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INTRODUCTION

J . L . Doob [5] has established the M artin boundary theory
for countable Markov processes with a  discrete time parameter.
Independently, the author [15] has outlined the almost same results
to apply them to Hausdorff moment problem. In  this paper, we
shall show that the boundary theory holds even in  the continuous
parameter case by an  approach somewhat different from Doob's
o n e . We shall not discuss the dual boundary theory as well as
the potential theory o f se t functions. But we shall discuss some
problems which were not treated by Doob.

A  countable Markov process with a discrete or continuous time
parameter defines the family of functions called x t-superharmonic
or x c harmonic over th e  countable space ;  those functions are,
respectively, the exact counterpart of the ordinary superharmonic
or harmonic functions. The purpose o f  this paper is to obtain
some representation theorems for the above functions, by modifying
R. S. Martin's approach [1 2 ] to  the ordinary harmonic functions
from a  probabilistic point of v iew . This work was motivated by
W . Feller's paper [6 ],  in  which he has shown that a substochastic
matrix induces a  boundary for the countable space. It seems that
the Martin boundary which we shall introduce is more advantageous
in  concrete construction than Feller's. In general, the relation of
the both boundaries is still unknown. But many results of Feller's
would be also able to be derived from our standpoint, though it
is not discussed in  this paper.
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Chapter 1  consists o f three sections and contains some funda-
mental facts on countable Markov processes which will be abbre-
viated as  CM P's in the sequel. In Section 1 , after the precise
descriptions of a CM P and its related terminologies, we shall
introduce some important quantities :  For example, the distribution
HA  of the hitting time for the set A , the transition probabilities
{IP ; t e T} ,  the Green measures {G,„ > 0 } ,  the mean q  and
distribution 11 of the first jumping time, the generator and so
on. Section 2  contains some properties of the quantities introduced
in Section 1 and the decomposition o f th e state space X  to  the
indecomposable recurrent sets V R i and the nonrecurrent part N.

In Section 3 , it is shown that the system {H t ;  t G T} or {q,
which satisfies some conditions determines a CMP uniquely.

Chapter 2  consists o f three sections devoted to the potential
theory o f  x t -superharmonic functions. Section 4  contains the
definition and elementary properties o f  x t -superharmonic or
harmonic functions. In Section 5 ,  we shall study the function
HA M ( in  which u  is  nonnegative and x1-superharmonic) and the
potential of a function and, among all, we shall prove two theorems,
i.e. Theorem 2. 2 and 2. 7 which play basic roles in the following
chapters as well as in that chapter. The other theorems in  this
section are easily derived from the two theorems cited above. In
Section 6, we shall show that the class o f  nonnegative x i -super-
harmonic functions coincides with the class of Hunt's excessive
functions and moreover we shall discuss the relation of x c harmonic
functions with H'-invariant functions.

In Chapters 3  and 4 , we establish the Martin boundary theory.
Its procedure is essentially the same as in Martin's original paper
[12 ]. B u t  some modifications are necessary to prove the main
representation theorem (Section 1 1 ), fo r  our boundary is not
necessarily compact, differently from Martin's case. Our method
will be based on Choquet's capacity theorem.

Chapter 3  consists o f two sections and introduces the Martin
space M, the Martin boundary a± and the réduite up(x) (in which
u is a nonnegative x t -superharmonic function and D is a compact
subset o f M ) .  In the beginning of Section 7, we shall introduce
the center condition (CMP. 4), the K-f unction and the function
families X,, M .  Next it is shown that M c  i s  compact w ith a
suitable metric p. M  and a± are defined as the set homeomorphic
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to M , and X ,,  respectively. Finally we can see that, under
some additional conditions, M  and a.k have the same properties as
in Martin's case. Section 8 is concerned with the réduite. Using
the fact that H A u is alternating of order 2 in A , it follows that up(x)
is an alternating capacity o f order 2 over the class o f all compact
sets in M  and therefore it can be extended to any Borel set in M.

Chapter 4, consisting o f  three sections, is devoted to the
representation theory for x t -superharmonic functions. Section 9
contains some auxiliary representation theorems and the fact that,
if u is nonnegative and x t -harmonic, then u =u a k‘,,i,, i . In Section
10, we shall introduce the concept of minimal x t -superharmonic
functions, the minimal part M , and nonminimal part M o o f  M.
Theorem 4. 4 which gives the classification of M , and M, by means
of the k-function is useful both theoretically and practically.
Moreover it is shown that both M , and M o are Borel in M , and mo

is a subset of X .  In  th e  beginning of Section 11, the canonical
representation is defined as the k-representation with the measure
whose total mass is carried on M i . Our main theorem is stated
as follows : Any nonnegative x t -superharmomc function u  admits of
exactly one canonical representation. The exp lic ite  determination
of the corresponding measure is given by the réduite of u  and
the potential o f — O u . Finally we shall list some results derived
from the main theorem.

Chapter 5, consisting o f  three sections, contains several ex-
amples and brief comments on the extention of the boundary
theory to general Markov processes and the dual boundary theory.
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C H A PTE R  1 .  PRELIMINARIES

1 . D efinition of countable  Markov P r o c e s s e s .  Notations and
term inologies. We shall start with the definition o f a  countable
Markov process with a  discrete o r  continuous time parameter
which has right continuous paths and cannot survive after in-
finitely many jumps. Our definition is essentially the same as
that o f D oob [3 ] except some modification for convenience of
probabilistic treatment.
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Let X  be a countable (state) space with the discrete topology
and 00 an extra point to be added to X  as an isolated point, and let
S . denote X U  {co} . Each state, i.e. each point of .g will be denoted
by x, y and so on, and the set of all subsets of by 0 - Î .  Let
the time parameter space T  be a compact set {0, 1, 2, •-• , + 00} or
[0, + 00] with the ordinary topology and 3 r  the topological Borel
field over T .  Any function (Path) of t E T  over w ill be denoted
by w and its value at time t  b y  w ,  o r  x ,(w ). The hitting time 0 A

f o r a subset A  o f X  is defined by

(1.1)0 - A ( w )  = inf {t ; x 1(w) E A } if x 1(w)E A  fo r  some t
=  +  C X )o t h e r w i s e .

Now consider the set W  o f all the paths which satisfy the
following conditions :

(W. 1) x ,(w ) =  00
(W. 2) x1(w) 00 for every  t o-(w ).
( W .  3 ) 1) x 1 (w ) is right continuous for every t  and has at most
discontinuities of the first kind for t < o - co(w).

We shall denote by O w  the Borel field generated by the sets
lw ; x 1 (w) E E I, where E  runs over O g and t  over T .  Given any
path w  and any random time 0-(w), i.e. a function from (W, 5.13 w )
into ( T ,O T ), the stopped path w; and shif ted path ur: is defined by

(1.2)( w o - ) 1  =  WrninCt.o0 (t ±  0 0 ) ,  and = 00 ( t  = 0 0 )7

(14)1 = W  o -+t •

We shall prove that  q (w ) w ; and qra.(w )=- _-- w :  are measurable
mappings from (W, 8 )  in to  itself. F irst w e shall show that
w; E W . Noting that

(1. 3) 0-co(ww) = inf ; x t (w ;) =  c °}
- inf It ; x, n(t.cr)(w) =
- inf {t ; min (t, cr) croo (w)} ,

w e have from (W. 2 ) that xt(wW)=x.,.(t.,)(w)— 0o for t > a - -(w ;).
This means that w; satisfies (W. 2 ).  Further if t < o - c ,( w ; ) ,  min (t, 0-)
<cr o (w ) .  Hence we have

1 )  This condition is trivially true for any path in the discrete parameter case.
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t <  a-0 0 ( w )  a n d  x r„,„( , ) (w) x(w) if t < o - ,
Xmin(t, cr)( W ) —  XT(W ) if t ,

which shows that (W. 3) is true for w ;. S in ce  (W. 1) is contained
in the definition o f ww., it has been proved that w ; is an element
o f  W . Next we shall prove that 1w ; q (w ) G E  w  fo r any set
B  of Zi w . From the definition of w , it is enough to show that
{w ; (q),(w)),---w ( ,) E El E  w  for any set E of 0, and any t E T.
This is easily derived from the fact that x(w) is measurable as a
function o f (t, w). The argument for ika.(w ) is quite similar.

We shall now denote by Q3 o., the Borel subfield (p c.) - - ' „, of
Note that the fo r  th e  con s ta n t random time t  coincides

with the Borel field generated by all the sets {w ; x s (w) G E l for
any s t.

DEFINITION 1. 1. A  random time o-  is  a Markov time if

(1. 4){ w ; o- (W) t} E Otf o r  a n y  t E T .' )

Given any hitting time 0-A  and any t E T ,  using (W. 2) and
(W. 3), we can see that

{w ; crA(w)›t} = lw ; x(w ) 0 A  for any rational r < t  and x ( w )  Al

=  T\ lw ; x r(w) A li n 1w ; x t(w) E 5 8 ..
t

Hence we have
LEM M A 1. 1. A ny  hitting tim e is a  Markov time.
Further we shall list some properties of Markov times which

are used later and will be proved in Itô and McKean [10].
LEM M A 1. 2. (  i )  I f  0(w) is a Markov time, we have 0-(w)--= 0-(w )

f or every w and every t >- 0- . This m eans that o-  i s  a  O r r -measurable
function and  th at, i f  0-, an d  0- 2 are  Markovian and cr2 , then

(ii) I f  0-1 (w ) and  0-2 (w ) are  Markovian, 0-240'00 is
also Markovian.

(iii) I f  0- 1 (w ) an d  0- 2 (w ) are  Markovian, th e  se t  {w ; cri(W) <

0- 2(w)} belongs to both 13,S , and 0 , 2 2)

2) In  the continuous time parameter case, we can use a weaker condition ( * )
{w ; a-(w ) < t }E  13, instead o f (1 .4 ) .  In fact, if X  is  a more general state space, the
condition ( * )  is  more desirable for the continuous parameter case than (1 .4), though
it is not suitable for the discrete one. See also It6 and McKean [1 0 ]  and our paper [1 4 ] .

3) This assertion implies that the sets {w ; o'1(w) 0 2 (w )} and {to; a'1(w)=0 -2 (w )}
belong also to both B r,-, and Bo-2.
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A  countable Markov Process (CMP) is  a  system (Px , x E X) of
measures over ( W, 8 w ), satisfying the following conditions :

(CMP. 1) For any fixed x, P x ( • )  is  a  probability measure
over ( W ,  w ).

(CMP. 2) Any state x is not fictitious, that is,

Px {w; x 0(w ) = x }  = 1 for any x EX.
(C M P. 3) (M AR kov P R O P E R T Y ) F or an y  x E X, t  E T  and

B GO w  , we have

(1. 5) Px(w; w  E BI 0 t ) 13 (B) with Px -probability 1,

where the left side denotes the conditional probability of the set
{w; wE B} relative to 0 t under P.

REMARK 1. 1. Using the same argument as in Doob p. 81,
(1. 5) is reduced to

(1.6)P x ( w  ; wrn-Fs E E l Xt i , x i 2 ,  ••• Xe,,) Pxt„(w; w. E E ) ,

in  which EEO )?  and t,, >  t,,1>  •-• t, >0. This rem ark w ill be
used in Section 3.

Now given a real valued measurable function f (w )  and a set
B E  w ,  we shall define

(1.7)E x ( f ( w ) ;  B )  =  L f(w )1) ,(dw).

In particular, if B  coincides with W  u p  to  P s -probability 0,
E x (f (w ); B ) will be denoted by Ex (f(w)).

THEOREM 1 . 1 . (STRONG MARKOV P R O P E R T Y ) F or any Markov
time x E X  and BE O w , we have

(1. 8) Px (w ;w i,' EB M ,) = P x (B) with Ps -probability 1.

This fact was established by many authors even for more
general Markov processes. We shall here sketch a proof which is
due to Itô

PROOF. By the definition of B0,, i t  is enough to show that

(1.9)P x  { ( w  ;  w  E B) f-N A} =  Ex (P„(B ); A)

holds for any A E  a. and any cylinder set B , i.e. a set of the
form {w ; x 1(w) E E 1 , i= 1, 2,..., k}.

First suppose that cr is a discrete valued Markov time whose
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range is denoted by it i ; i= 1, 2, •--1. F ro m  the fact that there
exists a set 17 E O w  such that A =  {w ; w cT- E 171, we have

A, A n ;  0 - ( w ) t
{w; w EF , c-(w) E O t i  .

Consequently P x {(w ; E B )nA }  = E  P x{(w ; E B) A  i}

= . 1 3 ,1(w ;w -kt i  E B) r \ A i l  ,

using (CMP. 3)

= E,(Px, i (B ); A i ) =  E x (Px ,(B ); A) ,

which completes the proof for the
I f  T  is continuous and C I  is a

a sequence lo-„I o f discrete valued

from above, for example cr„ — En d 4-

1. 2. (i), (1. 9) holds for any A E
a cylinder set and using (W. 3), we
and Px,n (B)—>Px o.(B ), and hence (1.

discrete parameter case.
general Markov time, consider
Markov times approximating 6
1

. Since Q30._ÇOa.n  from Lemma

and any 0-„. Noting that B  is
have (w ; w 'c i n  E B ) ,(w  ; E B)
9) is also true for cr.

LEMMA 1. 3. G iv en any  M ark ov  tim e a -  and any  m easurable
functions f (w ), g(w ), w e have

(1. 10) E  f ( w ;- )g(w )] = E  x [ f(ww)E, o (g(w))] ,

w hich w e understand in the sense that if the one side o f (1. 10) is
w ell def ined (adm itting ± co), the other is so too and the both sides
are equal to each other.

PROOF. We may assume, with no loss o f  generality, that f
and g  are nonnegative. By approximating f  and g  from below
by a sequence o f step functions, we can derive this case from the
case f  and g  are step functions, for which (1. 10) follows immedi-
ately from Theorem 1. 1.

We shall now introduce several definitions, notations and
terminologies.

DEFINITION 1. 2. A  state x is a trap  i f  it satisfies

(1.11)P x { w ;  x f (w ) = x for every  t  + c o }  =1 ,

or equivalently

(1. 11)' Pxlw ; 0-(x), (w) < + 00}  = 0 .
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DEFINITION 1. 3. A  state x is recurrent i f  it satisfies

(1. 12) Px{w ; c2(10.- 1 ) <  + °°1 0 - 1(W) <  + = 1 ,

where 0-1(W)=0- f x )
, (w ) and cr2 (W)=0-x (w).

To see that our definition is natual, consider the recurrence
time at x, 0- (w)=0 - 1(w)+0- 2(w4-0-1), which is a Markov time by Lemma
1.2. (ii). I f  x  is not a trap, Px {w ; o-i (w )< +  co} =1 as is shown
in Seciion 2 and therefore (1. 12) is equuivalent to

(1.12)'P x { w  ;  o r (w )< +  00} =  1 ,

while a trap is trivially recurrent.
To continue, we shall define

(1. 13) pa,(x, y) =  Ex (e - "Y) f o r  0 < a <  co

Note th at p (x , y ) is a monotone nonincreasing continuous function
o f a, that pc,(x, y ) (or simply p(x, y )) is equal to the accessible
probability from x  to y , i.e. P x {w ; 0-y (w )<+ 00} and that P os(x, y)
is either strictly positive or identically zero.

DEFINITION 1. 4. I f  p(x, y) >  O, y  is  accessible from  x ,  in
symbols x —> y.

REMARK 1. 2. Using the strong Markov property and the
formula ery (w)<0-,(w)+0-y (w 2 )  for any path starting at x, we have

(1. 14) P.(x, y) z)P.(z, y)

which shows that the accessible relation is transitive, namely, that
i f  x— z and z—>y. then x

DEFINITION 1. 5. A  state x  is  conservative over X  i f  oo is
inaccessible from x , that is, if P(x, 00)=0.

I f  general, i f  a  real valued function H (x , E ) defined over
_gx Or, is  a  measurable function of x  for each E and a measure
over (X, :32 )  for each x , it is called a kernel, following Hunt [8].
For any kernel H (x, E ), a transformation H  of functions of x  is
defined by the formula

Hf. (x) = dy) ,

if the integral on the right side is well defined (admitting ±  oc).
In particular, to the kernal defined by

a(x, E) = 1  if E 3 x , and = 0 otherwise,
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corresponds the unit transformation I.
We shall introduce several important kernels induced by a

C M P . Given a  Markov time cr, the kernel is given by

(1. 15) 11°.(x, E) = Px {w ; x(w) E El .

Consider two Markov times 0-1(W), 0-2(w) and put 0-(w)— cri(w) + a-241N .
Then the strong Markov property proves that

(1. 16) f  .(x )  = H `r1 H 6 2  f .(x)

holds for every nonnegative function. If 0- is the hitting time for
a set A, Hcr is denoted by HA and, for each fixed x, H A (x , •) is
called the hitting measure for the set A of the process starting at
x. Further we introduce a  new notation II(x, E)=11 t x ) ,(x, E).

Putting 0- -=- 4 , we shall get a  system of usual transition Proba-
bilities f ilt(x , E ); t E T1, in  which case (1. 16) is nothing but the
well known semigroup property of IV,

(1.17) Ht+s f . ( x ) H t  f  . ( x )

Further the Markov property shows that for any integer n  1, if
t i <  ••• < t  a r e  paramerter values and E„ ••• , E t , are subsets of X,

(1. 18) P x fw ; x, i (w) E E 1 , i = 1 , 2, ••• , nl
= litiX E 1 Ht2 - tiXE 2  •  •  H t n—  t n- 1 XEn . (X )

where XE i is the indicator function of E i  and, for i = 1, 2, •-•
it is considered as a transformation of functions in  the sense of
XE i f . .(x)=X E i ( x ) f ( x ) .  Consequently a  CMP is uniquely determined
by its system of transition probabilities. In  particu lar, a  CMP
with the discrete time parameter is determined by I-11 (x, E ), because
Ht is determined by (1. 17) for t < + 0 0 , while .11±- (x, E) = 1  or 0
according as E  contains 00 or no t. Noting that {w ; 0-,,(w) >t1  —
{w ; x 1 (w) E X } and (CMP. 2), we can see that a state x  is conser-
vative if and only if  H t(x , X )=1  for every t < +  0 0 •  Similary, if
T  is discrete, every state x  in  X  is conservative if and only if
111(x , X )=1 for every x  in  X.

