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INTRODUCTION

J. L. Doob [5] has established the Martin boundary theory
for countable Markov processes with a discrete time parameter.
Independently, the author [15] has outlined the almost same results
to apply them to Hausdorff moment problem. In this paper, we
shall show that the boundary theory holds even in the continuous
parameter case by an approach somewhat different from Doob’s
one. We shall not discuss the dual boundary theory as well as
the potential theory of set functions. But we shall discuss some
problems which were not treated by Doob.

A countable Markov process with a discrete or continuous time
parameter defines the family of functions called x,-superharmonic
or x,~harmonic over the countable space; those functions are,
respectively, the exact counterpart of the ordinary superharmonic
or harmonic functions. The purpose of this paper is to obtain
some representation theorems for the above functions, by modifying
R. S. Martin’s approach [12] to the ordinary harmonic functions
from a probabilistic point of view. This work was motivated by
W. Feller’s paper [6], in which he has shown that a substochastic
matrix induces a boundary for the countable space. It seems that
the Martin boundary which we shall introduce is more advantageous
in concrete construction than Feller’s. In general, the relation of
the both boundaries is still unknown. But many results of Feller’s
would be also able to be derived from our standpoint, though it
is not discussed in this paper.
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Chapter 1 consists of three sections and contains some funda-
mental facts on countable Markov processes which will be abbre-
viated as CMP’s in the sequel. In Section 1, after the precise
descriptions of a CMP and its related terminologies, we shall
introduce some important quantities: For example, the distribution
H, of the hitting time for the set A, the transition probabilities
{H*; te T}, the Green measures {G,: ®=0}, the mean ¢ and
distribution Il of the first jumping time, the generator & and so
on. Section 2 contains some properties of the quantities introduced
in Section 1 and the decomposition of the state space X to the
indecomposable recurrent sets \ /R; and the nonrecurrent part M.

In Section 3, it is shown that the system {H!;fe T} or {g, Il}
which satisfies some conditions determines a CMP uniquely.

Chapter 2 consists of three sections devoted to the potential
theory of x,~superharmonic functions. Section 4 contains the
definition and elementary properties of x,-superharmonic or x,-
harmonic functions. In Section 5, we shall study the function
H,u (in which # is nonnegative and x,-superharmonic) and the
potential of a function and, among all, we shall prove two theorems,
ie. Theorem 2.2 and 2.7 which play basic roles in the following
chapters as well as in that chapter. The other theorems in this
section are easily derived from the two theorems cited above. In
Section 6, we shall show that the class of nonnegative x,-super-
harmonic functions coincides with the class of Hunt's excessive
functions and moreover we shall discuss the relation of x,~-harmonic
functions with H’-invariant functions.

In Chapters 3 and 4, we establish the Martin boundary theory.
Its procedure is essentially the same as in Martin’s original paper
[12]. But some modifications are necessary to prove the main
representation theorem (Section 11), for our boundary is not
necessarily compact, differently from Martin’s case. Our method
will be based on Choquet’s capacity theorem.

Chapter 3 consists of two sections and introduces the Martin
space M, the Martin boundary 9X and the réduite up(x) (in which
# is a nonnegative x,-superharmonic function and D is a compact
subset of M). In the beginning of Section 7, we shall introduce
the center condition (CMP. 4), the K-function and the function
families X,., M,. Next it is shown that M, is compact with a
suitable metric p. M and 9X are defined as the set homeomorphic
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to M, and M,— X, respectively. Finally we can see that, under
some additional conditions, M and 9X have the same properties as
in Martin’s case. Section 8 is concerned with the réduite. Using
the fact that Hu is alternating of order 2 in A, it follows that u(x)
is an alternating capacity of order 2 over the class of all compact
sets in M and therefore it can be extended to any Borel set in M.

Chapter 4, consisting of three sections, is devoted to the
representation theory for x,-superharmonic functions. Section 9
contains some auxiliary representation theorems and the fact that,
if  is nonnegative and x,~harmonic, then u=wu,4, ;. In Section
10, we shall introduce the concept of minimal x,-superharmonic
functions, the minimal part M, and nonminimal part M, of M.
Theorem 4.4 which gives the classification of M, and M, by means
of the K-function is useful both theoretically and practically.
Moreover it is shown that both M, and M, are Borel in M, and M,
is a subset of 9X. In the beginning of Section 11, the canonical
representation is defined as the K—representation with the measure
whose total mass is carried on M,. Our main theorem is stated
as follows: Amny nonnegative x,—superharmonic function u admits of
exactly ome canonical representation. The explicite determination
of the corresponding measure is given by the réduite of » and
the potential of —®&u. Finally we shall list some results derived
from the main theorem.

Chapter 5, consisting of three sections, contains several ex-
amples and brief comments on the extention of the boundary
theory to general Markov processes and the dual boundary theory.
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to Professor K. It6 and Mr. H. Kunita for their truly valuable
advice. Also it is my pleasure to thank Miss H. Kajiwara and
my wife who typed the manuscript.

CHAPTER 1. PRELIMINARIES

1. Definition of countable Markov Processes. Notations and
terminologies. We shall start with the definition of a countable
Markov process with a discrete or continuous time parameter
which has right continuous paths and cannot survive after in-
finitely many jumps. Our definition is essentially the same as
that of Doob [3] except some modification for convenience of
probabilistic treatment.
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Let X be a countable (state) space with the discrete topology
and oo an extra point to be added to X as an isolated point, and let
X denote XV {oo}. Each state, i.e. each point of X will be denoted
by x, » and so on, and the set of all subsets of X by B%. Let
the time parameter space T be a compact set {0, 1,2, .-+, + oo} or
[0, + o] with the ordinary topology and B, the topological Borel
field over 7. Any function (path) of t€ T over X will be denoted
by w and its value at time ¢ by w, or x,(w). The hitting time o4
for a subset A of X is defined by

(1.1) o4(w) = inf {£; x,(w) € A} if x (w)e A for some ¢ =0,
= 4 oo otherwise.

Now consider the set W of all the paths which satisfy the
following conditions :

(W.1) Xw(w) = o0
(W.2) x(w) = oo for every t=o.(w).
(W.3)° x,(w) is right continuous for every ¢ and has at most

discontinuities of the first kind for < o..(w).

We shall denote by B, the Borel field generated by the sets
{w; x(w) € E}, where E runs over Bz and ¢ over 7. Given any
path w and any random time o(w), i.e. a function from (W, By,)
into (T, B,), the stopped path w; and shifted path ws is defined by

(1' 2) (w;)t = wmin(t.o‘) (t:*: +OO), and = ©0 (t = 00)’
(w;); = Woyt -

We shall prove that @, (w)=w; and +r(w)=w; are measurable
mappings from (W, B,) into itself. First we shall show that
w; € W. Noting that
(1.3) oo(w;) = inf {t; x,(w7) = oo}

= inf {t; xmin(t.u')(w) = OO}

= inf {¢; min (¢, 0) = o..(w)},
we have from (W.2) that x,(w7)=2Xnn¢.e(W)=c for t=o.(w5).

This means that wz satisfies (W. 2). Further if {< o.(w5), min (¢, o)
<o.(w). Hence we have

1) This condition is trivially true for any path in the discrete parameter case.



On the theory of Martin boundaries induced 43

toow) and Xyipeow) = xw) i t<o,
xmin(t.a‘)(w) = xa‘(w) if ¢ =0,

which shows that (W. 3) is true for w;. Since (W.1) is contained
in the definition of w;, it has been proved that w; is an element
of W. Next we shall prove that {w; p(w)€ B} € B, for any set
B of B,,. From the definition of B, it is enough to show that
{w ; (PW));=Wininco.» € E} € By, for any set E of By and any € T.
This is easily derived from the fact that x,(w) is measurable as a
function of (f, w). The argument for +,(w) is quite similar.

We shall now denote by B,, the Borel subfield (@,) '8, of
Bw. Note that the B, for the constant random time ¢ coincides
with the Borel field generated by all the sets {w; x,(w)€ E} for
any s=t.

DErFINITION 1.1. A random time o is a Markov time if
(1.4) {w; o(w) <t} €3, for any teT.”

Given any hitting time o, and any ¢€ 7, using (W.2) and
(W. 3), we can see that

{w; oaw) >t} ={w;x(w)¢ A for any rational »<¢ and x,(w) ¢ A}
=L\ {w; 2 @) Ay I {w s xfw) £ A} €8,

Hence we have

LemMMa 1.1. Any hitting time is a Markov time.
Further we shall list some properties of Markov times which
are used later and will be proved in It6 and McKean [10].

LemMma 1.2. (i) If o(w) is a Markov time, we have o(w)=oc(w;7)
for every w and every t =o. This means that o is a B,-measurable
function and that, if o, and o, are Markovian and o,=o,, then
B, 2B,,.

(i) If oy(w) and o(w) are Markovian, o(w)=o,(w)+o,(w3) is
also Markovian.

(iii) If ow) and o (w) are Markovian, the set {w; o (w)<
o(w)} belongs to both B, and B,,.”

2) In the continuous time parameter case, we can use a weaker condition (*)
{w; o(w) <t}€ B, instead of (1.4). In fact, if X is a more general state space, the
condition (*) is more desirable for the continuous parameter case than (1.4), though
it is not suitable for the discrete one. See also It6 and McKean [10] and our paper [14].

3) This assertion implies that the sets {w; o, (w)<op(w)} and {w; oy(w)=0,(w)}
belong also to both By, and By,



44 Takesi Watanabe

A countable Markov process (CMP) is a system (P,, x€X) of
measures over (W, By), satisfying the following conditions :

(CMP. 1) For any fixed x, P,(-) is a probability measure
over (W, By).

(CMP. 2) Any state x is not fictitious, that is,

PAw; x(w) =x} =1 for any xe€X.

(CMP. 3) (Markov PropErTY) For any x€X, t€T and
Be®B,, we have
(1.5) P (w; w? €B|®B,) = P,,(B) with P,-probability 1,
where the left side denotes the conditional probability of the set
{w; we B} relative to B, under P,.

ReMARK 1.1. Using the same argument as in Doob [3], p. 81,
(1.5) is reduced to
(1.6) P(w; w,.s €E|xy, X4y, =+, %,,) = Pr,,(w; w, € E),

in which E€e8B5 and ¢, >t,., >---#=0. This remark will be
used in Section 3.

Now given a real valued measurable function f(w) and a set
BeB,, we shall define

(1.7) E,(fw); B) = SBf(w)Px(dw) .

In particular, if B coincides with W up to P,-probability O,
E.(f(w); B) will be denoted by E.(f(w)).

