Define

B.(%) if ¢ is rational,
B,(?) if ¢ is irrational.

Y, — {

Then Y,(f) has no representation. Detailed discussions concerning
this will be given later.

t
3) The notation S --- means the integral § ---in the sense of (I.2).

(-o0,tJN\T
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Example 1.3. Let B(f), 0<¢<co, be a standard Brownian
motion. Then, for every positive integer #, we can determine
constants ¢,, ¢,, -+, ¢, so that

B@) = S:(C" +cl% + cz<—?>2+ +c,.<—1; >”>dB(u)

is again a standard Brownian motion (P. Lévy [6]). This proves
that B(f) has infinitely many representations.

We have now to determine the best class of representations
for our purpose among all posible representations of a given process.

Definition. 1.2. The representation (dB(f), W,, F(¢, u)) is
called canonical, if

BX()/B) = | P, wdBw)

holds for every s<t¢, where B, is the smallest Borel field of
measurable o -sets with respect to which all the X(v)’'s (r<s) are
measurable. In this case, F(f, u) is called a canonical kernel.

Definition. I. 3. Two representations (dB(f), W, F (¢, u)),
i=1, 2, are called equivalent, if

S FO, u)’dv®(u) = g F®(t, u)?dv™(u) for every Me B,
M M
considering them as measures, where

dv‘>(u) = E@B®@y), i=12.

This relation obviously satisfies the equivalence relations and
therefore we can get the classes of representations.

Theorem 1. 1. (P. Lévy) For every Y(t), there exists at most
one class of canonical representations.

Proof. Let (dB“(), M, F9O( u)) i=1, 2, be canonical
representations of Y(f). Writing

XD(f) = StF‘“(t, wWdBPWw), i—=12,
we have, for every ¢ and every s(<#),
E(X%@)/B") = | Fo, wdBow),

where B denotes the Borel field corresponding to X<(¢).
The equality
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EEX™()/BPY) = EEXP()/B))

holds, since both sides are determined only by the probability law
of X(¢). Hence we have

SSF“)(t, u)dv®(u) = SSF“’(t, u):dv®(u), for every s(<t),
which proves the theorem.

§I1.2. Canonical representations.

In this article we shall study important properties of a canonical
representation.

Definition I.4. A canonical representation (dB(f), W,, F (¢, u))
is called proper if
(1. 3) M, = M,(B) for every teT,
where M,(B) is the closed linear manifold generated by

dBu); Me BT} :
(—oo,tInM

Theorem 1.2. For any given canonical representation, we can
construct an equivalent proper canomical representation.

Proof. 1t is sufficient to consider the case in which » is a
continuous measure. Let (dB(z), 9}, F(t, u)) be a given canonical
representation of Y(f). We shall show that we can construct a
proper canonical representation of Y(f) by deforming the given one.

1°) Deformation. First define F(¢, u)=F(t, u). Put

M) = \/ <SMF(t, u)za'v(u)> e
o(M) ESMdv(u) _ E(SMdB(u)>2, MeB;,.

Here we may suppose that » is a continuous measure. Then

plv;®

hence, by Radon-Nykodym’s Theorem, there exists a Borel mea-
surable function f(#) =0 such that

4) \/ means the lattice sum.
5) u <<; means that the measure p is absolutely continuous with respect to the

measure v.
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) = | Faodv) .

Since N=N(f)= {u; f(u) >0} is Borel measurable, we can construct
a random measure

(L 4) B(M) ESMdB(u) - XMXN(u)dE(u), MeB;,,

where X () is the indicator function of N.

2°) The triple (dB(t), M,, F(¢, u)) is a representation of Y(?).
To prove this, it is sufficient to show that X(t):StF (t, u)dB(u) is
the same process as Y(£), in the sense of equivalence in law. This
can be proved as follows.

E(S’F(t, 1) dB(w)— S'F(t, u)dB(u)>2

_ E(S'F(t, ) (l—XN(u))dB(u)>2
(I 5)

[P wra—xyurao

= | 0-X%wyFe wanw =0,
(—o0, 110N
which shows that X(#)=X(?) <:gtf’(t, u)dB’(u)) with probability

one. Since X(¢) is the same process as Y(f) by assumption, the
relation above proves our assertion.

3°) Finally we shall prove that the representation (dB(¢), IM,,
F(t, u)) is proper canonical. Now we prove
(1. 6) W, DM(B).

Suppose an element Z of ,(B) is orthogonal to (hence independent
of) M,, that is, E(Z-X(s))=0 for every s<t. Then Z is orthogonal

to E(X(s”)/B,) for every s’<t and every s”, since it is an element
of I,.
On the other hand Z can be written as

Z - Sth(u)dB(u) ,

with a Borel measurable function /4. Noting that
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E(X(s"”)/B,) = Projection of X(s”) on Wi, (in the L? sense)
= Projection of X(s”’) on M
(since X(t)=X(¢t) with probability 1)
= E(X(s")/B.) = | Fs”, wdBw)
(from canonical property)
- S F(s”, u)dB@)
we have
E(Z-E(X(s"))| B.))) = S h@)F(s”, w)db(w) = 0.

Therefore, for every s, s'(<¢)
[ neFs”, waow = 0.

Since s” is arbitrary, we can prove
w(N(h) =0,
where N(h)= {u; h(u)==0}. Hence we have
EZ-W)=0 for every WeM,(B),

Thus we have proved (I.6). Consequently we have (I.3).
Now from (I.3),

E(X(¢)/B,) = projection of X(f) on M,
— Projection of X(£) on M,(B) — SSF(t, w)dB)

which proves that the representation is canonical and (I. 6) implies
that it is proper. Thus we have proved the theorem.
By the argument used in the proof of the theorem, we hav

Corollary. If a representation (dB(f), W,, F(¢, u)) (not neces-
sarily canonical) satisfies the condition

M(B) = M, for every ¢,

then it is (proper) canonical.
As is well known, a stationary process X(f) which is purely
non-deterministic and M,-continuous can be expressed as

X(¢) = S;F(t — w)dB()
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and there exists one and only one representation having the
property (I.3). (Karhunen [1]). In our case, in which X() is
Gaussian, this means that it has a proper canonical representation.

§I1.3. Existence of representation.

In order to study the existence of the canonical representation
we shall summarize some known theorems of the theory of Hilbert
space.

Let I'(s, ¢), s,t €T, be a real non-negative definite function.
Then there exists a Hilbert space $ satisfying

i) I(s, #) belongs to © as a function of s,
ii) <Af(s), I'(s, 1)Y°=f(t)  for every fe9,
iii) 9 is the closed (in the topology || ||) linear manifold generated
by {[(-,8); teT}.
I'(s, t) is the reproducing kernel of that Hilbert space.

The construction and the important properties of © may be seen
in Aronszajn [1].

We can construct sub-spaces 9, and 9F of :

9, = sub-space of  generated by {l'(-,7); T <1t} ;

T:k = [n\ 'bH—:; .
Now let us assume that
(H.1) 9 is separable,
(H.2) [E\TS?, = {0} (hence @VD}“ = {0}).

Noting that
\/DF =9 and DFCDF  s<t,

ter

we can see that there exists a resolution of the identity {E(¢); t € T}
such that

(L.7) oF = E®)D,

by assumption. Then, by Hellinger-Hahn’s Theorem,” there exist
two denumerable sets {f}, i=1, 2, --- and g9 j I=1,2 - in
satisfying the following conditions (L. 8) to (1. 10).

6) The symbol < , > denotes the inner product. We shall use | | to denote the

norm, ie. || f| =V<{f o
7) For proof see M. H. Stone [1] or S. It6 [1].
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i) For any intervals A, A,
{AEfD, AzEij)>= 0, i=7,
with AE=E(b)— E(a) for A=(q, b];
ii) if A,nNA,=0
(L 8) CAEFD AEFDS =0;
iii) for any i, p;(¢)=||E()f|| is continuous, non-decreasing
and p;,, < p; (considered as measures) ;
iv) g%’ is the eigenvector of the self-adjoint operator H=

StdE(t) corresponding to the eigenvalue ¢;,(/=1, 2, ---).

(1.9) O=MPN (direct sum),
where 9 and N are defined by
m = 21 @ M(fD),
W(r0) = {75 F = [p0dEO D, peLlipa);
N =213 N(g™),
’]. 1

N(g“’) = one dimensional sub-space generated by g¢;

(I 10) E@M(f) CMfP),
which is equivalent to
(L.10)  E@)P; = P,EQ®), ; = Projection on M(f).