The Green kernel of order ce 0 is defined by
4 co + co

(1. 19) G „(x, e--"XE(x f )dt}  = e - "ti-P(x, E)dt ,
0

+-
where the integral notation is understood as the summation E

t o

in case of the discrete time parameter. G„(x, •) is a  finite measure
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for every x E -X  and a > 0  (see (1.21) and  (1. 22)), but Go (x , •) (or
simply G(x , •)) is generally an infinite measure which is not even
a  OE-finite measure. T he following Dynk in formula which is a
direct consequence of the strong Markov property is useful : For
any Markov time

(1. 20) Gx f  .(x ) = E x ( o e 'f f ( x t )dt)+ E x  fe - ascrG„,f .(x,)} .

As is well known, the system {Go, ; a>0 } satisfies

(1.21)G „ ( x ,  E ) 0  ,  G o,(x, = 1 ,

(a — 0)G a}G f  (x ) + GB f (x)—  G ( x )  =  0 (RESOLVENT EQUATION)

in the continuous time parameter case, or

(1.22)G ( x ,  E ) >  0 , G„(x, =   G.(x, x) 1,

(e - 4̀ —e - 1 3 )G„,Go f .(x )+e - fiGpf.(x)— e - 6 G f .( x )  = 0

(RESOLVENT EQUATION)

in  th e  discrete o n e . Conversely,” to any system  {Ga, ; ce> 0 }
satisfying (1. 21) o r  (1. 22) corresponds uniquely a  discrete or
continuous system Ilit ; t E T1 which satisfies (1. 17), (1. 19) and

(1. 23) Hi(x, = 1 .

Consequently a  CMP is also uniquely determined by the system
of Green kernels for a>0.

Next we shall introduce another new quantity

(1. 24) q(x ) = E x (o-f x ) ,) ,

which is strictly positive .by the definition of CMP and is finite
i f  x  is not a  trap , as is shown in Section 2. Then the Dynkin
generator 6  is defined by

4 )  T h is  fact has been proved in  Feller [ 7 ]  for the continuous time parameter.
On the other hand, in case of the d icrete one, replace e - e' by s. Then (1 .2 2 )  proves
that G,-=--Gd  is  an analytic function o f complex s in  i < 1  and its n -th  derivative is
given by

= n !  G s ( Ga I ) "
\ s

GC,"3

which shows that
n !

 i s  a kernel according to G ,(x , E ). 8(x, E ) .  T h e  semi-

group property and (1 . 23 ) of [H " ;  n=0, 1, 2, • ••} are easily derived from (1.22).

(* )
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(1. 25) 0 1 1 ( x ,  E )  =
II(x

' 
 E)— 43(x, E)

q(x) •

2 .  Some properties o f  a  CMP and  the decomposition of the
sta te  space. We start with

LEMMA 1.4. T h e  d is trib u tio n  o f  G-(w)=0-( x ) ,(w ) relative to  P x

i s  o f  geometric o r exponential ty pe according a s  T  is discrete or
continuous. The state is a  trap  if  and  only i f  q (x )—  +00 . In par-
ticular, i f  T  is discrete, w e have

1 (1. 26) q(x) =
H '(x , {x}`)

PROOF. I t  is show n by th e  strong M a rk o v  property that
P  x (c>  t) f ( t )  for t E T  satisfies

f ( t+ s ) =  f ( t ) f (s ) .

Since we have P x (0-> t ) = E x {X (1,, ] (0-(w))} and X( t ,“ ] (P ) is measu-
rable in (t, t'), f ( t )  is also measurable in t. Therefore we get

f ( t )  =  e astf o r  som e X > 0 ,

which proves the first statement. Moreover it is clear that X -
11 q (x ) .  Suppose now that x  is  a  trap . Then since f(t)—  1  for
every t ,  we have X= 0  and hence q (x )=  + 0 0 . The inverse state-
ment is evident. The last statement immediately follows from

1 f (1 )= H (x , x ) and q(x)— 
1 —  f ( 1 ) •

We shall here define the n-th jum ping time cr„ as follows :

(1 . 2 7 )  0- 0(w) = 0, 0- 1(w) = 0- tx0(.)) , (w), •• • , crn(W) = crn-1( 11, ) + 0 -1(14, %- 1 ).

S ince {o- i(w) › t }  = 1w ; x r ( w )  xa(w)}] n 1w ; x t(w)= xo(w)}  E

every o-n (w) is a M arkov tim e. According to (CMP. 2) and strong
M arkov property, we have q(x )= E x (o-1 )  and II°"” = Tr, in which II"
is  the n  product o f  11 with the convention 110 = 1 .  Next putting

=  urn œ (W), it results from (W. 2 )  and (W. 3 )  that 0- 4.(w)

o ( w )  for every w .  In fact, suppose that 0-,_ (w )< (7 (w ).  Then
lim x , (w )  exists and belongs to X .  Th is means that x , o (w)=
n -*co

x„„0 1(w ) =  ••• =  lim  x, (w )  f o r  some n „  which contradicts the
"

definition of 0-n . Consequently



50 Takesi Watanabe

(1.28) H 6 (x , E ) = P x (x ,E E , crn < o - < o - ) E)Px(cr±co<cr)
”=-0

= P x (x  E  E, 0-,, <Œ<Œ ± ,) + 8(00 , E).13 ,(o-,_ cr)

holds for any subset E  of .g.
Suppose now that T  is continuous. Then, putting H (f,) (x, E)

= Px (x t  GE, 0- „< t< c rn + ,), Px(o- (x), > t )= e , we get

1-1„(x, E) = [ e-miX11 •• • e - xtn+idt, ••• dt„]%E .(x)
••• + tn+ 1

where e t and  X  are taken, respectively, as a transformation of
functions in  th e  sense o f e- xt f .(x)=e - xcx"f (x), X f .(x)=X(x)f (x).
Therefore

(1.29)( x ,  E ) e-("11()(x, E)dt
. 0
[(a +X) - 1 XIly  (a + X) -  X E . (x) .

This can be also derived from

1C r(x , E ) =  Ex  ( r + 1  e'X E (x t )d t ) =  E  x [XE (x,„)(e 'n  —  eTn+i)]crn

using the strong Markov property. Consequently, if ECX,

(1.30) 4 - - (n)G (x, E ) —  E  Gc, (x
'

 E )— —0 
÷-

=  E  [(a +X) - 'Xinn (a ±X ) - 1 X E . (x) .—0

Since, according to X(x)=q(x) - ' ,  we have

(1.31) a—  =  a —X(II — I ) =  +X) [I— (ce+X) - 1 X14] ,

the relation

(1.32) (a — (53)G as (x, E ) = 8(x, E )
1holds for every x  and E <X. Further, noting that G,„(x, ce

—G„(x, X), (1. 32) holds for E =  00 and therefore for any E
Hence G an inverse kernel o f a —

In the same way, if T  is discrete, we can obtain

1-1(
.,) (x , E ) =  [ E e- mti - ') (1— e- '911 .• • e - x/n-I 1XE . (X )

t =11-1- + 61+1

tn + 1 = 0 , 1 , 2 , • • •
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(1. 33) G T (x , E) = e-'4-À)e-6(1— e - x)11)]"(1— e - °" ) - 1 X ,.(x )

(1. 34) G .(x , E ) = E e-6-x)e-r'(1—  e - - 2 ') I I—0
q(x) (1— e - x(x)) - '

-  c " ) - 1 X ,.(x ) ,

(1. 35) (1— cas)— e - °'03 (1— c")[I—  (1—  e - ' - '') - 1 e - °s(1— e - À)11],

(1.36) [ ( 1  — 03] G„,(x , E) = 8(x , E) for every x  and EC .
In our case, as will be shown in Chapter 2, Ga,(x , E ) is  the unique
nonnegative bounded solution of (1. 36).

U sing the expression of H ' by m eans o f q  and H , we can
prove

THEOREM 1. 2. ( i ) I f  T  is continuous and  f  i s  a  bounded
function, H tf .( x )  is dif ferentiable in  t  and the form ula

(1. 37) lim 
H t f

.  f i x )6 3 1 . .(x)t

holds, so that putting f =X (x ) , ,  we get

n i n Ht(x, {x}e)q _, ( x )

(ii) I f  T  is discrete, the formula

(1.38)H i f  . ( x ) —  f ( x )  =  0 3 1 . .(x)

holds for any  function f .
PROOF. ( i ) Suppose th at x  is  no t a trap, for (1. 37) is evident

for a trap x. M oreover we can assume that f  i s  a  nonnegative
function w ith no lo ss of gen era lity . B y  a simple calculation we
obtain

(1. 39) H(,g)f .(x ) = e - x( x"f(x) ,

H ( ) f .( x ) X (x ) _g(x , y, t)f (y)11(x , dy) ,

where
1 e -(x(x)-x(y))t

e x , y, t) X(x)— X(y) e
-X(Y)t if X (x ) I- X(Y)

— t e - X ( Y ) t i f  X(x) = X(y) .

I f  w e now  put EK= {y; X (y)< K 1, then  E i c  g  w ith  K —  +00.
T herefore, g iven  any > 0, there exists a number K (_>X (x)) such
that

f (y )I1(x , dy )>Ilf  .(x )—  6
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Hence using (1— e - xt)/X t I X1 t2, we have2

H ( 1) f .(x ) X(x)e - Kt(t— Kt 2 ){1If.(x)—&}

so that
H J) f .(x ) X(x)Ilf (x) • t — &t

holds for any t <some t o(> 0 ) .  In the same way, we have

H ( 1) f .( x )<X (x )  ( t+K t 2 eK t)Hf .(x ).

Consequently

(1.40)-  f  (x ) = X (x )11f .(x )•t+o(t).

Putting k= sup f ( y )  and applying (1. 39) and (1 .40 ) to  the unit
YEi"

function X, we get

(1. 41) E x (f (x t ); CT, < t) k E x (Xi.-(x t ); 0-2 S  t)
= k [1— H ( ) X5,-.(x)—H ( ) X j

--c . (X ) ]

= k[1— {1— X (x)t+o(t)}  + X (x )t+o(t)]
= o(t) .

Summing up (1. 39), (1. 40) and (1. 41), our statement is evident.
(ii) (1. 38) is a direct consequence of

H (4) f  (x ) = e - x(x)f(x) = {1— q- i(x)} f (x )
11( 1) f . ( x )  =  {1— e - "x ) } i l f . (x ) = q - '(x ) ilf .(x ) ,

.(x ) = 0 fo r  n  = 2, 3, ••• .

To proceed to the decomposition of the state space, we shall
list the basic results on the recurrence in

LEMMA 1. 5. (i) A  state x  is recurrent if  an d  only

(1. 42) G(x, x) = 00 .

(ii) I f  x  is recurrent and y , y  is also recurrent. Further
P(x, y) — fi(y, x)=1.

(iii) Fo r any two states x  and y ,

(1. 43) G„(x, y ) = p(x , y )G (y , y ) a >  0 .

I n  p a rt ic u la r,  i f  y  is  nonrecurrent, (1.43) holds also for ce =0,
that is,

(1.44)G ( x ,  y) = y(x, y)G(Y, y) y) < + cx ,  •
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PR O O F. ( i ) and (ii) have been proved by the author [14] for
more general Markov processes. (1. 43) is a direct consequence of
the Dynkin formula (1. 20).

DEFINITION 1. 6. A subset R  of X  is an indecomposable recurrent
set if R  contains a recurrent state x which satisfies

(1. 45) P(x, y) > 0 for a n y  y E R ,
P X { W ;0 R('(W) <  0 0 } -= 0 .

THEOREM 1. 3. ( i ) A ny  state x  of an indecomposable recurrent
set R  is recurrent and satisf ies (1. 45).

(ii) I f  a state x  is recurrent, there ex ists a unique indecompo-
sable recurrent set containing x.

(iii) The state space X  is decomposed uniquely  into the direct
sum o f at most count ably many indecomposable recurrent sets and the
set consisting of  all nonrecurrent states.

PROOF. (1) is clear by Lemma 1.5 an d  Remark 1.2. F o r
the statement (ii), put R (x)= { y; p(x , y) > 0 } . It is easily shown
that R (x ) is what we need. To prove the third statement, first
consider any fixed recurrent state x ,  and R (x ,) .  Next, take any
recurrent state x ,  which is not contained in R (x 1 )  i f  such state
exists. R ( x 1 )  and R(x2 ) are disjoint, for otherwise we would have
p(x„ x 2 ) >0 , which is a contradiction. In the same way we define

R (x )  i f  there exists a  recurrent state x „ such that x „'U  R (x i ).,=1
These indecomposable recurrent sets are mutually disjoint and
any state x  \ I  R(x 1 )  is nonrecurrent. This completes the proof
o f (iii).

In the sequel, the decomposition of X  is denoted by

(1.46)X  = R i +N  ,

where each R i  i s  an  indecomposable recurrent set and N  is the
nonrecurrent part of X.

Finally we shall prove
LEMMA 1. 6. Let a- „ be the n - th  jumping time, a" + = cr„ and

L N =  111) ;  x (w ) has lim it points in N  as t - ›0- +.(w )} . Then

(1.47) P  iv) = 0

holds fo r  any  state x.
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PR O O F. P u t L y ----{w; x(w) has y  a s  a  lim it point when
t - - .0 - , (w ) .  Then since L N =  Vo r L y , it is enough to show that

(1. 48) P ( L )  = 0.

To prove this we shall define the n - th  hitting time T „ fo r  y as
follows :

7 ,(w ) 0- y (w ) 7 . ( w )  =  7 1 ( w ) + 0 - 0 0 , ( w )

=  7: .-1(w)+0 - y(w4v„_1) = Tii(w)+0". tyy(wtr„).
It is clear that

L y  = [V  17 n (w) < + 00 , ,(w) = + 001]`-i{T„(w) < + C O  for any n} .

We now calculate the probability o f each set on the right side.

P {7 - (w)< + 00, 7̀- (1 4 )) =  0 0 1  =  P x {7 „(w) < + 00, 0 - 01), ( te n )  =  ( X ) }

=  E x E P X 7 n ( 0 - ( y ) , (W) = CC)) ; tt( W )  <  CA

= 0  ,

by virtue of P y {aly) , (w )<  + co} = 1 (Lemma 1.4). Recalling the
fact that y  is nonrecurrent, we get

x 1,7 „(w) < +00 fo r  any n} = lim /3 ,1 ,7- n (w) < +o0}

lim P(x , Y)EPy { 7  2(w ) < + °KJ} r i

=  0 .

Thus we have proved (1. 48).
COROLLARY. I f  F  is  a finite subset of N ,

P x{w ; x t(w) F f o r a n y  t some t o}  = 1

holds f o r every state x.

3 .  Construction of a C M P . I t  is clear that the system {Ht;
t E T I  of transition probabilities of a CMP satisfies the following

(1. 49) 11°(x, E) = s(x, E), Ilf(00, E) (x , E) = a(., E) ,

besides the semigroup property (1. 17) and the stochastic condition
(1. 23). Now we shall study the problem whether, for any given
system Ilit ; t E  TI satisfying (1. 17), (1. 23) and (1. 49), there exists
a CMP whose system of transition probabilities is IH'I.

We shall start with a preliminary
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LEMMA 1. 7. Let ( W, P )  be an abstract probability field
and y(to)= (Y t(tD) ; t E T )  a  stochastic process on which satisfies
( i )  y - IW = y(1:0) E W1 E O a, and ( i i )  P(y - 1 W )= 1. Then the
process y (th ) induces a probability measure over (W ,  w )  by the
formula

P(B )  = (  y - 1  B) .

In particular, if B = fw  ; x 1 (w) E E i , i= 1, 2, • • • , n},

(1. 50) P(B ) = Ice ; y 1 (th) E E1 , i  =  1, 2, ••• , nl .

PROOF. I f  B = {w; x (w ) E E}, then y - '13= y - 1 W  {th; y i (a)) E
E Ow, . Therefore y 'B  E 0 1,T; holds for any B E i  b y  the definition
of 8 w ,  which completes the proof.

THEOREM 1. 4. L et 111(x , E) be any k ernal satisfying

Hi(x, E) 0, 111( x ,  g )  =  1  a n d  111(00, E) = 8(00, E).

Then there exists uniquely a  CM P with the discrete parameter which
satisfies

(1. 51)P  {x 1(w) E E l =  H'(x , E).

REMARK 1. 3. Our kernel H ' is uniquely determined by its
restriction to X .  Consequently to any given kernel over X  satis-
fying H (x , X )‹  1 corresponds one and only one CMP.

PROOF. The uniqueness of the process has been already shown
in Section 1. Hence it remains to construct our process.

Consider the system {Ht ; t E T } induced by H 1,  using (1. 17)
and (1. 49). As is well known (see Doob PI, we can construct
an abstract probability field ( Wx , 3 r;ljx P x ) and a stochastic process
y r(iv )  on g  such that

(1.52)1 3
 x IY,7)(f0) EE1 , i  =  1, 2, • • • , n1 = Ht1 XE 1 • Htn-tn_ixEn.(x)

holds fo r  an y  t i  E  T , 0  < t i < t , ‹  • • •  < t „ ‹  + 0 0  and E, E 3 2.
Further we have
w x y _iw  l y (x)(0  o

=  EV ynctr0q=-11`-l{y(4'2.(1:0)-1- — }  Eoff, x ,

Px{yr(tv) = — }  H tX X IX x .(x ) = 0,
13 x1Y72.(tV) ool = T P - Xx .(x ) = 0,

which proves that y ( t h )  satisfies the conditions (i), (ii) in Lemma
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1.7 . W e denote by P x  t h e  probability measure over (W ,  w )
induced by (CO).