THEOREM 1.1. (STRONG MARKOV PROPERTY) For any Markov
time o, x€ X and BEBy, we have
(1.8) P.(w; wi € B|B,) = P(B) with P.-probability 1.

This fact was established by many authors even for more
general Markov processes. We shall here sketch a proof which is
due to Ito [9].

ProOF. By the definition of B, it is enough to show that
(1.9) P A(w; w; € B)AA} = E(P,,(B); A)

holds for any A€®B, and any cylinder set B, ie. a set of the
form {w; x,(w)€E;, i=1,2, -, k}.
First suppose that o is a discrete valued Markov time whose
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range is denoted by {¢;; i=1,2, ---}. From the fact that there
exists a set I'é B, such that A={w; ws; €'}, we have
A=An{w; otw) =t}
= {w; w3 €l o(w) =t} €B,,.
Consequently P, {(w; wi € B)nA} = 3] P {(w; w} € B)AA;}
using (CMP. 3)
= 2V E.(Px(B); Ay) = E(P,(B); A),

which completes the proof for the discrete parameter case.
If T is continuous and o is a general Markov time, consider
a sequence {o,} of discrete valued Markov times approximating o

from above, for example o,,:Ln;‘;lﬁ'—l. Since B, B, from Lemma
1.2.(i), (1.9) holds for any A €9, and any o,. Noting that B is

a cylinder set and using (W. 3), we have (w; w}, € B)—(w; wi € B)
and Pz, (B)— P(B), and hence (1.9) is also true for o.

LEMMA 1.3. Given any Markov time o and any wmeasurable
Sunctions f(w), g(w), we have

(1.10) E.[ fw:)gws)] = E.l flws)E.,(gw))],

which we understand in the sense that if the one side of (1.10) is
well defined (admitting =+ o), the other is so too and the both sides
are equal to each other.

Proor. We may assume, with no loss of generality, that f
and g are nonnegative. By approximating f and g from below
by a sequence of step functions, we can derive this case from the
case fand g are step functions, for which (1.10) follows immedi-
ately from Theorem 1. 1.

We shall now introduce several definitions, notations and
terminologies.

DErFINITION 1.2. A state x is a trap if it satisfies
(1.11) P Aw; x(w) = x for every t== +oo} =1,
or equivalently

(1. 11 P {w; oune(w) < +o0} =0.
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DerINITION 1.3. A state x is recurrent if it satisfies
(1.12) P Aw; o)(ws) < +oo|oy(w) < + o0} =1,
where o,(w) =o(ne(w) and o,(w)=0 (w).

To see that our definition is natual, consider the recurrence
time at x, o(w)=0,(w)+o,(ws,), which is a Markov time by Lemma

1.2. (ii). If x is not a trap, P,{w; o,(w)< + oo} =1 as is shown
in Seciion 2 and therefore (1.12) is equuivalent to

(L. 12y Pjw; o(w) < +oo} =1,

while a trap is trivially recurrent.
To continue, we shall define

(1.13) Da(x,9) = E(e7*%) for 0 a< oo,

Note that p,(x, y) is a monotone nonincreasing continuous function
of «, that p,(x, ¥) (or simply p(x, )) is equal to the accessible
probability from x to y, ie. P.{w; o, (w)<+co} and that p,(x, »)
is either strictly positive or identically zero.

DeriNITION 1.4. If p(x,y) >0, y is accessible from x, in
symbols x— .

ReEmARK 1.2. Using the strong Markov property and the
formula o, (w) <o, (w)+o,(ws,) for any path starting at x, we have

(1.14) D%, 9) = Pu(x, 2)Da(2, 3),

which shows that the accessible relation is transitive, namely, that
if x—2z and 2—y. then x—j.

DerFINITION 1.5. A state x is conservative over X if oo is
inaccessible from x, that is, if p(x, o0)=0.

If general, if a real valued function H(x, E) defined over
Xx®Bgz is a measurable function of x for each E and a measure
over (X, Bz) for each x, it is called a kernel, following Hunt [8].
For any kernel H(x, E), a transformation H of functions of x is
defined by the formula

Hf.(0) = |0 H(, dy),

if the integral on the right side is well defined (admitting 4 oo).
In particular, to the kernal defined by

6(x,E) =1 if E>x, and = 0 otherwise,
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corresponds the unit transformation 1.
We shall introduce several important kernels induced by a
CMP. Given a Markov time o, the kernel H’ is given by

(1. 15) H(x, E) = P, {w; x.(w)€E} .

Consider two Markov times o,(w), o(w) and put o(w)=0o,(w) + o, (w%,).
Then the strong Markov property proves that

(1.16) Hef.(x) = H"Hf.(x)

holds for every nonnegative function. If & is the hitting time for
a set A, H° is denoted by H, and, for each fixed x, Hu(x, +) is
called the hitting measure for the set A of the process starting at
x. Further we introduce a new notation Il(x, E)= Hx(x, E).

Putting o=¢, we shall get a system of usual ¢{ransition proba-
bilities {H'(x, E); t€ T}, in which case (1.16) is nothing but the
well known semigroup property of H’,

(1.17) H™f.(x) = HHf.(x).

Further the Markov property shows that for any integer n>1, if
t,< ---<t, are paramerter values and E,, ::-, E, are subsets of X,

(1.18) Pw; x,w)€E;, i = 1,2, ,n}
= Htlelez—tlez vee Ht”_t”‘le”. (x) ,

where X, is the indicator function of E; and, for i=1,2, .-+, n—1,
it is considered as a transformation of functions in the sense of
Xg, f.(x)=Xg;(x)f(x). Consequently a CMP is uniquely determined
by its system of transition probabilities. In particular, a CMP
with the discrete time parameter is determined by H'(x, E), because
H! is determined by (1.17) for #<+ oo, while H**(x, E)=1 or O
according as E contains oo or not. Noting that {w;c.(w) >t} =
{w; x(w) € X} and (CMP. 2), we can see that a state x is conser-
vative if and only if HY(x, X)=1 for every #< + co. Similary, if
T is discrete, every state x in X is conservative if and only if
H'(x, X)=1 for every x in X.
The Green kernel of ovder «=0 is defined by

(1.19) Gy, E) EE,{SMe"”XE(x,)dt} - S+°°e-wa(x, E)dt

+o0
where the integral notation is understood as the summation >}

t=0

in case of the discrete time parameter. G,(x, -) is a finite measure
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for every x€ X and a>>0 (see (1.21) and (1.22)), but G(x, -) (or
simply G(x, +)) is generally an infinite measure which is not even
a o-finite measure. The following Dynkin formula which is a
direct consequence of the strong Markov property is useful: For
any Markov time o,

(1.20)  G.f.(x) = E( S:e”“”f(x,)dt>+Ex {e9C, f.(x,)} .

As is well known, the system {G,; @>>0} satisfies

(1.21) Gux, B =0, Gy %) =1,
(@—B)G,Gef.(2)+Gsf.(x)—G,f.(x) =0 (RESOLVENT EQUATION)

in the continuous time parameter case, or
1

(1' 22) Gm(x: E) 2 0 ’ Gm(x> X~) = '1’ Gm(x9 x) g 1 ’

(e ®— e P)G,Gof.(x)+e PGpf.(x)—e °G,f.(x) =0
(RESOLVENT EQUATION)

in the discrete one. Conversely,” to any system {G,; @ >0}
satisfying (1.21) or (1.22) corresponds uniquely a discrete or
continuous system {H’;¢¢€ T} which satisfies (1.17), (1.19) and

(1. 23) Hi(x, X)=1.

Consequently a CMP is also uniquely determined by the system
of Green kernels for a”>0.

Next we shall introduce another new quantity
(1.24) q(x) = E.(o(xe) ,

which is strictly positive by the definition of CMP and is finite
if x is not a trap, as is shown in Section 2. Then the Dynkin
generator & is defined by

4) This fact has been proved in Feller [7] for the continuous time parameter.
On the other hand, in case of the dicrete one, replace e~® by s. Then (1.22) proves
that G;z=Gy4 is an analytic function of complex s in |s|<{1 and its n-th derivative is
given by

() 6¢2 = m 6,(%71),
Gt
which shows that H”=7,— is a kernel according to G,(x, E)=38(x, E). The semi-

group property and (1.23) of {H"; n=0, 1, 2,---} are easily derived from (1.22).
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_ Wz, E)—(x, E)
(1.25) S(x, E) = o) :

2. Some properties of a CMP and the decomposition of the
state space. We start with

LEMMA 1.4. The distribution of o(w)=oxn(w) relative to P,
is of geometric or exponential type according as T is discrete or
continuous. The state is a trap if and only if q(x)= +oco. In par-
ticular, if T is discrete, we have

(1. 20 90 = iy

Proor. It is shown by the strong Markov property that
P.(c>t)=f(t) for t€ T satisfies

Sft+s) = f()f(s).

Since we have P.o >t)=FE,{X¢ +o1(c(w))} and X, 4o03(¢) is measu-
rable in (¢, ¢'), f(t) is also measurable in . Therefore we get

f(t) =e™ for some A =0,

which proves the first statement. Moreover it is clear that A=
1/q(x). Suppose now that x is a trap. Then since f({)=1 for
every £, we have A=0 and hence ¢(x)= + . The inverse state-
ment is evident. The last statement immediately follows from

_ _ 1
f(1)=H(x, x) and q(x)—kﬂl)-

We shall here define the n-th jumping time o, as follows:
(1.27) o(w) =0, oy(w) = o (xguryc (W), =+, Tp(W) = o, (W) + 0 (w7, ).

Since {o(w) >t} = [L\, {w; x(w)=2x,w)} |~ {w ; x,(w) = x,(w)} €B,,
every o,(w) is a Markov time. According to (CMP. 2) and strong
Markov property, we have ¢(x)=E,.(s,) and H°»=1I", in which II"
is the »# product of 1I with the convention II°=J. Next putting
(W) =1lim o, (w), it results from (W.2) and (_W. 3) that o, (w)=
o.(w) for every w. In fact, suppose that o, .(w)< o.(w). Then
lim x,,(w) exists and belongs to X. This means that x.,(w)=

npoo

Xopy (W) = -+ =lim x,,(w) for some n,, which contradicts the
n 300

‘definition of o,. Consequently
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(1.28) H'(x, E) = 2} P,(x, € E, 0,<0<C0,..)+8(c, E) P(0... <0)
= 3 P2, € E, 0y =0 0pi) +8(c0, E) P(c,. <o)

holds for any subset E of X.
Suppose now that T is continuous. Then, putting Hg(x, E)
=P, (x,€E, 6,<t<0p1), Piloye >t)=e"2"! we get

H(vﬁ)(x) E) = [ S e_AIIXI»[ tee e_ktn"'ldtl i dtn]xE-(x) ’

t=t1 e bty
;=0

i=

where ¢ and M are taken, respectively, as a transformation of
functions in the sense of e f.(x)=e 2 f(x), Af.(x)=NMx)f(x).
Therefore

+o0
(1. 29) G (x, E)E[ e~ H ¢ (x, E)dt

JOo

= [(@+N)TAIIJ (@ + X)X, (x) .

