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Introduction

L e t  B ( t ) ,  0 <t  <0  ,  b e  an  add itive real Gaussian process
with E(B(t))=0 and F(t, u) be a real-valued function of (t, u). The
process -X (t) defined as

(0. 1) g(t) = F t ,  u)dB(u)
0

is a  real Gaussian process with mean 0 , and enjoys the property

(0.2) 9 N 1 ( g )  Ut(B), 0 t < o o ,

where TI,(X) and Vil(B) denote the closed linear manifolds generated
by {g('r) ; T  t}  and { M T ) ; T  <t} respectively. Given a  Gaussian
process X (t), P. Lévy called the expression (O. 1) a  representation of
X (t), if X (t) is version of X (t) and he introduced the concept of
canonical representation. Roughly speaking, a canonical representa-
tion is one for which the equality holds instead of the inclusion
relation in (0. 2) (cf. Definition I. 2  and Theorem I. 2). In this case,
F(t, u) is called a  canonical kernel.

P. L évy has recently published several important papers con-
cerning the canonical representation of Gaussian processes. However
his pioneering works contain some points difficult for us to follow.
The main aim of this paper is to establish his theory systematically
and to prove some new facts.

We shall here give a  brief account of the contents of this
p ap er. In  this paper we shall treat only real Gaussian processes
and often omit the adjective "real Gaussian",
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Section L  General theory.

As P. Levy proved in  [4 ]," a canonical representation of any
process is uniquely determined i f  it exists. W e shall prove this
fact in  detail in § I. 2. Further we shall give a  necessary and
sufficient condition for the existence of the canonical representa-
tion, using Hellinger-Hahn's Theorem in the theory of Hilbert Space.
This fact is not found in Levy's paper.

As to whether a given representation is canonical or not, Levy
gave a criterion using Hellinger integral (P . L e v y  [6 ] ) .  But we
shall give another criterion which proves to be a generalization of
Karhunen's kernel criterion for the moving average representation
of stationary processes.

Section II. Multiple M arkov process.

J. L. Doob (for stationary processes) and P. Levy defined N-
ple Markov processes" using the derivatives up to the (N— 1)-th
order of the processes. We generalize this notion to treat the
processes which are not always differentiable.

The main results obtained here are as follows. The canonical
kernel of the N-pie Markov process is a Goursat kernel o f order
N .  This generalizes the fact obtained by Levy. In § II. 3, we shall
prove that the stationary N-plc Markov process is the sum of
special simple Markov processes which are to be called general
Ornstein-Uhlenbeck's Brownian motions. T h i s  also generalizes
Doob's Theorem [1].

Section III. Levy's M (t) process.

Let X(A ), A E E N  (E N  is N-dimensional Euclidean space), be
an ordinary Brownian motion with N-dimensional parameter (cf.
P . L evy  [4 ]) and MN (t) be the average of X(A ) over the sphere
with center 0  (origin o f E N )  and radius t( 0) in  the parameter
space E N .  MN (t) is clearly a Gaussian process with time parameter
t. Levy discussed the canonical representation and the multiple
Markov property for this process MN (t) only in the case N  is odd.
We shall simplify his proof by transforming MN (t) into a stationary

1) Numbers in square brackets refer to the list o f references at the end of the
paper.

2) In Lévy's terminology "Markov process o f order N  in the restricted sense".
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process. Our present method is applicable to the case N  is even.
We shall prove that M 2 ( t )  is not a multiple M arkov process but
the limiting process of multiple Markov processes. Furthermore
we shall - prove that there are 2P - ' different representation of
/1/0 _1 (t), which provides an affirmative answer to Lévy 's  problem
(L évy  [4 , p. 146])

I would like to express my hearty thanks to Professor. K. Itô
fo r  his encouragement and valuable suggestions and to M r. N.
Ikeda who helped me with valuable discussions in overcoming the
difficulties in the course o f this paper ;  in particular, the idea of
using the reproducing kernel in the proof o f Theorem I. 4  is due
to Mr. Ikeda.

Section I. G e n e r a l  t h e o r y  o f rep re sen ta tio n .

§ I. 1. Definitions.

In  order to define a  representation o f th e  given Gaussian
process precisely, it is necessary for us to consider integrals with
respect to certain random measures. The parameter space T of a
process that will be treated here may be a closed' interval, (— 00,
00) or [0 , 0 0 ). The symbol B ,  denotes the Borel field of subsets
o f  T.

Let B (M ), ME B T ,  be a real Gaussian random measure such
that

(I. 1) E (B (M )) =  0  and E(B(M) 2 ) =  v (M ) for every ME B T ,

where y is a (non-negative) measure defined on B T .  Then, B(M)
can be decomposed into two parts in the following way

B (M )  B , (M )+  E  .7 f t , ,
ti E . -

where 131(• )  is a random measure associated with the continuous
measure v 1 ( •) = E(B 1 (•) 2 ) and Xe i 's are mutually independent Gaussian
random variables with mean 0, each one of which corresponds to
the jump point t i  o f  v(u)--- v((—  00, u ] T). B 1 ( . )  and {Xt i }  will
be called the continuous part and discontinuous p a rt o f B(•)
respectively.

Let f (u )  be a Borel measurable function. Then, if f  E 1,2 (v),
that is, f  E 1.2 (v ,) and E f ( t i )2E(X .) < 00 , then

Ii
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A u)d-Bi(u) a n d  E f(t i )Xt ;

t  jE llf -

are well defined for any Borel set M . The integral of f  over M
may be written in the form

(1.2), , I f ( u ) d B ( u )  = L f(u)dB ,(u)+ (t i )X t i  ,

where the integrals which appear are interpreted in the usual way
with respect to random measures dB, dB „ Doob [2; pp. 426-433.]

Now we can give
Definition I. 1 .  Let Y(t), t G T, be a real Gaussian process with

E(Y (t)) = 0 for every t E T .  Then the triple (dB (t), Ut, F(t, u)),
or simply the pair (dB (t), F (t, u)), is called a  representation of
Y(t), if
i) B (•) is a random measure satisfying (I. 1) ;

ii) F(t, u) is a real Borel measurable function o f u  vanishing for
u > t  and belonging to 1.2 (v) for every t;

iii) X(t) F (t, u)dB(u)"

is a version of Y(t) ;
iv)

J J  i s  the closed linear manifold generated by {X(5-); T < t} .
The function F(t, u) is called a kernel of the representation.

There are many examples of processes which have no represen-
tation. Furthermore, even if a process has a representation, it may
not be uniquely determined. The following examples will serve
to illustrate such circumstances.

Example I. 1. Let Y i (t) be a Gaussian process with covariance
function 11(s, t )=1  for s = t, and =0 for t, and with E(Y  i (t))= O.
Then Y i (t) has no representation.

Example 1. 2. L e t  B 1 (t) and BM), 0 < t < 0 0 ,  b e  standard
Brownian motions which are independent o f each other. Define

y 2 (t)B , ( t ) i f  t  is rational,
B2 (t) i f  t  is irrational.

Then Y 2 (t) has no representation. Detailed discussions concerning
this will be given later.

3 )  The notation Y ••• means the integral 
Ç
i n  t h e  sense of ( 1 .2 ) .
[ -  c . , t ) n \ T
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Example I. 3. L e t  B (t), 0 ‹t<c>o, b e  a standard Brownian
m otion. Then, for every positive integer n , we can determine
constants co , c „•• •  ,c  so that

B (t) =  (c o + c + c 2 ( ) 2  + • + c „( u  ) n  )dB(U)
0 t t

is again a standard Brownian motion (P. Lévy [6]). This proves
that B (t) has infinitely many representations.

W e have now to determine the best class o f representations
for our purpose among all posible representations of a given process.

Definition. 1.2. T h e  representation (dB(t), F(t, u ))  is
called canonical, if

E(X(t)I B s ) F(t, u)dB(u)

holds fo r  every s < t ,  where B , is  the smallest Borel field of
measurable (0 sets with respect to which all the X(T)'s < s )  are
measurable. In this case, F(t, u) is called a canonical kernel.

Definition. I. 3 .  Two representations (dB" ) (t), TIV), F(')(t, u)),
i= 1, 2, are called equivalent, if

F(t , u ) 2dv( 1)(u) = F( 2 )(t, u) 2dv 2 )(u) for every M E B T ,

considering them as measures, where

dv("(u) = E(dB(')(u) 2 ), i 1, 2 .

This relation obviously satisfies the equivalence relations and
therefore we can get the classes of representations.

Theorem I. 1 .  (P . Lévy) F o r every Y (t), there exists at most
one class o f  canonical representations.

P r o o f  L e t  (dBci)(t), T N ),  F ( t ,  u ) )  i=  1, 2, be canonical
representations o f  Y (t ) .  Writing

X ( t ) F(i)(t, u)dB("(u), i  = 1, 2,

we have, for every t  and every s( t),

EUX")(t)113(; ) ) F9t, u )dB " ) (u) ,

where 13" denotes the Borel field corresponding to X ("(t).
The equality
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E(E(X ( "(t)I 13(8 1 ))2 ) = E(E(X("(t)I B(Z)) 2 )

holds, since both sides are determined only by the probability law
of X ( t ) .  Hence we have

5s  F("(t, u) 2 dv 1 )(u) = F " (t , u) 2 dv(2 (u), for every s( t )

which proves the theorem.

§ I. 2. Canonical representations.

In this article we shall study important properties of a canonical
representation.

Definition 1.4. A  canonical representation (dB(t), A , P(t, u))
is called proper if

(I. 3) 9S, = TS,(B) for every  t G T,

where 9U(B) is the closed linear manifold generated by

d B(u) ; ME BT} .
t ]  n

Theorem I. 2 .  For any given canonical representation, we can
construct an equivalent proper canonical representation.

Pro o f . It is sufficient to consider the case in which y  is a
continuous measure. Let (dB(t), 9)1, , ( t ,  u ) )  be a given canonical
representation o f  Y (t ) .  We shall show that we can construct a
proper canonical representation of Y(t) by deforming the given one.

1° ) Deform ation. First define F(t, u ) = (t, u ). Put

,a(M )  =  y (SmF(t, uydv(u)),4)

v ( m )  L dv (u) = E(L dB (u)) 2 , ME B T .

Here we m ay suppose th a t y  is  a  continuous measure. Then

(  y ; 5)

hence, by Radon-Nykodym's Theorem, there exists a Borel mea-
surable function f(u) 0 such that

4) V  means the lattice sum.
5) /J. 2; means that the measure p .  is absolutely continuous with respect to the

measure v.