Furthermore, though there may be many ways of choosing such
{f} and {g“”’}, their numbers are always the same.
By virtue of this theorem, we can define the multiplicity of E(Z).
Definition I.5. The supremum of the number of f%’s and
the numbers of linearly independent eigenvectors corresponding
to each ¢; is called the multiplicity of EX(?).

Theorem I.3. I'(-, t) is expressible as

@1 160 = DR, wdBu ro+ 3 5 b0

i

Proof. From (1.9), I'(-, ¢) is written in the form

(-, 8) = ESF,-(t,u)dE(u) FO+ T T 0E
J
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Applying (1. 10), we have
(-, 8) = E@OC(-, 8) = 23 E‘(f)SF:(l‘, w)dE() £+ 2325 bi(t)Et) g7
7 7T
- [ Ft, waBw ro+ 5 S ey0EOg,
: =4

where the summation in the second term in the equation above
extends over those g“”s the eigenvalue of which are not larger
than £.

The case in which the function F;(¢, #) in (I. 11) is degenerate,
for example,

(I 12) > g,

is of special interest, as we shall see in the next section.

After the preparation above, we can now discuss the existence
of the canonical representation. Given a process Y(¢), let I'(s, £)
be its covariance function. Let 9, be the closed linear manifold
generated by {Y(v); v<¢} and

M = \J Mm,, MF = [\gﬁt+l/n .

teT n

We shall assume that

(M. 1) M is separable (as a sub-space of L*({2)),
(M. 2) [\mt = {O}
teT

We shall prove the following preliminary theorem leading to
the fundamental Theorems I.5 and I.6.

Theorem 1.4. There exists an isometric transformation from
onto M defined by
(I. 13) Del(-, 1) & Y(t)eMm.

This isometry induces the following correspondence :

i) ‘bt(‘_)mty %’t‘:(—)m;kv

iil) E@)f e E(X/B?¥) provided that f« X, with B¥= B(0*).
Proof. Define a mapping S from L= {I'(-,¢); t € T}® into M by

8) { -} denotes the linear space generated by the elements that are written in
the bracket.
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S: (., 8) - Y@)
2al(-, ;) — 23a;Y(#)  (a;: real)
Then S is a linear transformation from a linear space L into the

linear space 8= {Y(¢), te T} M. Suppose >a;Y(;)=0. Then
S'a;I(t, t;)=0 for every ¢t € T, which implies

J@) =<fC), 6, 0>=0, if f(o) =2 al'(-, 1).

This shows that S is a one-to-one mapping from L onto £ And
further

<11('y t)) -F('v S)> = F(sy t) = E(Y(t)'Y(S)) ’

which proves that S is isometric.

Since L and & are dense in  and M respectively, S can be
extended to an isometric one-to-one linear transformation S from
9 onto M. Hence we have proved the existence of the isometry.

Next, SO,=M, is obvious. Therefore if fe X,

E(t)f < Projection of X on WM = E(X/B¥).

Thus we have proved ii).

Theorem I. 4 along with the assumptions (M. 1), (M. 2) implies
that (H.1) and (H.2) hold. We can therefore appeal to the
Hellinger-Hahn’s Theorem. Let f“ be as defined in the statement
of that theorem. Then there exists a continuous additive process
B“(t) such that

dE(t)f(i) «> dB(i)(t)

under the correspondence mentioned in Theorem I. 4.

Theorem 1.5. [If Y(t) satisfies (M. 1) and (. 2), there exist
Gaussian random measures {B(-)} and random variables Y such
that '

i) B®(.), Yij, i, j,{=1,2, -+ are all independent,
ii) EBY™(+))K EBY(-)), 1=1,2,.,

iii) Y(t)=Z]StF,~(t, udBPwW+ B TOYL,
=

) E(Y()/B)=%| Ft, wdBOw+ SFS0OYE> s=t.
i =7

9 TR T+
! 1

r 1:<s

3
i T 10Y(sH0)
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Proof. 1If follows from (I.8), (I.9) and Theore_m 1.4 that i), ii)
and iii) are satisfied. Considering the isometry S in the proof of
Theorem 1.4, we have

E(Y()|B¥) = ST (E()I(-, 1))
= S E(s) ‘ZStF,-(t, WdEw) f O+ Els) 33 3Tb5(6)g9) .

By (I.10), this is equal to
§—1(2 SSF,.(t, w)dE(u) fP + tzg N bﬁ(t)g(j)l)
' T=s1

= 2 Fut, waBow + T 007
i tiss ’
(E(X(¢)/ B,) = E(E(X(t)/B¥)/B,),
which proves iv).

Definition I.6. The system (dB“(¢), M, F(t, u), b'() Yij; i, 7,1
=1, 2, ---) obtained above is called a generalized canonical representa-
tion of Y(t). The multiplicity of E(Z) is called the multiplicity of
Y ().

The classification of generalized canonical representations is
very complicated, because, for one thing, the choice of the system
{f%} is not unique.

Theorem 1.6. A necessary and sufficient condition that Y ()

has a canonical representation is that Y(t) satisfies the conditions
(M. 1), (M. 2) and

(M. 3) The multiplicity of Y(t) is one.
Proof. Necessity. Suppose that (dB(¢), IR,, F(¢, »)) is a canoni-
cal representation of Y(¢#) and

(I. 14) X(@) = StF(t, u)dB(u) ~ Y (1), (~: equivalent in law)

The separability of M= \ejTEm, is easily deduced from the defini-
t
tion of the integral.
Let M, (B) be the same as in Definition I.4. Then
M, CM(B) = {Stf(u)dB(u) ; f is Borel measurable and ELz(v)}
and

[\mt(B) = {0}

teT
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imply the condition (M. 2). (M. 1) follows at once from the separa-
bility of \eji)ﬁ,(B).
teT

Finally, if we decompose the random measure B(-) into two
parts in the same way as in (I.1), we can easily see that the
multiplicity of Y(¢) is one by Definition I. 6.

Sufficiency. From Theorem I.5 and the assumption that the
multiplicity of Y(#) is one, Y(f) can be expressed in the form

Y() = ("Fit, wdB@@ + Th0X,.
i<t
Now we can define a random measure B(-) by

Bl(a, b)) = BO)- B@ = [ dBw+ 51 aXe;, (SWIEX3) < e0) .

a<lj§b

And define a function F(¢, ) of « for every fixed ¢, by

Fl(t) u) if MET[\(_OO) t]_{t_;}’

F,u) :{ b, if u=¢,.

Then we have

[P waBw =("Fe, waB>w+ B aFe, 1)X,, .
=('F¢, waBow + [ Fe, w—Fit dBow + B e,0X,,

which is equal to Y(¢), since the second term of the last expression
is zero with probability one.

The canonical property of (dB(t), W,, F(t, u)) follows from iv)
in Theorem I.5.

The process Y,{t) which was given in Example 1.2 has no
canonical representation, because the multiplicity of Y,(f) is 2, as
is easily seen. But a generalized canonical representation exists.
In fact it can be expressed in the form

Yot = j:Fa, W)dB,(u) + S:u—F(t, 1))dB,(u) ,

where

1, if ¢ is rational,
0, if ¢ is irrational.

F(t, u) :{

Corollary. An additive process has a canonical representation.
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Proof. If B(t) is an additive process, it can be expressed in
the form

t
B(t) = S dB(t)+ S X,
tjéx
This shows that the multiplicity is one, and our assertion follows.

§1.4. Kernel criterion for canonical representation.

It is important to give a criterion to determine whether a given
representation is canonical or not. P. Lévy gave a criterion involv-
ing a Hellinger’s integral (Lévy [6]), but we shall give another.

By Theorem I. 2, it is sufficient to give a criterion for a proper
canonical representation.

Theorem 1.7. A representation (dAB(t), W,, F(t,u)) is proper
canonical if and only if, for any fixed t,€ T

(I 15) S'F(t, W) f@dow) = 0 for every t <t, .
implies
(1. 16) fu) =0 almost everywhere (v) on (—oo,t, |N\T.

Proof. Suppose that the given representation is not proper
canonical. Then by (I. 3) there exists an element Z(==0) of M, (B)
which is independent of every X(¢), #<¢,. Noting that Z can be
expressed in the form

to
z="fwdsw),  rerw,
we have
E(Z.-X(t)) =0, for every t <¢,,
which is identical with (I. 15). On the other hand

0 E(Z?) = S'° Fuydow).

This shows that (I.16) does not hold.