This can be also derived from

Tn

o, B) = B[ e rxutaat) = L B IXla, e or—evonn],

Tn

using the strong Markov property. Consequently, if ECX,
+oo

(1. 30) G,(x, E) = > GP(x, E)

n=0

= 3@+ ) MIT @+ 2) " X (1)

Since, according to A (x)=g¢(x)™', we have

(1. 31) a—@ = a—MIT-T) = (@ 4+N) [[— (¢ +2)'NT],
the relation

(1. 32) (x—@®)G,(x, E) = 8(x, E)

holds for every x and ECX. Further, noting that G,(x, )=

—G,(x, X), (1.32) holds for E=c and therefore for any ECX.
Hence G, is an inverse kernel of a@—@.
In the same way, if T is discrete, we can obtain
Hq(x, E) = [ P e M (1—e ML e e M X g (2),
t=t,+ - +iny

By tn=1,2, .
tn41=0,1,2, -

1R | =
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(1.33) GP(x, E) =[(1—e*MNe *(1—eMNID]"(1—e )" Xp. (1),

(L.30)  Gylx, B) = B LA—e*Ne (- IT(1—e ) Xy (1),
gx) = (1—e)",

(1.35) (1—e®)—e*S =1—e*MN[I-1Q—e*M e *(1—eMII],

(1.36) [(1—e @) —e *@])G,(x, E) = 8(x, E) for every x and EC X.

In our case, as will be shown in Chapter 2, G (x, E) is the unique
nonnegative bounded solution of (1.36).

Using the expression of H! by means of ¢ and II, we can
prove

TueorREM 1.2. (i) If T is continuous and f is a bounded
Sunction, H' f.(x) is differentiable in t and the formula

(1.37) tim A7 t“‘l? %) _ 7. (x)
holds, so that putting f=Xine, we get
lim M = q (x).

(ii) If T is discrete, the formula
(1.38) Hf.(x)—f(x) = f.(x)
holds for any function f.

Proor. (i) Suppose that x is not a trap, for (1.37) is evident
for a trap x. Moreover we can assume that f is a nonnegative
function with no loss of generality. By a simple calculation we
obtain

(1. 39) H¢, f(x) = e X™f(x),
Hf (%) = M) L{g(x, % OFN I, dy)

where
1 _ e—(k(x)—)\()’))t Cacot .
g(x, 9, t) = - M) — M) e if  Ax) - M)
— fo At if AMx) = AMy).

If we now put Ex={y;M»)<_K}, then Ex1 X with K— + co.
Therefore, given any & >0, there exists a number K (=X\(x)) such
that

[, FIG, dy = 115,06
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Hence using (1—e-”)/>»gt—'—72‘|f, we have

H{ f.(x) = Ma)e Xt — Kt*) {ILf. (x) - ¢},

so that
HE . (x) = Mx)ILf . (x)-t— &

holds for any #<some #,(>0). In the same way, we have
HEf(x) < Mx) (E+KPeX)ILf (%) .

Consequently

(1. 40) Hi f.(x) = M) f.(x)-£+0(2) .

Putting k=supf(y) and applying (1.39) and (1.40) to the unit

Yex
function Xz, we get

(1.41) E(f(x)); 0, <! < kE.(X3(x,); 0. =)
= k[1-H§Xz.(x)—Hi,Xz.(x)]
= k[1— {1-Mx)t+o0()} +Mx)t+o0()]
= o(f) .
Summing up (1.39), (1.40) and (1.41), our statement is evident.
(ii) (1.38) is a direct consequence of
Hg f.(x) = e*®f(x) = {1—-q7'(0)} f(x),
Hif (x) = {1—e?®}If.(x) = ¢7 ()11 (%),
HLf.(x)=0 for n=2,3,--.
To proceed to the decomposition of the state space, we shall
list the basic results on the recurrence in
LemMmA 1.5. (i) A state x is recurrvent if and only

(1.42) G(x, x) = oo,

() If x is recurrent and x—y, y is also recurrent. Further

plx, )=p(y, x)=1.
(iii) For any two states x and y,

(1.43) G (x, ) = pu(x, Y)G(3, ¥) a>0.

In particular, if y is nonvecurvent, (1.43) holds also for a=0,
that is,

(1.44) G(x, y) = y(x, )G(y, ) = G(y, y) <+ 0.
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ProOF. (i) and (ii) have been proved by the author [14] for
more general Markov processes. (1.43) is a direct consequence of
the Dynkin formula (1. 20).

DEFINITION 1.6. A subset R of X is an indecomposable recurrent
set if R contains a recurrent state x which satisfies

(1.45) plx, ) >0 for any y€R,
P Aw; oge(w) < +o0} = 0.

THEOREM 1.3. (i) Any state x of an indecomposable recurrent
set R is recurrent and satisfies (1.45).

(i) If a state x is recurvent, theve exists a umnique indecompo-
sable recurvent set containing x.

(iii) The state space X is decomposed uniquely into the direct
sum of at most countably many indecomposable recurrent sets and the
set consisting of all nonrvecurvent states.

ProOF. (i) is clear by Lemma 1.5 and Remark 1.2. For
the statement (ii), put R(x)= {y; p(x, y) >0}. It is easily shown
that R(x) is what we need. To prove the third statement, first
consider any fixed recurrent state x, and R(x,). Next, take any
recurrent state x, which is not contained in R(x,) if such state
exists. R(x,) and R(x,) are disjoint, for otherwise we would have
p(x,, x,) >0, which is a contradiction. In the same way we define

R(x,) if there exists a recurrent state x, such that x,¢ UR(x;).
=1

These indecomposable recurrent sets are mutually disjoint and
any state x¢\/ R(x;) is nonrecurrent. This completes the proof
of (iii). =

In the sequel, the decomposition of X is denoted by

(1. 46) X=\/R+N,

where each R; is an indecomposable recurrent set and N is the
nonrecurrent part of X.

Finally we shall prove
LEmmMA 1.6. Let o, be the n-th jumping time, o,..=lim o, and

Ly={w; x,(w) has limit points in N as t —>o, . (w)}. Then
(1.47) P(Ly)=0
holds for any state x.
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Proor. Put L,={w;x (w) has y as a limit point when
t—o,..(w). Then since Ly= \{VL,,, it is enough to show that
ve
(1.48) P(L)=0.

To prove this we shall define the n-th hitting time T, for y as
follows :

m(w) = o,(w) (W) = T, (W) + o w?)

‘T'n(u;) = 'l:n_l(w)-%-try(wt/n_l) :r,'l(w) = Tn(w)+<;(,)c(wtn) .
It is clear that
L,= [\J {T )<+ oo, Tl{w) = + 0} VY {7 (w)< + oo for any n}.
We now calculate the probability of each set on the right side.
P A (w) <+ oo, Ti(w) = + oo} = P A7, (w)<+ o0, oppe(w?,) = + oo}
= E [P (005 (w) = +00); 7, (w)< +co]
=0,

by virtue of P, {oy(w)< + oo} =1 (Lemma 1.4). Recalling the
fact that y is nonrecurrent, we get

P,{r(w) < + oo for any n} = lim P,{r,(w) < + o}
= lim p(x, P, {ro(w) < + o} "
=0.
Thus we have proved (1.48).
CorOLLARY. If F is a finite subset of N,
PAw; x,w)¢F  for any t =some t} =1
holds for every state x.

3. Construction of a CMP. It is clear that the system {H*;
t € T} of transition probabilities of a CMP satisfies the following

(1.49)  Hx, E) = 8(x, E), H'(eo, E) = H*"(x, E) = §(0, E),

besides the semigroup property (1.17) and the stochastic condition
(1.23). Now we shall study the problem whether, for any given
system {H®;t€ T} satisfying (1.17), (1. 23) and (1. 49), there exists
a CMP whose system of transition probabilities is {H'}.

We shall start with a preliminary
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LEMMA 1.7. Let (W, B4, P) be an abstract probability field
and ¥(@w)=(y,(w);t€T) a stochastic process on X which satisfies
(i) y"'W={w; yw)e W} By and (ii) P(y"*W)=1. Then the
process y,(@) induces a probability measure over (W, B,) by the
formula

P(B) = P(y'B).
In particular, if B={w; x,,(w)€E;, i=1,2, -+, n},
(1. 50) P(B) = P{w; y,(w)€E;, i=1,2 - ,n}.

Proor. If B={w; x,(w)€E}, then y'B=y"'Wn {w; y, () € E}
€By. Therefore y'Be By holds for any Be B, by the definition
of By, which completes the proof.

THEOREM 1.4. Let H'(x, E) be any kernal satisfying
H'(x, E)=0, H'(x,X)=1 and H'(x, E) = §(c, E).

Then there exists uniquely a CMP with the discrete parameter which
satisfies
(1.51) P.{x(w)eE} = H(x, E).

REMARK 1.3. Our kernel H' is uniquely determined by its
restriction to X. Consequently to any given kernel over X satis-
fying H(x, X)<1 corresponds one and only one CMP.

Proor. The uniqueness of the process has been already shown
in Section 1. Hence it remains to construct our process.

Consider the system {H’;?€ T} induced by H', using (1.17)
and (1.49). As is well known (see Doob [3]), we can construct

an abstract probability field (W,, B#,, P,) and a stochastic process
(@) on X such that

(1.52) P {y(@)€E,, i = 1,2, -, n} = H'Xp, - H'n"tnX, (x)

holds for any ¢;€7T, 0<¢ < ¢t,< < t,< 4+ and E,;€Bj.
Further we have

W.—y"'W = {y=(w) ¢ W}
= [\J {3i”(@) = o0, yiZ1(@) == 00} 1V { () -1 0o} € By,
P Ay®(@) = oo, 32\ (@) == oo} = H'X H'Xx.(x) = 0,
P {y@u@) = oo} = H'"Xx.(x) = 0,

which proves that y{”(@) satisfies the conditions (i), (ii) in Lemma
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1.7. We denote by P, the probability measure over (W, By)
induced by y&(w).

We shall show that the system {P,; x€ X} obtained above is
the CMP which we wanted. First the condition (CMP. 1) in the
paragraph 1 is evident. Further (CMP. 2) and (1.51) come from
(1.50) and (1.52). Finally, by Remark 1.1, (CMP. 3) is reduced
to (1.6), i.e.