We shall show that the system {Px ; x E X} obtained above is
the CMP which we wanted. First the condition (CMP. 1) in the
paragraph 1  is evident. Further (CMP. 2) and (1. 51) come from
(1. 50) and (1. 52). Finally, by Remark 1. 1, (CMP. 3) is reduced
to (1. 6), i.e.

Px{xt i (w) E E1 , j =  1, 2, ••• , n} EIPx,n_i(xtn-tn-i(w) E En);
x t i (w) E E i ,  i  =  1, 2, •-• , n - 1 ]

for 0 < t l < t , <  • • • < t n < + 00 , which is also derived from (1.50)
and (1.52).

THEOREM 1. 5. L e t {Ht ; t e TI be a continuous system satisfying
(1. 17), (1.23), (1.49) and the following conditions:" For any fixed
t ,  any finite set E  and any E > 0 ,  there exists some finite set F such
that

(1. 53) H t(x , E ) <8 f o r any x F .

Then we have one and only one CM P with the continuous parameter
whose system o f  transition probabilities is {Ht ; t E T }.

PROOF. We now understand X  as the one-point compactifica-
tion  o f  X .  Then the condition (1. 53) implies that H t  makes
invariant the family o f bounded continuous functions on X .  In
fact, if f  is a bounded continuous functions on X, H tf  is continuous
on X  evidently. Moreover, since E = {y ; if (y)— f (00)1 >8 1 . is  a
finite set for any given E >0 , we have

I H t  f .(x) —  H t  f .(cx3 )1 =  H t  .( x ) —  f(09)1

I A.Y) —  f (°°)Ill t (x, If (y )— f(09) I i l t (x, d.Y)
E c

K Hf(x, +
< 2 8  for any x 0  some finite set F.

Therefore, according to Itô  [9], we can introduce a  probability
field ( T7Vrx , v i/ x P x )  and a stochastic process y (W )  on X such that

5 )  This is not a necessary condition. A simple example which does not satisfy
(1.53) is this : X = { 0 , 1 , 2 , •••} , q(x )<+ 00 , (x , x - 1)=1  for and 11(0, 0)=1.

Such process is known as the pure death process and its existence is guaranteed by
Theorem 1.6.
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(a) (iv) is right continuous with Px -probability 1  and (b) (1. 52)
holds. The proof o f constructing the requied CMP by means of
y(,°) (iv) is the same as in Theorem 1. 4, so it will be omitted.

Next we shall discuss another construction of a C M P . The
system fq, HI corresponding to a  C M P satisfies th e  following
conditions ;

(1. 54) 1 q(x) + 0 0 ,  q (0 0 )  = + co i f  T  is discrete,

(1. 55)0 <  q(x) + 0 0 ,  q (c 0 )  = + co , i f  T  is continuous,

(1. 56) 11(x, = 1,

(1.57)1 1 ( x ,  x )  = 0 if q(x ) < + 00 ,
11(x , E) = 8(co , E) if q(x) + °o.

Conversely we can prove
THEOREM 1. 6. Suppose th a t  a pair {q, II}  o f a  fu n c t i o n  and

a  k ern el sa tis fies  (1 . 5 4 )  (o r  (1. 55)), (1. 56) and (1. 57). T hen  w e
have one and on ly  one CM P w ith  the d is c r e t e  (or continuous) para-
m e te r  sa t is fy in g

(1. 58) E ( a y )  = q (x )  , P ,IX , ( x ) , E EI = 11(x, E) .

PROOF. The uniqueness o f our process is clear by (1. 30) and
(1 . 34 ). Since our proof of existence is the same as in Doob [3],
we shall give only its outline.

In case T  is discrete, consider a probability field ( W , , P)  and
a family o f random variables satisfying the following conditions :
(a) Tr (ii)), a(kx)(üi) (k  =1, 2, • • • , and x E X- ) are mutually independent.
(b) Each T ( t h )  is subject to the geometric distribution with the
mean q ( x ) .  ( c )  Each a<kz) (1:0) is  a  random variable on whose
distribution is given by 1 1 (x ,  ) .  Next we define a new family of
random variables as follows :

o (x)

0-0 ') = aV T ' ) ) + crr

_  yçb;f2i )

b = a;x)

b r  =

Moreover we consider a  stochastic process y(x)(CV)= (yr (W) ; tE T)
defined by
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= x if 0  ‹ t < c ri z )

N,z) if (3-,°' < t < a - az-F1

0 0 if lim cr („7) < t <  + co .

Then the system ( W, 3 w ,  P x ; x E  )  induced by y(,)(1-0 )  (using
Lemma 1. 7) is the CMP required. In fact, the same argument
as in  Theorem 1. 4 proves that the Markov property o f {P x }  is
reduced to that o f y(t )(1-()), which has been shown by Doob
The other properties are easily verified by the definition of y (t ' ) (fb).

Our proof is applicable to the continuous parameter case, in
which it is assumed that T(w) is o f exponential type with the
mean q(x).

REMARK 1. 4. Another proof for the discrete parameter is as
follows : For given lq, , w e  de fin e  63  and H ',  respectively, by
(1.25) and (1. 38), where M x , E)= 8(x , E) for q(x )= co by definition.
Then it is easily shown that I r  satisfies the conditions in Theorem
1. 4. The CMP corresponding to H ' is what we wanted.

C H A PTE R  2 . x t -SUPERHARMONIC FUNCTIONS

4 . D efin ition  and i t s  direct c o n se q u e n c e s . In the following
discussions, we shall denote a CMP by x .  Moreover consider the
new kernel fl defined by

(2. 1) 1̂ 1(x, E) = 11(x, E) i f  x  is not a trap,
8(x, E) if x  is a trap.

DEFINITION 2. 1. ( i) Given a fixed state a, a real valued func-
tion u  over g is x t œsuperharmonic at a  i f  it satisfies

(2.2) —00 < u(a) < + co , u (co ) = 0  and flu. (a) < u(a) .

In particular, if flu .(a) <u ( a)  or u(a)= +00,,  u  is strictly x f -super-
harmonic at a.

(ii) A  function u  is  (strictly) x e -subkarm onic at a  if ( — u) is
(strictly) x t -superharmonic at the state.

(iii) A  function u  is x t -harm onic at a  i f  it is both x t -super-
harmonic and x f -subharmonic at the state.

( iv )  A  function u  which is x t -superharmonic (xt-subharmonic
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or x f -harmonic) at any state is x t -superharmonic (x 1-subharmonic
or x t -harmonic).

REMARK 2. 1. Since the definition o f an  x 1 -superharmonic
function depends only on 11 (or (l), to the family of CMP's with
the same 11 corresponds the same class of x t -superharmonic func-
tions. Therefore our concept may be understood as an analytic
one with repect to a kernel H.

REMARK 2. 2. In our case, the function u +  c 0  except x =
is x r -superharmonic. But an x t -harmonic function is finite valued
over X  by the definition.

We shall now define several families o f  functions over X.
We shall here use the notation to denote the class o f all
nonnegative (nonpositive) functions in a given function family

91(X) = If ; f  is a real valued (admitting ± co) function over
taking thethe value 0 at 001.

=  N(X) n If ; — < f(x )<  +  o o ) ,
WX)= lu ; u  is x r superharmonicl
,%(X )—  1u ; u  is x 1-subharmonicl

= ; u  is x t -harmonic} = S.,M X )rv2(X ) C (X ) .

In  the following two lemmas we shall list some elementary
properties of x t -superharmonic functions to be used later.

LEMMA 2. 1. Suppose that u, v , u,, E , ,(X ) .  Then
(i) I f  k >0 , k u E ,W X ).
(ii) I f  [f lu +f lv ] is w ell def ined (adm itting ± 00), u+v  E
(iii) If  —  oc< f fu  (x) < +  0 0  f o r  an y  x ,  u A v E  1 (X ) ,  where

u x v(x)— min (u(x), v(x)).
(iv) If  —  00<f lu n .(x )_ < +0 0  f o r a n y  x  a n d  1 4  u , ,  then

11+ 00 E 01 (X).
( y )  I f  —

o c  < f lu  . ( x ) < + 0 0  t h e n  f ln u  u _  a n d  f l u _ = u _ .
Therefore u_o E S',J,(X ) an d  in  p articu lar, if  u _ (a)>—  0 0 ,  i t  i s  x t -

harm onic at the state  a.
PROOF. ( i ) and (ii) are evident. (iii) Since u— u A v >0 and

11(u A V) =  tt - fl(u -  U A  V ), fi(u A  V ) is well defined by our assump-
tion. Now suppose that u A v (a)=u(a) fo r  a  state a.
Then we have

fl(u A V). (a) < f lu .(a) < u(a) = u A v(a) ,

which completes the p roo f. (iv ) is clear from  the well known
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theorem o f L eb esgue . (v ) Notice th a t fru  is  w e ll d e f in ed  for
every n  in the sam e way as in (iii). Again using the theorem of
Lebesgue, we get

(x) = f i  (lim fir u) (x) = lim fr +1u .(x) = u _(x) .

Thus Lemma 2. 1 was completely proved.
LEM MA 2.2. (i) Xx  E k) ; (X).
(ii) I f  u  and v E W(X), then also u +v  and uA vE W(X).
(iii) I f  un E k>iE (X ) and un —>u u ,  E
(iv ) Any u E W (X ) can be approximated from below by a  se-

quence o f  bounded functions u n  E
( y )  I f  u E W (X ), then f ru  u  a n d  u _ E W ( X ) . I n  par-

ticular, i f  u EX ) (X), u_
P R O O F . (j) is c lear from  the fact that 11X x • (x)= fl(x, X )<1

for every x E X .  ( ii)  In our case, fl(u+ y) and fl(u A y )  are always
well defined, while the other arguments are the same as in Lemma
2.1. (iii) U sing Fatou's lem m a, w e get

u+ c .o (x) =  i l  (lim u n ). (x)l i m  i n f  f lu n .(x) ‹  lim un(x) u+.(x)
n -P c .

w h ich  is  w h at w e  w an ted . (iv ) It is enough to approxim ate u
by un =u A (nXx), for u„ is  a bounded function o f W (X) according
to Lemma 2. 1. and this lem m a (i), (ii). (v) un = fl"u is well defined
and 0 <1^1un =  A n'u< fru=  un ,  so that each u n  belongs to (X).
Therefore, according to the statement (iii), u _  E  W (X ) . The latter
part is  a special case of Lemma 2.1. (v).

Now we have
THEOREM 2. 1. I f  uE(X), then juI E ,W (X )  an d  friul t u,

G W (X ). Especially, if u,„ E  (X), u „ E r (X )  and further u can
be represented in  the form

(2.3)u ui — u2

by means o f  some u„ u,Egn)+(X ). Conversely, i f  u  is expressible in
the form  (2. 3), u „ E 5tr'(X).

REMARK 2. 3. Our theorem implies that any bounded function
o f k)(X) is alw ays expressib le as the difference o f two bounded
functions in r(X ) .

PROOF. Consider the function u+=u v O. Then — u+ =(—u) A 0
i s  a  function o f  k),7(X) accord ing to  L em m a 2 .1 . (iii). In the
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same way, putting u-  =(—u)v 0, we have — u-  E  T (X ). Therefore
u (— u+ ) + (— u- ) E ,t . (X ), i.e. Iu E W (X ) .  Applying Lemma

2. 1. (v), — u „  E k )(X ) (i.e. u ,  E W(X)) and, if u ,  E  (X),
E  - (X ) (i.e. u „  E V - (X )) . Further noting that — u I < — u+, we
get

—00 <—u ( x )  = lim fr( — u ). (x) < lim f1(— u ) .—  u,(x)<O,

which means that — u, E , - (X) (use again Lemma 2. 1. (v)). Simi-
lary lim 1r( — E - ( X ) .  Thus we have

+u = u  — u

u lirn fru  = lim fru+— lirn = u 1 u 2 ,
71- 0.00 oo

which proves (2. 3). Conversely, suppose that u= u,— u2 , where
u„ u 2 E , ± (X ) . Then since — u — u,— u2 , we obtain

0 — u „ (x ) = lim fi"(— I U  ). (X )  >  —  liM  fi n Ui  . (X ) —  liM  fi n U2 . (X )

=  —141 (x)— u2 (x) > — oc,

which completes the proof of the theorem.
REMARK 2. 4. A ll  th e  results in  this section hold fo r  any

substochastic kernel H , i.e. a kernel such that H (x , X )‹1 .

5. The properties of the function H A u .  Potentials of func-
tion s . Suppose that u is a function o f  N x ). Then the function
H A u is also a function o f W (X) which does not exceed u. More-
over, if A  is a finite subset of the nonrecurrent part N  of X  and
u  is finite over A, H A u  is a potential o f a  nonnegative function
whose carrier is contained in  A .  These facts play fundamental
roles in the study o f nonnegative x t -superharmonic functions."

First we shall prove a general
LEMMA 2. 3. Let all the functions under considerations belong

to 91+(X). Then we have
(i) H A f -= f  over A.
(ii) I f  f g over A , then H A f l -lA g over X .
(iii) H A (k,f+k,g)=k,H A f+k ,H A g  fo r k „k 2 .>_0.

6 )  Refer to the theorems in Section 1  of Martin [ 1 2 ] ,  noting that our function
1/4zi i s  the exact counterpart of the fu n ctio n  u  in [1 2 ] . A ls o  s e e  Hunt's paper [8 ] ,
in  which he has discussed another approach to the function H4u for general Markov
processes.
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( iv )  I f  f „ f f  over A ,  o r i f  f „- ->f  an d  each f „  is dominated
over A  by an  H A (x , •)-integrable function, we have

lim HA!,, =  H A !.

In  general, i f  f „ , f  over A , then

lim inf H A !,,>  H A !.

( y )  I f  A c  B , then

(2.4) H A !  = H A H B f  = HB HA f  •

(vi) H  B f < H A f + H B f  •

PROOF. ( j )  is clear according to H A (x , • ) = 8(x, • )  fo r x E A.
(ii)- (iv ) are also clear from the fact that H A (x , • ) is a measure
over A .  (N) Noting that H B f = f  over A (C B ), the first equality
is evident from  (ii). On the other hand, since o-  A (W )=  0  B (W )±

A (W +. B ) ,  the relation H A f  =H B H A f  is nothing but a special case
of the formula (1. 16).

( v i )  H A U  B f .(x )

= E x (A ro -A ); CrA U B (3 -A )+E x ( f (X c B ) : (3 - A u  B CrB , CrA \-i Bd—Œ.A)
‹ E x [f ( X T A ) ]+E x [f ( X o - B)]

=  H A f . ( x ) + 1 1 g f . ( x ) .

Next we have
LEMMA 2. 4. Suppose that f  E T I(X ), A c X  and a 0 A .  Then i f

H A f  is well defined, we have the form ula

(2. 5) 1̂1 f  .(a) = H A f  .(a)

Therefore, if — cx-, < H A f . ( a ) <  + 00, H A f  is x c harm onic at a.
PROOF. I t  is enough to show that 1-11/A u. (a) =  A u . (a ) for

ad-- a trap. Let 0-, be the first jumping time. Then, by virtue of
a 0 A , it holds that 0 - A ( w ) = 0 - , ( w ) + 0 - A ( w )  w ith  P a -probability 1.
Hence, according to Lemma 1. 3, we get

HA!. (a) = E l f ( x ( r A ) ]=  E a [f (x .- A c w - i ) (w 4, i ))]
= E a [ao.,(f (x .- A ))] = EaCHA f.(x .•,)1
= i[H A f .(a) ,

which is the formula required.
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THEOREM 2. 2. For any u E W (X ), we have

(2. 6) 0 H A u u f o r any A,
(2.7)H A u  E  i '(X) ,
(2.8)H A u  ( x )  =  u(x) i f  x E A ,

=  x t -harmonic i f  x 0 A  and H A u .(x )< + 0 0  .

PROOF. (2. 8) is evident by the last lemma. Moreover in case
X E A , (2. 6) is comprised in (2. 8). Now we prove (2. 6) for x 0 A.
For this purpose we can assume that u  is a bounded function of
W (X ) . In fact, if (2. 6) is true for any bounded function o f W(X),
it is also true for any function o f k>iE(X) according to Lemma
2. 2. (iv) and the theorem o f Lebesgue.

Now consider the n - th  jumping time 0-„ o f (1 . 27). Then re-
calling the formula (1. 28) and noting that (TA  = 0-„ if crn <
we get

0 H A u.(x) E x ( u ( x )  ;  f f n
—0

on

E x(u (x ) ; (TA <  +  •

It results from the definition o f u, Lemma 1. 3 and x0 A  that

Ex(u(x0-0 ) ; A To) =  0,
and if n 1,

E x (u (x ,); cr A =  crn )

= Ex[u(x , 10, 4 0-n  ,)(w 1 ));(3 - A(14- ) = C A >  e r n-1]
= Ex[E.,_1(u(xcri) ;  Cr A =  CFO ;  C A >  ( r n - l ]

=  E x [Illu .(x „1 )— (TA >  (TM  ; A >  Œ n - l ]

<  E x [u(x,„_,)—Ex o.n _i (u(x 0-,); (TA> (TO ; A >  (3- n- 1]

E A U (X a- n ) A >  a - a) •=  E x (u(xx n _,) ; 0- A> (Tn_i) —

Hence we have

H A u • (x ) = lim E x (u (x ,); 0 - A -0 - .)
o n  n = 0

=  l im [E x (u (x „ ) ;  A >  0- 0) — Ex(u(x,„,); (-TA >  f f rn )]

< E x ( U ( X c r o )  ;  (T A >  (T o) =  U ( X )  .

Finally we shall prove (2. 7). In case x 0 A , our statement is
clear from the formula (2. 5). On the other hand, if x E A , (2. 6)
and (2. 8) implies that
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11HA u (x) <  u  (x) < u(x) H A u  (x).