Conversely, if there is a function f(u) satisfying (I. 15) but not
satisfying (I.16) for some #,, then

Z = S"’f(u)dB(u)
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belongs to 9R,(B) but does not belong to M,. Hence the representa-
tion is not proper canonical.

According to Karhunen [1], a stationary process which is
purely non-deterministic and M,-continuous always has its (moving
average) representation, the kernel of which is a function of #—u.
He also gave a kernel criterion for canonical (in our terminology)
representation. One can easily see that our Theorem L 7. is a
generalization of Karhunen’s theorem

Example 1.4. Let X,(¢) and X,(¢) be defined by
X,(t) = | @t—waB,w)
X,(t) = S'(f3t+4u)de<u>

where B;(t), =1, 2, are ordinary Brownian motions. Then the
two processes have the same probability distribution (cf. P. Lévy
[4]), since they have the common covariance function 3¢s—2s°/3
(¢>>s). Using Theorem I.7, we can prove that (dB,(f), 2{—u) is a
proper canonical representation of X,(f). On the other hand

Z= S:oude(u)

is independent of every X,(f) (!<¢%,), which proves that the
representation (dB,(¢), —3¢+4u) of X,(f) is not proper canonical—
indeed it is not canonical.

Example 1.5. (Particular case of Example I. 3). If we denote
an ordinary Brownian motion by B(¢),

X() = S'(B— 124/t + 106/ £)d B, (1)
is again a Brownian motion. Here
to to
Z :S wdByu) and Z, :S W dB, (1)

are independent of every X(f) (¢(<?,). Hence (dB,(t), 3—12u/t
+10#*/t% 1is not proper canonical. In fact, the canonical representa-
tion of By (?) is (dB,(t), 1).
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Section II. Multiple Markov Gaussian Processes.
§II.1. Simple Markov Gaussian Processes.

We intend to study multiple Markov Gaussian processes in this
section, using the general theory of representation. All the proces-
ses to be discussed here are Gaussian processes with mean 0
satisfying the conditions (3&. 1) and (M. 2). Furthermore we may
assume that
(Y. 4) M, is continuous in #,
that is,

lim 9, exists and is equal to I, ,

t->tg

since we can easily remove the discontinuity of Wt,.

First we shall treat a simple Markov Gaussian process. Though
some of the results are well known, our presentation of the results
will stress their specific probabilistic significance form our standpoint.

Let Y(¢) be a simple Markov process. As Y(#) is Gaussian the
simple Markov property is equivalent to the condition that, if s<¢,

(IL. 1) E(Y(%)/B,) = ¢(t, 5)Y(s),

where ¢(t, s) is a real valued ordinary function of (¢, s) (Doob [2]).
This is also equivalent to

(II1. 2) Y(#)— (¢, s) Y(s) is independent of every Y(7), T<s.

To avoid the case in which Y(¢) and Y(s) are independent for s=-=¢,
let us assume that

(I1. 3) (s, t) = E(Y(#)-Y(s)) never vanishes.
Then the equality
E(E(Y(t)/B,)/B,y = E(Y(t)/B,), for every s<s' <
implies
P, s)p(s’, )Y (s) = p(t, $)Y(s).
Since I'(s, s)==0 by the assumption (II. 3), we have

(¢, s"p(s', ) = p(¢, ),
L. 4 { ?
L4 ot 1) = 1,
and we can prove that ¢(#, s) never vanishes. If we use the
convention



126 Takeyuki Hida

P, s) = p(s, t)  for s >t,

@(t, s) may be written as

P(t, s) = f(B)]f(s),

where f(t)=o(t, s,) with some fixed s,.
Hence we have, from (II. 1),

E(f)7Y (@) B,) = f(s)7'Y (s),

which proves that U(f)=f(¢)"'Y(¢) is an additive process. Here we
should note that the system of Borel fields relative to U(¢) is the
same as that relative to Y(£), since f{f) never vanishes.

According to the Corollary to Theorem I. 6, U(#) has a canonical
representation, which has no discontinuous part as we assume
(. 4). Hence so does Y(¢):

Y(t) = FOU® = £ aU) .

Conversely, a process expressed in this form is obviously a
simple Markov process provided that f(¢#) never vanishes.

Summing up, we have

Theorem ILI. 1. Under the assumption (IN. 1), (M. 2), (M. 4) and
(I1. 3), a necessry and sufficient condition that Y(t) is a simple Markov
process is that it can be expressed in the form

(IL. 5) Y = fOU® = o) dU@ = S'f(t)g(u)dB(u) ,

where U(t) is an additive process with the property (M. 4) (dB(f) is
a continuous random measure) and f(t) never vanishes.

Making use of this theorem, we have (under the same
assumptions)

Corollary 1. Let Y(t) be expressed in the form (1.5). If
Y () is continuous in the mean, then f(t) is continuous and U(t) is
continuous in the mean.

Proof. If Y(¢) is continuous in the mean, then

lim E(Y(@)Y(s)) = E(Y(,))Y(s))

1>,

by the continuity of inner product in L*(Q). By (II.5), this can
be written as,
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11131 SO EWURU(S)) = fE)S)EWU(s)), t>s,

since U(#) is additive. Noting that f(s)==0 and E(U(s)*)==0, we can
see the continuity of f(¢#). The continuity of U(#) follows from
E{UMU$) =1, 8)/(f @) f(9).

In particular, if T=[0, ) and E(U(f)*) has a continuous
derivative, U(#) becomes an ordinary Brownian motion by the
change of time scale.® In other words, Y(!) has a canonical
representation (dB,(¢), f(¢)o(u)) with Wiener’s random measure B(-)
and a proper canonical kernel f(f)o ().

Corollary 2. If Y(¢) is a stationary simple Markov process
satisfying the conditions (M. 1), (M. 2) and (11. 3), then it has a version

(I1. 6) cSt e N0dB ), A0,

Proof. As is easily seen in the proof of Theorem II. 1, the
covariance function vy of Y(f) can be written in the form

IL.7) v(h) = fE+nfBe)?, h>0,

even though we do not assume (9. 4). Putting =0 in (II.7), we
have

Sh) = coy(h),
and putting 2=0 in (II.7), we have
o)’ = c,f(t) 7 = cyy(h) 2.
Hence it follows from (II.7) that
coy(h+1) = cy(h)-cy(t) .
Since v is bounded above, we have

y(h) = cfe M A >0.

§II. 2. Multiple Markov Gaussian processes.

In this article we shall define N-ple Markov process as a
generalization of simple Markov process and study its properties.
The property (II.2) for a simple Markov process suggests that it
is natural to give the following

Definition IL. 1. If {E(Y({,)/B,)},i=1,2,.-, N, are linearly

1) See Seguchi-Ikeda [1].
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independent for any {¢;} with {,<¢ < ¢,<---<ty, and if {E(Y(¢;)/
B,)}, i=1,2, .- N, N+1, are linearly dependent for any {¢;} with
8, <t,<++<tns, then Y(¢) is called N-ple Markov process.

A simple Markov process is a 1-ple Markov process in this
sense only if it satisfies (II. 3).

Theorem II.2. [If Y(¢t) is an N-ple Markov process satisfying
(M. 1), (M. 2), (M. 3)and (M. 4), it has a version X(t) expressed in
the following form

(IL 8) X = "5 £i0gwaBw

" with a proper canonical kernel é fi(®) g:(w), where {f;(1)}, i=1,2, -,
N, satisfy
(II. 9) det (f:(¢;)) == 0, for any N different £,

and {g;w)}, i=1, 2,---, N, are linearly independent as the elements
of L*v; t)® for every t.

Further the covariance function ' of Y(t) can be written in the
form

DG, ) = SAOMG), <t

where {f:(1)}, i=1,2,---, N, are the same as above and {h;(s)},
i=1,2,---, N, are linearly independent.

Proof. By the assumptions there exists a proper canonical
representation (dB(¢), F({, u)) of Y(¢):

Y ~ X(@¢t) = StF (¢, u)dB(u), (~: equivalent in law)

It is sufficient to determine the form of F(f, #) in the region
D={(u t)); u<t} instead of D on account of the assumption (M. 4).

If Y(#) is an N-ple Markov process, then we can prove that,
for any {#;} with #,<¢,<---<ty and for any 7 >ty there exist
{aj; t,, t,, -, ty)} j=1,2, -+, N, such that

(II. 10) Y('I')—— i::laj(q'; t]) tz; "ty tN)Y(t])

is independent of every Y(s), o<%¢,. Therefore we have

2) L2(v; H)={¢; ¢€ L¥(v) and ¢(u)=0 for u>t}.
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[P, wiFe, w— Sars tita, o, tFE, whdow) =0,

using the representation of Y(¢). Since F(o, #) is a proper canonical
kernel, it is equivalent to

(IL 11) Fir,u) = 2 aj(r; 1, 1y, -, tF(E;, 1)

as an element of L*(v; ¢,) (see Theorem I.7).