PAx, (w)€eE;, i =1,2,-,n} = E[Px, (%,-, ,(w)€EE,);
2 w)EE;, i =1,2,-,n—1]
for 0<<¢,<¢,<--- <t,< + oo, which is also derived from (1.50)
and (1.52).

THEOREM 1.5. Let {H';t€ T} be a continuous system satisfying
(1.17), (1.23), (1.49) and the following conditions:® For any fixed
t, any finite set E and any € >0, there exists some finite set F such
that

(1. 53) H!(x, E)< & for any x¢F.
Then we have one and only one CMP with the continuous parameter
whose system of tranmsition probabilities is {H';te T}.

Proor. We now understand X as the one-point compactifica-
tion of X. Then the condition (1.53) implies that H’ makes
invariant the family of bounded continuous functions on X. In
fact, if f is a bounded continuous functions on X, H'f is continuous
on X evidently. Moreover, since E={y; |f(y)—f(=)| >€} is a
finite set for any given & >0, we have

|H'fo2)— HF.(o0) | = | H'F.(2)— f(o0)]
< | 1ro)—rie) B x an+ [ 1£0)— o) HAx, dy)

< KH'x, E)+¢&
< 2¢ for any x ¢ some finite set F.

Therefore, according to Itdo [9], we can introduce a probability
field (W,, By, P.) and a stochastic process y®(w) on X such that

5) This is not a necessary condition. A simple example which does not satisfy
(1.53) is this: X={0,1,2,---}, 3} g(x)<+ oo, T(x, x—1)=1 for x=1 and (0, 0)=1.
z=1

Such process is known as the pure death process and its existence is guaranteed by
Theorem 1.6.
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(a) ¥ (@) is right continuous with P,-probability 1 and (b) (1.52)
holds. The proof of constructing the requied CMP by means of
y2(w) is the same as in Theorem 1.4, so it will be omitted.

Next we shall discuss another construction of a CMP. The
system {g¢, II} corresponding to a CMP satisfies the following
conditions ;

(1.54) 1=¢g(x) < + 00, g(o0) = + 00, if T is discrete,
(1. 55) 0<q(x) < + o0, g(o0) = +o00, if T is continuous,
(1.56) IIx, X)=1,

(1.57) I(x, x) = 0 if gx)< 4o,
Il(x, E) = 6(oo, E) if gx) = +oo.

Conversely we can prove

THEOREM 1.6. Suppose that a pair {q, 11} of a function and
a kernel satisfies (1.54) (or (1.55)), (1.56) and (1.57). Then we
have one and only one CMP with the discrete (or continuous) para-
meter satisfying

(1. 58) Ex(o'(x)C) = q(x), Px{xU(x),.EE} = ll(x, E) .

Proor. The uniqueness of our process is clear by (1.30) and
(1.34). Since our proof of existence is the same as in Doob [3],
we shall give only its outline.

In case T is discrete, consider a probability field (W, B, P) and
a family of random variables satisfying the following conditions :
(@) 7)), a? (@) (k=1, 2, -+, and x € X) are mutually independent.
(b) Each () is subject to the geometric distribution with the
mean ¢(x). (c) Each ¢®(@) is a random variable on X whose
distribution is given by II(x, -). Next we define a new family of
random variables as follows :

(@ __ (z) ()
g1 = Ty b§

o = dgbgv))—}—o‘im b = agbg’”)

— aiz)
() ()
o = 702 o b = albin) .

Moreover we consider a stochastic process y(@)=(y(w);t€ T)
defined by
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Py = x if 0=t<of®
= b2 if o <t<lowh

= oo if limo® <t< +o0.

n-yoo

Then the system (W, By, P,;x€X) induced by y@ (@) (using
Lemma 1.7) is the CMP required. In fact, the same argument
as in Theorem 1.4 proves that the Markov property of {P,} is
reduced to that of y(w), which has been shown by Doob [3].
The other properties are easily verified by the definition of y” (D).

Our proof is applicable to the continuous parameter case, in
which it is assumed that (&) is of exponential type with the
mean g(x).

REMARK 1.4. Another proof for the discrete parameter is as
follows: For given {g, I1}, we define @ and H', respectively, by
(1. 25) and (1. 38), where H'(x, E)=06(x, E) for g(x)= o by definition.
Then it is easily shown that H'® satisfies the conditions in Theorem
1.4. The CMP corresponding to H' is what we wanted.

CHAPTER 2. x,-SUPERHARMONIC FUNCTIONS

4. Definition and its direct consequences. In the following
discussions, we shall denote a CMP by x,. Moreover consider the
new kernel I1 defined by

2.1) [(x, E) = Il(x, E) if x is not a trap,
= &(x, E) if x is a trap.

DEerFINITION 2.1. (i) Given a fixed state a, a real valued func-
tion u# over X is x,~superharmonic at a if it satisfies

2.2) —oco <l u(@) < +oo, u(0) =0 and llu.(a) < u(a).

In particular, if IAIu.(a)<u(a) or u(a)= + oo, u is strictly x,~super-
harmonic at a.

(i) A function wu is (strictly) x,-subharmonic at a if (—u) is
(strictly) x,~superharmonic at the state.

(iii) A function u is x,~harmonic at a if it is both x,-super-
harmonic and x,-subharmonic at the state.

(iv) A function # which is x,-superharmonic (x,-subharmonic
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or x,-harmonic) at any state is x,-superharmonic (x,~subharmonic
or x,~harmonic).

REMARK 2.1. Since the definition of an x,-superharmonic
function depends only on II (or I1), to the family of CMP’s with
the same 1l corresponds the same class of x,-superharmonic func-

tions. Therefore our concept may be understood as an analytic
one with repect to a kernel IIL.

ReMARK 2.2. In our case, the function = 4 « except x = o
is x,~superharmonic. But an x,~harmonic function is finite valued
over X by the definition.

We shall now define several families of functions over X.
We shall here use the notation F(F~) to denote the class of all
nonnegative (nonpositive) functions in a given function family 3.

R(X) = {f;f is a real valued (admitting =+ o) function over X
taking the value 0 at oo}.

FX) = RX) A {5 — oo <Sfl2) < +0),

9(X)= {u;u is x,-superharmonic} ,

94X)= {u; u is x,~subharmonic} ,

D(X) = {u; u is x,-harmonic} = 9,(X) A D(X) CFX) .

In the following two lemmas we shall list some elementary
properties of x,~superharmonic functions to be used later.

LEMMA 2.1. Suppose that u, v, u, € D,(X). Then

(i) If k=0, kuc D(X).

(i) If [Nu+110] is well defined (admitting + o), u+v € H,(X).

(i) If —oo<ZTllu.(x)< 4+ oo for any x, u nv€ D(X), where
u Av(x)=min (x(x), v(x)).

(iv) If —oo<Mlt,.(x) < + oo for any x and u,tu,., then
M+N€®1(X).

w) If —oo§lflu.(x)<+oo, then 1Wulu_ . and Tu_.—u__.
Therefore u_.. € D,X) and in particular, if u_.(a)>>—oco, it is x,-
harmonic at the state a.

Proor. (i) and (ii) are evident. (iii) Since #—wu ov=0 and
Ti(u ,\v):lﬂlu—lAl(u—u/\v), Il(x A ) is well defined by our assump-
tion. Now suppose that u« 5 v(a)=u(a) for a state a.

Then we have

(uAv). (@) < Tu.(a) < ua) = u pv(a),

which completes the proof. (iv) is clear from the well known
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theorem of Lebesgue. (v) Notice that 11"z is well defined for
every # in the same way as in (iii). Again using the theorem of
Lebesgue, we get

Iu_...(x) = IT (lim I1"%). (x) = lim 17""%. (x) = u_.(x) .

Thus Lemma 2.1 was completely proved.

LEMMA 2.2. (i) Xx€D7(X).

(il) If u and ve€ 7Y (X), then also u+v and u pv € D} (X).

(i) If u,€DH(X) and u,—u,.., u,..< 97 (X).

(iv) Any ue€DH(X) can be approximated from below by a se-
quence of bounded functions u, € 97 (X).

) If ue®i(X), then N'ulu_. and u_.€9{(X). In par-
ticular, if u€ D} (X)ABX), u_.. € HHX).

PrOOF. (i) is clear from the fact that ITXy-(x)=II(x, X)<1
for every x€X. (ii) In our case, Il(x+v) and Il(x A v) are always
well defined, while the other arguments are the same as in Lemma
2.1. (iii) Using Fatou’s lemma, we get

11 Upooo(x) = 11 (lim u,). (x) < lim inf 1Mu,.(x) < lim u,(x) = Upo(X),

which is what we wanted. (iv) It is enough to approximate u
by u,=u A (nXy), for u, is a bounded function of 97(X) according
to Lemma 2. 1. and this lemma (i), (ii). (v) #,=11"« is well defined
and 0<Ilu,=01""u<I1"u=u,, so that each u, belongs to 9} (X).
Therefore, according to the statement (iii), #_., € 97(X). The latter
part is a special case of Lemma 2. 1. (v).

Now we have

THEOREM 2.1. If u€D(X), then |u| €D5(X) and 11"|u| ! u,.,
€ D+ (X). Especially, if u,..€FX), ,. € O(X) and further u can
be represented in the form

(2.3) U=1u—u,
by means of some u,, u,€ O"(X). Conversely, if u is expressible in
the form (2.3), u,.. € F(X).

ReEMARK 2.3. Our theorem implies that any bounded function
of ©(X) is always expressible as the difference of two bounded
functions in 9%(X).

Proor. Consider the function #*=#V0. Then —u"=(—u) A0
is a function of 97(X) according to Lemma 2.1. (iii). In the
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same way, putting #~=(—u#) V0, we have —u~ € 97(X). Therefore
—Ju|=(—u*)+(—u") € H1(X), ie. |u| € D:(X). Applying Lemma
2.1. (v), —u,.€97(X) (ie. u,.€D7 (X)) and, if u..€FX), —u,.
€D (X) (ie. u,.€D*(X)). Further noting that — |u|< —u*, we
get

— o< — (%) = Im 11— [u]). (1) < lim T1"(—u*). (1) = — ,(x) =0,

which means that —u#, € 97(X) (use again Lemma 2. 1.(v)). Simi-
lary lim 1"(—# )= —u,€ 9 (X). Thus we have
u=u"—u,
u = lim 11"« = lim 11”0t —lim 11"~ = u,—u,,
which proves (2.3). Conversely, suppose that u=wu,—u,, where
u,, u, € 9*(X). Then since — |u|=—u,—u,, we obtain
0= —u,.(x) = im I1*(— |«]).(¥) = —lim I1"u, . () — lim I1"u,. (%)

nyoo

= *ul(x)_uz(x) > — 0,
which completes the proof of the theorem.