Canonical Representations o f  Gaussian Processes 115

(M ) =  Lf(u)dv(u) .

Since N= N( f) = 1u ; f(u)>O1 is Borel measurable, we can construct
a random measure

(1.4)B ( M )  - -= td B (u ) = N(u)dr3(u), ME B ,

where XN (u) is the indicator function of N.
2 ° )  The triple (dB(t), F (t, u)) is a representation o f Y(t).

To prove this, it is sufficient to show that X(t)= u)dB(u) is

the same process as Y(t), in the sense of equivalence in law. This
can be proved as follows.

EU t  P(t, u)d171(u)— t  F(t, u)dB(u))
2

EU t F(t, u) (1 — XN (u))c/f3- (u)) 2

(1.5)
F(t, u) 2 (1—Xi v (u)) 2cte (u)

(1— XN (u)) 2 F(t, u) 2 clii(u ) =  O,
t ]  N

t
which shows that X(t)=X (t) ( =  F(t, u)cl13- (u )) with probability

on e . Since X (t) is  the same process as Y(t) by assumption, the
relation above proves our assertion.

3 ° )  Finally we shall prove that the representation (dB(t), Ti„
F(t, u)) is proper canonical. Now we prove

(I. 6) Wit nt(B)
Suppose an element Z of n t (B) is orthogonal to (hence independent
of) Wi t , that is, E(Z . •X(s)) =0  for every s t. T h e n  Z  is orthogonal
to E(X(s")/B s ,) for every s' < t  and every s", since it is an element
of U t .

On the other hand Z  can be written as

Z =1 h(u)dB(u) ,

with a Borel measurable function h. Noting that
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E(X (s")/B ,i) Projection of X (s") on ajts , (in the 1.2 sense)
Projection of _g(s") on ns ,

(since X ( t ) = ( t )  with probability 1)

= E(X (s") I B s ,) P ( s "  u)dR(u)

(from canonical property)

=1 F (s" , u)dB(u) ,

we have
S,

E(Z • E(X(s"))I B s l)) = h(u)F (s", u)dii(u) = O.

Therefore, for every s, s'(<t)

h(u)F (s" , u)di)(u) = O.

Since s "  is arbitrary, we can prove

ia(N(h)) = O,

where N ( h ) = ; h ( u ) 4 0 }  .  Hence we have

E(Z • W) = 0 for every W E Ti t (B) ,

Thus we have proved (I. 6). Consequently we have (I. 3).
Now from (I. 3),

E(X(t) I B s ) = projection of X (t) on Tts

----- Projection of X (t) on Ç.D(B) 58 F(t, u)dB(u) ,

which proves that the representation is canonical and (I. 6) implies
that it is proper. Thus we have proved the theorem.

By the argument used in the proof of the theorem, we hay
C o r o lla r y .  I f  a  representation (dB(t), 9/1,, F (t, u)) (not neces-

sarily canonical) satisfies the condition

V (B ) _ for every t,

then it is (proper) canonical.
A s  is well known, a  stationary process X (t) which is purely

non-deterministic and /1/2 -continuous can be expressed as

X (t) = F (t — u)dB(u)
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and there exists one and on ly one representation having the
property (I. 3). (Karhunen  [1 ]). In  our case, in which X (t) is
Gaussian, this means that it has a proper canonical representation.

§ I .  3 .  Existence of representation.

In  order to study the existence of the canonical representation
we shall summarize some known theorems of the theory of Hilbert
space.

Let lAs, t), s, t E T, be a  real non-negative definite function.
Then there exists a Hilbert space satisfying
i) P(s, t)  belongs to as a function of s,
ii) <f(s), P(s, t)>"= f(t) for every f  e
iii) is the closed (in the topology 11 H) linear manifold generated

b y  Ir(•, t) ; t E T1.
P(s, t)  is the reproducing kernel of that Hilbert space.

The construction and the important properties of may be seen
in Aronszajn [1 ] .

We can construct sub-spaces ki)t and kI of

= sub-space of generated by {1'(•, T ); T  <  t}

= •

Now let us assume that

(H. 1)
(H. 2)

is separable,

= 101 (hence n =  { 0} ) •ter 1 CP

Noting that

= and ( s <  t ,V7 , 

we can see that there exists a resolution of the identity {E(t) ; t E T1
such that

(1.7)E ( t ) k ) ,

by assumption. Then, by Hellinger-Hahn's Theorem," there exist
two denumerable sets { f ") } , i= 1, 2, and go) 1 , j, 1=1, 2, in
satisfying the following conditions (I. 8) to (I. 10).

6) The symbol < , > denotes the inner product. We shall use It II to denote the
norm, i.e. 11111 f>.

7) For proof see M. H. Stone [1] or S. 1 0  [ l ] .
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i) For any intervals A i , A 2
< A lEP" ) A2Ef"' )  > = 0, i j ,

with A E= E(b)— E(a) for A = (a, b];
ii) if A 1 n A2 =

(I. 8) < AiEf "), A ,Ef ( i) > = 0;
iii) for any i, p i (t)= HEM P% is continuous, non-decreasing

and pi + ,< pi (considered as measures) ;
iv) e l "  is the eigenvector of the self-adjoint operator H =

tdE(t) corresponding to the eigenvalue ty =  I, 2, • • •).

(1. 9) = Tt Er3 VZ (direct sum),

where WI and are defined by

WI =

TZ (P") = ; f  =93(t)dE(t)f `", P E L2 (P1)1 ;

ii 1

ED 91(g(i) 1),

VZ(go)') = one dimensional sub-space generated by g(i)I;

(I. 10) E (t )W (f ) W l(f ( i ) )
which is equivalent to

(I. 10') E(t)P i  = P i E(t), P i =  Projection on V(f")) .

Furthermore, though there may be many ways o f choosing such
and ,  their numbers are always the same.

By virtue of this theorem, we can define the multiplicity of E(t).
Definition I. 5 .  The supremum of the number of f m 's  and

the numbers o f  linearly independent eigenvectors corresponding
to each t is called the multiplicity o f E(t).

Theorem I. 3. F ( . ,  0 is ex pressible as

(I. 11) t)  = E  F i (t, u)dE(u)f( 1)+ E E bli (t)g(j)' .
ti t 1

Pro o f . From (I. 9), t)  is written in the form

F(., t) E .h'i (t,u)dE(u)f("+ .
Ii j
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Applying (I. 10), we have

t) E(t)r(• , t) = E E(t) F i (t, u)dE(u)f")+ b(t)E (t)g1
f i

E  F i (t, u)dE(u) fw + E E b'i (t)E(t)g ( i" ,li st

where the summation in the second term in the equation above
extends over those e i " s  the eigenvalue o f which are not larger
than t.

The case in which the function F i (t, u) in (I. 11) is degenerate,
for example,

(I. 12) f ( t)g (u )k=i

is o f special interest, as we shall see in the next section.
After the preparation above, we can now discuss the existence

of the canonical representation. Given a process Y (t), let r(s , t)
be its covariance function. Let TA, be the closed linear manifold
generated by {Y(r) ; T  t}  and

V  U t ,  TIP =  ant+
j E T

We shall assume that

(V. 1) sfft is separable (as a sub-space o f L 2 (S2)),
(9N. 2) = {0 } .

tE T

We shall prove the following preliminary theorem leading to
the fundamental Theorems I. 5  and I. 6.

Theorem 1.4. T here ex ists an isometric transformation from
onto WI defined by

(I. 13) ,t) E r( •  , t) Y (t) E WI .

This isometry induces the following correspondence:
i) TZt, WIt ,

ii) E(t)f—  E(X IB P) provided that f<—, X , with 13t =B(DO).
Pro o f . Define a mapping S from L = { F(•, t); t G T} " into 9N by

8 ) {  • • •  }  denotes the linear space generated by the elements that a re  written in
the bracket.
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S : r(•, 0 Y(t)
E a,r(•, t i ) E ai Y(t i ) (ai :  real)

Then S  is a linear transformation from a linear space L  into the
linear space £ =  IY (t) , t E T1 (T i. S u p p o se  Ea i Y(t i ) = O. T h e n
Ea i r(t, t i )= 0  for every t E T , which implies

A t) = <f ( •), r(-, = 0, if f (•)  = E a•r(-, t) •
This shows that S  is a one-to-one mapping from L  onto 2 .  And
further

<1'(•, t), 11 (•, = F(s, t) = E(Y (t) • Y (s)) ,

which proves that S  is isometric.
Since L  and 2  are dense in •t■ and T I respectively, S  can be

extended to an isometric one-to-one linear transformation g  from
k) onto T l .  Hence we have proved the existence of the isometry.

Next, S =WI is obvious. Therefore if f4-->X,

E(t)f  *-0 Projection of X  on Tip =  E(x/B?).

Thus we have proved ii).
Theorem I. 4  along with the assumptions (T1. 1), (Tl. 2) implies

that (H. 1 )  and (H. 2 )  hold. We can therefore appeal to the
Hellinger-Hahn's Theorem. Let r "  be as defined in the statement
o f that theorem. Then there exists a continuous additive process
B 1 (t) such that

dE(t)f " dB")(t)

under the correspondence mentioned in Theorem I. 4.

Theorem I. 5 .  I f  Y(t) s a t i s f i e s  ( U .1 )  an d  (WI. 2 ) ,  there exist
Gaussian random measures {B("(•)}  and random variables r t., such
that

i) B("(•), Y ,  j, j, 1= 1, 2, • • • are all independent,
ii) E (B ' F- 1 )(•) 2 )<E(B ("(•) 2 ), i =  1, 2, • • •,

iii) Y(t) Fi(t, u)d13 1)(u)+ E E b' t j ,
t i S t

iv) E(Y (t)113 s )=E  F ( t ,  u )d B (u )+ E*Ebii (t)Yz, ,"e)--

9) E *  =  1 1 1 ,1  +
9<s 1(bli ( s )+ 0 )
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Pro o f . If follows from (I. 8), (I. 9) and Theorem I. 4 that i), ii)
and iii) are satisfied. Considering the isometry g  in the proof of
Theorem I. 4, we have

E(Y (t)IB?) = '(E(s)P(., t))

= '(E(s) E rF i (t, u)dE(u) P i )  + E(s) E E bzi (t)g(j") .

By (I. 10), this is equal to

S - 1 (E  F  i (t, u)dE(u)r" + E* E bti ( t)g ( i" )
f i s I

=  E  F i (t, u)dB(i)(u)+ E* E b̀j (t)Y

(E(X(t)1135 ) = E(E(X(t)I B?)1 B s ) ,
which proves iv).