Take N different {s;} with s<(s,< -+ sy, arbitrarily in the
interval (—oo, £,)NT. Expressing F(r, ) and {F(¢;, u)}, j=1, 2, -,
N, in (IL 11) by {F(s;, »)}, j=1,2,+, N, in the same way as in
(II. 11), we get

N
_5‘.,ch,-(T ; Siy Sz 00, SMEF(s;, u)
£

N
= de('T; bty e, tN)aj(tk; Siy 82500 SN)F(SJ', u)

k,j=1

as an element of L'(v; s)).

Here {F(s;, w)}, j=1,2,---, N, must be linearly independent
functions in L*(v; s,) ; in fact, if this is not true, then {E(Y(s,)/B;)},
j=1, 2, --- , N, are linearly dependent, which contradicts our assump-
tion. Hence we have

N
(II- 12) Zak(‘T; tl’ tz: e, tN)aj(tk; S1y Say 00, SN)
k=1
= a,T; 8,8, ", SN), for every j.
Now we can prove
(IL. 13) det (a;{t,; s, S50, S8) =0,

because
N
Ft;, u) = 2a,(t;; s, S, -, SNF(S,, u), j=12 -, N,
E=1

are linearly independent functions in L*(v; s,). Therefore we have
(II. 14) a(r, t) = alr, s)B(s, t)
by (II.12) and (II. 13), where
a(t, 8) = (a7 S, S5, =, SN, vt AN(T S Sy, Sy, 000, SK))
and
B(2, s) = (bt 2 -+, Ins Sy Sy, SA)), k=12 --, N,
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with det (B(Z, s))==0. Taking N different s;(<s,), we have
a(r, 1) = a(r, s)B(s, t) = alr, s")B(s’, s)B(s, 1),
a(r, t) = a(r, s')B(s/, 1),
by (II.14). Hence we have
(II. 15) B(s’, s)B(s, t) = B(s’, 1) .
Fix all ¢s and define f(7), s=(s,, s, =+, Sn), by
f.(t) = a(r, s)B(s, 1) for = >sy,

where s is any N-ple (s,, S,, -+, Sx) such that ¢y >ty - >t >
Sy >Sn_, >+ >s,. Then we can use (II. 15) to see that f,, is an
extension of F(T) if Sy >SSy, > >8>Sy >SSk > > ST,
Hence there exists a common extension for all f(r)’'s. We denote
this common extension with f(¢)=(f,(#), ---, fa(). Obviously these
f:(#) satisfy (II.9) on account of (II. 13) and the definition of f,(r).

Take u € T° and fix it. If o >ty > >t _>sy > - >5,_>u,

then we have
Flr, u)(= 2 ayr i b, b EF(,, 1)

= alr, HF (L, u)* (F(@, u) = (F(,, u), -, F(ty, u))

= f(7)B(s, §)'F (2, u)*

= f(r)g(u, s, t)*, (8(n, s, t) = F(t, u)B(s, H)*7").
For o >tj>--- >t] >sy -+ >si, this is equal to

f(r)g(u, s, t)*,
so that
f(r)gu, s, t)* = f(r)gu, s, t')*
for « >max (¢4, ty). Since f satisfies (II.9), we have
gu, s, t)y=gu,s,t).

Therefore gu)=g(u, s, t) is well defined as a function of u,
and

Fit, w) = fhigy = 3 7:0&w),

where {g:(u)}, i=1, 2,---, N, are linearly independent as elements
of L*(v; t), since {F(¢;, u)}, j=1,2,---, N, are linearly independent.
Further we have
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I, ) = 3000700 | @itg e dow)

N
= le Fi(@®hi(s) .
Then if

é a;:h;(s)=0

for some constants a,, a,, ---, ay,
s N N
[ 2 709 g,000 2} asgsandvr = 0.

N
Noting that Z f(s)g;() is a proper canonical kernel, we have

‘é a;g:(u) =0.

Hence all the ¢; must be 0. Thus we have proved the theorem
completely.

N
A kernel Z f:(t) g:(u) satisfying the conditions stated in Theorem

II. 2 is called a Goursat kernel of order N.

It should be noted that the expression (II. 13) is not uniquely
determined, but the number of the summand is independent of the
special way of expression as we have seen in the proof above.

As another remark, we should note that a process with a version
of the form (II.9) is not always an N-ple Markov process. In
order that the converse of this theorem holds, it is sufficient to

impose some regularity condition on the kernel as we shall see in
§II. 4. 3°).

Example 11.1. If f(f) is a function which is 1 for rational ¢
and 0 for irrational ¢, then X(¢)=f(#)B,(f), 0=<¢< oo, is not a 1-
ple Markov process, though it is expressed in the form

X(t) = S:f(ndBo(u) :

§II. 3. Stationary multiple Markov Gaussian processes.

Let Y(¢), te T=(— o0, o), be a stationary Gaussian process
with mean O satisfying the conditions (3. 1), (M. 2) and (IR 4).

(M. 4) Y(#) is continuous in the mean.
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Then by Karhunen’s theory, we can see that Y(#) has a canonical
representation and that it is expressed in the form

Y = St_wF(t—u)dBo(u), E(dB,))* = du,

using a canonical kernel F(¢#—u). This canonical kernel is uniquely
determined up to sign and is proper canonical.® Thus, in order
to study the multiple Markov process for stationary case, it is
sufficient for us to study the canonical kernel F(f—u).

Lemma IL.1. Let {f:(t;}, i=1, 2, ---, N, satisfy (11.9) and let
{g:w)}, i=1, 2,---, N, be linearly independent as elements of

L*((— oo, c]) for every c. If éf,-(t)g;(u) is a function of t—u in

the domain D= {(u, t); u<t}, then {f:(1)} is a fundamental system
of solutions of a certain linear differential equation of order N with
constant coefficients, and {g;w)} is also a fundamental system of
solutions of its adjoint differential equation.

Proof. First we consider F(t~u):§f;(t)g,-(u) in the region

Dy={(u, t); u<0,t=0}. Let D, be the set of all C”-functions
whose carriers are compact sets lying in the interval (— oo, 0]. Then

Fp)t) = | Rt wpwau

is well defined by the assumption and belongs to C=((0, «)) for
every @ € D, (Schwartz [17]).

Next we shall prove that there exist functions ¢;(u), j=1,2, -,
N in 9, such that

(IL. 16) det ((g:, »;)) #+0, i,j=1,2-, N,

where (g, ) denotes the inner product of g and @ in L¥T). In
fact there exists a function ¢,(u)€®, such that (g,, @,)==0. (If
there were no such function, g(x#) must vanish on (— oo, 0)).
Inductively, suppose that ¢,, ¢,, .-, @, €D, are chosen so that

det ((g:, ®;)) == 0, i,j=12 -, n.

And consider the determinant

3) For proof see Karhunen [1]. Also, M. Nisio gave another proof, which I knew
by private communication.
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(gI’ q)l) (gu ¢2) (gn (pn) (gu (P)
(&, P) (& P - (&) Pa) (&, P

(gn+1 ’ ¢1) (gn+1’ ?2) i (gn+17 (pn) (gn+1) ¢)
If this determinant vanishes for every @ €D, we get
Al(gl ’ (P) +A2(g2» q)) +oeeet 'An—n(gn+1 ) (/)) = 0, P € @0 ’

by expanding this determinant with respect to the last column ;
since @ is arbitrary, we have

Algl(u)+A2g2(u) + e +An+1gn+1(u) =0 a.e. in (—')07 0) .

This contradicts the assumption that {g;«)}, i=1, 2, ---, n+1, are

linearly independent, since A, ,,==0 by the assumption of induction.

Thus we can take {p;w)}, j=1,2, -+, N, so that (II. 16) holds.
On the other hand, considering '

(Fxp,)(t) = §: (&, Pfit)

and (I 16), we can see that f;(¢) is a linear combination of (Fx@,)(t)
which belongs to C=((0, )) Hence f:{t) € C”((0, =)) for every i,
so that F(t) € C~((0, )). From these facts we can see that
g:(u) € C=((— =0, 0)) for every 1.