REMARK 2.4. All the results in this section hold for any
substochastic kernel H, i.e. a kernel such that H(x, X)<1.

5. The properties of the function H,#. Potentials of func-
tions. Suppose that # is a function of 9{(x). Then the function
H ,u is also a function of D7 (X) which does not exceed u. More-
over, if A is a finite subset of the nonrecurrent part N of X and
u is finite over A, H, u is a potential of a nonnegative function
whose carrier is contained in A. These facts play fundamental
roles in the study of nonnegative x,-superharmonic functions.”

First we shall prove a general

LemmMma 2.3. Let all the functions under considerations belong
to R*(X). Then we have

(i) Haf=f over A.

(i) If f=g over A, then H,f =H ,g over X.

(111) HA(k1f+k2g):k1HAf+ szAg for kl’ kzz().

6) Refer to the theorems in Section 1 of Martin [12], noting that our function
H4u is the exact counterpart of the function #¥ in [12]. Also see Hunt’s paper [8],
in which he has discussed another approach to the function H4u for general Markov
processes.
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(iv) If f.tf over A, or if f,—f and each f, is dominated
over A by an H 4(x, -)-integrable function, we have

limH,f, = Huf .
In general, if f,—f over A, then
liminf H,f, =H.f.

(v) If ACB, then
(2~4) HAf: HAHBf: HBHAf-

(vi) Hovgf<H,f+Hzf.

Proor. (i) is clear according to H,(x, -)=86(x, -) for x€ A.
(ii)-(iv) are also clear from the fact that H,(x, -) is a measure
over A. (v) Noting that Hzf=f over A(CB), the first equality
is evident from (ii). On the other hand, since o, (w)=ocg(w)+

oca(wt,), the relation H,f=HgH,f is nothing but a special case
of the formula (1. 16).

(vi) HpoVpf.(x)
=E.(f(xc4); 04V p=04)+Ef(Xop); 04 p= 05, 0,4\ g=0,4)
S E[ f(x: )1+ E[ flxe )]
=H,f.(x)+Hgf.(x).
Next we have
LEMMA 2.4. Suppose that feR(X), ACX and a¢ A. Then if
H,f is well defined, we have the formula
(2.5) IH,f (@) = Huf.(a).

Therefore, if —oo< H,f.(a)< + oo, Huf is x,~harmonic at a.
Proor. It is enough to show that IIH  u.(a)=H su.(a) for
a==a trap. Let o, be the first jumping time. Then, by virtue of
ag A, it holds that o,(w)=o,(w)+o4(w?,) with P,-probability 1.
Hence, according to Lemma 1.3, we get
Haf (@) = ELf(xe)] = EL Ak gy s0s,))]

= E [Es(f(%: )] = EJJHaf . (%,)]
= I1H,f.(a),

which is the formula required.
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THEOREM 2.2. For any u € 97 (X), we have

(2. 6) OZHu<u for any A,
2.7 H 4u € 9(X),
(2. 8) H u.(x) = ux) if x€A,

= x,~harmonic if x¢ A and Hu.(x) < +oo.

ProOF. (2.8) is evident by the last lemma. Moreover in case
x €A, (2.6) is comprised in (2.8). Now we prove (2.6) for x ¢ A.
For this purpose we can assume that # is a bounded function of
9HX). In fact, if (2.6) is true for any bounded function of 9F(X),
it is also true for any function of ${(X) according to Lemma
2. 2. (iv) and the theorem of Lebesgue.

Now consider the n-th jumping time o, of (1.27). Then re-
calling the formula (1. 28) and noting that o,=0, if 6,<0,< 0,41,
we get

0< Hau(x) = 3 Eo(lt0,) ;00 = 0 < i)

= S Eulx,,); 04 = 0,) <+ 0
It results from the definition of #, Lemma 1.3 and x¢ A that
E(u(xs); 00 =0)) =0,
and if n=>1,
E.(u(x;,); 04 = 0,)
= Elu(xor, W5, ) oaws, ) = o5, ), 04>0,]
= E[Ex,, (u(%s);04=0,); 04 >0,.,]
= El{Ilu.(x,, )= Ex, (u(x,); 04 >0} ;04 >0,]
S Elu(Xoy-r) = Exs, (U(X5,)) ;04 >0)); 04 >0, ]
= E(u(Xs,_) ; 04 > 0u) = Eu(x,,) ; 04 >0,) .
Hence we have
Hu+(x) = lim 3% Bu(x,,) ; oa=0,)
= lim [Eu(x5,) ; 04 2> 00) = E(U(%,,) ; 04 > 0,)]
= E.(u(x,,) ; 00 > 0) = u(x).

Finally we shall prove (2.7). In case x¢ A, our statement is
clear from the formula (2.5). On the other hand, if x€ A, (2.6)
and (2.8) implies that
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ITH u.(x) < Tu.(x) < u(x) = Hau.(x).

Thus our theorem was completely proved.

CoroLLARY 1. If u€DH(X) and u(x)< 4o and x—y, then
w(y)< +oo. In particular, u(x)=0 implies u(y)=0.

Proor. Applying (2.6) for the set {y}, we have

u(x) = Hyu.(x) = p(x, y)u(y) =0,

which proves our statement by virtue of p(x, y) >0.
CoroLLARY 2. If ue€DH(X), Hqu is the smallest among all the
Sunctions in 9F(X) which are =u over A.
Proor. If v=u over A, it results from Lemma 2. 3. (ii) and
the formula (2.6) that
v=Hp=H,u,

which completes the proof.
THEOREM 2.3. For any function u € 9i(X), we have

(2.9) H,u < Hpu if ACB,
(2.10) Hyut Hyu if A1 A.

ProoF. Applying (2.6) to Hgzu € $7(X) and using (2. 4), we get

Next noting that H,u=u over A, and A,1 A, it follows that
Hyutu over A. Theorefore, by virtue of Lemma 2.3. (iv) and
(v), we have

limH,u = lim HH,u = Hau .

THEOREM 2.4. The accessible probability p(x, y), taken as a
Sfunction of x, is a function of 97 (X) which is x,~harmonic at x=Fy.
Moreover p(x, y) is x,~harmonic or strictly x,-superharmonic at
x=y according as y is a recurrent state or not.

PrROOF. Since p(x, y)=H, Xx.(x) and Xx€ 97(X), the first state-
ment is clear.

For the proof of the latter part, we can assume that y is not
a trap. Then recalling the formula (1. 16), we get

HHyXX'(y) = HHyXX'(y) = H(y)CHyXX-(J’)
= HXx.(y) = Py)(oc <+ 0),
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where o(w)= oy (w) +o,(w ), that is, the recurrence time at jy.
Therefore, from the definition of recurrence, we have

Po<+0o0)=1= p(y,9) if y is recurrent,
< 1= p(»7 otherwise,
which completes the proof.
Now recalling that the decomposition of the state space is
given by the formula (1. 46), we have

THEOREM 2.5. Any function u of 9(X) is a constant, say k;,
over each indecomposable vecurrvent set R;. Moreover the function
Hyu has the following properties

(i) Hgu.(x)=0 if x€R;, i4-7.

(i) For any finite or infinite sum of R;,

(2.11) HUR‘.u = 2 HR‘.M .
(iili) For any state r;€R;,
(2.12) Hpu.(x) = H,u.(x) = k; px, 7).

Therefore, if k;< + oo, Heu is a function of H(X).
REMARK 2.5. Putting u=Xy, it follows from (2.12) that
Px(O—R,'< +o0) = p(x, 7:) .

Note that the above formula can be also derived from the strong
Markov property.

REMARK 2.6. If u€DI(X)ATX), we can see that Hjgu is

a function of *(X) which does not exceed . Hence # can be
decomposed into

(2. 13) U = ”'*‘HUR,-u’
where v is a function of 97(X)A &(X) which vanishes over the
recurrent part \/R; of X.

Proor. Consider any two states x, y€ R;. Then, since

p(x, »)=p(y, x)=1 (see Lemma 1.5.(ii) and Theorem 1.3.(i)), we
get

u(x) = Hyu.(x) = plx, y)u(y)
=u(y) = Hu.(y) = p(y, )u(x) = u(x) .
Hence, for any fixed 7; € R;, we have

u=H,u over R;.
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which proves (2.12) by virtue of Lemma 2. 3. (ii) and (v). More-

over (i) is clear from the fact that p(x, »;)=0 for x € R; (i==)).
Finally we shall prove (ii). For this purpose we shall first

show that (2.11) holds for any finite sum, i.e.

(2.14) HL"JRiu =2 Hpu.

In fact, Lemma 2.3.(vi) implies that Hy u<3}Hgu. On the

other hand, using (2.9) and this theorem (i), it follows that

H N R;u = Z"i H RU over \/R,- .

1
Therefore we get

HL:JRiu:HL;JRiHQRiug;HQRiHRiuz EHR,]J,

which proves (2.14). Next, if \/R; is an infinite sum, applying
(2.10) to \”/Rl- A+ \UR;, we can obtain (2.11) immediately.

To continue, we shall now define a potential of a function in

DeFINITION 2.2. If a function #€R*(X) can be written in
the form

(2.15) u = Gf

by means of some function feR*X), u is the potential of f.
The family of all the potentials is denoted by B(X).

We shall state the main properties of potentials in the
following

THEOREM 2.6. (i) Any u € B(X) is a function of $7(X) and,
in case u==0, it is not x,-harmonic.

(i) If u e BX)ABX), the function f of the formula (2.15) is
uniquely determined and given by f= —&u. Moreover the carrier
of f, that is, the set {x; f(x)==0} is contained in N. Therefore u
vanishes over \ JR;.

(iii) If ue P(X)ABX), we have

(2. 16) "% | 0 (n — o).

Proor. Let o, be the n-th jumping time and #, the potential
of FERNX);
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2. 16) w(x) = Gf.(x) = E[ g“ f(x,)dt] ,
by virture of f(e0)=0. Then, using Lemma 1.3, we get
(2.17)  1IGf.(x) = Gf.(x) for x =a trap,

— E“"" f(x,)dt] <Gf.(x) for x+a trap,

so that # belongs to 97 (X).
Now suppose that f(a)==0 for some state a€\JR;. Then
according to (1.42), we have

Gf.(a) = fla)G(a, a) = +oo.

Therefore if u=Gfe€F(X), f vanishes over \J/R; and hence it
follows from (1.44) that

ux) = | F0GE ) = | A s 96, dy).