Definition 1.6. T h e  system (dB (t), TV) , F(t , u), 10 )  Y j,
=1, 2, • •.) obtained above is called a generalized canonical representa-
tion o f  Y (t ). The multiplicity of E(t) is called the multiplicity of
Y(t).

The classification of generalized canonical representations is
very complicated, because, for one thing, the choice of the system
{P i)} is not unique.

Theorem I. 6 .  A  necessary and sufficient condition th a t  Y(t)
has a  canonical representation is that Y (t) satisf ies the conditions
(U . 1), (O. 2) and

(WI. 3) The multiplicity o f  Y (t) is  one.

Proof . N ecessity . Suppose that (dB(t), A , F(t, u)) is a canoni-
cal representation o f Y(t) and

(I. 14) X(t) F(t, u)dB(u) Y(t), (—  : equivalent in law)

The separability of V  n t is easily deduced from the defini-

tion of the integral.
Let n t (B) be the same as in Definition I. 4. Then

Wit(B) = f (u )d B (u )  ; f  is Borel measurable and E L2 (v)}

and
'RA M = 101JET
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imply the condition (M. 2). (M. 1) follows at once from the separa-
bility o f V Vitt (B).

Finally, i f  we decompose the random measure B (•) into two
parts in the same way as in (I. 1), we can easily see that the
multiplicity o f Y(t) is one by Definition I. 6.

Sufficiency. From Theorem L 5 and the assumption that the
multiplicity o f Y(t) is one, Y(t) can be expressed in the form

Y (t )  =  F 1(t, u)dBc 1 ) (u)+ E  bi (oxt,

Now we can define a random measure B (•) by

B((a, b]) B (b )—  B (a)  = d B ")(u )+ E a 5Xt ,  ( alE(X) <  co) •
a a < t iS b

7

And define a function F(t, u) of u  for every fixed t , by

F i (t, u) if uE T A (—  00, t]—  {t1},
F(t,u) =

{  b  /( t ) I a i f  u  =  t .

Then we have

F (t, u)dB(u) ,çt  F(t, u)dB")(u)+ E  a i F(t, t i )X t, •

=5 F,(t , u)d.B("(u)+ (F(t, u)—  F ,(t , u))dB" ) (u)+ E  vox t ,
t i t J

which is equal to Y(t), since the second term of the last expression
is zero with probability one.

The canonical property o f (dB(t), F(t, u)) follows from iv)
in Theorem I. 5.

The process Y 2 ( t)  which was given in  Example I. 2  has no
canonical representation, because the multiplicity o f Y2(t) is 2, as
is easily seen. But a generalized canonical representation exists.
In fact it can be expressed in the form

f t f t
2(t) F(t, u)dB i (u)+ (1— F(t , u))d132(u) ,00  

where

{ 1, if t  is rational,F(t, u) = 0, i f  t  is irrational.

C orollary. An additive process has a canonical representation.
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P ro o f. I f  B(t) is an additive process, it can be expressed in
the form

B(t) dB1(t)-1- E* xt ;

l i < r

This shows that the multiplicity is one, and our assertion follows.

§ I. 4 .  K e r n e l  c r i te r io n  fo r  canon ica l rep resen ta tion .

It is important to give a criterion to determine whether a given
representation is canonical or not. P. Lévy gave a criterion involv-
ing a Hellinger's integral (Lévy [6]), but we shall give another.

By Theorem I. 2, it is sufficient to give a criterion for a proper
canonical representation.

T heorem  1 .7 . A  representation (dB(t), Ç.11 -1„ F(t,u)) is proper
canonical if  an d  only i f ,  f o r any fixed t o E  T

(I. 15) tF(t, u)f(u)dv(u) = 0 f o r every t t0 .

implies

(I. 16) f(u) = 0 almost everywhere (v) o n  ( — 00 , A T .

P ro o f. Suppose that the given representation is not proper
canonical. Then by (I. 3) there exists an element Z( +.0) of 93 0 (B)
which is independent o f every X(t), t < t 0 . Noting that Z  can be
expressed in the form

o

Z  =  t f(u)dB(u), f  E L 2 (v) ,

we have
E (Z -X (t)) =  0, for every t  < t „

which is identical with (I. 15). On the other hand

0
to

E(Z 2 ) =  f ( u ) 2 dv(u) .

This shows that (I. 16) does not hold.
Conversely, i f  there is a function f(u ) satisfying (I. 15) but not

satisfying (I. 16) for some t o ,  then

Z  = r () f(u)dB(u)
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belongs to M t (B) but does not belong to . Hence the representa-
tion is not proper canonical.

According to Karhunen [1], a  stationary process which is
purely non-deterministic and M2 -continuous always has its (moving
average) representation, the kernel o f which is a function of t — u.
He also gave a kernel criterion for canonical (in our terminology)
representation. One can easily see that our Theorem I. 7. is a
generalization of Karhunen's theorem

Example 1. 4. Let X 1 (t ) and X2 (t) be defined by

X 1 (t) = (2t—  u)dB,(u)
0

X 2 (t) = (-3t + 4u)dB,(u)
0

where B i (t), i=1 ,  2, are ordinary Brownian motions. Then the
two processes have the same probability distribution (cf. P. Levy
[4]), since they have the common covariance function 3t s — 2s2 /3
(t > s ) .  Using Theorem I. 7, we can prove that (dB,(t), 2t — u) is a
proper canonical representation of X i (t). On the other hand

Z = Ç°udB2(u)
0

is independent o f  every X 2 (t) ( t <  to), which proves that the
representation (dB,(t), —3t + 4u) of X 2 (t ) is not proper canonical—
indeed it is not canonical.

Example 1. 5. (Particular case of Example I. 3). I f  we denote
an ordinary Brownian motion by Bo (t),

X (t) = (3 — 12u/t + 10u2 /t2 )dBo (u)
0

is again a Brownian motion. Here

tot o

Z, =  udBo (u) an d  Z ,  =  u 2 dB0 (u)
0 0

are independent o f  every X(t) (t < t o). H e n c e  (dBo (t ), 3— 12u/t
+ 10u2 /t2 ) is not proper canonical. In fact, the canonical representa-
tion o f Bo (t ) is (dBo (t), 1).
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Section I I .  Multiple Markov G aussian Processes.

§ II. 1. Simple Markov G aussian Processes.

We intend to study multiple Markov Gaussian processes in this
section, using the general theory o f representation. All the proces-
ses to be discussed here are Gaussian processes with mean 0
satisfying the conditions (U. 1) and (U. 2). Furthermore we may
assume that

(91t. 4) U t  is continuous in t,

that is,

lim 9.)1, exists and is equal to çijI to ,

since we can easily remove the discontinuity o f U t .
First we shall treat a simple Markov Gaussian process. Though

some of the results are well known, our presentation of the results
will stress their specific probabilistic significance form our standpoint.

Let Y(t) be a simple Markov process. As Y(t) is Gaussian the
simple Markov property is equivalent to the condition that, if s< t,

(II. I) E(Y B,) = (Mt, s)Y(s)

where q,(t, s) is a real valued ordinary function of (t, s) (Doob [2]).
This is also equivalent to

(11. 2) Y(t)— p(t, s) Y (s) is independent o f every Y(T), 9- < S.

To avoid the case in which Y(t) and Y(s) are independent for s+ t,
let us assume that

(II. 3) P(s, t) = E(Y(t)• Y (s ) )  never vanishes.

Then the equality

E(E(Y(t)/B s ,)/B s ) =  E(Y(t)1B 9), for every s  <  s ' < t

implies
p(t, s')p(s', s)Y(s) = p(t, s)Y(s) .

Since F(s, s) +  0 by the assumption (II. 3), we have

99(t, s')p(s', s) = p(t, s),
p (t, t) =  1,

and we can prove that cp(t, s) never vanishes. I f  w e  use the
convention

(II. 4)
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p(t, s) = (Xs, 0 ' for s >  t ,

p(t, s) may be written as

P(t, = f (t)/f (s)

where f (t)— p(t, s 0 )  with some fixed s o .
Hence we have, from (II. 1),

E(f(t)"Y (t)1.135 ) = f (s) 'Y  (s),

which proves that U (t)= f (t) - iY (t) is an additive process. Here we
should note that the system of Borel fields relative to  U (t) is the
same as that relative to Y(t), since f (t )  never vanishes.

According to the Corollary to Theorem I. 6, U(t) has a canonical
representation, which has no discontinuous part as w e  assume
(0 . 4 ). Hence so does Y(t) :

Y(t) f (t)U (t) = f (t) dU (u).

Conversely, a  process expressed in  this form is obviously a
simple Markov process provided that f ( t )  never vanishes.

Summing up, we have
Theorem II. 1. U nder the assumption (Jfl. 1), OK 2), (0. 4) and

(II. 3), a necessry and sufficient condition that Y (t) is a simple Markov
process is that it can be expressed in the form

(II. 5) Y (t) = f (t)U(t) = f (t)5 f dU(u) = f (t)g(u)dB (u)

where U(t) is an additive process with the property (U. 4) (dB(t) is
a  continuous random measure) and f ( t )  never vanishes.

Making u s e  o f this theorem, we have (under th e  same
assumptions)

Corollary 1 . L e t  Y (t)  be expressed in  th e  fo rm  (II. 5). I f
Y (t) is continuous in  th e  mean, then f ( t )  is continuous and U(t) is
continuous in the mean.

P ro o f. I f  Y(t) is continuous in the mean, then

lirn  E(Y (t)Y  (s)) = E(Y (t 0 )Y (s))1,10

by the continuity of inner product in  L 2 ( f ) .  B y (II. 5), this can
be written as,
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lim  f(t)f(s)E (U (t)U (s)) =  f(t 0 )f(s)E(U(s) 2 ), t >  s,
t o

since U(t) is additive. Noting that f(s)d= 0 and E(U(s) 2 ) + 0 , we can
see the continuity of f(t). T he continuity o f U (t) follows from
E(U(t)U(s))-- F(t, s)I(f (Of (s)).

In  p articu lar, if T=  [0, 00) an d  E(U(t) 2 ) has a  continuous
derivative, U (t ) becomes a n  ordinary Brownian motion b y  the
change of tim e sca le ." I n  other words, Y(t) has a  canonical
representation (d130(t), f(t)o - (u)) with Wiener's random measure Bo(•)
and a proper canonical kernel f(t)o-(u).