Applying similar arguments to every region D,= {(u, t); u<a,
t=a}, ae T, we can see that

fi(+), g(+) e C=(T°), i=1,2 -, N.
Thus we have
ak
otk
N
G SAOE, k=01, N,

N
L N e O VU ()

Putting u=0, we get

LR = (DB 10gP0, k=01, N,

Therefore there exist b,, b,, ---, by such the ilbil\)o and that

boF‘N’(t)—l—blF(N"’(l‘) + e +bNF(t) =0, t> 0 »
so that
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bF Nt —u)+ b, FN Ot —u)+ - +byF(t—u) = 0, ¢t >u,

namely
i‘; (bof W)+, f T VB + -+ b fil))giw) =0,  t>u.

Since {gi;(»)} are linearly independent in L*((— oo, #]),
bof§N)(t)+b1f§N_l)(t)+ "'+bei(t) = O» i = 1; 2) Tty N'
If 5,=0, then f;(¢) satisfies

CHB L)+ benfylt) = 0. Sal+0,

as a system of N solutions of linear differential equation of at
most order N—1, which contradicts (II.9). Hence {f:(#)} is a
fundamental system of solutions of linear differential equation of
order N with constant coefficients.

Exactly in the same way, we can prove the assertion for
{g:(u)}.

By the well-known fact in the theory of linear ordinary dif-
ferential equations, F(f—u) is a linear combination of the functions
of the following types:

e M wsin u(t—u), thu" ke " sin w(t—u), (u=0)
(I1. 18) e ™% cos ul{t—u), thu" ke "% cos u(t—u), (u may be 0)
0<k<n, n<N.

By Theorem II.2 and Lemma II.1 we have

Theorem II.3. If Y(¢) is a stationary N-ple Markov process
satisfying the conditions (M. 1), (M. 2) and (. 4'), then its canonical
kernel is a linear combination of the functions described in (IL. 18)
with A>0.

The functions in (IL. 18) (for x==0) are split into two terms
of the form f(f)g(x). Therefore the number of the terms in the
expression of the kernel is exactly N.

Corollary. The spectral measure of a stationary N-ple Markov
process is absolutely continuous with a density function of the fol-
lowing type :

[QEN) /PN |*,

where P is a polynomial of degree N and Q is also a polynomial of
degree at most N—1.
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Proof. The spectral density function is obtained by Fourier
transform of F(.). Hence our assertion is obvious.

This process is a component process of an N-dimensional sta-
tionary simple markov process in Doob’s sense, Doob [1].

§II.4. Some special multiple Markov Gaussian processes.

1°) Let Y(f) be a stationary N-ple Markov Gaussian process
which is differentiable (with respect to L*Q)-norm) up to N—1
times. Such process plays an important role in the study of N-ple
Markov processes as is seen in Doob’s work [1].

Now let us assume that Y(f) is expressed in the form

Y(t) ~ X(t) = S‘ F(t—u)dBy(w)
with a proper canonical kernel

Fit—u) = é Si(t)g:(u) .

Then we have the following

Theorem II.4. Let X(t) be a stationary N-ple Markov process.
Then
i) a necessary and sufficient condition that X(t) is differentiable is
F(0)=0,
11) in this case, theve exists a complex number N such that

At d -At
(I1. 19) e 'dte X@)

exists and it is a stationary (N—1)-ple Markov process.
Proof. 1) If h >0,

1 1 t+h
(X (B - X(1) = Wst F(t+h—u)dB,(u)
+ Ht (F(t+h—1w)— F(¢ — u)} dBy(w) .

Since F(t—wu) is analytic in D, the first term of the right hand

side tends to O (in the mean) as /% tends to O under the assumption

F(0)=0. Hence lim A '(X(+h)—X() exists. Similarly lim
k04

h>0—
(X @+ h)— X(2)) exists and

(I1. 20) X'(t) = S' ‘aa‘t F(t—u)dByu) .
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Conversely, if X(#) is differentiable, then

dX(t) = FO)dB,{)+ dtS' %F(t— 4)dB, ()
will be of order dt, so that F(0) should vanish.
ii) As we have seen in Theorem II. 3, f;(#) is a solution of a
linear differential equation with constant coefficients. If we choose
one of the characteristic roots of the differential equation, say A,

Mi

-t _
dte F(t—u)

e

is obviously a proper canonical Goursat kernel of order N-—1.

The existence of (II. 19) and the stationary property are obvious.
When M is real (II.19) is real valued process. When A is

complex, say A=A+, (II.19) is complex valued process, but

A® &R0, AB) =t cos g,

is a real valued stationary process.
If F(¢) satisfies the conditions

FO)=F'(0) = -+ = F¥50) =0,
X(t) is differentiable N—1 times. Then we can take a sequence
of complex numbers A,, A,, -+, Ay_, such that

(H. 21) ehit gte(xi_lf)\,-)r %e“‘f)@’ g}e—xltx(t) = X[i](t)
exists and it is a stationary (N—z)-ple Markov process.

Such a process was studied by Doob [1] and the formula
(I1.21) suggests more general differential operator which will
appear in 3°)

2°) We shall now discuss a multiple Markov process with a
homogeneous canonical kernel; F(¢, ) is called to be homogeneous
function of degree a if Fict, cu)=c®F{t, u). This process can be
transformed into a stationary process by time change by virtue
of the following

Lemma IL. 2. (P. Lévy) Let X(t) be expressed as
(IL. 22) X(t) = S'F(t, w)dB,(x)

with a proper canonical homogeneous (of degree ) kernel F(t, u).
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Then t=27"2X(t) is a stationary process of logt (P. Lévy [4; p. 141]).
Applying this lemma to N-ple Markov process, we get

Theorem IL.5. Let X(t) be an N-ple Markov process and be
expressed as in Lemma 11. 2. Then ¢~ ****X(¢*) is a stationary N-
ple Markov process. Conversely any stationary N-ple Markov process
X(t) is an N-ple Markov process with homogeneous kernel of degree
0 changing the time parameter from t to e :

V't X((log t)/2) = X(t).

Proof. The first part of the theorem is an immediate con-
sequence of Lévy’s lemma, if we notice that N ple Markov property
is invariant under such time change.

If X(¢) is a stationary N-ple Markov process, it is the sum
of the processes of the following types:

(IL. 23) [" errmap, | ¢—wrereabw.
Changing the time scale, they become

t k+1pt
(IL. 23) V~1——-2:So(u/t)<*">/2d13‘o(u), (\%) [ tog G/t ->rdBy
respectively. Hence X(#) is an N-ple Markov process with homo-
geneous kernel of degree 0. If A is complex, these expressions are
not real, but we can reduce them to real ones by the same procedure
as used in the proof of Theorem II. 4. i).

3°) Let us generalize the results obtained in 1°) and 2°) to
the case in which X(#) is a general N-ple Markov process: our
results include also those which were discussed by Dolph-Woodbury
[1] and Lévy [4]. For the sake of brevity we shall assume
T=[0, ). We can discuss stationary N-ple Markov processes
with parameter € (— oo, o) in this scheme, if we apply to it the
time change used in 2°).

We shall consider a process X(#) which is expressed in the form

(1L 24) X0 =’ 3 g waB),

N
with a proper canonical Goursat kernel z_} fit) g:(u).

Hereafter (throughout this article), we shall always impose the
following conditions on the kernel:
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(A.1) fi, &€ C™(T°), for every i,
(A.2) fi: and W(g,, g, -+, &) never vanish for every 7,

where W(g,, &, -, &) is the Wronskian of {g}, j=1,2, -, i.
By these assumptions, we can find functions v,, v,, -, Vn_,
such that

L25) g = (—0% )| 2,00( 0.0

UN—i-1 .
So Un-i(un- ) (du)N~?

and that
vi(u) € C™(T"),
(1L 26) { v;(#) never vanishes, i=0,1,--, N-1.
Using these functions {v;(%)}, i=0, 1,-.-, N—1, and a function

vn(u) satisfying (II. 26), we can define measures
m; (M) :S viwdu, MeBy, i—=0,1, -, N,
M

and the following differential operators :

L -4.d . d 1 |
T dm,dm,  dmy_, on(@E)
[o_d _d . d 1

_‘Wjdmjﬂ . dmpy_, ) un(t) )
L* = the adjoint operator of L,
d d d 1

~dmydmy_, " dm, " v,)
i d d 1

Lk —-_42 ¢ .. % - .
dmy_;dmy_;_,  dm, V() .

We shall often use the following notations :

P, w) = 3 filhgw), u=t,

(€3] — 9’_
FO, u) =257, w),
FUl(t, u) = L¥PF(t, u) .