This implies that # vanishes over \ JR;, because we have p(x, y)=0
for any pair of x €\ /R; and y€ N.
Next, if u=GfeF(X) and x € N, according to (2.17) we have

2.18)  NGF.(x) = IGF.(x) = Gf.(x)—E,,[S“‘ f(x,)dt]

=Gf.(x)—f(x)q(x),

which shows that f= —®u. Moreover if #==0, then f(a)==0 for
some a€ N, so that (2.18) proves that u« is strictly x,-super-
harmonic at a.
Finally noting that #=Gfe€ $(X) vanishes over \J/R; which
contains all the traps, we get
0 < 11"u.(x) — I'GF.(x) — E,[Sawf(x,)dt] Iy

B

Thus our theorem was proved.
Next we shall establish the most important relation of the
function H, u with the potential.

THEOREM 2.7. If A is a finite subset of N and u is a function
of OT(X) which is finite over A, then H,u is a potential of the
Sunction whose carrier is included in A. In general, if u is a
Function of F(X), Hau can be represented as the difference of two
potentials of the functions whose carriers are included in A.
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Proor. Now suppose that it has been shown that
2.19)  H,u.(x) = SA[—(SHAu.( ]G(x, dy) for any ueF(X).

Then our second statement is easily verified by decomposing the
function —®H u into the positive and negative parts. Moreover
if #e®f(X), also H,ue9i(X) according to (2.7) and hence
—®H u=q '[H #—11H «]=0, which proves the first statement.
Thus it is enough to show (2.19).
First notice that it follows from (1.44) that
@20 [ A5G, dy) < max| ()] 2,6 9)
= max|f(y)| 2 Gy, 5) <+,

for any fe@(X). Second define the n th hitting time =, for A as
follows ;

T(w) = oa(w) T(w) = 7 (w)+o(w?),

o) = T (W) F (W, ) (W) = o) + o)

where o, is the first jumping time. Then recalling ¢(x)=E.(s,),
we get

(2.21) | /016 @ = B[ ["xaw fixoat]

[0

Lf(x,,)on(w?,)]

E,
 E,
 ELf(x:,) E,, (00)]
H

I
iMs

n=1

|

I
iMe iMs iMs

g f.(x).
Therefore noting that H*nHA = H»H" = H» and H™»llH,=
H™»H° H™ = H™s+1 we get the formula (2.19) as follows :

H G dv) — HA“ (y\ IIH qu. (J’)
& u. = ST AT d

= 3 [H™H g (x)— H*1H g (%)]
= j [H™u.(x)— Hnvu. (x)]
= Hu.(x) = H,qu.(x),
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because H™»u.(x)—0 according to (2.20) and (2.21).

The following theorem is the exact counterpart of the Riesz
decomposition theorem on ordinary superharmonic functions (see
Radé [13], p. 45).

THEOREM 2.8. A function u of D(X)ABX) is decomposed by
means of some v € B(X) and some w € D(X) into the form
(2. 22) u=v+w,

if an only if there exists a function of O(X) which does not exceed
u. In such case, the decomposition (2.22) is unique and we have

(2. 23) 2zx) = SN[—(&Su.( 3)16(x, dy)

(2. 24) w(x) = lim I1"%.(x) .

nyoo

Moreover w(x) is the greatest among all the functions of 9(X) which
does not exceed u.

Proor. It is convenient to separate our proof into several
steps.

1° The necessity of the first statement is evident, for, if
u=v+w, then u=w € H(X).

2° Suppose that u € 97 (X)AF(X) and let A be a finite subset
of N. Then we have

Ha. () = | [~OHu.(51G(x, ).
Letting A1 N and using Fatou’s Lemma, we get
u() = Hyu.(x) = | [~OHyu. (916G, dy).

On the other hand we can see that
—GHyu. () = —G®u.(y) =0 for any ye N,
by virtue of Hyu=wu and Il Hyu<llu over N. So

0 v(x) = SN[~(55u.(y)] G(x, dy) < u(x),

which proves that Gv=Ou (see Theorem 2.6. (ii)) and hence
w=u—veHNX).

3° Suppose that u €D (X)ABFX) and u=heDX). Then,
from 2°, we have
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0= (u—h)(x) = SN[—@(u—m.(y)]G(x, dy)+w'(x)

_ SN[—@u.(y)]G(x, dy) +w'(%)
whence

(2. 25) u(x) — SN["@”'( WG, dy)+ (h+w')(x)

which shows the sufficiency of the first statement.

4° Consider #€9,(X), u=h€9(X) and any decomposition
(2.22) of u. Then, according to Theorem 2. 6. (iii), we get

h=1rr<11"u="v+11"w = T"0+w | w),
(nro0)

which. proves (2.24) and the last statement immediately. Further
it follows that our decomposition is unique and hence the poten-
tial » of (2.22) has to coincide with the first term of (2.25).
Thus we have proved our theorem.

CoroLLARY (CRITERION OF POTENTIALS) (i) A function u € 9;(X)
is a potential if and only if there exists no nontrivial function of
OYX) which does not exceed wu.

(ii) Let f be a function of F*(X). Then the equation —Su=f
has at least one solution in FT(X) if and only if the potential Gf
is a function of FH(X). In this case, Gf is the smallest one among
any solution in F(X).

Now using the results obtained hitherto, we shall discuss the
solutions of the equations (a>0)

(2. 26) (¢—®)u = f if T is continuous,
(2. 27) [l—e®*)—e *SJu = f if T is discrete.

THEOREM 2.9. (i) Let f be a function of F7(X). Then (2.26)
(o7 (2.27)) has at least one solution in FH(X) if and only if G,f
belongs to §+(X). In such case, G f is the smallest solution in F*(X).

(i) If f is a bounded function of FH(X), G,f is always a
bounded solution of (2.26) (or (2.27)) belonging to F(X),

(ili) In order that, for any function of F(X), (2.26) (or (2.27))
has at most one bounded solution in F(X), it is necessary and suffi-
cient that the following condition is satisfied :

(2. 28) Porn= +00)=1 for anyxe X ,”

7) Note that this condition is always satisfied for the discrete parameter case.
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where o,., is the limit of the n-th jumping time o,.

Proor. In case of the continuous parameter, define the process
29 of order @ >0 attached to x, as the CMP corresponding to the
following system {g¢‘*, I1®} ;

¢“P(x) = (@+A)"(x) for x€X, = +4+o0 for x= o0,
1I(x, E) = (@+A)"'A(x, E) for ECX , ) .
. if xeX.
=1—(a+A)"'AN(x, X) for E= oo,
= 0(o0, E) if x=oc0,

where Mx)=¢ '(x). Then it follows that the Green kernels and
generator of x‘9 are given by

@ _G,., for B=0, B®=0_a.

Now applying the corollary of the last theorem to the above
process x, our statement (i) is clear. Moreover the second
statement comes from G,(x, X)< clz immediately.

Finally we proceed to the proof of (iii). First noting that
Ee *+=) = lim E(e™*"; 0, <+ 0)
= lfrg [+ A" X . (x)
= l;m [T Xy, (x),

Nnopoo

it follows that the condition (2.28) is equivalent to
(2. 29) lHm [II]"*Xy.(x) = 0.

Further applying Theorem 2.8, Lemma 2.2. (v) and Theorem 2.1
to 29, we see that (2.29) holds if and only if the equation

(—®)u = —&®y =0

has no nontrivial bounded solutions in F(X), which completes the
proof for the continuous case.

The similar proof is applicable to the discrete case.

6. Hunt’s excessive functions and H‘invariant functions.
An excessive function u was defined by Hunt [8] as a function
of R*(X) satisfying

(2. 30) Hu<u for any teT.
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In the following arguments we shall denote the family of all the
excessive functions by &(X).

First we have

LEmMMA 2.4, (i) X,e@X).

(ii) If u and ve&(X), then also u+v and u Av e EX).

(iii) If u,€@&X) and u,—u..., u,.. €EX).

(iv) Any ue€&X) can be approximated from below by a sequence
of bounded functions in E(X).

(v) If uec@X), then Hu increases with the decrease of t and
Hutu(t)0).

ProOF. (i)—(iv) are proved in the same way as in Lemma
2.2. (v) For any t>s, H,_ u<wu implies that H,u<H.u, which
is the first statement. The second statement is clear for a bounded
function of &(X). For a general function # of &(X), considering
a sequence of bounded functions u, in &X) such that u,?u,
we have

0= u—H'u = (u—u,)+(u,— Hu,)+ H(u,—u)
g (u_un)+(un_Htun) ’

which proves our lemma.

LEMMA 2.5. Let F,(X) and T (X) be the subfamilies of R(X)
each of which possesses the following properties: (a) If u, € F;(X)
and w,—u, then u€F(X). (b) Any function u of FAX) can be
approximated by a sequence of bounded functions in F:X). Then in
order to prove F(X)=FAX) it is enough to show that any bounded
Sfunction of [ (X) belongs to F(X) and vice versa.

The proof is clear.

LemMMmA 2.6. A function uw of RY(X) is excessive if and only if
it satisfies for any a_>0

(2. 31) A—e*)Gu<u if T is discrete,
(2. 32) aGu<u if T is continuous.

Proor. Noting that the kernel (1—e¢ ®)G, (or aG,) is sub-
stochastic over X, it follows that the family of all the functions
of M*(X) satisfying (2.31) (or (2.32)) possesses the properties (a)
and (b) in the last lemma (see Remark 2.4). Consequently, it
suffices to show that the condition (2.31) (or (2.32)) is equivalent
to (2.30) for a bounded function of R*(X).
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In case T is continuous, considering the Laplace transform
of the both sides of (2.30), we have

(2. 33) Gu< 711 «  for any a>>0,

which proves the necessity. Conversely, in order to derive the
formula (2. 30) from (2. 32), it is enough to show that

(2. 34) (—1)"CGhiu < (— 1)”<»al)mu

according to the well known theorem on Laplace transform. But
it is clear fromn (2.33) that

G;u g }ﬁu ’
[24

so that, using the familiar formula

(—1'GE1 = nlGi™,
we get

[#]
(—1D)"Glu = n!G;“ugn!&}—Hu = (~1)”<21¥—> u,
which completes the proof for the continuous case.
The proof for the discrete parameter case is similar to that

for the continuous one, so it will be omitted.

THEOREM 2.10. &(X) = 97(X).

Proor. By Lemma 2.5, it suffices to prove that any bounded
function of €(X) belongs to 9i(X) and vice versa. Now suppose
that # is a bounded function of &(X). Then it follows from the
formulas (1.37) and (1.38) that &« <0, i.e. u € H{(X).

Conversely suppose that # is a bounded function of 9;i(X).
Then since —®&u =0, we have

(2. 35) g =(a@—BOu=cau
(2. 36) g=[1-e*—e"Glu=(1—-e*u.