C oro lla ry  2 .  I f  Y (t ) i s  a  stationary  sim ple Markov process
satisfy ing the conditions (U. 1), (U. 2) and (II. 3), then it has a version

(II. 6) e- "ct - u) clBo (u), X > 0 .

P ro o f .  A s is easily seen in  the proof of Theorem II. 1, the
covariance function 7  of Y(t) can be written in the form

(II. 7) 7(h) = f(t +h)f(t)o-(t) 2 , h >  0 ,

even though we do not assume (U. 4). Putting t = 0 in  (II. 7), we
have

f(h ) = c 07(h) ,

and putting h= 0 in  (II. 7), we have

OEM ' c2 f (t ) - 2  = c37(h) - 2  .

Hence it follows from (II. 7) that

c37(h+t) = c47(h)-c47(t)

Since 7 is bounded above, we have

7(h) = X > 0 .

§ II. 2. Multiple Markov G aussian processes.

In  this article we shall define N-ple Markov process as a
generalization of simple Markov process and study its properties.
The property (II. 2 ) for a simple Markov process suggests that it
is natural to give the following

Definition 11. 1. I f  1E( Y(t i )03, 0 )}, 1= 1, 2, • • • , N ,  a r e  linearly

1 )  See Seguchi-Ikeda [1].



128 Takeyuki Hida

independent for any ft i l  with to < t, < I2 ‹ • • •< tN , an d  if IE(Y(ti)/
8, 0 )1, i=  1, 2, ••• ,N , N +1 , are linearly dependent for any It i l  with
t i < t 2 <  • • • < t N 1 - 1 ,  then Y (t) is called N-ple Markov process.

A  sim ple Markov process is a 1-pie Markov process in  this
sense only i f  it satisfies (II. 3).

Theorem H. 2. I f  Y (t) is  an 1V-pie Markov process satisfying
(fft. 1), (lit. 2), ( n. 3) and (Tt. 4), it  h as  a version X(t) expressed in
the following form

(11. 8) X(t) = fi(t)g1(u)dB(u)

w ith a proper canonical kernel f i (t)g,(u), where { f i (t)} , i =1, 2, •••,
1= 1

N, satisfy

(II. 9) det (f,(t i )) =I= 0, for any N  different t1 ,

and {g,.(u)}, i= 1, 2, ••• , N, are linearly independent as the elements
of L 2 (v ; t )"  for ev ery  t.

Further the covariance function r  o f Y (t) can be written in the
form

F(s,t) s < t

where { f ( t ) } ,  i =  1, 2, •-• , N , are the sam e as above and {h i (s)},
i=  1, 2, ••• , N, are linearly independent.

P ro o f . B y th e  assumptions there exists a  proper canonical
representation (dB(t), F(t,u)) of Y(t)

Y(t) -.- X(t) =  F(t, u)dB(u), (— : equivalent in law)

It is sufficient to determine th e  form  o f F(t, u ) in  th e  region
D =  {(u  t,); u < t} instead of D on account of the assumption (M. 4).

I f  Y (t ) is an  N-pie Markov process, then we can prove that,
fo r any It1 1  with t i < t 2 < • • •< t N  an d  fo r any 7- > t N  there exist
{a1 (9- ; t 1 , t 2 ,  , t N )}  j= 1 , 2, •-• , N , such that

(II. 10) Y (T )- a.('T ; ti,t2,••• , tN)Y(t i )

is independent of every Y(0-), cr< t 1 . Therefore we have

2 )  L 2 (v ; — {y o  ;  E L 2 (v ) and ço(u)=-70 fo r u>
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u) , u) —  E apr ; t i , t„ ••• , t N )F(t u )}  d v (u )  = O,

using the representation of Y ( t ) .  Since F(o-, u) is a  proper canonical
kernel, it is equivalent to

(II. 11) F ( r, u )  = E a .(r ; t„ t„ • • • , t N )F(t , u )
.7=-1

as an element of L 2 (v  ; t 1 )  (see Theorem I. 7).
Take N  different with s1 <.3 2 ‹  ••• sN ,  arbitrarily in the

interval (— CX)  t  i ) n  T .  Expressing F(T , u) and IF (t u ) }  , j=  1 , 2 , • • •  ,

N ,  in  (II. 1 1 )  b y  {F(s i , u )} , j=1 , 2, ••• , N , in the same way as in
(II. 11), we get

E a J O-  ;  s „ s „ • • •  s N )F(s i , u)

E a k er ; t 1 , t 2  •  •  •  ,  tjOai(tk ; S 1  S 2  •  •  •  f
k  j= 1

sN)F(si , u)

as an element of D (v ; s1).
Here {F(s i , u )} , j=  1, 2, ••• , N , must be linearly independent

functions in L 2 ( v  .91) ; in fact, if this is not true, then {E(Y (s » I A ) }  ,
j= 1 , 2 ,  • - •  ,  N , are linearly dependent, which contradicts our assump-
tion. Hence we have

12) E a k (r t„ t2 , ••• , tN)af (t k ; s„ s2, ••• , sN )k=i
=  a1 (7- ;  s„ s„ • • • , sN ), for every j .

Now we can prove

(II. 13) det (ai (t k  ;  s„ .32 , • •• , sN)) =I- O,

because

F (t 5 ,  u )  = E ak (t ;  s „  s 2 , -•- , sN )F(s k , u), j  =  1, 2, , N ,k=i

are linearly independent functions in L 2 ( v  ; s ,) .  Therefore we have
(II. 14) a(q-, =  a(T , s)B (s, t)

by (II. 12 ) and (II. 13 ), where

a(T , s )  = (a,( r ; s„ s 2 , • •• , s N ), ,  a N (r ; 1 , •• • , s N ))

and
B (t, s) = (bik (ti,t2-••• IN; s2,••• , sN)), j ,  k  =  1 ,  2 ,  • • •  ,  N ,
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with d e t  (B(t, s))  I 0. Taking N  different s;( < s , ) ,  we have
a(T , t )  =  a ( T ,  s)B(s, a(T, s')B(s', s)B(s, t)
( t e r ,  t ) =  (ter , s')B(s', t)

by (II. 1 4 ) .  Hence we have
(II. 15) B(s', s)B(s, t) = B(s', t) .

Fix all t i ' s  and define f .( T ) ,  s=(s„ s„••• , s N ), by

f (T ) =  ct(r, s)B(s, t) f o r  T  > S N ,

where s  is any N - pie ( s i ,  s 2 ,  • • •  ,  sN) such that tN >tN , ••• > t i >
sN >sN _i> ••• > s i . Then we can use (II. 1 5 )  to see that f  is an
extension of / . (7- ) i f  s N >s N - i> ••• > s i  > s ' N > • • >
Hence there exists a  common extension for all f „ ( T ) ' s .  We denote
this common extension with f (t)— (f i(t), ••• f N ( t) ) . Obviously these
f  i (t) satisfy (II. 9 )  on account of (II. 1 3 )  and the definition of f ( ,r).

Take u e T °  and fix it. I f  7- > t N > • • •  > t i> s N >  ••• > s i > u ,
then we have

F(T,u)( -=-=- ai (r ; t 1 , t 2 , ,tN)F(tp

a(7- , t)F (t, u)* (F (1, u) = (F(t „ u), • • • F ( t  u ) )
= f(T)B(s, 1) - 1 F (t, u)*
= f(T)g(u, s, t )* , (g(u, s, t) = F(t, u)B(s, t)* - ') .

For T >t y,>  > t ; .> 4 , •  •  •  > 4 ., this is equal to

f (Og(u, s', t')*
so that

f (T )g(u, s, t)* =  f (T )g(u, s', t')*

for T >  max (t.Çv , t N ). Since f  satisfies (II. 9 ) ,  we have
g(u, s, t) = g(u, s', t') .

Therefore g(u)=g(u , s , t) is well defined as  a  function of u,
and

F(t, u) = f  (t)g(u)* = .ii f i (t)gi (u) ,

where {gi (u)}  , i= 1, 2, ,  N , are linearly independent as elements
of L 2 (v ; t), since { F(t u)}  , j =1, 2 ,  • - •  ,  N , are linearly independent.

Further we have
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r(t, s) = f i (t)( f i (s) s g i (u)gi (u)dv(u))

f  i (t)h i (s) .
1

Then if

a i h i (s) 0,==-1
for some constants a„ a2, ••• , aN ,

s
(E  f .(s)g .(u))( a g (u))dv(u)O .

Noting thatf 5 (s )g (u )  is a proper canonical kernel, we have

a i g i (u) = O.
1=1

Hence all the a i must be O. Thus we have proved the theorem
completely.

A kernel f ( t ) g 1 (u) satisfying the conditions stated in Theorem

II. 2 is called a Goursat kernel of order N
It should be noted that the expression (II. 13) is not uniquely

determined, but the number of the summand is independent of the
special way of expression as we have seen in the proof above.

As another remark, we should note that a process with a version
of the form (II. 9) is not always an N-pie Markov process. In
order that the converse of this theorem holds, it is sufficient to
impose some regularity condition on the kernel as we shall see in
§ II. 4. 3

0 )•
Example II. 1. I f f ( t )  is a function which is 1 for rational t

and 0 for irrational t ,  then X (t)= f (t)B 0 ( t) , 0  <t <0 0  , is not a 1-
ple Markov process, though it is expressed in the form

X (t) = f (t)d130(u) •0

§ II. 3. S ta t io n a r y  m ultip le M arkov G au ssian  p ro cesses.

Let Y (t), t e T = ( — be a  stationary Gaussian process
with mean 0 satisfying the conditions (TR 1), (U. 2) and OM 4').

(U. 4') Y(t) is continuous in the mean.
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Then by Karhunen's theory, we can see that Y (t) has a canonical
representation and that it is expressed in the form

Y ( t )  =  00F(t — u)dBo (u), E(dB 0 (u)) 2 = du,

using a canonical kernel F(t —  u). This canonical kernel is uniquely
determined up to sign and is proper canonical." Thus, in order
to  study the multiple Markov process fo r  stationary case, it is
sufficient for us to study the canonical kernel F(t — u).

Lem m a IL 1. Let If AC} , 1, 2, ••• , N , satisf y  (11. 9) and let
{gi (u)}  , i=1, 2, ••• , N ,  be linearly  independent as elem ents of

L 2 (( — 00, c]) fo r  every c. I f  f ( t ) g 1 (u) i s  a function o f  t — u in
i= 1

the domain D= {(u, t) ; u<t} ,  then { f  ( t) }  is  a fundamental system
of solutions of a certain linear differential equation of order N  with
constant coefficients, and {gi (u)}  is  also  a fundam ental system  of
solutions of its  adjoint differential equation.