Thus our theorem was completely proved.
COROLLARY 1. I f  u  E (X )  and u(x )<+ 00 and x — >y , then

u (y )<+ 0 0 . In particular, u(x )=0 implies u(y)= O.
P R O O F . Applying (2. 6) for the set {y}, we have

u(x )>II„u.(x ) = p(x , y )u(y )>0 ,

which proves our statement by virtue of p(x, y) > 0 .
COROLLARY 2. If  u  E W (X ), H A u  is  the smallest among all the

functions in  S (X )  which are  >u  over A.
PROOF. I f  v> u  over A , it results from Lemma 2. 3. (ii) and

the formula (2. 6) that

y > H A v H A u ,

which completes the proof.
THEOREM 2. 3. For any function u Ekn(X ), we have

(2. 9) U HB i f  A C B ,
(2.10) U  HA U i f  A l ' A .

PROOF. Applying (2. 6) to H B u E , i(X ) and using (2. 4), we get

H BU H A H B U  —  HA U
 f o r  A C B .

Next noting that H A n it = u  over A n  a n d  A n  f A , it follows that
HA n u f u  over A .  Theorefore, by virtue o f Lemma 2. 3. (iv) and
(N), we have

iurn HA 1 H A H A n U  —  HAU
II ,  op 11-). op

THEOREM 2. 4. The accessible probability  p(x, y ) ,  tak en as  a
function of  x , is a function of  )i'- (X ) which is x f -harm onic at x+y .
M oreover p(x , y )  is  x t harm onic o r  strictly  x t -superharmonic at
x=y  according as y  is  a  recurrent state or not.

PROOF. Since P(x, H ,X x .(x ) and Xx  E k)iF (X), the first state-
ment is clear.

For the proof of the latter part, we can assume that y  is not
a trap. Then recalling the formula (1. 16), we get

11H y X ,. (y ) ----- II I / ,% . (y)H o y H y Xx . (y)

x  (y) P „(o- <  + ° ° ) ,
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where 0- (w)=0- t y y(w) +0 - y (wIr t y y ), that is , the recurrence time at y.
Therefore, from the definition of recurrence, we have

P y (cr < + c ° )  =  1 =  P(Y, y) if  y  is recurrent,
< 1  P (Y ,  Y) otherwise,

which completes the proof.
Now recalling that th e  decomposition o f th e  state space is

given by the formula (1. 46), we have
THEOREM 2. 5. A ny function u  o f  , ;:(X )  is  a constant, say  k i ,

over each indecomposable recurrent se t R i . Moreover the function
1-1R 1 u  has the following properties:

(i) H R i u .(x )= 0 i f  x  E 1=1- j .
(ii) For any  f inite o r infinite sum of  R 1 ,

(2. 11) H u x u  =  E  H .U .

(iii) For any  state r i  E R1 ,

(2.12)H R , u . ( x ) =  H , u . ( x )  =  k i P ( x , r , ) .

Therefore, i f  k i <+ 0 0 , 1 1 ,0  is  a function o f  S: '- (X).
REMARK 2. 5. Putting u — Xx ,  it follows from (2. 12) that

Px(Œni <  +  ° ° ) P(x, r 1).

Note that the above formula can be also derived from the strong
Markov property.

REMARK 2. 6. I f  u E (X) r -\ (X ), we can see that H u R ,u  is
a  function o f  M X )  which does not exceed u. Hence u  can be
decomposed into

(2. 13) u  =  v +H u R ,u

where y  is  a  function of (X) 1- (X) which vanishes over the
recurrent part U R i o f  X.

PROOF. Consider any two states x, y E R , .  Then, since
p(x , y )=p(y , x)=  1  (see Lemma 1. 5. (ii) and  Theorem 1.3. (j)), we
get

u(x) H y u. (x) = p(x , y )u(y)
= u(y ) p(y , x )u(x ) = u(x ).

Hence, for any fixed r i  E R „ we have

U =  H o  ove r  R i  .
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which proves (2. 12) by virtue o f Lemma 2. 3. (ii) and (v). More-
over ( i ) is clear from the fact that p(x, r,)=  0  for x ER ;  (i + j).

Finally w e shall prove (ii). For this purpose we shall first
show th at (2. 11) holds for any fin ite sum, i.e.

(2.14) H 
UR

1,1 = 2 H u .
;

In fact, Lemma 2. 3. (vi) implies that u R
 u < E H D .u . On the

" i

other hand, using (2. 9) and this theorem '  ( i), it follows that

H , ,  u >UR, 2 H R. o v e r  ORi .

Therefore we get

H” --- 11” R H R u  = H R u ,H6
 Ri y R i  y R ,  -

'

which proves (2. 14). Next, i f  UR ;  i s  an infin ite sum, applying

(2. 10) to  OR1 t V1?i ,  we can obtain (2. 11) immediately.

To continue, we shall now define a potential of a function in
DEFINITION 2. 2. I f  a  function u E 51+(X) c an  b e  w r itten  in

the form

(2.15)u  =  Gf

by m eans o f  some function f  E9V (X ), u  i s  the potential o f f .
The fam ily o f a ll the potentials is denoted by T(X).

W e  sh a ll s ta te  the m ain properties o f  potentials in the
following

THEOREM 2. 6. ( i )  Any uET (X ) is  a function o f  W (X ) and,
in case u  J   0 , it is not x f -harmonic.

(ii) I f  u E T(X) I -N (X ), the function f  of the formula (2. 15) is
uniquely determined and given by f  = Moreover the carrier
o f f ,  that is, the set {x; f(x)-1= 0}  is contained in IV. Therefore u
vanishes over UR,.

(iii) I f  u E T(X),-\
 ,rt(X ), we have

(2. 16) fru ,I, 0 (n Do).

PROOF. Let or„ be the n - th  jumping time and u, the potential
of f  E N F.(X ) ;
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(2. 16) u(x) =  Gf .(x ) = E x [ r  f ( x t )dt] ,

by virture  of f(00)= O. Then, using Lemma 1. 3, we get

(2. 17) fIG f.(x) Gf.(x ) for x = a trap,

= E x [ f . -  f(x t ) d d S G f .( x ) for x  a trap,

so that u  belongs to W (X )•
Now suppose that f (a) .-k o  fo r  some state a E V R i. Then

according to (1. 42), we have

Gf .(a) > f (a)G (a, a) = +oc .

Therefore i f  u - - - G f E ( X ) ,  f  vanishes over U R ,  an d  hence it
follows from (1. 44) that

U(X) =  L v f (y)G(x , dy ) = L f (y )P(x , y)G(y, dy) .

This implies that u vanishes over V R i , because we have p(x, y)= 0
for any pair of x E UR i an d  y E N.

Next, if  u— Gf E ( X )  and x EN, according to (2. 17) we have

(2.18)G f .  ( x )  =  II Gf .(x) Gf .(x)— Ex [ 6 1  f (x ,)dt]
0

= Gf .(x )— f(x)q(x),

which shows that f =  — 13u. Moreover i f  u 0 , then f ( a ) + 0  for
some aE N , so that (2. 18) proves that u  is strictly x f -super-
harmonic at a.

Finally noting that u = G f E ( X )  vanishes over U R i which
contains all the traps, we get

0 f u  ( x )  =  I r G f  (x) =  Ex  [ rf ( x t ) d t ] 0 , 1, 0 0 ) 0 .
o'n

Thus our theorem was proved.
Next we shall establish th e  most important relation of the

function H A u  with the potential.
THEOREM 2 .7 .  I f  A  is a finite subset o f  N  an d  u  is a function

o f  , i.F(X )  which is finite over A , then H A u  is  a  potential of  the
function whose c arrie r is included in A .  I n  general, i f  u  is  a
function of `MX), H A u  can be represented as  th e  difference o f  two
potentials of  the functions whose carriers are included in A .
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PROOF. Now suppose that it has been shown that

(2.19)H A u  (x )  =
A
 [ - . (y)] G(x, dy) for a n y  u E  (X ) .

Then our second statement is easily verified by decomposing the
function — OHA u  into the positive and negative parts. Moreover
i f  u E  t(X), a lso  H A  u E  W ( X )  accord ing to  (2 . 7 )  and hence
—631/A u= q - 1  EH A u — 11H A u ]  0 ,  which proves the first statement.
Thus it is enough to show (2. 19).

First notice that it follows from (1. 44) that

(2.20)I f ( Y ) 1 G ( x ,  d y ) < m a x l f ( . 0 1 G(x, y)
AY E A YEA

m a x lf (y ) i  E  G(y, y) <  +  co
YE-1 yEA

for any f  E ( X ) .  Second define the n -th hitting time T„ f or A  as
follows ;

Ti(w) a- A(w) Ti(w) --= ± cri(te- ,

n
T (W )  = . < -1 (W ) ± 6(W) n(W) + 0  - 1(1V+-. )

where 0-1 i s  the first jumping time. Then recalling q(x)—E,(OE,),
we get

(2.21). f ( Y ) G ( x ,  d y )  =  E x [ r  X A ( x t ) f ( x ( ) d t ]
A

fli

-

E x [ Ç :", f ( X t ) d t ]

Ex[f(xTjo-Jw - ',„)]

- Ex [f (x ,-„)Ex ,(a .0 ]

E  HTnq f .(x) ..-1
T h erefo re  n o tin g  th at HrnH A  = HTnHTI =  H T n  a n d  H T n  I HA =-

H r T n  H
œ i =  H T n-f-1 w e get the formula (2. 19r) as of . (llo) w]follows:

- 01/A u • (y)] G(x, dy) = [11Au•(Y ) 

4H A u y  

G(x, dy)A A q(y) 9(.Y)

=  Ê  E H
T nH

A u . (x) — H T.I I HA u .( x )]
-

= EHTnu ( x)— HTn (x)]

=  I f r i u  (x) = H A u (x ) ,
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because Hrnu. (x) 0  according to (2.20) and (2.21).
The following theorem is the exact counterpart of the Riesz

decomposition theorem on ordinary superharm onic functions (see
Rack) [13 ], p. 45).

THEOREM 2. 8. A function u  of . 1(X) r \ a (X ) is decomposed by
means of some v E 43(X) and some w E  )(X ) into the form

(2.22)u v +w ,

if an only i f  there ex ists a function o f  ) (X )  which does not exceed
u. In such case, the decomposition (2. 22) is  unique and we have

(2.23)v ( x ) [—Ou. (y)]G(x, dy) ,

(2. 24) w(x) lim IInu. (x) .
n + co

Moreover w(x) is  the greatest am ong all the functions of k)(X) which
does not exceed u.

PROOF. I t  is convenient to separate our proof into several
steps.

1 °  T h e necessity o f th e first statement is evident, for, if
u= v+ w, then u  w E (X ) .

2 °  Suppose that u E , i'(X )r-\ (X ) and let A  be a finite subset
o f N .  Then we have

H A u.(x) =  [—OH Au. (y)]G(x, .
A

Letting A  t N  and using Fatou 's Lemma, we get

u(x) H N u . (x) >_ [  — (y )]G(x , cl.Y)

On the other hand we can see that

— H u .  (y) — O u .  (y) 0 for any y e N ,

by virtue of H N u = u and II H N u <  I lu over N .  So

0 < v(x) [ — Ou (y)]G (x, dy)<u(x) ,

which proves that Ov= (You (see Theorem 2.6.  ( i i ) )  and hence
w = u — v E  X).

3 °  Suppose that u E N X ) r  \-̀? (X )  and u , ( X ) .  Then,
from 2° , we have
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0 (u— h)(x) = —05(u—h) .(.37)]G(x , dy)+w '(x)

E-63u•(y)]G(x, dy)+w'(x) ,

whence

(2. 25) u(x) = [— Ou.(y)]G(x, dy )+(h+w ')(x )

which shows the sufficiency of the first statement.
4 °  Consider u E W X ) ,  u h  E k)(X ) and any decomposition

(2. 22) o f u. Then, according to Theorem 2. 6. (iii), we get

h = fin h  < Ù"u = v  + w  = f tn v  + w w ,
(n

which proves (2. 24) and the last statement immediately. Further
it follows that our decomposition is unique and hence the poten-
tia l y  o f  (2. 22) has to coincide with the first term o f  (2. 25).
Thus we have proved our theorem.

COROLLARY (CRITERION OF POTENTIALS) ( i)  A function u E k> (X)
is  a potential if and only i f  there ex ists no nontriv ial function of
S 2(X ) which does not exceed u.

(ii) Let f  be a function o f  V F(X ). Then the equation — 03u= f
has at least one solution in -'- (X ) if and only  if th e  potential Gf
is a function o f  - F(X ) .  In this case, G f  is  the smallest one among
any  solution in T - (X).

Now using the results obtained hitherto, we shall discuss the
solutions of the equations (a> 0 )

(2.26) (a — (63)u = f i f  T  is continuous,
(2. 27) [(1— e - 6 )—  ca'13] u = f i f  T  is discrete.

THEOREM 2. 9. ( i )  Let f  be a function o f  ± (X ) . Then (2. 26)
(or (2. 27)) has at least one solution in +(X ) if and  only  i f  Gof
belongs to  -F-(X ) .  In such case, Go, f  is the smallest solution in -F(X).

(ii) I f  f  i s  a  bounded function o f  (X ) ,  G i  is  alw ay s a
bounded solution of (2. 26) (or (2. 27)) belonging to  (X),

(iii) In order that, fo r  any function o f  (X ), (2. 26) (or (2. 27))
has at m ost one bounded solution in (X ) , it is necessary  and suffi-
cient that the following condition is satisf ied:

(2.28)P ( 0 - + .  =  + o 0 )  =  1 fo r  any x E X ,"

7 )  Note that this condition is always satisfied for the discrete parameter case.



On the theory of  M artin boundaries induced 71

where 6 + is the limit of  the n -th  jumping time 0-n .
PROOF. In case of the continuous parameter, define the process

x '  of order ce > 0  attached to x  as the CMP corresponding to the
following system le ) ,  11 1

q (x )  = (a+X ) - 1 ( x )  for x EX, = + 0 0  for x
1-P»)(x, E) = (ce+X ) - 1 X11(x, for E CX

i f  x E X .
=  1 —  (a +X ) - 1 X II(x, X) for E= 00
= 8(00, E) i f  x = 00 .

where X (x)=q - 1 (x). Then it follows that the Green kernels and
generator o f x(7' are given by

G(̀A) = f o r  0  O ,  tM  =  6 —  c •

Now applying th e  corollary o f th e  last theorem to the above
process x(V, our statement ( i ) is  clear. Moreover the second

statement comes from G (x , X )< 
1  

immediately.

Finally we proceed to the proof o f (iii). First noting that

E x (e - "+-) = lim d 'In ; rr n11 < +  °C )

= +X yl X 11]n x . (x)

= xx. (x) ,

it follows that the condition (2. 28) is equivalent to

(2. 29) lim [1-1(')]"Xx . (x ) = O.

Further applying Theorem 2. 8, Lemma 2. 2. (v) and Theorem 2. 1
to x ( V , we see that (2. 29) holds if and only if the equation

(ce-63)u = — 0V au = 0

has no nontrivial bounded solutions in z̀- (X), which completes the
proof for the continuous case.

The similar proof is applicable to the discrete case.

6 .  Hunt's excessive functions and  1P - invarian t functions.
An excessive function u  was defined by Hunt [8 ] as a  function
of 91±(X) satisfying

(2. 30) I lf u  G u for a n y  t E T .
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In the following arguments we shall denote the family of all the
excessive functions by e(X).

First we have
LEMMA 2.4. ( i ) Xx  E e(x).
(ii) I f  u  and  v Ee(X ), then also u +v  and u A vEe(X ).
(iii) If  U n  E e(X ) and un - - >u ,,  u „ E e(X).
( iv )  Any u E e(X) can be approximated from below by a sequence

o f  bounded functions in  e(X).
(y) I f  u Ee(X), then Hu increases with the decrease o f  t  and

H u  f u ( t 0).
P R O O F . ( i )— (iv) are proved in  the same way as in Lemma

2 .2 . (v )  For any t >s ,  H t _s u < u  implies that I l f u<11 s u , which
is the first statement. The second statement is clear for a bounded
function o f e(X). For a general function u  o f U(X ), considering
a  sequence o f  bounded functions u „ in (X ) such that un t
we have

0 <u — H tu  (u — u n )+(u n —I-Pu n )+1P(u n —u)
(u—u„)+(un—H t un),

which proves our lemma.
LEMMA 2. 5. L e t  1(X ) a n d  2(X )  be th e  subfamilies o f  91(X)

each o f  which possesses the following properties: ( a )  I f  u n E i (X)
an d  u n —H1, then uE t (X ) . (b )  Any function u  o f  i (X ) can be
approximated by a sequence o f  bounded functions in i ( X ) .  Then in
order to prove 1 ( X ) = 2 ( X )  it is enough to show that any bounded
function of 1̀ 1 ( X )  belongs to 2 (X ) and vice versa.

The proof is clear.
LEMMA 2. 6. A  function u  o f  91+(X) is excessive if  and only if

it satisfies f o r any ce>0

(2. 31) (1— e - "̀)G A <u i f  T  is discrete,

(2. 32) aGu  < u i f  T  is continuous.