Therefore if T is continuous, recalling Theorem 2. 9. (i) and using
(2. 35), we get .

u=G,g=aG,u,

8) The upper suffix [#] means the n-th derivative with respect to a.
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which proves that # € 97(X). In the same way, if T is descrete,
(2. 36) implies that (2.31) holds and so # € 9{(X).

COROLLARY. If u is a function of 9{(X), H'u is a function of
(X)) which does not exceed u.

Finally we shall discuss H*-invariant functions in connection
with x,~harmonic functions. Denoting the family of H’-invariant
functions in F(X) by J(X), we have

THEOREM 2.11. (i) J{7(X)CHM(X).

(i) In order that any bounded function of 9(X) belonge to
(X)), it is necessary and sufficient that the condition (2.28) holds.

(iii) A sufficient condition that any function of 9*(X) belongs
to IHX), namely, that 97 (X)=3"(X), is that the following condition
holds :

(2. 37) gx)=k>0  for any x€X.
In particular, the above condition is always satisfied for the discrete
parameter case.

Proor. We shall discuss only the continuous parameter case.
The similar proof holds for the discrete case.
(i) Any function # of J*(X) satisfies

(2. 38) u=aG,u.
Therefore according to Theorem 2. 9. (i), we have
(2. 39) (¢—O)u = au,

which shows u € DF(X).

(i) Suppose that (2.28) holds and # is a bounded function
of ©(X). Then since u satisfies (2.39), it follows from Theorem
2.9. (i) and (iii) that (2. 38) holds, namely, that « € J(X). Converse-
ly suppose that (2.28) does not hold. Then we have

P04 < +00) >0 for some state a€X.

We shall now prove that the function P,(o,..< -+ o0) is x,~harmonic
but not H’-invariant. In fact the former assertion is shown by

E.[ P00 < +00)] = PAw; opu(ws,) < + o0}
= Px(°'+oo< + 00).

On the other hand, noting that P,(s,.<t) >0 for some ¢< + co,
we get
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E [P (o <4 )] = P Aw; o (wi) < + oo}
= P {w; o (wi) < + oo, o (w) =t}
=Pl =0 <+ ) Pyloy.< +),
which proves that P.(o,.<+ o0) is not H*-invariant at a.
(iii) First note that the condition (2.37) implies (2.28) or
equivalenty (2.29). Second for a given function « of $%(X), con-

sider a sequence of bounded functions #, in 97 (X) such that u, 1 u.
Putting

(2. 40) —-Su, =0v,=0,
we get
050, -0 n—>), v,<q¢u,<k'u,<k'u.

Adding au, to the both sides of (2.40) and recalling Theorem
2.9. (ii) and (iii), we have

u, = aGu,+G,,.

But according to Theorem 2. 10, « is excessive and hence it follows
from (2.32) that

0 G (x) <+ oo for any x in X.
Consequently using the theorem of Lebesgue, we get

# = limu, = lim [a¢G u,+Gw,] = aGu+G,[limv,] = aG u,

nyoo n-yoo

which means that » € JH(X).

THEOREM 2. 12. Suppose that the condition (2.37) holds. Then
a function u can be expressed as the defference of two functions in
O7(X) if and only if it satisfies the conditions: (c) u€ H(X), (B)
ueXX) and (v) H'|ul|.(x) is bounded in t for each x.

Proor. For definiteness we consider the continuous parameter
case. Now if u=u,—u, and u; € D'(X)=J"(X) then (@) is evident.
Moreover H'|u|<u,+u, and hence (y) is satisfied. Recalling the
formula (1.29) and noting that (¢+X\)"'All=(a+A)"*AI1, we have
from («)

GYu = [(+2) MY (e+0) u
1

w Lla+X) M) [(a+X) A  {oe— (e +X) "}

- _Cl( [(a+x)*m]"-l(amm)—lxu__}X.[(a+>x)-m,[]"(a+>\,)-mu .
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Consequently it follows that
(2.41) a3V GPu = u—[(a+1) " MIT (@ 4+ 1) "M
k=0
But since I1%|«| is bounded in # from Theorem 2.1 and (¢+X\)"\

§<a+%>il-% from (2. 37), we get

@.42) [+ T @) Ml <[ (ar ) ] il o,

which shows that aG,u=u. Thus u satisfies (8). Conversely
assume that » satisfies («), (8) and (y). By Remark 2.4, H*|u|
increases with ¢ and v=lim H!|u| € I*(X). Therefore |u|<ve
$*(X), which implies that 11"|«| is bounded in #, namely that
u=u,—u,, u; €D"(X) (see Theorem 2. 1).

RemARrRk 2.7. It is hoped that the condition (8) in the above
theorem is derived from («) and (y). If T is discrete, our state-
ment is true, for the formula (1.38) proves that J(X)=9H(X), i.e.
that (8) is equivalent to («). On the other hand it is not sure
whether our statement always holds in the continuous parameter
case. A sufficient condition is that ¢(x) is a constant (say k).
In fact, with this condition, the left side of (2.42) is equal to

[<a+ }1>71.%]"H|11"u[, which converges to 0 for any u € 9(X).

Moreover the condition (y) guarantees that aZ”G‘,,f)ueaqu.
k=0

Therefore it follows from (2.41) that #=aG,u, which proves (B).

CHAPTER 3. THE MARTIN SPACE AND BOUNDARY

7. The function family M_,. The definition of the Martin
space and boundary. In the sequal we shall only consider the
CMP satisfying the following condition :

(CMP. 4) There exists at least one state ¢ such that p(c, y) >0

for any state y in X. Such state is called a center of the CMP.
Now define K(c, x, y) by

. Ga(%, 9)
3.1) K(c, x, y) = lim Je¥> 27
VT G,(c, »)
where the right side is understood as the density of the measure
G,(x,-) relative to G,lc, -) and therefore K(c, x, y), as a point
function of y. Since Klc, x, y)=p(x, y)/p(c, ) from the formula
L)
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(1.43), it is well defined and finite. Moreover (1.44) shows that
K(c, x, y)=G(x, y)/G{c, y) for ye N. We shall list some properties
of K(c, x, ) in

LemMma 3.1. (i) K(c, x, y) is X,~superharmonic as a function
of x.

(il) It is bounded in y for each fixed x. In fact,

1

plc, x)

(iii) If Kic, x, y)=K(c, x, ¥) for any x€ X, then y=y or both
y and y arve in a same indecomposable recurvent set.

(3.2) Klc, x, y) <

ProoF. (i), (ii) are evident from Theorem 2.4 and the formula
(1.14). For (iii), assume that K(c, x, ¥) =K(c, x, y’) and y=Fy.
Then we have p(x, y)=kp(x, y') for some positive constant &, which
implies that p(x, y) is x,~-harmonic and p(y, ¥')_>0. Therefore, by
virtue of Theorem 2.4 and Theorem 1.3, y and » belong to a
common indecomposable recurrent set.

To continue, consider the family of functions of x, X.=
{K(c, -, »); y€X}. From the above lemma it follows that X, is a
normal family and that to a function of X, corresponds a non-
recurrent state or else an indecomposable recurrent set. Denote
the family of all the limit functions of X,, by M, and a function
of M_, by &(-). Of course, X, is a subset of M,. Lemma 2. 2. (iii)
proves that any function of M, belongs to 97(X)NnFiX). We
now topologize M, by the metric

_ [E(x) —n{x) |

(3.3) pEm = @,
where m is a totally finite measure which is positive on any state
over X. It follows that p-convergence is equivalent to pointwise
convergence and therefore the topology of M. is independent of
the choice of m. It is also clear that the natural mapping &{-)=
Klc, -, y) from y€ X into £ € M, is continuous. Moreover we have

THeEOREM 3.1. (i) M. is a compact metric space and is the
completion of X, with respect to p-metric.

(ii) M, is homeomorphic to M, which is derived from another
center c’.

ProoF. (i) Noting that p-convergence is replaced by point-
wise convergence and that X, is a normal family, the proof is
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straightforward and will be omitted. (ii) First note that &(c’)=>
p(c’, ¢) >0 for any £€X, and hence for any £€M,. We prove
that the mapping &(-)=£&(-)/&(c’) is the homeomorphism from M,
to M. In fact, if E(-)z}iri} K, +, v,), then hm K(c', -, y,) exists

and equals to &(-), which shows &(.)€ M,,. Moreover it follows
from &(c)=1 for any &€ M, that &(-)/&(c’)=n(-)/n(c’) implies &(-)
=7(+), so that the mapping is one-to-one. Finally the continuity
of both the above mapping and the inverse one, &(-)=£&(-)/&(c),
is evident.

DeriNnITION 3.1. Any space M which is homeomorphic to M,
is the Martin space induced by the CMP. We denote, by 0, the
natural continuous mapping from X into M(X—M_.— M) and by
A, the image 6(A) of a subset A of X. 9X=M—X is the Martin
boundary.

An element of M is denoted by £ and the function of M,
cortesponding to &, by K(c, -, £). The topology of M is equivalent
to that by the metric

| K, x, £)— K(c, x, 7)|

- - m(dx) ,
X1+ IK(C) X, E)_K(C) X, "7)|

(3. 4) P&, ) = S

so that Ki(c, x, £) is continuous in & for each x.
In the construction of the Martin space, it is convenient to
introduce the following terminology.

DeriniTION 3.2. If K(c, -, »,) converges to a function of
M_,—X ., the sequence {y,} is a fundamental sequence. Two funda-
mental sequences {y,}, {z,} are equivalent if they determine the
same limit function.

Now choose a state »; from each R;. It is the most natural
to choose M as the union of N, every r;,’s and every equivalent
classes of fundamental sequences. Hereafter such M will be re-
ferred to as the canonical Martin space.

If the process x, satisfies

(CMP. 5) X=N,

6 is the one-to-one mapping but not necessarily the homeomorphism
onto X. For this we require a new condition :

(CMP. 6) For each fixed x, there exists a finite subset F,
such that Il(x, X— F,)=0.

THEOREM 3. 2. Suppose that the conditions (CMP. 5) and (CMP,
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6) are satisfied. Then we have

(1) X and X are homeomorphic with 6. Therefore the canonical
Martin space is a compactification of X.

(i) X is open in M.

(iii) For any £€3X, Kic, -, &) is x,~harmonic.