Pro o f . First we consider F ( t — u ) =  f i (t)g1 (u ) in  the region
Do = { (u , t ) ;  u  < 0 , t 0}. Let Z o b e  the set o f a ll C - -functions
whose carriers are compact sets lying in the interval ( — 00, 01 Then

(Fvp)(t) r o F(t — u)90(u)du

is well defined by the assumption and belongs to C - ((0, 00)) for
every q) E Z o (Schwartz [1]).

Next we shall prove that there exist functions q); (u), j= 1, 2, • ,
N  in Z o such that

(II. 16) det ((g i , (pi ))  I   0,i ,  j  =  1, 2, •-• , N ,

where (g, qi) denotes the inner product o f g  and ( p  in E ( T ) .  In
fact there exists a  function cpi(u) G Zo su ch  th a t (gi, (Pi) ±  O. (If
there w ere no such function, g 1(u )  must vanish o n  (— c o ,  0)).
Inductively, suppose that (1 , (1 2 , • ••  , E Z o are chosen so that

det ((gi , p i )) 0, i, j = 1, 2, •-• , n .

And consider the determinant

3 )  For proof see Karhunen Fn . A lso , M . N isio gave another proof, which I knew
by private communication,
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(g1, P i) (g1 , P2 ) (g„ ( g 1 , P )

(g2, P i) ( g2, P2) •** ( g 2 , ( g2, 93 )

( g .+ 1 , PI) ( g .+ 1 , (p2) (p.) (g.+1,

I f  this determinant vanishes for every  p  E Z o , we get

A 1 (g „  P )+ A 2 (g 2 , P )+  •  •  •  + -1 .1 1 (g ,,+ „  P) 0 , P  E  Z o

by expanding this determinant with respect to  the last column ;
since p  is arbitrary, we have

A i g i (u)+A ,g,(u)+ ••• +A ,,,g„± ,(u) = 0 a.e. in (— x ,  0) .

This contradicts the assumption that {gi (u)}, i =1, 2, •-• , n+ 1, are
linearly independent, since A n + , * 0  by the assumption of induction.
Thus we can take {p i (u)} , j=1, 2, ••• , N , so that (II. 16) holds.

On the other hand, considering

(F*p i )(t) = i (gi , )f1(t)

and (II. 16), we can see that f i (t) is a linear combination o f (Fvp i )(t)
which belongs to C - ((0, 00)) Hence fat) E  C - ( ( 0 ,  0 0 ) )  fo r every i,
so that F(t)EC"((0, co)). F r o m  these facts we can see that
g(u) E C - (( — c o ,  0 )) for every i.

Applying similar arguments to every region Da = { (u, t) ; u < a,
t a} ,  a E T , we can see that

f i (•), g(•)E i  =  1, 2, ••• , N .

Thus we have
IV" k ak( (I I .1 7 ) E p ) ( o g i ( u )  = a- t , F j - u )  -  ( - 1 ) k _  F t - u )a Uk

=  ( -  1 ) k - ' 7  f  JO e) (u), k  = 0, 1, ••• , N .i-i

Putting u=0, we get

—
c lk

-F( t)  =(-1 )k 1ÊT f i (t)e ) (0), k  = 0, 1 , . . . ,  N .dtk i-1

Therefore there exist b0 , b1 , ,  b N  such the bi l > 0  and that

bo F ( N) (t)+b,F ( N- i) (t) + •••+b N F(t) 0,t  >  0  ,

so that
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bo V N ) (t— u ) +b , F ( N-
" (t—u ) + ••• + bN F (t—u ) = 0, u ,

namely

(boftH ) (t) ± b if  Vr - 1 ) (t) + •••+bN f i(t))g i (u) = 0, t > u .,=1

Since {gi (u)}  are linearly independent in L 2 ( ( - 00, t]),

b o rin t )+b if (i' l ) (t)+•••+bN f i(t) = 0, i  = 1, 2, , N.
I f  bo = 0, then f i (t) satisfies

ci f ,( t )+c ,f 2 (t)+-•• +civ fN (t) = O. 0 ,

as a system o f  N  solutions of linear differential equation o f at
most order N— 1, which contradicts (II. 9). Hence { f ( t ) }  is  a
fundamental system of solutions of linear differential equation of
order N  with constant coefficients.

Exactly in  th e  same way, we can prove the assertion for
{gi (u)}.

By the well-known fact in the theory o f linear ordinary dif-
ferential equations, F(t—u) is a linear combination of the functions
of the following types :

c x " - u) sin p(t—  u), tkun - k e - A C t - u )  sin p(t — u), (1 t+0)
(II. 18) e - A" - u) cos ,a,(t — u), tkun -  k u )  cos (t—  u), (p may be 0)

0  < k  < n ,  n < N .

By Theorem II. 2 and Lemma II. 1  we have
Theorem H. 3. I f  Y (t) i s  a  stationary  N -pie M ark ov  process

satisfying the conditions (U. 1), OK 2) and (U. 4'), then its canonical
k ernel is a  linear combination of the functions described in  (II. 18)
w ith X >0.

The functions in  (II. 18) (for p,  t 0) are split into two terms
of the form f ( t )g (u ) . Therefore the number o f the terms in the
expression of the kernel is exactly N.

C oro llary . The spectral measure of a stationary N -pie Markov
Process is absolutely  continuous with a density  function of the fol-
lowing type:

I Q(iX) I P(iX)1 2

where P  is a Polynomial of degree N  and Q  is also a polynomial of
degree at m ost N - 1 .
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Pro o f . The spectral density function is obtained by Fourier
transform of F (• ) .  Hence our assertion is obvious.

This process is a component process of an N-dimensional sta-
tionary simple markov process in Doob's sense, Doob [1].

§ 11. 4. Som e special multiple Markov Gaussian processes.

1 ° )  Let Y (t) be a stationary N-ple Markov Gaussian process
which is differentiable (with respect to  L 2 (n)-norm) up to N-1
times. Such process plays an important role in the study of N-ple
Markov processes as is seen in Doob's work [1].

Now let us assume that Y(t) is expressed in the form

Y(t) X(t) = F(t—u)d/30 (u)

with a proper canonical kernel

F(t — u) = f i (t)g i (u) .

Then we have the following
Theorem  II. 4. L et X (t) be a  stationary N-pie Markov process.

Then
i) a  necessary and sufficient condition that X (t) is dif ferentiable is

F(0)=0,
ii) in  this case, there ex ists a  complex number X such that

(II. 19) e"  d   e- "X (t)dt

ex ists and it  is  a  stationary (N— 1)-pie Markov process.
Pro o f . i) I f  h>0,

I 1 .5, t+ h(X h)—X(t)) = h  t F(t+h—u)d130(u)h 

+  h
i  r  , IF(t + h— u)— F(t — u)} dI3o (u) .

Since F(t—u) is analytic in  D; the first term of the right hand
side tends to 0 (in the mean) as h tends to 0 under the assumption
F(0)=0. H en ce  lim  ir l(X (t+h )— X (t)) exists. S im ila r ly  limh 0+ h,0-
h- 1 (X(t+h)—X(t)) exists and

xv) =
a

F(t — u)dBo (u) .__at(II. 20)
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Conversely, if X (t) is differentiable, then

dX (t) = F(0)dB 0(t)H- dt1 tF ( t — u ) d B o(u)

will be o f order dt, so that F(0) should vanish.
ii) As we have seen in Theorem II. 3, f i (t) is a solution of a

linear differential equation with constant coefficients. If we choose
one of the characteristic roots of the differential equation, say X,

e  —
d 

e
- K t

F ( t —  u )dt
is obviously a  proper canonical Goursat kernel o f  order N -1 .
The existence of (II. 19) and the stationary property are obvious.

When X  is real (II. 19) is real valued process. When X  is
complex, say X= X, + (II. 19) is complex valued process, but

A (t) —d - f x (t) - 1 X(t), f ( t )  =  exit cos X2t ,dt
is a real valued stationary process.

I f  F(t) satisfies the conditions

F(0) = F'(0) = • •• = F(N - "(0) = O,

X (t) is differentiable N - 1  times. Then we can take a sequence
o f complex numbers X

1 
X

2 •  •  •  f  
X

N -  1  such that

(II. 21) e x it  d  e(xi-i - xi) ' • • • d  e ( x i - x 2 ) t  d X ( t )dt dt dt

exists and it is a stationary (N— i)-ple M arkov process.
Such a  process was studied by D o o b  [1 ]  and the formula

(II. 2 1 )  suggests more general differential operator which will
appear in 3 0 )

2 ° )  We shall now discuss a multiple Markov process with a
homogeneous canonical kernel ; F(t, u) is called to be homogeneous
function o f degree a i f  Fket, cu)—  c'F(t, u). This process can be
transformed into a  stationary process by time change by virtue
of the following

Lemma 11 2. (P . Lévy) Let X (t) be expressed as

(II. 22) X (t) =  VF(t, u)dB o(u)

w ith  a proper canonical hom ogeneous (o f degree a ) k ernel F(t, u).
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Then t - (6 - 1 /2X (t) is a stationary process of log t  (P . Levy [4 ; p .  141]).
Applying this lemma to N-ple Markov process, we get
Theorem II. 5 .  Let X (t) be an N-pie M ark ov  process and be

expressed as in Lemma II. 2. Then e - "(4 ±"tX (e") is a stationary N-
ple Markov process. Conversely any stationary N-pie Markov process
X --(t) is an N-pie M arkov process with homogeneous kernel o f degree
0 changing the time parameter from t  to et :

-\/ t X((log 0/2) X (t) .

P ro o f. The first part of the theorem is an immediate con-
sequence of Levy's lemma, if we notice that N  pie Markov property
is invariant under such time change.

I f  X (t) is  a  stationary N-pie M arkov process, it is the sum
of the processes of the following types :

(II. 23) e-x"-u)dBo(u), Çt (t—u)ke - x" - u) dB o (u) .

Changing the time scale, they become

(II. 23') 1-4 ( u / t r-  " /W 0 (u), ( Nz
i n t

o(log (u/t))k(u/t)x - "i2dB o (u)

respectively. Hence X (t) is an N--pie Markov process with homo-
geneous kernel o f degree O. If X is complex, these expressions are
not real, but we can reduce them to real ones by the same procedure
as used in the proof o f Theorem II. 4. i).