PROOF. Noting that the kernel (1—e - 6 )Ga,  (or aG o,) is sub-
stochastic over X , it follows that the family o f  all the functions
of 01±(X) satisfying (2. 31) (or (2. 32)) possesses the properties (a)
and (b) in the last lemma (see Remark 2. 4). Consequently, it
suffices to show that the condition (2. 31) (or (2. 32)) is equivalent
to (2. 30) for a bounded function of 91±(X).
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In case T  is continuous, considering the Laplace transform
of the both sides o f (2. 30), we have

(2. 33) G 1 u for any a  > 0 ,

which proves the necessity. Conversely, in  order to derive the
formula (2. 30) from (2. 32), it is enough to show that

(2. 34) ( — 1)nGLn3u < ( — 1r( lj [ n ]  u

according to the well known theorem on Laplace transform. But
it is clear from (2. 33) that

G: u ,an

so that, using the familiar formula

( — 1)n GV ]  =  n. G :''
we get

( -1)"GLn3 u n! G:' u n! i
n +

,P n  (  1 \ Enj u,\  )

which completes the proof for the continuous case.
The proof for the discrete parameter case is similar to that

for the continuous one, so it will be omitted.
THEOREM 2. 10. e(X) X).
PROOF. By Lemma 2. 5, it suffices to prove that any bounded

function o f e (X ) belongs to (X ) and vice versa. Now suppose
that u is a bounded function o f  (X ) . Then it follows from the
formulas (1.37) and (1. 38) that 6 u  0 , i.e. u E

Conversely suppose that u  is  a  bounded function o f  ,.;.'(X).
Then since --O u  0 , we have

(2. 35) g  -----_ (a —.3)u au
(2. 36) g' ----=_[(1— e')— Ob]u (1 —  e  ')u

Therefore if T is continuous, recalling Theorem 2. 9. (i) and using
(2. 35), we get

u G aGu ,

8 )  The upper suffix [n ]  means the n-th derivative with respect to a.
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which proves that u E W(X). In the same way, if T  is descrete,
(2. 36) implies that (2. 31) holds and so u E k)if (X).

COROLLARY. I f  u is a function o f  i'(X), 1-Itu is a function of
, i'(X ) which does not exceed u.

Finally we shall discuss Ht-invariant functions in connection
with xt -harmonic functions. Denoting the family of IF-invariant
functions in (X ) by a(X), we have

THEOREM 2. 11. (  i  )  ,a+(X) C k)+(X).
(ii) In order that any bounded function o f  g;)(X) belonge to

a(X), it is necessary and sufficient that the condition (2. 28) holds.
(iii) A  sufficient condition that any function o f  .V (X )  belongs

to a 1-(X), namely, that X)=.a±(X), is that the following condition
holds:

(2. 37) q(x) > k > 0 for any  x E X .

In Particular, the above condition is always satisfied for the discrete
parameter case.

PROOF. We shall discuss only the continuous parameter case.
The similar proof holds for the discrete case.

( i ) Any function u o f a -'(X ) satisfies

(2. 38) u = ceG o,u .

Therefore according to Theorem 2. 9. (i), we have

(2. 39) (63)u ,

which shows u E , X).
(ii) Suppose that (2. 28) holds and u  is  a  bounded function

o f  )(X ) .  Then since u  satisfies (2. 39), it follows from Theorem
2. 9. (ii) and (iii) that (2. 38) holds, namely, that u E  (X ) .  Converse-
ly  suppose that (2. 28) does not hold. Then we have

P a (0-± c.o<  +  co) > 0 for some state a E X .

We shall now prove that the function P ( 0 - + <  + co) is xt -harmonic
but not Ht-invariant. In  fact the former assertion is shown by

Ex[Pxo-i (cr+- <  +  eon = Px{w ; ,T+.( 1V11 ) <
= Px(0- + - ‹ +  )  •

On the other hand, noting that P 0 (rr+ -< t)> 0  for some t <+ 00,
we get
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E a[P x t (' < c x D ) ] = 0--F-(w-r') < +  'DO
= P a  1W ; cr± o.,(14 ) < ), + . 0 ( 1 0

P a ( t  < c r+ - < + ° ° ) < 13.(OE-F. < c <D )

which proves that Px (0-+ „,< + 00) is not lit-invariant at a.
(iii) First note that the condition (2. 37) implies (2. 28) or

equivalenty (2. 29). Second for a given function u  o f , ±(X ), con-
sider a sequence of bounded functions u n in ;.- (X )  such that u n f u.
Putting

(2.40) — u

we get

0 < v„ —> 0 v„ < q - 'u„ < k - lu n <  k 'u

Adding au n t o  the both sides of (2. 40) and recalling Theorem
2. 9. (ii) and (iii), we have

u n  a G o,u n +G oy „.

But according to Theorem 2. 10, u  is excessive and hence it follows
from (2. 32) that

0 Gc,u.(x ) <+ 0 0 for any x  in X.

Consequently using the theorem of Lebesgue, we get

u  = lim  u  = lim E aG  0,u „ + G n ] = aG „u + G v =  a G  ,
11 — ,co

which means that u E .a± (X).
THEOREM 2. 12. Suppose that the condition (2. 37) holds. T hen

a function u  can be expressed as the def ference o f  two functions in
<+(X ) i f  an d  only  i f  it satisf ies the conditions: (a) u e , (X ), ($)
u E .ca(X )  and (7 ) FP 1U MX) is bounded in  t  f o r each x.

PROOF. For definiteness we consider the continuous parameter
case. Now if u =u 1 — u, and u i E  + (X )  5a+ (X ) then (a) is evident.
Moreover lit  u <14,±  u2 and hence (7) is satisfied. Recalling the
formula (1.29) and noting that (a+X) - 'XII=(ce+X) - 'Xf1, we have
from (a)

G u  =[( a +X ) - 1 X 111"(a+X ru
1_  

a

[(a '[(a ±X ) - 1 X11]{u — (a +X ) - 'X ul

1  r(  H -X ,rX H T - 1 (a ±X ) - i X,u 
1
 a +  X) - 1  M IT  (a+X ) - 'X u .a`-`
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Consequently it follows that

(2.41) a G u  u — [( a + X ) - 1 X11]"(11±X) - 'Xu
k=0

But since I is bounded in n  from Theorem 2.1 and (a ± X) - 1 X
< ( a +  1 ) I . 1 from (2. 37), we getk k

(2.42) I  11(a + x) xfir (a+X ) - 1 Xul [ ( a + -1 ) ' - l ] i fInlui---> o,k k
which shows that ceGo,u — u . Thus u  satisfies (0). Conversely
assume that u  satisfies (a), ($ ) and (7). By Remark 2. 4, FP I u
increases with t  and v lim  H tI  u  E T X). Th ere fo re  lul <v  E
, X ), which implies that 11" u I is bounded in  n ,  namely that
u= ui — u2 , E (X) (see Theorem 2. 1).

REMARK 2. 7. It is hoped that the condition (0) in the above
theorem is derived from (a) and (7). I f  T  is discrete, our state-
ment is true, for the formula (1. 38) proves that .a(X )=-(X ), i.e.
that (0 ) is equivalent to (a). O n  th e  other hand it is not sure
whether our statement always holds in the continuous parameter
case. A  sufficient condition is that q(x ) is  a constant (say k).
In fact, with this condition, the left side o f  (2. 42) is equal to

[ ( a +  l k ] 1

,,Enu,, which converges to  0  fo r any u Ek)(X).

Moreover th e  condition (7 ) gu aran tees  th a t a  G(Pu ,

k=0
Therefore it follows from (2. 41) that u = aG,u, which proves (0).

CHAPTER 3. TH E M A R TIN  SPACE AND BOUNDARY

7. The function family M .  T h e  definition o f  th e  M a r t in
space a n d  boundary. In  the sequal we shall only consider the
CMP satisfying the following condition :

(CMP. 4) There exists at least one state c such that p(c, y) > 0
for any state y in  X .  Such state is called a center of the CMP.

Now define K(c, x, y ) by

(3. 1) K(c, x, y) lini G as( x ' y )

Gob (c, y)'

where the right side is understood as the density of the measure
G ( x , • )  relative to  G (c , •)  and therefore K(c, x, y ) ,  as a point
function o f  y .  Since K(c, x, y ) l p ( c ,  y )  from  the formula
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(1. 43), it is well defined and finite. Moreover (1. 44) shows that
K(c, x, y)=G(x, y)IG(c, y) for y E N .  We shall list some properties
of K(c, x, y) in

LEMMA 3. 1. ( i ) K(c, x, y ) i s  x 1 -superharmonic as a function
of x.

(ii) It is bounded in  y  for each fixed x. In fact,

1(3.2)K ( c ,  x ,  y) < .
p(c, x)

(iii) I f  K(c, x, y)= K(c, x, y ') for any  x E X , then y= y' or both
y and y' are in a same indecomposable recurrent set.

P R O O F . (i), (ii) are evident from Theorem 2.4 and the formula
(1. 14). For (iii), assu m e that K(c, x, y)=K(c, x, y ')  a n d  y  y '.
Then we have p(x, k p ( x ,  y') for some positive constant k, which
implies that p(x, y ) is x f -harmonic and p(y, y') > 0 .  Therefore, by
virtue o f Theorem 2. 4 and Theorem 1. 3, y and y ' belong to a
common indecomposable recurrent set.

T o  continue, consider the family of functions o f  x, X , =
{K(c, • , y); y E X }. F rom  the above lemma it follows that X , is a
normal family and that to a  function of X , corresponds a non-
recurrent state or else an indecomposable recurrent set. Denote
the family of all the limit functions of X ,  b y  M, and a function
of M„, b y  ( • ) .  Of course, X , is a subset of M , .  Lemma 2. 2. (iii)
proves that any function of M .  to (X )( - \, (X ) .  We
now topologize M , by the metric

(3.3) p( I  (x)--. 70)1 m(dx)
ix  1 +  (x)— 97(x)1

where m is a totally finite measure which is positive on any state
over X .  It follows that p--convergence is equivalent to pointwise
convergence and therefore the topology o f M , is independent of
the choice of m . It is also clear that the natural mapping -)—
K(c, • , y) from y E X  in t o  E M , is continuous. Moreover we have

THEOREM 3. 1. ( i ) M. a  com pact m etric space and i s  the
completion of X , w ith respect to  p-metric.

(ii) M , is  homeomorphic to  M,/ which is derived from  another
center c'.

P R O O F . ( i ) Noting that p-convergence is replaced by point-
wise convergence and that X , is  a normal family, the proof is
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straightforward and will be omitted. ( i i )  First note th a t (c') >
P(ci  , e) > 0  fo r a n y  E X ,  and hence for a n y  E M .  We prove
that the mapping e ( • ) = ( • ) / (c')  is the homeomorphism from M e

to M e '. I n  f a c t ,  i f  (•)= lim KV, • , then lim K(c' , • , y„) exists

and equals to • ), which shows 0 • )  E M c /. Moreover it follows
from  (c)— 1 for a n y  E M  th a t  (•)/(c')= 7/(•)/97(c') i m p lie s  ( • )
----n (•) , so that the mapping is one-to-one. Finally the continuity
o f both the above mapping and the inverse one, (•)-_=0•)/e(c),
is evident.

DEFINITION 3. 1. Any space M  which is homeomorphic to Mc
is the M artin space induced by the  C M P. We denote, by 0, the
natural continuous mapping from X  into M(X—>Mc — .M) and by
A, the image 0(A ) of a  subset A  of X. aX - _,-m—.k is the Martin
boundary.

A n  element o f M  is denoted by and the function of M c

corresponding to by k (c, •, The topology of M  is equivalent
to that by the metric

f k ( c ,  x ,x ,  97)1 (3. 4) /9(> 27) = m (dx) ,
1+ Ik(c, x, x, 97)1

so that k(c, is continuous in f o r  each x.
In the construction of the Martin space, it is convenient to

introduce the following terminology.
DEFINITION 3. 2. I f  K (c, • , y„) converges t o  a  function of

M c — X ,, the sequence {y„ } is a fundamental sequence. Two funda-
mental sequences ly n l ,  Iz n I  are equivalent i f  they determine the
same limit function.

Now choose a state r t from each R i . It is  the most natural
to choose M  as the union of N , every r i 's  and every equivalent
classes of fundamental sequences. Hereafter such M  will be re-
ferred to as the canonical M artin space.

If the process x  satisfies
(CMP. 5) X  = N,

0 is the one-to-one mapping but not necessarily the homeomorphism
on to  X . For this we require a new condition :

(C M P . 6 ) For each fixed x , there exists a  finite subset F,
such that II(x, X— 0.

THEOREM 3. 2. Suppose that the conditions (CMP. 5) and (CMP.
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6) are satisfied. Then we have
(i) X and X are homeomorphic with O. Therefore the canonical

M artin space is a compactification of X.
(ii) X  is open in M .
( i i i)  For a n y  E a±, k(c, is xt -harmonic.
PROOF. With no loss o f generality, we can assume that M is

the canonical Martin space. In general, any fundamental sequence
has no  lim it poin t in  X .  Therefore if E a± and { y }  is  a
fundamental sequence determining  th e re  ex is ts  an integer n(x)
such that

(3.5) K ( c ,  x ,  =  [ f I K ( c ,  • ,  y „ ) ] . ( x )
=  E  K(c, z, y„) ft(x, z)

.EFx

for any n > n (x ).  Noting that the right side of the above formula
is a  finite sum and letting co, it follows that (c, is
x t -harmonic, which proves (iii). Moreover (CMP. 6) and (iii)  imply
that if E a± and p(„, )—> 0, k(c, •, is x t -harmonic and hence,
according to (C M P. 5), E ak Consequently a± is closed, so that
(ii) was proved.

For ( i ) ,  we shall first show that any sequence having no
lim it points in X , say l y , J ,  contains at least one funamental
sequence. Since X. is a normal family, some infinite subsequence
o f {K(c, • , y„)} converges to  a  function o f M c , Using the same
argument as above, it follows that such limit function is x t -
harmonic and therefore is a  function o f M c — X e . Now suppose
that p-topology in  X  is not discrete, i.e. that X  contains some
state y for which there exists an infinite sequence {y, } o f  different
states such that p(yn , y)--> 0. From the above result, we can assume
that {y n } i s  a  fundamental sequence. Th is is  a contradiction.
Thus our theorem was proved.

8. T h e  (generalized) réduite. Usually the réduite of a non-
negative superharmonic function is defined only fo r a  boundary
subset (see Martin [12], Doob [ 4 ] ) .  But we shall here adopt a
little wider definition.

Let D  be a  closed subset of the Martin space M  and 11(D),
the family of open sets in M  containing D .  Then according to
Theorem 3 . 1 . (i), any element G  o f  U(D ) intersects with ±.
Therefore [G ] -_ - 0- 1 (G,-\ .,6 is a nonnull subset of X.
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DEFINITION 3. 3. For a nonnegative x t -superharmonic function
u  and a closed set D  in M , the réduite o f u  to  the set D  at x,
denoted by up(x), is defined by

(3. 6) inf 11[ G ] u.(x ) for every G in 11(D).

First we shall study some properties of a réduite as a point
function o f x.

LEMMA 3. 2. L e t {G„} be any sequence in  11(D) such that GnIr
and [\C„=D. Then we have

(3. 7) H EGn ] U pU .

P R O O F . By virtue of (2.9), 1-/[ pn ] u decreases with n and hence
converges to a function, say v. From the definition, v u p . To
prove v< u ,  tak e  an y  s ta te  x  and an arbitrary small 8>0.
Then again from the definition, there exists a set G of 11(D) such
that UD (X) > H [ G ]U.(X)— ,  where the choice o f  G  depends on u
and x. But since Gn o  C G for some no , we get

up,(x) H [ p] u. (x) — u. (x)— 8 v(x)—  ,

which proves v< up.
THEOREM 3. 3. ( i ) up is an  x r superharmonic function which

does not exceed u. Especially, u m =u.
(ii) For any G  of  11(D).

(3. 8) UD — HUG] U J J  —  [ HUG] t a p  •

(iii) If  D  C a± + v P ,  and u E k>t(X)r\ (X), then up E ,n X ) .
PROOF. The first two statements are clear from the above

lemma and the results in  the preceding chapter. For the last
statement, take the sequence {G„} of the above lemma. Then the
set Arcd is disjoint with N .  Therefore i f  x E N, H [ G r ] u  is x,-

harmonic at x  for some no <  any n, so that up is also x t -harmonic
a t x  according to 1-1 [ pn ] u ,I, and Lebesgue's theorem. Moreover
Theorem 2. 5 shows that up is x,-harmonic over V R , .  Thus we
have proved our theorem.

THEOREM 3. 4. ( i) If u> y, then up > v„ ,
(ii) (ki u + k,v)D  = k,uD +k,vD f o r  k ,, k ,> 0 .
(iii) I f  u„ f  u , then it holds that lim (u„) D = up•

( iv )  If  D , ,  then (up,),,—(up,)p i —up, and hence upi>u,„.
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(V) II D i l J D 2 +  U D i r)1 ) 2
14 Di +  U D 2.

(vi) I f  .D„, D, then upn l, up.
REMARK. I f  both D 1 a n d  D 2  are the subsets o f a k +  \J& ,

the assertions (iv) and (v) are strengthened as follows :
(iv)' (up 1)D 2 =  u p ,„ 2 ,
(y) u p ,  r--,D24- uoik_,D2 U D i

+  U D2'
These formulas are derived, in a more general form, from the
main theorem in the next chapter (see Section 11), though it may
be possible to prove them directly.

PROOF. The first four statements are immediate, summing up
Lemma 2. 3, Theorem 2. 2 and Lemma 3. 2. To prove (vi), choose
the sequence IQ such that D„CG„ and na„---D. Then from (iv),
we get

UD Unn F I E G n i U  U D  •

Finally we shall prove (v). For this, according to Lemma 3. 2, it
is enough to show that H A u (x) is alternating o f order 2" as a
set function defined over the class o f all the subsets o f X  in the
terminology of Choquet [1 ]. By his paper (Section 14. 3), this is
equivalent to the statement below : H A u  (x ) increases with A
and satisfies

(3. 9) H A i L ,A 2 u (x)+ H A i n A 2 u (x) H A ,u (x) +11, 2u (x ).

The first part is nothing but (2. 9). Moreover a simple calculation
shows that

H A 1 U  H A,U — HA I  ■_,A2U — H A I  r I A 2U

A ,- A 2 ( H  A 2 U A lt - lA 2 U )+  "A 2 - A i ( H 11A1 •

By virtue o f H A i u >H A , , A 2 u, the right side is nonnegative, so
that (3. 9) was proved.