Theorem IL. 6. Let X(¢) be defined by (I11.24) and let the ca-
nonical kernel of its rvepresentation satisfies the conditions (A.1) and
(A2). If
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(II. 27) Fit, ) =F®¢, t)=--FY >t t) =0 and FN (@, t)
never vanishes,

then we have

) X0 = LX) exists for ewery i=N-1,
ii) X(¢) satisfies the equation

(II. 28) L. X(t) = B{(?),

where Bi(t) is a derivative of By(t) in the symbolic sense, so that (11.28)
means dLPX(t) =v,(t)dB,(t), and the measure my associated witn L,
should be taken appropriately.

Proof. 1) is proved in the same way as in the stationary case
(Theorem II. 4, i)).

il) Define vp{(f)=f,(¢). Since vy{¢)™'-F(¢,t)=0 by assumption,
we can prove the existence of %vN(t)“X(t); namely L¥PX(f) ex-
ists. Similarly, we can prove the existence of L{"X(f), i=N—2,
N—-3, -+, 1, since FUI¢, t)=FU(t, t)=-.-=FW*(¢t, t)=0.

Rewriting (II. 27) in the following forms

N

Ef(ik)(t)gz(t) = 0) k= 0’ 1’ Tty N'—]-:

N
_Z]f@”"”(t)g;(t) = a(t), with a(t) =FY (@, t),
we can see that F(¢, u)/a(x) is a Riemann function for a certain
linear differential equation
th =0
of order N. The fundamental system of solutions of its adjoint
differential equation
Z:fg =0
is {g:(w)/a(u)},i=1,2, -+, N, as is well known. Hence L¥=L*.0(u)

with a certain function v(x). Thus we can prove that Z,zv(t)-L,.
By the property of Riemann function »(¢) must be 1, and therefore
we have

.29 £it) = on®) dmy., [dmy [ - fdmy s,
i=12 -, N,
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which proves that

LPF(t, u) = gnlu) = v,(u) .
Hence

LOX() = S'LgDF(t, 4)dB,(u) = S'vo(u)dBo(u) .

Thus we can prove ii).

Combining this Theorem II. 6 with Theorem II. 9. in §II.5 we
can see that this X(#) process is an N-ple Markov process in the
restricted sense in Lévy’s terminology

Corollary. Under the same assumptions as in Theorem 11.6,
LY X(t) is an (N—1i)-ple Markov process in the restricted sense.

Proof. As is easily seen in the proof of the theorem above,
LX) = g'L;”F(t, w)dB,(u) .

Since L{PF(¢, u) is a Riemann function for the differential equation

d d

‘i;;ll ces jm_:;f: O ,

our assertion is obvious.

Theorem II.7. Let {v;(u)}, i=0, 1, ---, N, be functions satisfy-
ing the condition (11.26). If we define fi(t)'s and g;(u)’s by (IL. 29)
and (I1. 25) respectively, then

i) F{, u)= é fi(t)g:(u) is a proper canonmical kernel,
il) a process defined by

t N
X@) = Sogf;(t)g,-(u)dBo(m

is an N-ple Markov process,
i) Fit, H=FU, t)y=--=FVN2t t)y=0 and FN O, t)
never vanishes ; namely Theorem 11.6 holds for this process.

Proof. 1i). We shall prove i) by using the kernel criterion
which was given in §I.4.
Suppose that

S'F(t, WPwdu=0  in (0,2,
for some #,€ T and some @€ L*[0, ¢,]). Writing it in the form
N t
> £ilt)| g ptdu =0,
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and multiplying v,(¢)”', we can obtain its derivative (in Radon-
Nikodym sense)
N

t N
Efgl](i)gogi(u)¢’(u)du+(;fi(f)gi(l‘))ﬂf) ~0

a.e. in (0, ¢,).
Since the second term of the left hand side vanishes (because
N
> fi(t)g:(w) is a Riemann function corresponding to L,), we have
i=1

N

2f§1><t)§:g,~<u)rp(u)duso, in (0, 4),

by taking an appropriate version.
Repeating such procedures, we can prove

v,<t>§'vo<u><p<u>du =0, in (0,4).

Hence @(x) must be 0 as an element of L*[0, £,]).

ii) First we shall prove that
(II. 30) A(t,, t,, -+, ty)=det (fi(¢;)) #=0 for any different £/s.
If A(t,,¢,, -, ta)=0 for some ¢ < £,<:--<ty, We can prove
D(t, t,, -, tN)

t) t ty_, |
! S vN—ldu» S vN—ldu’ Tt vN—ldu ‘
ta t

3 24 i

S:ZDN»lng—z(du)za StzvN—-lng—z(du)zy ey Sii—]vN—lng—z(du)z

t3

l
I
o

. StN_‘vN—IS"'SvI(du)N-]

Iy
since vy never vanishes. By the mean value theorem, we have

UN—1(t{), UN~1(té)» "'yvN—l(ﬂV'—l)

o “ond i e W0y d
~N-all] N-20U, V-, (283) OUN—z Uy, Uy (o) Un-_aU
0

0

'?

i

|
, , =0
o) fontair s, v ) (o, |

o vN_l(tﬁv,,)S:ipl'“va(d”)N_z |
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for some {t/},i=1,2,---, N—1, with ¢/ € (¢;, ¢;,,). Since vy_, never
vaishes, it is proved that
D@1, tz, -, tx-) = 0.
Successively we have
D(ty, t;y, =, typ) = = = DEF 2,7 ) =0

for some {¢{"}’s with £ € (#7, 1E3D).
Finally we have

I(N-Z)

[ potwdn =0,
2

which contradicts the assumption (II. 26).
Therefore, by (II.30), we can find functions {a].(t; t,, t,, -
tw}, 7=1,2,---, N, such that

N
(IL. 31) Elaj(t; A PRI tN)fz(t]) = fi(®)
holds for every i:. Hence
N
X()— Z_;aj(t; Ly by ooy tN)X(tJ)

is independent of every X(r); r<¢,.

On the other hand {E(X(¢)/B,)}, j=1,2,---, N, is linearly
independent for any choice of ¢;’s with #,<#,<---<#y, since g;(u)’s
are linearly independent as elements of L*[O0, ¢,]). Thus the asser-
tion ii) is proved.

iii) is easily proved, noting that F(¢, #) is the Riemann function
corresponding to L,.

Theorem II.8. Let X(f) be defined by (IL. 24) with a canonical
kernel F(t, =3 £, and let f{&)s and g0’ satisfy the
conditions (A. l)l_and (A.2). If

F(t, t)=F(, t) = - = F* (¢, ) =0 and F®(, t)=£0

for some k(< N—1) independent of t, then theve exist Y(t) which
is an N-ple Markov process in the restricted sense and (N—1)-th
order diffevential operator M, such that

(IL. 32) X@t) = MY ().
Proof. By assumptions (A.1) and (A.2), g;(#)’s can be expressed
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in the form (II.25). Therefore there exist a differential operator
L, and a Riemann function R(%, u)=§ f:()g:(u) corresponding to L,,
where f;(¢) is defined by
~ t .
Fitty = o dmy [y o Jamy o i=1,2, N
Define Y(f) by
Y() = S'R(t, w)dBy(x) .

Then, this Y(¢#) will be the one to be obtained.
The assumption (A.2) implies W(f,, f,, -, fa)==0 for every
t. Therefore we can find a differential operator M, such that

~ N -1 ~
M, f:(t) = g b,(0)f () = fi(@), t=1,2--, N.
Noting that Y(f) has the j-th order derivative
YO(t) = S'RU‘)(t, w)dBy(u)

for every j<N—1, by Theorem II. 6, i), M, can be operated to Y(£)
and we have

M, Y(#) ENZ::_: bj(f) Yd(¢)

= ("o, 00ro¢, was,w

0 j=

— [ 5303, 7.0 g:0dB )

0i=1 j=1

I

[ $1 08 waBw

-

This completes the proof.

Example 11. 2. Lévy’s example X,(!) which we discussed in
Example 1.5 satisfies all assumptions imposed on the canonical
kernel in Theorem II. 8, where N=2, v,=v,=1 and k=0. In this
case

Y) = S:(t— 4)dB, ()

4,

and M,= 7
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§II.5. Prediction of multiple Markov Gaussian processes.