30 ) Let us generalize the results obtained in 1°) and 2°) to
the case in which X (t) is  a  general N-pie M arkov process :  our
results include also those which were discussed by Dolph-Woodbury
[I ] a n d  Levy [4]. For the sake o f  brevity we shall assume
T = [0 , 0 0 ). We can discuss stationary N-pie M arkov processes
with parameter E  (  —  0 0  ,  0 0  )  in this scheme, if  we apply to it the
time change used in 2°).

We shall consider a process X (t) which is expressed in the form

(II. 24)
t

X (t) fi(t)gi (u)dB o (u) ,
0 s=1

with a proper canonical Goursat kernel f,(O g i (u).
1=1

Hereafter (throughout this article), we shall always impose the
following conditions on the kernel :
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(A. 1)f ,  g 1 E  C - ( T ° ) ,  for every j ,

(A. 2) f i  and W (g„ g2 , ••• , g i )  never vanish for every j ,

where W (g„ g2 , ••• , g 1)  is the W ronskian o f {g5 } , j= 1 , 2 , « ,
By these assumptions, we can find functions vo , vi, vN-1

such that

(II. 25) g 1(u) = (-1)N  - i vo (u) v1(1€1) v2(u2) •• •
o 0 0

vN_ (uN_ i )(du ) N-

and that

vi(u) E C - (T°) ,
t v i (u) never vanishes, i  =  0, 1, «•, N - 1 .

Using these functions {vi (u)}, i=0, 1, , N - 1 ,  and a function
vN (u) satisfying (II. 26), we can define measures

mi(M ) =  i t Iv i(u )d u , ME B T , î  =  0 , 1 , ••• , N ,

and the following differential operators :

d  d d1  L, — dm o dm, d m N , •  v N (t)  •

L(j) = d d d1  -
dm t dm t ,  d m N ,  v  N(t)  •

=  the adjoint operator o f Lt
d d d1  

dm N dm N _, dm, y 0 (u) • '

L t
( i ) —   d d  • d1 • •

dm N _ t dmN _ t _, dm, y 0 (u)

We shall often use the following notations :

F(t, u ) = f  i (t)g i (u), u t,
j = 1

F")(t, u) —  a
a

t
i
 i F(t , u),

u ) = L V - PF(t, u) .

Theorem II. 6 .  L et X (t)  be defined by (II. 24) and le t the  ca-
nonical kernel of its representation satisfies the conditions (A.1) and
(A .2 ) . I f

ÇuE . -

oJ

(II. 26)
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(II. 27) F(t, t) t) •• • F ( N- "(t, 0 and F(N - "(t, t)
never vanishes,

then we have

i) X (t )  =  d t
d i  

X(t) exists fo r  every i N - 1 ,l
ii) X (t) satisfies the equation

(II. 28) LX(t) = 13(t)

where B(t) is a derivative of A M  in the symbolic sense, so that (II. 28)
means dL (»X (t )= v 0 (t)d130 (t), and the measure mN  associated witn Lt
should be taken appropriately.

P ro o f. i) is proved in the same way as in the stationary case
(Theorem II. 4, i)).

ii) Define v N ( t ) — f i ( t ) .  S in c e  vN (t)'• F(t,t) -- 0  by assumption,

we can prove the existence of —

d  

vN (t) - 1 X(t) ; namely Lff - "X (t) ex-

ists. S im ilarly , w e can  prove the existence of LV)X (t), i=  N -2 ,
N-3, • •• , 1, since FE1J(t, t)= -FE2 3 (t, t)=---• • •=-F [N ' ] (t, t)= - 0.

Rewriting (II. 27) in the following forms

f i "(t)g i (t) = 0, k = 0,1, ••• , 1V-1,
i = 1

"sr f i ' - 1 )(t)g i (t) = a(t), with a(t)----  F(N - "(t, t) ,

w e can  see that F(t, u)/a(u) is  a Riemann function for a certain
linear differential equation

E tf  = 0

of order N .  The fundamental system of solutions of it s  adjoint
differential equation

r t g  0

is {g 1 (u)/a(u)}, i= 1, 2, ••• , N, as is well known. Hence Et =L,T•v(u)
with a certain function v (u ). Thus we can prove that Z t =v(t)•1,,.
By the property of Riemann function v(t) must be 1, and therefore
we have

(II. 29) f i (t )  — vAtTo dEnN,IdmN_2 . " .

i = 1, 2, •-• , N ,
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which proves that

.L "F(t, u) = g(u) vo (u) •
Hence

L 1 ) X(t) L(»F(t, u)d130 (u)
0

vo (u)dB o (u) .0 
Thus we can prove ii).

Combining this Theorem II. 6  with Theorem II. 9 . in § II. 5  we
can see that th is X (t) process is an N  p le  Markov process in the
restricted sense in Lévy's terminology

C o ro lla ry . Under the same assumptions a s  i n  Theorem II. 6,
L )X (t)  is an  (N — i) ple M arkov  process in the restricted sense.

P ro o f. A s  is easily seen in the proof of the theorem above,

L t i) X (t) = ,çt  IeF(t, u)d13 0 (u) .

Since Dt ' ) F(t, u) is  a Riemann function for the differential equation
d d

dm, f =  0,

our assertion is obvious.
Theorem 11. 7. L e t  {vi (u)}, ••• , N, be functions satisfy-

ing the condition (II. 2 6 ) .  I f  we define f i (t)'s and g i (u)'s by (II. 29)
and (II. 25) respectively, then

i) F(t,u)=. f ( t ) g 1 (u) is a proper canonical kernel,

ii) a process defined by
t  IV"

X(t) = fi(t)gi(u)dBo(u)

is an N- pie M ark ov  process,
iii) F(t, F("(t, t) • • • F ( N- 2 )(t, t) 0  and F(N - "(t, t)

never vanishes; namely Theorem II. 6  holds f o r this process.
P ro o f. i). We shall prove i )  by using the kernel criterion

which was given in § I. 4.
Suppose that

)3F(t,
0u  • f p ( u ) d u 0 in (0, t 0 )

ft 

for some t 0 E T  and some p G 1:([0 , 4]). Writing it in the form
2fr o

i(t) gi(u)p(u)du0 ,
i 1O
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an d  multiplying v,v (t) - 1 ,  we can obtain its derivative ( in  Radon-
Nikodym sense)

f  ( t )  g 1 (u )p(u)du + (Ef i (t)g i ( t ) )p (t )  =  0
0

a.e. in  (0, t 0 ) .

Since the second term o f th e  left hand side vanishes (because
IT

f ( t ) g 1 (u ) is a Riemann function corresponding to L 0 ) ,  we have
i =1

r i
f ( i.1 )(t) g i (u)p(u)du 0, in  (0, t 0 ) ,

0

by taking an  appropriate version.
Repeating such procedures, we can prove

v ,(t) v  o (u)p(u)du 0, in  (0, t 0 ) .0
Hence p (u ) must be 0  as an  element of L 2([0, t 0]).

ii) First we shall prove that

(II. 30)( t 1 , to, ••• , 4 1 ) det (fi(t i )) 0  for any different t i 's.

If (t„  to , ••• , t N ) = 0  for some t i < t , <  • •• < t N ,  we can prove

D (t„  to , ••• , tiv)
r t t2 f iN _

t 3V N_ I d u , V l d U
t2

• • • v N _ i du

t2 tN -1
V  N-1SV  N - 2(dU) 2V  N - N 2 (d u )2 , •  ' • V  N- N - 2 ( d U ) 2

t7 t3

=  0,

t2V N -  • • • V i ( d 1 1 ) 1 V - 1 , 1)N -1  •  •  • ( d U ) N - 1 ,
02 03

t_Ew_t
, V N -1 .ç • • • V i(CIU) N - i

IN

since vN  never vanishes. By the mean value theorem, we have

vN-1(ti), vN_ i(tD, • • • , vN-,(t;r- i)
i f

vN_ I (ti)5 '
0 vN_ 2du, vN_1(t',,) i v,,,,du, • • • , vN _1 (6 _ 1)S6 7  I vN _2du

0 0

= 0
r i f

vN _ 1 (t ) t ' l  • •+) ,( du)N- 2 , v ,(tD • ••,çv,  (du)N - 2 ,
0

• v „ ,(6 _ i)
vi(du)N-2
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for some WI, i=1 , 2, •-• , N -1 , with t E (t 1 , t 1 1). S in ce vN _, never
vaishes, it is proved that

Successively we have

D(tç , t ( , • • • , _2) • • • D(tiN - ", tZN - ") = 0

for some {W } 's with t(f " G (tr"  ,
Finally we have

(N - 2 )

vi (u)du = 0,

which contradicts the assumption (II. 26).
Therefore, by (II. 30), we can find functions la i (t ; t1, t2  7  •  •  •

tN)} 1 j =  1, 2, • • • , N , such that

(II. 31) a .(t ; t„ t 2 ,..., G Y M  J )  = f 1 (t)i=1
holds for every i. Hence

X (t)—  "i7;  t,, t2 , •• • , tN )X(t i )

is independent of every X (T); T ‹ t 1 .
On the other hand IE(X(t i )/B t o )} , j= 1, 2, • •• , N , is linearly

independent for any choice of t i 's with t0 ‹ t i <  •••<tN , since g i (u)'s
are linearly independent as elements of L 2 ([0, t0] ) .  Thus the asser-
tion i i )  is proved.

iii) is easily proved, noting that F(t, u) is the Riemann function
corresponding to L .

Theorem II. 8 .  Let X (t) be defined by (II. 24) with a canonical

kernel F(t, u)= -NE. f  i (t)gi (u), and let f  i ( t) 's  and g i (u)'s satisfy the
i = 1

conditions (A. 1) and (A. 2). I f

F(t, t)=== F(')(t, F(k-')(t, t) 0  and F ( t ,  t )  0

fo r  some k(<N — 1) independent o f  t ,  then there exist Y (t) which
is  an N-pie M ark ov  process in  the restricted sense and (N —1)-th
order differential operator mt  such that

(II. 32) X(t) M,Y (t) .
Proof. By assumptions (A.1) and (A.2), g i (u)'s can be expressed
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in  th e  form (II. 2 5 ) .  Therefore there exist a  differential operator

L , and a Riemann function R(t, u) =E f  i ( t ) g i (u )  corresponding to L „,=1
where f i (t) is defined by

f i(t) vN(t) t
o dInN_,dmNA  • • • chr/N - = 1, 2, •••, N .

Define Y (t) by

Y ( t )  =  R(t, u)d.130 (u) .