The last three statements of the above theorem show that,
for any fixed x in X, up(x) is a capacity which is alternating of
order 2 as a set function defined over the class o f all the compact
subsets o f M . Now denote the capacity o f any capacitable set C
by uc ( x ) .  Then, from Choquet's capacity theorem, we have the
statements below :

9 )  I t  is  w e ll k n o w n  th a t H A x x .(x ) is  a lte rn atin g  o f o rd er 0.° (see Hunt [8 ],

D o o b  [4 ]) .  In the same w ay, b y  induction, w e shall be ab le  to  p rove that HAu.(x),
for any uE k)iF(X), is  a lternating  of order oo.
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(R . 1)") Any Borel subset C  of M  is capacitable and for any
6>0, there exist an open G and a compact D such that G DCDD and

(3. 10) u ,(x )—  <  U(X) <  un (x )+  6 . h"

(R. 2) For any Borel subsets C„ C , of M,

(3. 11) <  uc, -1- uc2
which implies the subadditivity of uc .

Moreover it follows from (2. 10) that
(R . 3 ) uG  = H [ G ] u for any open set G of M.
THEOREM 3. 5. Let C  be any Borel subset of and u,

and function o f ,tINX) ,- X ). Then there exist a decreasing sequence
{G, } o f  open sets and an increasing sequence {D } of compact sets
such that G „) CD D„ and

(3. 12) u ,n (x ) u c (x ), u D n (x) f  u (x ) for every x  in X.

Therefore uc  is  an x c harmonic function. Moreover i f  C D C',

(3. 13) (uc)c, (ue)c Us' •

PROOF. It is clear from (R. 1) that there exist the sequences
{Dn } which satisfy (3. 12) at the center c. Now consider the

function vn = u u D n . Obviously, Y„ is nonnegative and decreasing.
Recalling Theorem 3. 3. (iii), we have y,, E W(X),- \ (X), so that the
limit function y  o f  yn i s  a  function o f  ,t ,i'(X )  which takes the
value 0  at c. Therefore v 0 by Corollary 1 of Theorem 2. 2.
On the other hand, we have

vn (x ) =  luG n (x)—u c (x)I + I uc(x)— upn (x)I for every x,

which proves (3. 12). The formula (3. 12) implies that u c  i s  x
harmonic and hence the iteration ' uc  ( u ) "  i s  possible as well as

—> (uc i) c ' . For the last statement, le t  {G „} be a  sequence of
open sets in (3. 12) corresponding to both u , and (uc ,)c ,  and {D,,},
a sequence of compact sets to both u c / and (uc ),,. Then it follows
from (3. 8) that (u G n )„, = (uD k ) , n = upn fo r  an y  k ,  n .  First letting

° ) fo r  a  fixed k  and next k oc, we get (u c )c ,= u '.  In  th e
same w ay, letting k—). 00 fo r a  fixed n  and next n---> o c ,  w e  have
(uc , )c= ice •

10) In  the sequel, all the arguments on uc hold also for any analytic se t o f M,
though it is not necessary for our purpose.

11) Of course, the choice o f G and D  depends on u  and x.
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CHAPTER 4 .  TH E REPRESENTATION THEOREMS
FOR x t -SUPERHARMONIC FUNCTIONS

9. Representation o f a  rédu ite  an d  its consequences. In
this chapter we shall establish the representation theory for a
function o f W(X) r-\ ( X )  or equivalently, a nonnegative x c super-
harmonic function being finite at the center c  (from Corollary 1
of Theorem 2. 2). Our main theorem is stated in Section 1 1 .  In
this section we shall derive some auxiliary representation theorems.

LEMMA 4. 1. I f  u  i s  a function of( X )  r \ (X )  and A i s  a
f inite subset o f  X , then there ex ists som e positive measure 1.6 such
that

(4. 1) H A U . ( X )  = K ( c ,  x, p ( d Y ) f o r  every x  in X,

so that

(4.2)I t ( A )  =  HA u.(c) <  u (c) .

PROOF. Consider the function v=H A ,, R o u. For simplicity,
assume that R „ R 2 , ••• , R n  intersect with A .  Take ou t any r i

from each A r\ R1 , i =  1, 2, ••• , n. Then, in the same way as in
Theorem 2. 5, we get

V < H U E u <  V.— ,Ri 11 1

Therefore it follows from (2. 12) that

v(x) = ki P(x, r i )  =  *K (c , x , r i )-k i p(c, r ) ,

so that v  has the representation of the form (4. 1). Next consider
the function w= H  AU —  v .  Then we have

H A  w  = H A H A  u — H A H A , ( ,_,R )  u H A  u — HAncL,R0 u = W,

H Ar - ICL) R O W  -=  H  A n (L )R O H  A U  H A n ( L J R ) U  =  ,

so that

H  A n N W  < H A W  <  H  A r - ) (■ _ L R O W  H  A n ■ N W  =  H  A n N W  •

Consequently, according to Theorem 2. 7, we get

w(x) =  HA ,,,,w(x) = f(y)G(x, dy) (f  > 0 )
Ar')N

K(c, x, y)f(y)G(c, dy) ,
AnN
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in which we have used that K(c, x , y)=G(x, dy)IG(c, dy) for y E N.
Thus w  is also expressible in the from (4. 1). This proves our
Lemma.

THEOREM 4. 1. L et G and D be, respectively, an open subset and
a closed o n e  o f  M . Then for any u EtliE(X) r \ (X ), we have

(4. 3) [Gi U  = U  G  = K (c, -,0,ct(d0
G

(4.4) up =  
D

k(c, •, e)/-6(d0

where i s  a positive (Radon) measure over G or D.
PROOF. Consider a sequence {A„} of finite subsets in X  which

approximates [G ]  from below. From the above lemma and the
continuity of the mapping 61,  we obtain

I I u = K(c, • , y)1, ,,(dy)

k(c, •

where il„= 0 (A n), 1-1, .(d )  = ,,[O -  '(de)]. Pu ttin g  pn(a —Ân)=0, {tbn}
is a sequence of positive measures over G satisfying p.„(0)‹u(c).
Therefore some subsequence 

{ a n ( k ) }  converges weakly to some
measure g  over G .  Noting that k (c, x, • ) is p-continuous for any
x , we have

HA,,co u.(x ) = k (c, x , e)p,i(k)(d) —> k(c, x , p ( d 0
G G

for every x in X .  On the other hand, H A n u—>TI[G ] u  (see Theorem
2. 3). Thus (4. 3) was proved.

Next consider a sequence {G } of open sets in M  which satis-
fies the conditions in Lemma 3. 2. Then any weak limit p of the
sequence {, a } each o f  which corresponds to u t ,, i n  (4. 3) is  a
measure over D .  Therefore (4. 4) can be easily derived, analogously
to the arguments for (4. 3).

THEOREM 4. 2. I f  C  is a B orel subset of w'c-F \ JP, uc  can be
expressed in the form

(4.5) uc  = k(c, , ,Et(c1)

by means o f  some positive measure IL  over C.
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PROOF. Choose an increasing sequence {D„} satisfying (3. 12).
Then putting v,, = up, for n=1 and = U D n U D n  f o r 2 , it follows

-
that uc =  E u,,. F o r  v„  we have

vi = k(c, • , ),u,,(d0 .
D,

For n >2, v„ E V - (X ) and (v,,) D,,
=

 (U D n)D n
—

 (U D n -i)D n
—

 UDn Dn -1 — un .

Therefore v„ is expressible in the form

= k(c, 1.6,,(d ) .

Extending each ,u,„ to  the set C  b y  ,a,i (C — D„) 0  and putting
-

we get
1

,a (c) =  E  „(C) = E  un (c) = too ,
=1 n=1

= ck (C (In(d )  =  Lk (c , •  , tt(ck )

so that (4. 5) was proved.
To continue, we shall prove that i f  u is nonnegative and x,--

harmonic, then u = ua ,̂f ± ,h i . This fact will play an essential role
for the proof of the main theorem in Section 11.

THEOREM 4.3. I f  u E ,W (X) 1-\ (X), u a k ,,h i is  the greatest x,--
harmonic function which does not exceed u, namely, it is nothing but
w in the f orm ula (2. 22). Therefore u is a  potential if  an d  only
i f

To prove this theorem, we shall prepare two lemmas.
LEMMA 4. 2. I f  a function u is expressible in the form

(4.6)u  = k(c, • , /..k(d)

by some positive measure p, u is a potential.
PROOF. Since the restriction N  o f 0 to N  is continuous and

one-to-one, OV(N—). N ) is measurable. Therefore, noting that
K(c, x, y)IG(c, y) for y E N, we have

U L k ( C , N K ( C ,  •  ,  y)v(dy)

= ((cY)y)G (-, Y ) =  N .AY)G(-, dY) ,
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where v(dy)= 11,(0 (dy)), y)= v( y)IG(c, y) 0.
The next lemma is the maximum principle for x1-subharmonic

functions.
LEMMA 4. 3. If u  E (X) and A i s  a fin ite sub set of N , then

llx-Au—u•
PROOF. I f  we put v=u— Hx _A u , v  is  a  nonnegative x r -sub-

harmonic function vanishing over X- A . Considering that, if a set
E  of X  contains no traps, fin(x, E)= 11"(x, E) for any n  and that
the set X — A contains all the traps, we get

(4.7)v ( x ) frv.(x) = 1Inv.(x) = v( y) II" (x , y) .
YEA

Now assume that v takes the (strictly) positive maximum at the
state a E A . B u t Lemma 1. 6 implies that 1P(a, A)<1 for some n.
Consequently we obtain

0<  v(a) v(a) I In(a, A) <  v(a) ,

which is a contradiction.
PROOF OF THEOREM 4. 3. First suppose that u E V - (X ) .  Then

our statement is this :  u=u a ,̂c . For this, by virtue of Theorem
3. 5 , it suffices to show that u = u ,= H [G ] u  for any open set G
(in  M ) which includes the set a±+vk i .  Take any sequence
IA ,J  o f  finite sets approximating X  — [G ] from below and put
B„= X —[G]— A„. Now we shall prove that H B n u v 0 .  In fact,
in the same way as in  Theorem 3. 3. (iii), [\ B = Ø  implies that

E ( X ) .  On the other hand, analogously to the proof of Theorem
4. 1, we have

(4.8) U À  =  H A u =  ,k (c , •, ),(.6(d ) for any subset A  of X. " )

A

Therefore

0 S y 11,0 < H x _Ecn u = G k(c, • , ) 1.6(ck)

But since ND M—G, by virtue o f Lemma 4. 2, H x _rG i u is a poten-
tial, so that v 0 comes from Corollary o f Theorem 2. 8. Now
applying Lemma 4. 3 to each A „ (  N ) ,  it follows that

HE U <  U H X -  An U  =  H [G ] +B,, 11[G] U  H B n U  HE G] 7

12) A denotes the closure of the set A-0(A). Further, notice that the first equal-
ity comes from the fact that A is an F ,  set in M.
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which proves u =1-/EG ] u.
For a general function u of gr); (X) r-\ (X) , consider the decom-

position (2. 22), that is, u= v+  w . Then since v is a potential and
va kf ,h ,(< v ) is x t -harmonic, y, O .  On the other hand, w is
xc harmonic, so that we have

uax -'+u/Z i  =  valc+uizi + w ai+uh, =  w

which completes the proof o f our theorem.
The formula (4. 3) or (4. 8) proves that any function u  of

W (X),- (X) can be represented in the form

(4.9)u  = k(c, •,)11,(d0

by means o f some positive (Radon) measure p, over M .  But as
will be shown later, such representation is not always uniqne. In
the following two sections, we shall treat the uniqueness problem.

10. Minimal x r superharmonic f u n c t io n s .  The classification
of the m inimal part M , and nonminimal part M 0 o f  M.

DEFINITION 4. 1. A  function u  of .i1 (X),-\ ( X )  is  m inim al if
it satisfies the condition below : I f  u = u ,+ u , and u 1 E  ;.

- (X )  for
i = 1, 2, then each ui i s  a constant multiple of u. Equivalently
we can say that u is an extremal element of the function family

(X) r  \ Iv ; v (c) = u(c)} which is convex clearly.
REMARK 4. 1. It is easily shown that a  function u of (X)

is minimal if and only i f  any function v o f ,V (X )  which does not
exceed u  is  a constant multiple of u .  Thus our definition is a
generalization of the concept 'minimal harmonic' in Martin [12 ] .

DEFINITION 4. 2. The set of such that k(c, is  minimal
(nonminimal) is called the m inim al (nonminimal) p a r t  o f  M  and
denoted by M I (M o ). Moreover the set M i n a k  is denoted by ( ag)1.

LEMMA 4. 4. Suppose that th e  nontrivial (1   0 ) m inim al x t -
superharmonic function u is expressed in the form

(4. 10) u = (c, • , ),u,(cl)

with some positive measure defined over a B orel subset C of M.
Then ,a is uniqely determined and the total mass of  concentrates
on  some point E 1111 r\C. Therefoer, for any nontrivial minimal
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x f -superharmonic function u, there ex ists one and only one &,E1111
such that u=u(c) k (c,

PROOF. Putting ik(M—C)=0, we take p  for the measure over
M . Since u is nontrivial, ,a(M )= ,u (C )=u (c)>0 . Therefore, there
exists at least one point e  such that ,u,(G )> 0  for any open set
G Such point is called a  carrier point o f  p .  The set C
contains at least one carrier point of p , because ,4D) >0 fo r some
closed D C C . Now let be a carrier point of ,u, in C and G„, a
sequence of open sets such that G O  and G„1, 0 . Then we have

u k(c , • , d0 k(c, • , 1.6(d0 ,
G n

in which each term of the right side is a function of k>t(X),-N (X)
by virtue o f Fubini's theorem. Since u is minimal, it follows that

v„ SG . k(c, • , )p(de) ---= k„u ,

0 < k„ = v,,(c) p (G „ ) 
u(c) p (M )

so that, putting ,a„(d0=k,7 1 ,u,(d0 over G„, we get

u = L» ,  •,

Noting that p n (G „)--u (c)=  p (M ) and k(c, x,0  is p-continuous in
for each x  and letting 00 , we have

u  =  u (c )k (c ,•,,),

which implies that e a Ellfi n C . To prove our statement, take any
carrier point e, o f p .  Then the same argument as above proves
that

u = u(c)k(c, • , ei),

which shows that Therefore p  is the measure concentrated
at

LEMMA 4. 5. I f  k ( ) (c ,c , )= 1 , th e n  E M,
P R O O F . Let u be any function o f k71,+(X) 1-\ (X ) .  Then accor-

ding to (4. 4), we have

(4. 11) u( t) k ( c ,  • , 27) ,a(cl 71) ( )k(c , • , u ( t) (c)k(c, • , .
to
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Putting u= k(c, • and considering k ( ) (c, c, )=  1, we get

k m ( c ,  e) = k w (c, c, e)k(c, e) = kcc, .
Therefore, i f  k(c, • , e) = u1 + u2 and ui E W(X), it holds that

k(c, • , =  u, + u, (ui)a) + (u2)(e) = k(e)(c, • , =  k(c, • ,

so that we have u, = (11,)(t), U2 = (U2)( } . But each ( w i ) ( E )  is  a con-
stant multiple o f  k(c, • , e) from  (4. 11) and hence k(c, • , e) is
minimal.

LEMMA 4.6. I f  E ±, then k m (c, c, )= 1  and hence C M , .
PROOF. It is enough to show that k G (c, c, > 1  for any open

set G containing because k()(c, c, e)— inf 'k(c, c, )<k(c, c, 1.
G3E

Take any y E X such that 19(y)= . It is clear that [G] D y. Con-
sequently it follows that

k G(c, c, e) = [ H[GJK(c, • , y)]. (c) [H(y )K(c, • Y)]. (c)
1  = 

P ( c ,  y )

[ lic y )P( • , Y)]. (c) = 1

which proves our lemma.
LEMMA 4. 7. Let s  b e  a point of (a±),+vk i and C, a Borel

subset of  aX+Vk i . Then k(c, •, is  xc harmonic and further

(4.12)k c ( c ,  e) k(c, e) i f  E E C ,
= 0i f C.

Therefore k t ) (c, c, )=  1.
PROOF. To prove the first statement, consider Riesz decom-

position (2. 22) o f  k(c, • , e). Th en , if th e  potential part y of
k(c, •, e) does not vanish, the harmonic part w should vanish, for
k(c, • , e) is minimal and strictly xr superharmonic at some state
in X .  Consequently 'k(c, • , e) is a potential, so that we have

k(c, • , e) f(y)G (- , dy) =  N K(c, • , y)f(y)G(c, dy)

= • , cly) ,

where p (d y ) f(0 - 1 (7)))G(c, 8 - '(dn)) 0. Applying Lemma 4. 4, it
follows that k(c, e)— k(c, • , eo)  for some eo E AT, i.e. e= e o . This
contradicts to the assumption e  N.
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To prove the second statement, we shall begin with the case
C According to Theorem 4. 2, we get

(4.13)k ( c , kc(c, = n)ptcly) .

Assume that kc(c, •, I   0 , contrary to our statement. Then, since
k .c (c, •, is  x r harm onic, it follows from the first statement of
this theorem and Remark 4. 1 that k -c (c, • , k k(c, •, ) fo r  k=
Itc (c, c, )+ 0  and therefore k c (c, • , is also minimal x t -harmonic.
Applying Lemma 4. 4 to the formula (4. 13), we have

k(c, kl  k c (c., • , =  - - k ( c ,  c ,  ) k ( c ,  ,  0 )

= k (c, • , 0) for some 0 E C ,

which contradicts to C .  Thus we have shown that k -c (c, • , 0 = 0
if C .  Next, in the case of C D putting C '= a ± +  vk i —C and
recalling Theorem 4. 3, we have

k(c, = + k c , (c, , .
Since C' kc,(c, and hence k(c, )= kc(c,

We shall give a criterion for M, and M, in the following
THEOREM 4. 4.