For a Gaussian process Y(¢), the least square linear prediction
on the basis of its values before s(< ¢) is obtained by the condi-
tional expectation E(Y(f)/B,), as is well known. If there exists a
canonical representation (dB(f), F(t, u)) of Y(¢), then, by definition,

(I1. 33) E(X(t)/B,) = SSF(t, WdBw), (X(t) = S'F(t, w)dB(w)) .

It is our aim to express it in terms of X(r), +<s.

Theorem I1.9. Let Y(¢) be a process defined in Theorem 1. 8.
Using the same notations, we have

(IL. 34) E(Y(@®)/B,) = ébj(t,s)Yff“J(s), s<t,
where ]

(IL 35) bt 9) = 23D/ A)

with

A(s) = det (fI57s)) and A,; = (j, i)-cofactor of A(s).

Proof. Putting U;(s)= Ssg,-(u)dBo(u), we have

s N

.36 E(Y®)/B) -
On the other hand,

Fi B ) = SIFOULS) .

0i=1

Y¥(s) = LE-0Y(s) = 8 fRULs), k=01, N-1.
i=k+1

Since
M) = (@) =) +0,
oL e ol

U;(s) can be written in terms of YUI(s)’s, k=0, 1, ---, N—1, that is

L FUS) Suls) e YS)  fals)

L0 R e YENs) e FT(s)

(s) — 1 | e YL e FL2

(I1. 37) U;(s) A(s) } 0 0 Y E(s) F5(s)

L0 0 oo YIN-I(s) .o fEF-11(g)

Combinig this with (IL. 36), we have
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A Yff“‘J(s)>
S

E(Y(t)/B,) = éf "(t)<,-2:A( )
A

which was to be proved.

Corollary. Let X(t) and Y(t) be the same processes as in Theorem
II.8. Then we have

(IL 38) E(X(t)/B) = ¢t )YIs),
where
oty s) = ST
09 = R0
A(s) and A;; being the same as in (I 35).
Proof. Noting that
BX(®)/B) = S f:(OUs)  for every s<_t,

we can easily prove (II. 38).

This corollary suggests the following symbolic calculous of
determing the predictor. Using the differential operator M, defined
in (II. 33), (II. 38) becomes

EM,Y(®)B,) = ij c,(t, $)YU(s)

— i‘» Mb;(t,9)YV(s) = ME(Y(8)/B,) .

This means that M, and E(-/B,) are commutative.

On the other hand, (II. 38) may be denoted as
BX(1)/B) = 3 ¢t, (M X@)E™,

where M;! is an integral operator such as M, (M;'X(#))=X(?).
Hence formally speaking, the prediction operator for X(¢) is com-
posed of differential and integral operators.

Theorem II.10. Under the same assumption as in Theorem 11.9,

hm iai(tv Siy Say 7y SN)Y(Si)

SNTS"=1
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exists and equals E(Y ()| B,), where ai(t, s,, S,, *+, Sx), t=1,2,--, N
are the functions determined by Theorvem 11.7, (II. 31).

Proof. Refering to the proof of Theorem II.7, we have

N N 1
2ty 51, 8, 0, SMY(s) = E( RWE o ; f (t)A‘{’)Y(si)

i=1

B t A(M)Ysi ,

ZAN(s,,--., f()(Z (s9)
where A,(s,, Sy, -+, Sy) has been defined in Lemma II.5 and A§{)
is its (j, 7)-cofactor. Letting s,, s,, -+, sy tend to s successively,

N
we can easily prove that > a;(¢, s,, S,, -+, sa)Y(s:) tends to
i=1

N 1 - N A N .
Sk Fi) T AYU ) = 2bult, 9YE)
as was to be proved.

For stationry case, such prediction problem is well known (cf.

J.L. Doob [1], [2])

§II.6. Sum of stationary multiple Markov Gaussian processes.

As we discussed in §1I. 3, any stationary N-ple Markov process
is considered as the sum of stationary N;-ple Markov processes
in the restricted sense with >IN;=N. The converse problem will
be discussed here.

For the sake of simplicity we shall consider the sum of sta-
tionary simple Markov processes, which is 1-ple Markov process
in the restricted sense. General cases are treated similarly.

Let Y,;(#), j=1, 2, ---, N, be stationary simple Markov processes.
Taking appropriate versions we can express Y ;(¢) with respect to
the same random measure B,(-) as follows

J

(I1. 39) Y ) = c].St e 2" 4B, (u), A;(>>0), c;: constants

—oo

=12, N.
Now let us consider
N
(IL 40) vy = 57,0 =" S e dBw

Obviously it is at most N-ple Markov stationary process. Even in

N
the cast that all the \}’s are distinct, the kernel F(t —u) =2 c;e %™
ji=1
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is not always canonical (Example II.3), and Y(¢) is not always N-
ple Markov process (Example III. 3.).
1

Let 15‘(7\,) be the Fourier transform of F(x); F‘(X):ﬁre“”"‘.
V2w Jo
F(x)dx. Then

FA‘O\') — ?QQXL , =+v=-1,

(II. 41) I+

where Q(/\) is the polynomial of A at most of degree N—1.
Writing

(IL. 42) QN = S a1,
we have

Theorem II.11. F(t—u) is the proper canonical kermel if and
only if Q(x) has no zero point with positive real part.

Proof. We use the kernel criterion proved in §1. 4.
Define the numbers b,, v=0, 1, .-, N, by

N N
I (x4+\) = VbV,
j=1 v=0
And define the differential operator L, by
N d N-v
L=gn(g)"
Then we can easily see that

L, %™ =0, consequently L,F(u—t)=0.

Now suppose
(I1. 43) St Fit—u)pu) =0, for some @€L*(— o, a])nD,

where D= {p; € C” and has compact carrier}
The (k+1)-th derivative of it is

(I. 44) FO)p®(t) + F'(0)p* 2(t) + - + F®0)p(t)
+{" Fot—wewde =0, k=0,1,, N-1.
Then from (II. 43) ao;ld (II. 44), we have
FOCE by s @ 0)+FO) (S b 2 (E) + -

+FO )b+ | Lt wpedu = 0,



148 Takeyuki Hida

that is,
N-1 N-1
2 FC0)(Z by ™ ™)) = 0.

If we introduce a new differential operator

~ N-1 N-1-j
- dj(i) ,

with @ X’_]F “(0)b;_,, then the above equality can be written as
(I1. 45) ,rp(t) =0.

Non trivial function ¢ satisfying (II. 45) exists and belongs to
L*((— oo, a]]) if and only if the characteristic equation

(II. 46) }jax”‘f—O
of E, has at least one root with positive real part.
On the other hand, noting that

S e~ MEB(x)dx = F*(0)+ ((MFF(0) 4 (V) F*2(0) + -

+(@NEEQ)
and

FO) 350N = QN

we can prove

a; = a; for every 7,

Hence the desired condition is equivalent to the one that
N-1
(I1. 467) > a;xN ' =Q(x) =0.

has no root with positive real part.

Generally, not assuming that @ €D in (II. 43), the same asser-
tion is true, since (Fx@)(#)=0 is equivalent to Fx(pxa)(t)=0 for
every ¢ €D. (Note that (pxa)(t) € C”). This completes the proof.

If we observe the proof of this theorem, we can see that its
proposition may be improved to the case that all the Y ,(#)’s are
stationary multiple Markov processes in the restricted sense.

As an obvious consequence of this theorem, we can say that
Y(t) defined by (II.40) is an N-ple Markov stationary process, if
the condition of the theorem is fullfilled. In particular, it is an
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N-ple Markov process in the restricted sense if and only if all the
a;s are zero except a,.

Example 11.3. Consider a process
X(t) — 3&' e-<f-u)dBo(u)—4S' e *t"0gB (u) .

oo oo

The kernel 3e % —4e¢ **"* is not a proper canonical kernel.

Sction III. Leévy’s M(t) process.
§III. 1. Definition and known results.

Let X(A, o), A€ EN (N-dimensional Euclidean space), o € Q,
be a Brownian motion with a parameter space EV, that is

i) X(A) is a Gaussian random variable with mean 0
for cvery A,
(I1L. 1) ii) X(0)=0, where O is the origin of EY,

iil) E(X(A)— X(B))*=r(A, B), where (A, B) denotes the
distance between A and B.

Since X(A4, ») is continuous in A for almost all o, (P. Lévy
[1], T. Sirao [1]), the following integral is well defined and we
have a Gaussian process My(¢) with a parameter space T=[0, o),

(1L 2) M (t) — Ss<,>X(A)d"(A) ,

where Sy (¢) is the sphere in EV with radius £ and do is the uniform
measure on Sy(f) with o(Sy(£))=1.