Then, th is Y (t) will be the one to be obtained.
The assumption (A. 2 )  implies W ( f ••• iN )  + 0  for every

t. Therefore we can find a  differential operator M , such that

A ftii(t) =  rA l b. f (t)f  Y)(t) f i ( t ) , i  =  1, 2, ••• , N .,=0

Noting that Y (t) has the j - t h  order derivative

Y i( t )  = u)dBo(u)

for every j<N  —  1 , by Theorem II. 6, i), Mt can be operated to Y(t)
and we have

M 1Y (t)=-=_NE1 b j (t) Y c"(t)

r tS -E  1)5 (t)Rc3 )(t, u)dB o (u)0
t  AT N

=  E (E b 1 (t)f1(t))g1(u)dB0(u)0i1
I t N

=  E f 1 (t)gi (u)di30 (u)01=1
This completes the proof.

Example II. 2. Levy's example X 1 (t) which we discussed in
Example 1 . 5  satisfies all assumptions imposed o n  th e  canonical
kernel in  Theorem II. 8 , where N = 2 , v 0 = v 1 = 1  and k= O. In this
case

Y(t) = r(t — u)dB, (u)

and M1= 
 d  

t • .dt
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§ II. 5 .  P re d ic t io n  of multiple Markov G aussian processes.

For a Gaussian process Y(t), the least square linear prediction
on  the basis of its values before s(<  t) is obtained by the condi-
tional expectation E(Y (t)lB s ), as  is well known. If there exists a
canonical representation (dB (t), F(t, u)) o f Y(t), then, by definition,

(II. 33) E(X (t)/B.,) F(t, u)dB(u), (X (t)  = F(t, u )d B (u ))  .

It is our aim to express it in  terms of X (T), T <s .
Theorem  H . 9. L et Y (t) be a process defined in  Theorem II. 8.

Using the same notations, we have

(II. 34) E(Y (t)113s) = b(t, )Y u - n(s), s < t  ,

where

(II. 35) b (t , s) = ,t i f i (t)A i ,IA (s)

with
6.(s) det ( f {i,1)- - q(s)) and z=  ( j ,  i ) - cofactor of A (s) .

Pro o f . Putting U,(s) g,(u)dB o (u), we have0

(II. 36) E(Y  WI Bs) E f i(t)gi(u)dBo (u) f i ( S )  .
1=-1

On the other hand,

y ik](s) = L (sN - k ) Y (s) = fr(s)ui(s), k  = 0, 1, • , N - 1 .

Since
i f

A ( s )  =  ( f ]  (s)) = vi (s) 0 ,
1= 1

U1 (s) can be written in  terms of YE'd(s)'s, k = 0, 1, • • • , N— 1, that is

f i(s) f2(s) P(s) iN(s)
0 A t 3 (s) ••• Y  [1

]  (s) •-• f T(s)

(II. 37) U1 (s) — 2(s )0 . • •  Y C21 (S ) • • • f Eip (s)

0 0 • • • YEN - 13 ( s )  • • • f  V - 1] (s)

Combinig this with (II. 36), we have
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E(Y (t)I Bs) = i( t) (1 6, 6‘(is.') Y [ial](s))

N A  \
EÇE fi(t) - " )Yu - '3(s) ,

(s)

which was to be proved.
Corollary. Let X (t) and Y (t) be the same processes as in Theorem

1 1 .8 .  Then we have

(II. 38) E(X(t) I B ,) = .(t s)Y li - 1 3 (s) ,

where

c i (t, s) = i=1 A(s)

A (s) and being the same as in (II. 35).
P ro o f. Noting that

E(X (t)IB ,) = f ,(t) U i (s) for every s <  t ,

we can easily prove (II. 38).
This corollary suggests the following symbolic calculous of

determing the predictor. Using the differential operator M , defined
in  (H. 33), (H. 38) becomes

E(1119 Y B ,) = c i (t, s)Y ri - n(s)

= 1(t, )Y u-11(s) = M 1 E(Y (t)1B,) .
i=1

This means that M , and E( • /B s )  are commutative.

On the other hand, (II. 38) may be denoted as

E(X (t)IB ,) = s)(MT1X(t))V=Til ,

where M T ' is  an  integral operator such as M 1 (M i1 X(t))— X(t).
Hence formally speaking, the prediction operator for X (t) is com-
posed of differential and integral operators.

Theorem II. 1 0 .  Under the same assumption as in Theorem II. 9,

lim a i (t, s i , , 5N )Y (s 1)
sN t
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exists and equals E(Y (t)113,), where a i (t, s„ s 2 , •• • , sa ), i = 1, 2, •• • , N
are the functions determined by Theorem II. 7, (II. 31).

P ro o f. Refering to the proof o f Theorem II. 7, we have

1  E a i (t,s„s 2 , — , sN )Y (si)= E
j
.(t),V ) )Y ( s i )

N (S 1  •  •  •  ,  SN) i= 1 

1
i'r-' A N(s„ • • , siv)f./(t)(

6 ,(
j f ) Y(si ))

where A N (51 , sN , ••• , sN )  has been defined in Lemma II. 5 and Wir
is its ( j, i)-cofactor. Letting s„ s2 , ••• , s a  tend to  s  successively,

we can easily prove that  a i ( t ,s „ s 2 1 ••• , s a )Y (s i )  tends to

N  1
E f  .(t) E A -Yu - 1 1 (s) =  Eb i (t, s) r i  - q(s)
i=16, (s) J-1  » 1=1

as was to be proved.
For stationry case, such prediction problem is well known (cf.

J.L. Doob [ 1 ] ,  [2 ])

§ II. 6 .  Sum o f  stationary multiple Markey Gaussian processes.

As we discussed in §II. 3, any stationary N-ple Markov process
is considered as the sum o f stationary N,-ple Markov processes
in the restricted sense with E = IV . The converse problem will
be discussed here.

For the sake o f simplicity we shall consider the sum of sta-
tionary simple Markov processes, which is 1-pie M arkov process
in the restricted sense. General cases are treated similarly.

Let Y i (t), j =  1, 2, • • • , N , be stationary simple Markov processes.
Taking appropriate versions we can express Y i ( t)  with respect to
the same random measure B o (•)  as follows

(II. 39) Y1(t) = c•; e - xi" - u'dB o (u), Xi ( >  0 ), cj : constants
j  =  1, 2, •-• , N .

Now let us consider

(II. 40) Y (t) = Y i (t) = cie-xi"-u)dBo(u)
_ c.,

Obviously it is at most N-ple Markov stationary process. Even in

the cast that all the Xls are distinct, the kernel F(t .e- X i C t - u )

i=1 '
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is not always canonical (Example II. 3 ) , and Y (t) is not always N -
p le  M arko v  process (Example III. 3.).

Let P(X) be the Fourier transform of F(x ); P(X)— 1 F i x x

F(x )d x . Then
N/27z- —

p (x) _ Q ( ix )
(II. 41)

(iX + X3)
J =1

=  \/—ID ,

 Q ( iX )  i s  the polynom ial of iX  at m ost o f degree N— 1.
Writing

N-1
(II. 42) Q(iX ) = E ai (iX)N- 1 -  ,,=0
we have

Theorem II. 1 1 . F(t— u) is  the proper canonical kernel if  and
only i f  Q(x) has no zero point w ith positive real part.

Pro o f . We use the kernel criterion proved in  § I. 4.
Define the numbers b ,, v =0 , 1, • • • , N , by

f i (X  +  X  i) b .
j=1 V=0

And define the differential operator L , by
N d ) 1V-1'L , = X ) b, G, t .

Then we can easily see that

L t e- xi( t- u) = 0, consequently L ,F(u— t) = O.
Now suppose

(11.43) Ç  F (t — u)(p(u) 0, for som e g) E L 2  (( — 00 , a]) r■Z ,-
where Z =  {q; p  E C *  and  has compact carrier}
The (k+ 1 )- th  derivative of it is

(II. 44) F(0)(pck)(t)+F
( 0 ) , p ( k - 1 ) ( t ) ± + F ( k ) ( 0 ) , p ( t )

(t — u)9)(u)du = 0, k  = 0, 1, • • • , N— 1 .--
Then from (II. 4 3 )  and (II. 4 4 ) , we have

N -i
F ( 0 ) (  E bN -k -1Pm (t))+ F '(0 )( E bN -k-i(P`" ) ( t ) )+  •-•

k Ok = 1

+F(N - ')(0)b0qi(t)+V  L ,F(t— u)p(u)du = 0 ,
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that is,
N - 1 N - 1

E  F " ( 0 )( bN_k_i9P - " ( t ) )  = O .
k V

I f  we introduce a new differential operator
.Ns=„id . d

t( fr-= -10 A dt )

with P " ( 0 ) b i , ,  then the above equality can be written as

(II. 45) ° L P ( t)  =  0 .

Non trivial function q i  satisfying (II. 4 5 )  exists and belongs to
L 2 (( — 0 0 ,  a])  if and only if the characteristic equation

(II. 46)
-

=  0
J = 0  

of i t has at least one root with positive real part.
On the other hand, noting that

Ç' e - lAxP k ) (x )dx  =  P k - 1 ) (0)+ (iX)Pk - 2 ) (0)+ (iX) 2P k - 3 ) (0)+ •• •
0

+ (iX) k - 1 P(X)
and

P(X) b 1(a ) N - 9  =  OiX)
we can prove

a  = a5f o r  every j ,

Hence the desired condition is equivalent to the one that

(II. 46')
-

=  Q(x) = o.
J - 0  

has no root with positive real part.
Generally, not assuming that cp E in (II. 43), the same asser-

tion  is true, since (F*(p)(t) = 0  is equivalent to F*(q)*(e)(t) = 0  for
every a E Z .  (Note that (p*a)(t) e C - ). This completes the proof.

I f  we observe the proof o f this theorem, we can see that its
proposition may be improved to the case that all the Yi (t) 's  are
stationary multiple M arkov processes in the restricted sense.

As an obvious consequence of this theorem, we can say that
Y (t)  defined by (II. 40 ) is  an N--pie M a rk o v  stationary process, if
the condition of the theorem is fullfilled. In particular, i t  is  an
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N-pie M arkov process in the restricted sense if and only i f  all the
a 5 's  are zero except ao .

Example II. 3. Consider a process

X (t) =  3L e - " - u)dB0 (u )-4Ç  . e -2(' - u)dB0 (u) .

The kernel 3e - " - u) - 4 e - 2 ' - u)  is not a proper canonical kernel.

Sction III. Levy's M (t) process.