(4. 14) k t o(c, c, =  1 i f  EM„
= 0 i f  E  M o  •

PROOF. Summing up the lemmas above, we have k t o (c, c, )= 1
if an d  only if E M,= ±-F (a1) 1. On the other hand, putting
u = k(c, • , in (4. 11) and noting that (uc t ) )( 0 =u ( t ) , we get

kto(c, • , = (ka))te)(c, • , = kto(c, c, ).1(e)(c, • ,
so that

km(c, c, =  [k ( t) (c, c, )] 2 .

Therefore ka ) (c, c, )= 1  or 0 , which implies that k a ) (c, c, )= 0 is
equivalent to E Mo •

THEOREM 4. 5. Mo i s  an F .  s e t  o f  M . Therefore both M, and
(ak), are B orel subsets in M.

PROOF. Since the proof is completely analogous to that of
Martin [12 ] ,  Section 4 , Theorem II , we shall only give a simple
sketch. Let rn  b e  the set of in  M  satisfying the following
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condition : If an open set G  in M  contains and its p-diameter
d(G ) ( = sup p ( 97)) does not exceed 1/n, then k G (c, c, =

v,tEG
[H EGi k (c, • , )].(c)  1/2. That each r n is closed in M  comes from
the fact that k G (c, is lower semi-continuous as a function of

Moreover it is shown that F f  and v I =  M 0 , which proves
our theorem.

11. M a in  results.

DEFINITION 4. 3. A  bounded signed (Radon) measure p, over M
is  canonical if , 4 C ) = 0  f o r  any Borel subset C  o f M o . The re-
presentation

k (c , • , t6(c/)

is a canonical represetation i f  p  is a canonical measure.
MAIN THEOREM. For any function u o f  i'(X),-N (X ), there exists

one and only one positive canonical measure p, such that

(4.15)u  =  m k(c, • , =  m i k(c, •

T his measure is characterized by

(4.16) ib(C) = uc(c) i f  C caj‘cd-uk i

— 6u .(y)]G(c, dy) i f  CC.ST,

where C  is  a B o re l se t  in  M . Therefore, i f  u  is  x t -harmonic, 1.6
vanishes over 1■1.

Before proving this theorem, we prepare two lemmas.
LEMMA 4. 8. Consider th e  representation (4. 9) o f  a  function

u E , N X ) r \ ( X ) .  T hen, for any B orel set C  in  M , we have

(4. 17) U(X ) = x, tb ( d 0  .

PROOF. If C  is an open set in M , our statement is clear from
Fubini's theorem. Next, i f  C  is  a  closed set, (4. 17) is  a direct
consequence of the above result and Lebesgue's theorem. Finally,
for a Borel set C , choose the sequences IQ ,  { D }  which satisfy
(3. 12) at the state x .  Then it follows that

t (x) = k , (c , x , ),(h;c10 = lim  k „,z(c, x, t h ;d 0m n m”
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so that lim k G  (c, x ,e)— k G (c, lirn k D n (c, x, for a n y  0  an

exceptional set of j&-measure O.
LEMMA 4.9.

(4.18)u m ,  0 fo r  any function u  o f W (X ),-\ (X) .

PROOF. Let r n  be the set defined in the proof of Theorem 4. 5.
Since V r n =M o , according to the general property o f capacity, it
is enough to show that ur n -_—_-0 fo r every n. r„ is  compact and
therefore it has a finite open covering {G i } each of which satisfies
d(G1 )< 1/n. Putting Ci r n r■Gi , we have

r„ C , "
Thus our statement has been reduced to showing u 0 .  To prove
this fact, we shall first notice that

k G i (c, c, e) < k G i (c, c, e) <) -- a n y  e E C i

which is clear from definition o f r n . On the other hand, since
Ci  is  a Borel set in ak, it follows from Theorem 4. 2 that

uG i = )1.(d) uci(c)

Therefore, applying the preceding lemma, we have

1u 1(c) (uc i )c i  (c) kci(c, c, ),(1(d0 —21 p(Ci)
2  

uc
"
(c) ,

which implies that uG i (c)= 0, i.e. uc , O.
PROOF O F  M A IN  THEOREM.

10 The existence of a canonical representation with a positive
measure. Consider Riesz decomposition (2. 22) o f  u. Then the
potential part y of u  can be expressed as follows :

=  L f (y )G ( - ,  dy) N K(c, • y)f(y)G(c, dy)

, k(c, • , e),(6,(d0 ,

where itk1(d)=f (19'())G(c, 0 - 1 (de)) 0. On the other hand, as to
the harmonic part w o f u, it follows from Theorem 4. 2, 4. 3 and
the preceding lemma that
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W = wak+,,h i w ( a ) i- F L A  wmo =  w( a k i+ L A

so that

W  — =c a " ) + L i i k(c, • , Oi-to(d0
( l),+uh,

with some positive measure ,a2 . Therefore u is expressible in the
form (4. 15) with the positive canonical measure p  defined by

p(C) =  P1(C g)+//2[Cf - N {(ait)i+Vik}]
for any Borel set C in M.

2 °  The uniqueness of  the positive canonical measure in  (4. 15).
Let p be any positive canonical measure representing u. Put

(4. 19) v = k(c, • , )ir.(ck) , w  = k(c, • , )p(d0 .

Then v  is a potential o f the function f(y)— p(8(dy))IG(c, dy) (see
Lemma 4. 2) and w  is  a  nonnegetive x t - harmonic function (see
Lemma 4. 7). Therefore the decomposition u = v+ w is nothing but
Riesz decomposition (2. 22), so that we have f(y )=  — % .(y ), which
proves the second equality of (4 . 16). Moreover, recalling Theorem
3. 5, 4. 3, Lemma 4. 7 and 4. 8, it follows that, fo r any Borel set
C in a-F- V.k„
(4.20)u c ( U L ) 1 ) c (w)c = kc(c, • ,

a Pc-FLA ,

= k(c ,  • , .

Substituting c in place of • , we get the first equality o f (4. 16).
REMARK 4. 2. In the end of Section 9 ,  we stated that the

representation (4. 9) is not always unique. Now our main theorem
clarifies the circumstances. In  fact, if  e Mo -1 -  0 ,  the function
k(c, • , 0  is expressible in the form (4. 9) by means of both some
canonical measure and the unit distribution at w h i c h  are
clearly different. On the other hand, if M 0 = Ø, (4 . 9 )  is nothing
but a canonical representation and therefore it is unique for any
u E , i'(X ) f - N (X ) .  In the next chapter, we shall give two examples
o f 1110 =1=-0 (see Examples III, VI).

REMARK 4. 3. If afc is closed in M and 0 is the homeomorphism
(X - 4 ) ,  fo r  example, if the conditions (CM P. 5), (CM P. 6) are
satisfied, our arguments will be much more simplified. In fact,
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then, we need not use Choquet's capacity theorem to obtain the
main theorem, and the original proof of Martin [12 ] for ordinary
harmonic functions is applicable without any change to our case.

T o continue, w e shall state som e important results derived
from the main theorem.

THEOREM 4. 6. ( i )  The canonical representation of a  function
u  E ( X )  is  unique. Speaking in detail, i f  u  admits of a  canonical
representation, the canonical measure a representing u  is uniquely
determined.

(ii) In order that a function u E  (X) should have a canonical
representation, it is necessary and sufficient that u  is expressible as
the difference o f two function of ,t , iF(X) f -\ (X ).

PROOF. For (i), it is enough to show that if

0 = k(c, •, , a ( 4 )

with some canonical measure ,a , then  ,u, = O . Let ,u, = ,—,u2 b e
Jordan decomposition of IL , that is, 0 (i= 1, 2) and tb, A 1G, 0. 1"
Then we have

(4.21), , , f k ( c ,  • )/1, 1(ck) =  L k (c , .

But since the function defined by (4. 21) is  a function o f  1.;" (X),-N

(X )  and each p i  i s  a positive canonical measure, it follows that
/z1 1 2 = / i  A /-t2 =  0  and therefore it= O.

W e shall omit the proof o f (ii) which is quite easy.
THEOREM 4. 7. Let u  be a function of ( X )  1- (X ) and C, C',

Borel sets in aX +\jk i .
(i) For any fixed x  in X , zfc (x ) is a positive canonical measure

over ak+ , namely, it satisfies

(4. 22) uc„c,(x)+ u c r -,c /(x) = u c (x)+ uc , (x) .

(ii) uc , c ,  is  the greatest one among all the nonnegative xt -

harmonic functions which do not exceed both uc  and u e .  Moreover
we have

(4. 23) (uc)c, = (ue)c =  ucr,c ,  •

13) F-L1 A p 2 denotes the greatest one among all the measures which do not exceed
both p l  and  p i? .



On the theory of  M artin boundaries induced 95

PROOF. Let IL be the canonical measure representing u .  Then
(i) and (4. 23) a re  immediate from the formula (4. 20). To prove
the first p art o f (ii), consider any y  o f  . +(X ) satisfying v < u c ,
v < tic ,. Putting C "— aic-pv k i — C and using (4. 23), we have

0 < < (u c )c i, ucr,c" = 0,

so that y= vc+ vc. Consequently, u c , c , — (uc , )c vc
=v, which proves our statement.

In Theorem 2. 1, we have already obtained th e  facts below :
Put y, = u V  0, v2 = ( — u) V  0, y, =I u  . T h e n  i f  u E  (X ) , each v i E

1- (X )  and  therefore (Inv i t  w ith  n. Moreover th e  function u i

defined as

(4. 24) u • = lim  tInv

belongs to , i'(X )  and , if u, E  (X ) , to , ±(X).
We shall now give a  useful result for an xc harmonic function

which is not necessarily nonnegative (see [1 5 ] ,  [1 6 ] ) .

THEOREM 4. 8. A n x 1 -harmonic function u admits o f  a canonical
representation if  and only if  u,(c)<+ 0 0 ,  or equivalently, if f injul.(c)
is bounded in  n. In  this case, the canonical measure p  for u vanishes
over every B o re l se ts  in  AT. Moreover, le t  IL= p i

-  ,a, be Jordan
decomposition o f  p . an d  p u t 11,3 = pi + ,a 2 . Then p i i s  the canonical
measure f or the function u i  defined by (4. 24).

PROOF. 10 S u p p o se  that u,(c) <  + 00 . Since u, E ,W (X )  and
for any x  in  X , it follows from Corollary 1 of Theorem 2. 2

and Theorem 2. 1 that u, G  (X )  and therefore u i  G gcT F (X), U= U i  —
Thus, by virtue o f  Theorem 4. 6. (ii), u  admits o f  a  canonical
representation. Conversely, i f  u  has a  canonical representation,
we have

I u   k(c>.,01,3(d0
so that

0 < 1"1"lu I . (c) < [fink(c, • , )11. (c),a,(d) th,(M ) < + 00 ,

which proves our first statement.
2 °  Consider an  x t -harmonic function admitting of a canonical

representation. Then, as was shown in  10 ,  u = u, —u2 , u  E  k)+ (X ).
According to the m ain theorem, the positive canonical measure v i

for u i  ( i= 1,2) vanishes over N. B u t  ,11=-- v i —  P , from the uniqueness
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of the canonical representation, so that our second statement is
proved.

30 Denote, by w i ,  the nonnegative x t -harmonic function de-
fined as th e canonical representation with p i ( i  = 1, 2). Then,
since each Jai  ( i = 1, 2) is a component of Jordan decomposition of

we have Jai ,  which implies that w i < u i . On the other
hand, since u= w,— w„ it follows that wi( i  = 1 ,  2). Therefore
we get

tv; finwif r v i ,

which proves that w i = u i (i = 1, 2), i.e. ,a; is  the canonical measure
for u i . Noting that u3 = u, + u „ it follows that j a , is the canonical
measure for te,.

REMARK 4. 4. According to Theorem 2. 12 and Remark 2. 7, if
x t is  a  Markov process with a  discrete time parameter or with
independent increments, the condition in the above theorem can
be replaced by the following one : litiu l.(c )  is bounded in t.

CHAPTER 5. EXAMPLES AND  SUPPLEMENTS

1 2 .  The discrete boundary and the continuous o n e . It is
clear that the results which were established in  th e  preceding
chapters do not depend on q, but only on H . In other words, it is
unessential for the general potential and boundary theory whether
our CMP is of a discrete time parameter or a continuous one.

We start with the simplest example of the discrete boundary.
EXAMPLE I. Random walks and  birth-death processes over the

se t o f  positive in tegers. Let X  be the set of positive integers,
{1, 2, 3, • • -}. Consider the system {q, H I satisfying the following
conditions : 0  <q (x )<+ 0 0  for any x E X.

[1(1, 2) =  r, > 0  , 141, 00) =  d, >  0 , r i +d , =1 ,

and if x

(5.1) 1 1 (x , x  +  1 )  =  > 0  , r1 (x , x — 1)
 

l >0, 11(x , 00) = d x 0 ,
r x +l x + dx  = 1 .

The CMP corresponding to the above ,  f l l  is called a  random
walk or a  birth-death process according as its time parameter is
discrete or continuous. Since p(x, y) > 0  for any x, y E X , according
to Lemma 1. 5, w e have two possible cases below : (a ) X  is  a
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single indecomposable recurrent set, or else (b) any state in X  is
nonrecurrent. The condition (CMP. 4) is satisfied evidently. To
fix the idea, definiteness, we choose the state 1 as the center.

In the case (a), w e have el,— 0 for any xE X .  The Martin
space M  consists of a single point a n d  th e  function k(1, is
identically equal to 1, so that any nonnegative x f -superharmonic
function is a nonnegative constant.

In the case (b), the conditions (CMP. 5), (CMP. 6) are satis-
fied. We now construct the Martin space. Noting that p(x, z)=--
p (x , y ) p (y , z ) for x < y < z , we have

p (x  y) 1K(1, x, y) — ' — for any pair of x y ,
p ( i ,  y) p(1, x)

which implies that the Martin boundary a± consists of a single
point, denoted by + 0 0 , and that

1 (5.2)k ( 1 ,  x ,  +  C .°  =  
p (1 ,  x )

.

The above function is minimal x f -harmonic and any nonnegative
xt -harmonic function is a constant multiple of k(1, x, + co). More-
over it is easily shown that the canonical Martin space is nothing
but the usual one-point compactification o f X.

I f  dx = 0  fo r x it is known that the explicit formula of
k(1, x, + 0 0 ) is given by

(5.3)k ( 1 ,  x, co ) di /2 • 14)

, = i  r 1 r 2  '  •  •  r i

Consequently, i f  dr  =0 for every x, we have

(5.4)k ( 1 ,  x ,  +  co) 1 ,' 5 )

so that any nonnegative x t -harmonic function is a constant.
Next assume that the condition below is satisfied :

(5.5)<  +  co) >0 .

As was noted in Theorem 2.9, this is impossible for a random walk
and, in our case, it implies that P(x, + +  0 0 ) > 0  for
every x E X , or equivalently that the equation

14) This formula is derived  from  the fact that k (1 , x, 00) i s  the unique solu-
tion of the equation T fu = u , u (1 )= 1 .  Also see Karlin and McGregor [11 ] .

15) Note that this fact also comes from Lemma 1.6 immediately.
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(5.6)( a - 6 ) u  0

has a bounded (strictly) positive solution for any a >O. p(x, + 00)
represents the probability that the paths starting at x converge
to the boundary point + 0 0  after fin ite time, so that + 0 0  i s  an
exit boundary point in Feller's sense.") The condition (5. 5) has a
dose connection with the choice o f q. In  fact, if ci, = 0, (5. 5) is
equivalent to

(5.7) j q ( x ) < + o o .
TE X

The random walk (or birth-death process) over the set of all
integers, X= {••• , —1, 0, 1, •• •}, is the CMP with a  discrete para-
meter (or continuous parameter) corresponding to the system {g,
which satisfies 0 < q (x )< + 00 and (5. 1) for any integer. In the
same way as before, we have only two possible cases. In the
case (b), it follows that ak consists of two points, say — no and
+ 0 0 , and taking the state 0 as the center, we get

= P ( x, 0) (x < 0) ,

p(0, x)

each of which is minimal x,-harmonic. The canonical Martin space
is  the usual compactification o f X , { —CO, • • • , 1 ,  0, 1, ••• , + 00}.
Moreover, in such case, any x c harmonic function is expressible as
some linear combination of the two functions in (5. 8), that is, it
admits o f a  canonical representation. In the case (a), however,
there exists an x r -harmonic function which has no canonical re-
presentation. In fact, our bounary theory proves that any x t -
harmonic function having a  canonical representation should be a
constant. On the other hand, as is well known, the equation

I lu  =  u

has two independent solutions one of which cannot be a constant.
Thus our statement was proved.'"

16) It is an  interesting problem to extend Feller's boundary classification to  the
general Martin boundary. We shall discuss this problem in  another chance.

17) The simplest example is this : d = 0 ,  r, =  = 1 / 2  for any x .  Then the func-
tion u (x )=x  is an x,-harmonic function adm iting no canonical representation.

(5.8) k(0, x, +00) — 1  (x 0) ,
p(0, x) —

k(0 , x , - .) =  p(x, 0 ) (x 0), 1 (x <0 ) ,
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Now we shall introduce a notation. The réduite of the indi-
cator function Xx  of the whole state space is denoted by

(Xx ),(x ) =  h(x, C) f o r  C c .
It has been shown in [4], [16] that, in the canonical Martin space,
h(x , C ) expresses the probability that the paths from x converge
to the boundary set C  and palys an important role for the first
boundary value problem and the study o f bounded x c harmonic
functions.

In  [15 ], w e have proved that the Martin boundary of the
space-time Bernoulli process is the interval [0, 1] with the usual
topology. Moreover, in  [1 6 ], b y  a simple modification of the
above process, w e  have obtained a  process for which h(c , •) is
Lebesgue measure over [0, 1]. We shall give another example of
the continuous boundary.