P. Lévy studied the canonical representation and the Markov
property of this process when N is odd (P. Lévy [3], [4]).
Since E(My(t))=0, the covariance function of My(¢) is

(III. 3) LUn(2, 8) = E(M, (t)My(s))

E(X(A)X(B))do(A)ds(B)

XAGSN(DSBESN(S)

= (t+s—pylt, 9))/2
where

pult, s) = S 1A, Bydos(A)ds(B) .

AESN(DSBESN(S)

By the simple computations we have, for f=s,

(III. 4) P t) =t n_o/Iy_, (N =3)
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/2
with Ik:S sin%d d@ and ],,:S1¢ sin *@ sin gde, and for s==¢
0 0 .

(I1L. 5) pult,s) =1 S“r sinV0do  (N=3)
2IN~2

0
with 7= (¢#*+4s*—2¢ts cos 0)%,
Using the analytic property of I'y(Z, s) and others, P. Lévy [4]
obtained many important results concerning M,(f). First, if
N=2p+1, M,(t) may be expressed as

(IIL 6) My(t) = | Putu/t)dB,),

where PN<%> is a canonical kernal defined by
_Zi (! _ a2\p-1

(IIL.7) Put) = 2 g, | -2 dx

= polynomial of degree 2p—1.
For example
Example 11I. 1.

M) = (' @/3—ult+w[36)v/ 3 dByw)
Example 111. 2.

M) = S:(Z/S—3u J4t 4+ 1] 26— 30 | 2069/ 10d By() .

Concerning the Markov property, it was proved that M,,,,(f) has
continuous derivatives of orders 1,2, ---, p and it is a (p+1)-ple
Markov process in the restricted sense.

§III. 2. Canonical representation of M ,(f) process.

We are now interested in the canonical representation of My(f)
for the case that NN is even particularly. First we shall consider
some properties of L'y (¢, s) for odd and even N, and then we shall
study M,(¢f) process.

As P. Lévy pointed out e ‘M(e*), which will be denoted by
X\ (#), becomes a stationary Gaussian process with parameter space
(— o0, o). In fact

(1L 8) BX () Xyt +1)) = = (2 cosh h— “(cosh (2h)

T
\/2 IN—z 0
— cos 0)2 sinN-0 d9> B=0.
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It is a function of % and will be denoted by y(%).

Lemma. If N=4, (k) belongs to C* and satisfies the follow-
ing equation
L9  @N—3) () —qi(h) = 4N—1)(N—2)yy (k) .

Proof. If we note only the differentiability under the integral
sign in the formula (III. 8), we can easily prove the existence of
vw(#) and yy(#). Exact forms of them are

vx(h) = sinh A— siZnIh 2h Sﬂ {2(cosh 2k — cos 6)} 2 sin¥~%0 do
N-2 0

yw(h) = cosh h— 2\/21m5::{2 cosh 2A(cosh 24— cos 6)

—cosh? 2k + 1} {cosh 2k — cos 6} ~*/* sin™¥~%0 do

Thus we obtain (III. 9).
Theorem III.1. [f N=4, we have

(IIL.10)  cyXy_o(t) = e" N9t gie‘zN"“‘)'XN(t), cn = 2/ (N=1)(N=2) .

(Here a process and its version are identified)

Proof. From the above lemma, we can see that e®N~1X,(f)
is differentiable. On the other hand, X,(¢) is purely non-determi-
nistic as is easily seen from the definition, and it is expressed as

Xo(f) = Se"“dZN(X)
with a Gaussian random measure Z,(-). Hence
X0Ut) = e“z”’”'gfSe“'*“”‘“”dZN(X)
exists and is
S(ix+2N— 3)eirdZy(\) .
The covariance function of XU(¢) is
Sem{xu @2N—3)2} | BV | 2dh

= —vw(h)+@N—=3)yn(h) = ciyn-(h),

where |Fy(M\)|? is the spectral density function of X,(f). Hence
X5(¢) can be regarded as a version of cyXy_,(f).
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Thus we can see by (III. 9) and (III, 10) that the study of X, (¢)
is reduced to the study of X,(f) or X,(¢#) so far as we consider.
d

More exactly, if we denote the operator cxjle ®N~»¢ Ee(”‘"”’ by Dy,
it is easily proved that D, can be operated to X,(#) and
DaDs sz+1X2p+1(t) = Xl(t) )

which is the Ornstein-Uhlenbeck’s Brownian motion. Hence X, p1a(2)
and therefore M,,,,(!) is a (p+1)-ple Markov process in the
restricted sense. (This fact was proved by Lévy by another method).
The spectral distribution function of X,,.,(f) has a density

fi Cokt1 1
— k=1 i .
{(4p— 1"+ N} {(4p—5)"+ N7} -+ {3+ N} 14N
Therefore we obtain the following

Xopalt) = || (B a0+ e )by

k=1

ML a2

Here the kernel of the representation is to be determined so that
the square of its Fourier transform is equal to Iﬁ;,,,,l()n)lz and it
satisfies the condition that @(A)=constant. This is posible.

Changing the time scale, we have the canonical representation
of My(?).

Myt = [ L

N )

Obviously thus obtained representation coincides with the Lévy’s
result.

The problem to obtain all non canonical representations of
M,,..(t), where kernels are polynomials of («/¢) of degree 2p—1 is
easily solved, if we observe the spectral density function of X,,,,(?).
The answer of the problem is that “the number of different
representations of above stated form of M,,, (t) is just 27" including
canonical one”.

Proof. 1If a kernel is a polynomial of (#/¢) of degree 2p—1, it
turns into the sum of exponential functions such as e @#*Xt-w
k<2p—1, the Fourier transform of which is a sum of the functions

<2 ([t + a)dByu) .

of the form Hence the number of posible functions

1
v+ (2R+1)°
of sz+1(7\') is just 2?7'. For example we obtain such a function
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multiplying z;—;—%ig’;; to the function 13‘21,“(7\) which corresponds

to the canonical kernel.

Example 111.3. One of the non-canonical representation of
M,(¢#) different from the Lévy’s one (cf. P. Lévy [4] p. 146) is given
as follows: let

50 = (s T 3 s Tioain) A

Fil <(l7t+1)(z7v+3)(z>»+7)(z>»+11) IAN+5
The rational function in the bracket corresponds to the canonical
kernel. Then M,(f) is expressed as

S'(s /15— 3u/t+5u*/ £ — 30| £+ 24| 5£°)\/10d B, (u1) -

If N is even, we also have
D4Ds szsz(t) - Xz(t) .

Hence, if we know the canonical kernel of the representation of
X,(t), then we can obtain that of X,,(f) easily and know the
properties of it.
We have
i Cap

— k=1

A+ 4p—3) N+ (4p—T7)% - (M +5%
in the way similar to the case in which N is odd. Now it is our

purpose to obtain the exact form of IF‘Z(X)IZ. To do so, let us
consider v,(k). If A >0,

va(h) = cosh h/2— 21 S"(z cosh (2h)—2 cos )48
0

7T

IL12) o2 £,

Using the Legendre’s polynomials the integral term of it may be
expanded as follows

ﬁfgo {cosh (2h) — cos 6}'°d0 = % {e"+ g‘f)(a%* t+ai—2a,a,, e PR

where

Taking the Fourier transform, we have

N e S
B0 *2—7,<m §x2+(4k+3)">’
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where
b, = (4k+3) (@, —a,)’ (>0).

This proves that X,(¢) is not a multiple Markov process, but, as it
were, co-ple Markov process.
Let F“(A) be given by

aleD) _ 1 _ S ) ,,,,,ék _)
FP0) ‘<1+v 2N i@k 3y7) %"
Then F™(M\) >0 (since F(\) >|F,\)|?=0) and

log Fm) B
Sl_ﬂ-z_dx> oo .
Therefore, there exists a stationary Gaussian process X¢°(¢) which

is expressed in the form
xeo(t) = | F (- wdB,w)

and has spectral density function F<(\).

Obviously X“(¢) is a stationary (n+1)-ple Markov process and
its covariance function (k) converges to «,(%) uniformly in any
finite interval of 4.

Summing up we have

Theorem IIL. 2. X, () is not a multiple Markov process, but it
is a limiting process of n-ple Markov process (n— oo).

Proof. For p=1, we have already proved. Noting the formula
(ITI. 12), we can easily prove our theorem.

From this theorem we can see that M,,({) is not a multiple
Markov process, but is a limiting process of #-ple Markov process
with homogeneous canonical kernel of degree 0, which was to be
obtained.
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