§ Ill. 1 .  Definition a n d  known results.

Let X (A , co), A E E N  (N-dimensional Euclidean space), w E
be a Brownian motion with a parameter space E N ,  that is

i) X (A ) is a Gaussian random variable with mean 0
for cvery A,

ii) X (0 )= 0 , where 0  is the origin o f E N ,

iii) E(X(A)— X(B)) 2=r(A , B ), where r(A , B ) denotes the
distance between A  and B.

Since X (A , w) is continuous in  A  for almost all co, (P . Levy
[1 ], T .  S ira o  [1 ]) , the following integral is well defined and we
have a Gaussian process MN (t) with a parameter space T = [0 , co),

(III. 2) M N ( t )  — s(f)X ( A ) d œ ( A )

where SN (t) is the sphere in EN with radius t  and da- is the uniform
measure on SN (t) with 0-(SN (t))=1.

P. Levy studied the canonical representation and the Markov
property o f this process when N  is odd (P. Levy [3], [4]).
Since E(MN (t)) = 0, the covariance function o f MN (t) is

(III. 3) rN(t, s) = E(111,(t)MN (s))

AESN (t)SB E S ,(s ) E(X(A)X(B))chr(A)do-(B)

(t+s— p,(t,  ))12
where

pN (t, =S r(A, B)clo-(A)do-(B) .AesN i B Es i ,,(s)
By the simple computations we have, for t = s,

(III. 4) PN(ty t) — t.Tv_21IN_2 (N >  3)
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Owith sin k0 clO and j k = sin s i n  do, and for s +t
0 0

(111. 5)—  1

0

 sinN - 2 0 (N >  3)
2/N _2 

with r =(t 2 + s' — 2ts cos O)h1 '.
Using the analytic property of FN (t, s) and others, P. Lévy [4 ]

obtained many important results concerning MN (t). First, if
N=2p+1, MN (t) may be expressed as

(III. 6) MN(t) = VPN (u t)dB o (u)

where 
P N (

is a canonical kernal defined by

(111. 7)P N ( u )  —  2 P  -\/./2 p  u  — X2 ) P - I dX
7 1, 

=  polynomial of degree 2 p -1 .
For example

Example III. 1.

M5(t) =(2/3— u I t +u 313t3).\/ dBo (u)
0

Example III. 2.

= (2 /5 — 3u /4t + u3/2t3 — 3u5 / 200 N/10d/30 (u) .
0

Concerning the Markov property, it was proved that M 2 + 1 ( t )  has
continuous derivatives o f  orders 1, 2, •-• , p  and it is a (p+ 1)-pie
Markov process in the restricted sense.

§ III. 2 .  Canonical representation o f  .11/,(t) process.

We are now interested in the canonical representation of MN (t)
for the case that N  is even particularly. First we shall consider
some properties of r N (t, s) for odd and even N , and then we shall
study MN (t ) process.

As P. Levy pointed out 
e - t y l ( e 2 t ) ,  which will be denoted by

XN (t), becomes a stationary Gaussian process with parameter space
(— 00, 00). In fact

E(X,(t)X,,,(t +h)) =  (2 cosh h  1  r  (cosh (2h)
N-2

(III. 8)
/ 0

— cos 0)v2 sinN 2 0 do) h 0 .
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It is a function o f h and will be denoted by 7N (h).
Lemma. I f y N ( h )  belongs to C 2 and satisfies the follow-

ing equation

(111. 9) (2N— 3) 27N(h) —  ryr,(h) 4(N— 1)(N- 2)7N _2 (h) .

Pro o f . I f  we note only the differentiability under the integral
sign in the formula (III. 8), we can easily prove the existence of
7/1,r (h ) and 7;-(h). Exact forms of them are

ry",-(h) = sinh h— s ionTh 2 h '' {2(cosh 2h— cos 0) } - 1 /2 sinN- 2 0 de

7;,(h) = cosh h  
1  

{2 cosh 2h(cosh 2h —  cos 0)

— cosh' 2h + 1} {cosh 2h— cos 0} - 3 /2 sin ' 29dB

Thus we obtain (III. 9).
Theorem Ill. 1 . I f we have

(III. 10) cN XN _2 (t) =  e - ( 2 N - 3 ) t  d  e ( 2 N - 3 ) t X N ( t ) ,  

cN  = \  / (N -1 )(N -2 ) •dt

(Here a process and its version are identified)
Pro o f . From the above lemma, we can see that e(2N- 3 )tXN (t)

is differentiable. On the other hand, XN ( t )  is purely non-determi-
nistic as is easily seen from the definition, and it is expressed as

X N (t) =  eit dZN (X)

with a Gaussian random measure ZN (•). Hence

X '  ( t )  =  e - ( 2 N - 3 ) t  

d  S
e

d 1 x+2N-3,tdzN (x)
dt

exists and is

( iX + 2 N -3 )e "V ZN (X).

The covariance function of X ' 1 ( t )  is

eih'`IX2 + (2N — 3) 2 } I (X) 2dX

=  — 7 ;(h )+ (2 N -3 ) 27N (h) = c 2,7 N __2 (h),

where I FN (X)1 2 i s  the spectral density function o f XN (t). Hence
XV-J(t) can be regarded as a version of cNXN_2(t).
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Thus we can see by (III. 9) and (III, 10) that the study of XN (t)
is reduced to the study of X 2 (t) or X 3(t) so far as we consider.

-(2N-3,t_d
e (2N-3):More exactly, i f  we denote the operator cV -e by DNdt

it is easily proved that D3 can be operated to X 3 (t) and

D3 D, ••• D2 p ± 1 X 2 p + 1 (t) X 1(t)

which is the Ornstein-Uhlenbeck's Brownian motion. Hence X 2 i,+ 1 (t)
and therefore M 2 + 1 ( t )  i s  a  (p+ 1)-p le M arkov process in the
restricted sense. (This fact was proved by Levy by another method).
The spectral distribution function of X 2 p ± 1 (t) has a density

(III. 11) C2k+1
1  I P2 p -F 1(X ) 12 - k  1  

{(4 2p ___ 1) ± x2). {(4p 5)2 + X2).{ 3 2  + X2} 1+X2

Therefore we obtain the following

t a e- "k - ixt - u)+aoe - ct - .)» B o (u)
- „ .

X2p+i(l)
(  k = 1

Here the kernel of the representation is to be determined so that
the square of it s  Fourier transform is equal to I t 2 i,, 1(X)1 2 and it
satisfies the condition that Q(X) constant. This is  posible.

Changing the time scale, we have the canonical representation
of MN (t).

MN(t) k(u I 0 2 k - 1 + ao)dBo (u) .

Obviously thus obtained representation coincides with the Levy's
result.

The problem to obtain all non canonical representations of
/1/2 ± 1 (t), where kernels are polynomials o f (u/t) of degree 2 P -1  is
easily solved, i f  we observe the spectral density function of X,p + ,(t).
T h e  an sw er o f th e  prob lem  is that " th e  number o f  different
representations o f  above stated form of M2 p , 1(t) is just 2P- ' including
canonical one".

P ro o f. If a kernel is a polynomial of (u/t) of degree 2 p -1 , it
turns in to  the sum o f exponential functions such as e - (2k+1"t - .),
k < 2 p - 1, the Fourier transform of which is a sum of the functions

1 of the form Hence the number o f posible functionsiX + (2k + 1)
o f t , p + ,(X) is  ju s t 2 " .  For example we obtain such a function
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multiplying 
i X  +  ( 4 P —  7 )  

to the function P 2 p + 1 (X ) which corresponds

to the canonical kernel.
Example III. 3. O ne of the non-canonical representation of

M 7 (t) different from the Levy's one (cf. P. Levy [4 ] p. 146) is given
as follows : let

PAX) = (iX+1)(iX+3)(iX+7)(iX+11)) • iX+ 5
\ i x - 5

The rational function in the bracket corresponds to the canonical
kernel. Then W O  is expressed as

çt
 

(3/5 — 3u1 t +5u2 1t2 -3u 3 1t3 +2u 5 15t5 ) \ /10dB0 (u) .

I f  N  is even, we also have

AD, • • • A p X, p (t) X 2 (t).

Hence, i f  we know the canonical kernel of the representation of
X 2 ( t ) ,  then we can obtain that of X 2 ( t )  easily and know the
properties of it.

We have
FI C 2 k

k  =1(111. 12)p 2 p ( x )  2ix 2  ±  ( 4 p  3 ) 2 1  { x 2 +  ( 4 p  7 ) 2

}

±  521
 F2(X )

in the way similar to the case in which N  is odd. Now it is our
purpose to obtain the exact form o f  I t,(X) 2 . T o  do so, let us
consider 72 (h). I f  h>0,

72 (h) cosh h/ 2 — 21 Ç(2 cosh (2h)-2 cos 0) 1/2 c10

Using the Legendre's polynomials the integral term o f it may be
expanded as follows

1
{cosh (2h) — cos O} "2d0 1 f eh + (a2 a 0_+ 2akak-\/ 2 0 2 k =0 k

where
1.3-5 ••• (2k— 1)ak  —  2.4.6 • • - 2k.

Taking the Fourier transform, we have

12 1 / c 'É bk
I2 7 r  1 + k=0 X2 +  (4k +3) 2 ) '
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where

bk = (4k + 3)(ak-Fi —  ak)2( > 0 ) .

This proves that X 2 (t) is not a multiple Markov process, but, as it
were, 00-pie Markov process.

Let F n (X ) be given by

p c„) ( x ., (  1 k /27r
14-X2 k = 0 (4k+3) 2

Then tc" ) (X) > 0  (since t ' ( X ) >  P2(X) i 2 >  0) and

flog k n ) (X ) dx  >
J 1 + x 2

Therefore, there exists a stationary Gaussian process X(n)(t) which
is expressed in the form

Xm(t) F„(t—u)d130(u)

and has spectral density function t(n)(X).
Obviously X(n) (t) is a stationary (n+ 1)-pie Markov process and

its covariance function y( n) (h) converges to 72 (h) uniformly in any
finite interval o f h.

Summing up we have
Theorem III. 2. X2 (t) is not a multiple Markov process, but it

is  a  limiting process o f  n-pie Markov process (n--.00).
Proo f . For p= 1, we have already proved. Noting the formula

(III. 12), we can easily prove our theorem.
From this theorem we can see that M 2 ( t )  is not a multiple

Markov process, but is a limiting process o f n-ple Markov process
with homogeneous canonical kernel o f degree 0, which was to be
obtained.
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