EXAMPLE II. Feller's dyadic branching schem e (c.f. Feller [6],
Section 17, Example IV ). L e t  X  be the countable set which con-
sists of a point c  and all the points denoted by a,a,••• a k  (a i = 0
or 1, k= 1, 2, 3, • • .). T h e  p o in t a l a,••• a k  is called a  point of the
length k. We now introduce the following semi-order relation : c
is the maximal element and, if x =a,•••  a k  and y=a,•-• a k bi••• 1)1,
then x > - y .  W e consider the Markov process over X  defined as
follows : 0< q ( x ) <+ co for any x E X  and

Il(c, 0) = 1I(c, 1) = 1/2,
H(x, x0) = II(x, x1) = 1/2.

Clearly c is the unique center and the conditions (CMP. 5), (CMP. 6)
are satisfied. Moreover we have

1(5.9)K ( c ,  x ,  y) —> 0i f  x >  y ,
p(c, x)

= 0 otherwise.

We shall prove that our Martin boundary is Cantor set in the
interval [0, 1], namely, the countable direct product, say S , of the
compact Hausdorff space consisting of two points 0 and 1.

1 °  For any a 1a 2 •  •  of S , define the sequence {y n }  of X  by
Yn= aia2 • an . Using (5. 9), it is easily shown that the above {y n }
is a  fundamental sequence and the limit function o f  K(c, x ,
denoted by k ( c ,  x , ) ,  is given by



100 T ak esi Watanabe

(5. 10) k(c, x, =  1
=  2k if x  =  a, — ak

p(c, x)
= 0 otherwise.

It is clear that k(c, x, k ( c ,  x , ')  for
2 °  We shall show that, for any fundamental sequence {z, } ,

there exists the fundametal sequence which is equivalent to lz,A.
and satisfies the condition of 1° for som e E S .  Let y k  be a point
of the length k  which satisfies the following condition : (a) There
exists an  infinite subsequence {z„( 1 ) } o f  {z„} each  o f  which is
smaller than y k . The existence of such y k  is immediate from the
fact that {z„} has no limit points in X .  We now prove the uni-
queness. In  fact, if the two points y k , y k ,  satisfy the condition
(a), it follows from (5. 9) that

1 (5. 11) lim K(c, y k ,  z ,)  = lim K(C, yk , Z n ( t ) ) >0

= lim  K(c, y k , „( 1 ) ,) = 0

which is a contradiction. Further we can easily see that y i > y o >
y 3 >  • • •  .  Therefore the sequence { yn}  defines a  o f  S  and accord-
ing to 1°, it is a fundamental sequence. The equivalence of {y n }
and {zn } is clear from (5. 10) and (5. 11).

3 °  W e have proved that our Martin boundary ajc coincides
with S  as  a  se t. We shall show the topological equivalence of
the metric p  w ith  the usual metric d. For this, assume that
(")= a r a r  • • •  ,  = a i .a,-•• and d ( "), )—>. 0. Then, for any fixed k,

we can choose some no such that a(;') —a i ( i=  1, 2, ••• , k) for every
n> n 0 . Therefore we have

k(c, x, (")) k(c, x, if the length of x  is less than k,
so that

Jim k(c, x, (")) k(c, x, for any x  in X,
Pl

which means pW "), )— >0. Thus a)'' is homeomorphic to S.
4 °  Next we prove that k(c, x, is  minimal x i -harmonic

for e v e ry  E S .  Let = a1a, ••• and consider the sequence A„= {al
••• ak ;  k > n }  o f  subsets in X .  Then, for any open (in M )  set

EG11 contains A n after some n , .  Consequently, we get

1 k a ) (c, c,
= G Eitnt 4  )

EH[ G ] k(c, • , (c)

> lim  U A n k(c , • , (c) = 1 .

P(c, yk)
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50 We introduce several conventions. For x E X , .t and x
denote, respectively, the points x 11 ••• and x000  ••• o f S .  The
interval [x- ,  x ] o f  S  is defined by the set of all the points of the
form, xb i b,b, ••• (1, 1 = 0  or 1). For any ••• o f S , (p ( )  is a
real number o f [0 , 1 ] defined by

P(0 i=i 2i

The point is called a rational point o f  S  i f  there exists an 7) 4-.
such that 0 0 =  On). Since each k (c , • , is unbounded and the
s e t  o f a ll th e  rational points of S ,  say S ',  is countable, the
canonical measure p, representing a bounded x,--harmonic functions
satisfies p,(S')— 0 .  Moreover 9 ) defines the into-homeomorphism
from S— S' to [ 0 ,  1 ] .  Therefore, as was noted by Feller [6 ] ,  we can
take the interval [0 , 1 ] with the usual topology as a boundary so
far as we treat bounded x c harmonic functions. Now we calculate
/1(x, C). It is easily shown that the canonical measure h(c, •) for
X, is given by

(5. 12) h(c, [9, y]) = p(9)— p (y ),

so that, i f  x  is a point of the length k , we have

h(x , [y, y]) 2 k [p ( y )  p (y )] for a n y  y <  x .

Consequently, if the interval [0 , 1 ]  is taken as a  boundary, the
réduite h(x , •), defined over [0, 1], is the uniform probability mea-
sure over [p (x ), 99 (x )]. In  paricu lar, h(c , •) is  Lebesgue measure
over [ 0 ,  1 ] .  Using Theorem 3. 2 in [1 6 ] ,  the bounded x t -harmonic
function u  i s  in  one-to-one correspondence with the bounded
measurable function f  over [0 , 1 ] by the formula

9, (Ï)
(5.13) u ( x )  f ( ) h ( x ,  =  2k f ( ) c k  .

o cp(x)

These arguments show that, as the boundary to analyze bounded
x t -harmonic functions, the interval [0 , 1 ] is more convenient than
the Martin boundary S.

1 3 .  Som e singular exam ples. It is very easy  to construct
an example of M 0 -=Ø for which the conditions (CMP. 5), (CMP. 6)
are not satisfied (see Example V I). B u t even i f  (CMP. 5), (CMP. 6)
are assumed, we cannot assert M0  = 0 .  In  fa c t, we have
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EXAMPLE III.") Let X  be the countable set consisting of a
point c  and the lattice points A n , B„, C„ (n=1, 2, 3, •••) ordered on
three parallel lines A, B, C .  Consider now the CMP corresponding
to the following system :

q(x) = - - 1 for a n y  x E X,
1- 1(c, 24,) = 1l(c, C 1) =  1/2,
I(A„, A n + ,) = a„, 11(A„, B„) = 1 —  an,

11(B„ , = b n , 1I(B,„ 00 ) = 1 — b,,
11(C„, C„+ ,) =  cn  , 1I(C„, B„) = 1— c„ ,

Moreover we assume that a n ,  (1— a„), b n  and (1 — b,i )  are strictly
positive for every n  and

(5. 14) an = c„

n b „ ,  0

1—an

It is clear that c  is the unique center and the conditions (CMP. 5),
(CMP. 6) are satisfied. We can easily calculate P(x, y) as follows :

p(0, A m )  =  p(0, Cm ) 1/2. l a i ,

P(0, B „,) =  E ( H a)(1 — adb i ••• b„,_„j=1

if x  =  A n ,  n < m
p(x, A,n ){

=  O otherwise,

A n j

= if x  =  B„, n m

E( II a .)(1— a-)ba ••• b , i f  x = A n  o r C„, n < m
i=9 i=n

=  O otherwise,

= l i a1i f  x  =  C„, n < m
p(x, C„,){

=  0 otherwise,

where we use the conventions, 11 a = 1 and (1— ai )bi  • b , n _,—(1— am )

for i= m .  Therefore we have

H an = a> 0 ,

(n —> + 00) .

1 8 ) This is no more than the discrete analogue of Martin's example ([12], Sec-
tion 5, Example 2).
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K (c, x , A m ) ,,-i
{ _   2  

=  0 otherwise,

=  1 if x — c

It a i
= 1

if x  =  A „,  n  ‹ m

so that the sequence {A„,}  i s  a  fundamental sequence and its
corresponding limit function, say If' ( c , x , 0 , is given by

 

= 1 i f  x  =  c
2  if x  =  A„

a i

0 otherwise.

(5.15) k (c, x ,

In the same way, IC J is the fundamental sequence to which
corresponds the following limit function,

=  1 if x  c
2  n(5. 16) k (c, x if x  =  C, 3) It a i

=  0 otherwise.

Next, take th e  sequence {B„,}. Then i f  x = B „,  it follows
from (5. 14) that

7 1 3 -

f l b
K(c, x, — <  . - 1

=

E a.)(1— a i )b i  • • •b „, (II  a i )(1— am )i-1  j =1 i=1
< - > + °°) .)

a(1— am )

Also, if  x =A n  o r C „, we get
m  2 - 1

E(H a i )(1— a i )b i  •••b„,„
K (c , x , B ) 

E a1 )(1—a1)b1i=i j =i
m -1

( a i )(1— a,n ) + o(1— am ) 1
(M: 21 n -1 +  )  .

(11 a1)(1— a,n ) + o(1— am ) IT a i
= 1 2=-1

b m i

Consequently {B,n } is the fundamental sequence whose determining
limit function is as follows :
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(5. 17) k(c, x, 2 )
=1

=  0 otherwise.

Summing up (5. 15), (5. 16) and (5. 17), we know that ak con-
sists of three points and that

k(c, x ,  2 ) =  1 /2 . {k(c, x ,  i )+ k (c , x , 3)}
which proves 2 G Mo

To continue, we shall show that the statements in  Theorem
3. 2 are not always true unless the conditions (CMP. 5), (CMP. 6)
are satisfied.

EXAMPLE IV .  X  and X  are not homeomorphic. We shall give
an example in which the mapping 0 (X - - )  is one-to-one but not
topological, for otherwise our statement is evident. Let X  be the
set of all nonnegative integers and x „  the CMP (over X ) satisfying
the conditions below : q(x)=-=- 1  for every x  in X , H(0, y) = 1/2Y for
y l and II(x, 03)=1 for x 1. C leary  the state 0  is the unique
center and we have

= 1
-{

if x = 0 ,
K(0, x, y) = 2x if y  =  X,

= 0o t h e r w i s e ,

so that, fo r  any sequence {y„} having no  lim it points in X,
K(0, x, y ,)  converges to  K(0, x, 0) as n ,  co. Therefore we have
no fundamental sequences, namely, M = X .  T h u s it is  compact
and hence is not homeomorphic to X .  In particular, the p-metric
in the canonical Martin space which coincides with X  as a set is
characterized by p(0, y)----> 0 ( y -  + ..).

EXAMPLE V .  ± is not open in  M . Let X  be the set consisting
of a point 0  and all the points (i, j); i, j= 1, 2, 3, • •• . Consider the
CMP which is determined by the following system : q(x) - _-=- 1  for
any x  in X , 11(0, (i,1))= 1/2i for i 1  and ll(i, j ) ,  (i, j+1))= 1  for
i, j  1. Since 0  is the unique center, we get

= 1 if x =  0
K(0, x, y) = 2i if x  = (i, j), y =  (i, k), j k ,

= 0 otherwise.

1 if x =  c

n - 1
1 if x = or C„

Ill a i
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Therefore it follows that, fo r each i, th e  sequence { y ;,"=(i, n);
n =1 ,2 , ••-} is a  fundamental sequence and  its determining limit
function, denoted by k(0, is given by

f = 1 if x =  0
k(0, x, = 2i if x  = (i, j) ,

= 0 otherwise,

so that K(0, x, converges to K(0, x , 0) with i 0 0 ,  which proves
that ak is not closed in  M.

E X A M PLE  V I. k(C, X, is  n o t x 0 -harm onic for some a.X.
L et x f b e  th e  C M P over X = {0, 1, 2, ••.} a s  below : q(x)=-- - 1  for
every x  in X , 11(0, y) = 1/2" for y  1 , 11 (1 , y) = 1/2Y - 1  fo r y  2 ,  and
II(x, 00)— 1 for x 2. Then it follows that p(0, y) —p(i, y)— 1/2Y - 1

for y  2  and therefore

= 1 f o r  x  = 0
K(0, x , 0)

 =  0 otherwise,

= 1 f o r  x  = 0
K(0, x, 1) =  2 f o r  x =  1

= 0 otherwise,
and if y

-[
= 1 f o r  x  =  0  o r  1

K(0, x, y) —  2 ' f o r  x  = y
= 0 otherwise.

Letting y---> oo, we get

l i m  K ( 0 ,  x ,  y )  
f f o r  x  = 0  o r  1

= O otherwise
= 1/2- IK(0, x, 0) +K(0, x, 1)} .

Consequently our M artin  boundary consists of one point, say
and the corresponding function K(O, x, is a potential, this is , it
is not x t -h a rm o n ic . Clearly this also is another example of Mo 0 -

1 4 .  Supplements. The problem to extend the M artin  boun-
dary theory to non-countable M arkov processes is very much
interesting, b u t has been not solved yet in  th e  complete form.
T he typical example is seen in  Martin's work [1 2 ], in  which he
discussed, to speak probabilistically, the boundary theory for the
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Brownian motion over a domain in n-dimensional euclidean space.
The main difficulty for the general boundary theory is in proving
the analogue of Theorem 2. 7 which has played an essential role
in  our special case. But under some strong conditions on the
given process, we can prove the theorem (cited above) in a weaker
form and, using it, we can only derive the unique representation
theorem of nonnegative x t-harmonic functions fo r th e  class of
Markov processes which cover one-dimensional diffusion, n-dimen-
sional Brownian motion (over a  domain o f  R "), the space-time
Poisson process (introduced in [15]) and many others. We shall
discuss the detail in another chance.

Finally we shall summarize the dual boundary theory. First
note that the dual of x r superharmonic functions should be taken
not relative to II, but to O. Strictly speaking,

DEFINITION 5. 1. A set function v over X, vanishing on 00, is
x t -superharmonic at b if

(5. 18) — 00 < v(y) + 00 for each one point set {y} ,

and

(5.19) 1)13. (b) <0 ,

that is,

(b) b) S v(b)q - 1 (b) = vq - 1  (b) .

The dual concepts of ' x t -subharmonic ' and 'x e-harmonic' are
introduced in the same way. In particular, the x t -harmonic set
function i s  a o--finite set function which satisfies

(5. 20) vq- 1 II. (E) v(dx)q-i(x)11(x, E) = v(dy)q - 1 ( y) .( E)
X

fo r  every finite subset E  o f X .  It follows that a positive set
function I) is x t-superharmonic if and only i f  it  is  an excessive
measure in Hunt's sense, namely, it satisfies

(5. 21) pH' .(E) S v(E) for any t e T  and any set E C X.

To proceed to the dual boundary theory, we shall introduce
the dual of (CMP. 4 ) as follows :

(CMP. 4 ) *  There exists at least one state c* such that

p(x, c*) > 0 for every  x E X .
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Such c* is called the dual center of the process.
Now define

(5. 22) K*(x, y, c*) = l
G   ( x

i m  6   '  y) 
G„(x, c*)

1= L*(x, y, c*)R (y , c*)‹ R(y, c*) ,
P(y, c*)

where L*(x, y, c*)= p(x, y)I p(x, c) and R(y, c*)= lirn G„(y, y)IG„(c*,

c*). Let X c * be the family o f y-functions, {K*(x, • , c*); x E X},
and M e*, the set of a ll the limit functions of X,,* . T h e n  M e  is
compact with the following metric

n) e(Y) 1 7 (Y ) I m*(dY ) f o r  e, E .
x I +  (.3') —  9 7(Y)

Each function o f  M c*, consider as a set function, is _T r -super-
harmonic. The dual Martin space M* and dual boundary a±* are
defined as the spaces homeomorphic to M e and M e — X e ,  re-
spectively. The element of M c* corresponding to e E M *  is denoted
by k*(, y, c*). In the same way, the limit function o f L*(x, y, c *)
corresponding to k*(e, y, c*) is denoted by 1,4( , y, c*). M t  is the
set of e GM * such that k - *(, y, c*) is a minimal x t -superharmonic
set function whose definition will be clear. Then we can obtain
the dual of the main theorem in Chapter 5  as follows :

For any nonnegative x t -superharmonic set function v, there exists
one and only one positive measure 1a* over m- p fo r  which we have

(5.23) v ( y )  = k * ( , y, c * )k * (d )  R(v, c*) .C.*(, y, C*
) 1-0 (Ck)

Nip

fo r  every one point set {y} . In particular, if v  is  an x i—harmonic
set function, the total mass of ,u,* is carried on the minimal harmonic
part (a±*),v hp,i" namely, v  is expressible

(5.24)v ( y ) R(y, c*) "1,*(, y, c*) p*(d) .

I f  our process is of the discrete time parameter, the formula
(1. 38) shows that the class o f x t -harmonic set functions coincides

1 9 ) According to (CMP. 4)*, X  contains at most one indecomposable recurrent
set, denoted by R I . I f  such R1 does not exist, hp-{o conventionally. Otherwise,
h * is one point set and k*Chil', y ,  c* )--,= K * (ri, y, c*) for any r1 E R I . A ls o ,  of course,
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with that o f Ht-invariant Œ-finite set functions. Therefore the
above formula (5. 24) determines the class of so-called Hf-invariant
measures. This is the generalization of the well known Doeblin-
Levy f orm ula f or the recurrent CM P (fo r  example, see Derman
[ 2 ] ,  p. 542) to the non-recurrent case. In fact, if X  consists of
exactly one indecomposable recurrent set, M * is one point set and

y, c*)= 1 for every y EX , so that any excessive measure (and
hence, of course, any Ht-invariant measure) is a constant multiple
o f R(y, c*). Clearly R(y, c*) can be rewritten as

H t (Y, Y)
(5. 25) R(y, c*) — lim °=` ,

'Ê Ht(c* , c*)
t =0

which is no more than the Doeblin-Lévy formula.

Department o f Mathematics,
Osaka City University.
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