Proor. With no loss of generality, we can assume that M is
the canonical Martin space. In general, any fundamental sequence
has no limit point in X. Therefore if £€2X and {3} is a
fundamental sequence determining & there exists an integer #(x)
such that

(3.5) K(c, x, y,) = [IIK(c, «, 3.)]. (%)
= ?‘F Ki(c, 2, 3,) (%, 2)

for any n=n(x). Noting that the right side of the above formula
is a finite sum and letting n— oo, it follows that Kic, x, &) is
x,~harmonic, which proves (iii). Moreover (CMP. 6) and (iii) imply
that if £,€9X and péE,, £ —0, K(c, -, £) is x,~harmonic and hence,
according to (CMP. 5), £e2X. Consequently X is closed, so that
(ii) was proved.

For (i), we shall first show that any sequence having no
limit points in X, say {y,}, contains at least one funamental
sequence. Since X, is a normal family, some infinite subsequence
of {K(c, -, y,)} converges to a function of M,, Using the same
argument as above, it follows that such limit function is x,-
harmonic and therefore is a function of M.—X_.. Now suppose
that p-topology in X is not discrete, i.e. that X contains some
state y for which there exists an infinite sequence {y,} of different
states such that p(y,,y)—0. From the above result, we can assume
that {y,} is a fundamental sequence. This is a contradiction.
Thus our theorem was proved.

8. The (generalized) réduite. Usually the réduite of a non-
negative superharmonic function is defined only for a boundary
subset (see Martin [127], Doob [4]). But we shall here adopt a
little wider definition.

Let D be a closed subset of the Martin space M and W(D),
the family of open sets in M containing D. Then according to
Theorem 3.1. (i), any element G of W(D) intersects with X.
Therefore [G]=0"(GA X) is a nonnull subset of X.
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DerFiNITION 3.3. For a nonnegative x,-superharmonic function
# and a closed set D in M, the réduite of u to the set D at x,
denoted by up(x), is defined by

(3.6) inf Higyu. (%) for every G in W(D).

First we shall study some properties of a réduite as a point
function of x.

Lemma 3.2. Let {G,} be any sequence in WD) such that G,
and \G,=D. Then we have

(3. 7) H[G"]u J, uD.

Proor. By virtue of (2.9), Hi; ju decreases with » and hence
converges to a function, say ». From the definition, v =u,. To
prove v<u,, take any state x and an arbitrary small &_>0.
Then again from the definition, there exists a set G of (D) such
that u,(x)=Hcu.(x)—E, where the choice of G depends on u
and x. But since G,,CG for some 7, we get

up(x) = Higyu.(x)— & = Hig,yu.(x)— & Z v(x)— €,

which proves v <u,,.

THEOREM 3.3. (i) wup is an x,~superharmonic fumction which
does not exceed u. Especially, uy=u.
(ii) For any G of WD).

(3.8) up = Higyup = [Higiulp -

(iii) If DCaX+ VR, and u €D X)NF(X), then uye€ H*(X).

Proor. The first two statements are clear from the above
lemma and the results in the preceding chapter. For the last
statement, take the sequence {G,} of the above lemma. Then the
set [ﬂ\[G,,] is disjoint with N. Therefore if x€ N, Hig % is x,

harmonic at x for some #,<any #, so that u, is also x,~harmonic
at x according to Hs, u | and Lebesgue’s theorem. Moreover
Theorem 2.5 shows that #, is x,~harmonic over \/R;. Thus we
have proved our theorem.

THEOREM 3.4. (i) If u=v, then up=vp,
(i) (ku+kp)p = kup+ko, for k,, k,=0.
(iii) If u,tu, then it holds that lim (u,)p = tp.

n-yoo

(iv) If D,>D,, then (up,)p,=(up,)p,=up, and hence up =up,.
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(V) up,Lp,+Up,~p,=Up,+Up,.

(viy If D, | D, then up,\| up.

REMARK. If both D, and D, are the subsets of 9X+ \jf@,-,
the assertions (iv) and (v) are strengthened as follows:

(iv) (#p,)p,= Up,~D»>

(V) #p,~p,+ Up,p, = Up,+Up,.
These formulas are derived, in a more general form, from the
main theorem in the next chapter (see Section 11), though it may
be possible to prove them directly.

Proor. The first four statements are immediate, summing up
Lemma 2.3, Theorem 2.2 and Lemma 3.2. To prove (vi), choose
the sequence {G,} such that D,CG, and /\G,=D. Then from (iv),
we get '

Up < tp, = Hrggu — up .

Finally we shall prove (v). For this, according to Lemma 3.2, it
is enough to show that H ,u.(x) is alternating of order 2® as a
set function defined over the class of all the subsets of X in the
terminology of Choquet [1]. By his paper (Section 14. 3), this is
equivalent to the statement below: H,u.(x) increases with A
and satisfies '

(3.9) Hyoa (%) +H g~ (%) < Hpu.(x)+Hpu.(x).

The first part is nothing but (2.9). Moreover a simple calculation
shows that

Hau+Hpu—H g ot —H g~ at

= Hy 2 (Hau—Hpmat)+Hay a(Hau—Hy - au) .

By virtue of H u=H, ~4,u, the right side is nonnegative, so
that (3.9) was proved.

The last three statements of the above theorem show that,
for any fixed x in X, up(x) is a capacity which is alternating of
order 2 as a set function defined over the class of all the compact
subsets of M. Now denote the capacity of any capacitable set C
by uc(x). Then, from Choquet’s capacity theorem, we have the
statements below :

9) It is well known that H xy.(x) is alternating of order e (see Hunt [8],
Doob [4]). In the same way, by induction, we shall be able to prove that Hu.(x),
for any u€ i (X), is alternating of order oo.
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(R. 1)  Any Borel subset C of M is capacitable and for any
&0, there exist an open G and a compact D such that G>C > D and

(3.10) U(x)— € Suc(x) < up(x)+E.1°
(R. 2) For any Borel subsets C,, C, of M,
(3.11) Uc,uc, T Ue,~c, = Uc, +Uc,,

which implies the subadditivity of u.
Moreover it follows from (2.10) that

(R.3) ug=Hinu for any open set G of M.

THEOREM 3.5. Let C be any Borel subset of 8X+\jf€,~ and u,
and function of 93(X) AB(X). Then there exist a decreasing sequence
{G,} of open sets and an increasing sequence {D,} of compact sets
such that G,>C>D, and

(3.12) U, (%) | uc(x), wup (%) 1 uc(x) Sfor every x in X.
Therefore uc is an x,-harmonic function. Moreover if C>C,
(3.13) (uc)er = (Ue)c = ucr .

Proor. It is clear from (R. 1) that there exist the sequences
{G.}, {D,} which satisfy (3. 12) at the center ¢. Now consider the
function v,=u;,—up,. Obviously, v, is nonnegative and decreasing.
Recalling Theorem 3. 3. (iii), we have v, € 97 (X) A F(X), so that the
limit function » of v, is a function of $;(X) which takes the
value 0 at ¢. Therefore v=0 by Corollary 1 of Theorem 2.2.
On the other hand, we have

0,(%) = |ug,(x) —uc(x)| + luc(x)—up,(x)|  for every x,

which proves (3.12). The formula (3.12) implies that uc is x,-
harmonic and hence the iteration ‘uc— (#c)c/’ is possible as well as
‘ucr— (uer)e’. For the last statement, let {G,} be a sequence of
open sets in (3.12) corresponding to both #. and (#¢/)c, and {D,},
a sequence of compact sets to both #.s and (#c)cs. Then it follows
from (3.8) that (uc,)p, = (#p,)c, = up, for any k, n. First letting
n—oo for a fixed # and next k— oo, we get (uc)cr=uc. In the
same way, letting k— oo for a fixed » and next n— oo, we have
(uc)c=ucr.

10) In the sequel, all the arguments on u; hold also for any analytic set of M,
though it is not necessary for our purpose.
11) Of course, the choice of G and D depends on % and x.
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CHAPTER 4. THE REPRESENTATION THEOREMS
FOR x,-SUPERHARMONIC FUNCTIONS

9. Representation of a réduite and its consequences. In
this chapter we shall establish the representation theory for a
function of 97(X)AT(X) or equivalently, a nonnegative x,-super-
harmonic function being finite at the center ¢ (from Corollary 1
of Theorem 2.2). Our main theorem is stated in Section 11. In
this section we shall derive some auxiliary representation theorems.

LemMA 4.1. If u is a function of DF(X)ABX) and A is a
finite subset of X, then there exists some positive measure p such
that

4.1) H,u.(x) = S K(c, x, ) u(dy) for every x in X,
A
so that

4. 2) w(A) = H, u.(c) = u(c) .

Proor. Consider the function v=H,~_ rp#. For simplicity,
assume that R,, R,, ---, R, intersect with A. Take out any 7;
from each AnR;, i=1,2,---,n. Then, in the same way as in

Theorem 2.5, we get

v gH‘ijRiu = 2 Hpu = 2 H,u= H&riu <.
Therefore it follows from (2. 12) that

v(x) = Z:‘, k:p(x, 7;) = Zl] K(c, x, 7:)-k: p(c, 7:),

so that v has the representation of the form (4.1). Next consider
the function w=H ,u—v. Then we have

Hyw = HAHAu—HAHAm(uRpu = HAu_HAr'\(uR;)u =w,

HAr‘\(uRi)w = HAr\(uRi)HAu_HAm(uR,')HAr'\(uR;)u =0,
so that

Hyvw=w=H,,w < Hpr rpW+Hanw = Hyyw .

Consequently, according to Theorem 2.7, we get
w(x) = Hanntol) = | FIGx dy) (£ Z0)

_ SMN K(c, x, ) f()G(c, dy),
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in which we have used that Kic, x, y)=G(x, dy)/G(c, dy) for y€ N.
Thus w is also expressible in the from (4.1). This proves our
Lemma.

THEOREM 4.1. Let G and D be, respectively, an open subset and
a closed one of M. Then for any u € 9 (X) A B(X), we have

(4. 3) H[G]u = Ug = SEK(C’ ®y E)/l:(df) ’
(4.4) up = SDK'(c, -, &) w(dé) ,

where u is a positive (Radon) measure over G or D.

Proor. Consider a sequence {A,} of finite subsets in X which
approximates [G] from below. From the above lemma and the
continuity of the mapping 6, we obtain

Hoyu = SA Kic, -, 3) v,(dy)

- S Kic, -, ), (dE)
An

where A,=0(A,), p(dE)=»,[0"'(dE]. Putting p,(G—A,)=0, {u.}
is a sequence of positive measures over G satisfying u.(G)=u(c).
Therefore some subsequence {u,,} converges weakly to some
measure x over G. Noting that K(c, x, ») is p-continuous for any
x, we have

Hapot. (x) = gém, %, &) el dE) — Sam, %, £) p(dE)

for every x in X. On the other hand, H,u— Hisu (see Theorem
2.3). Thus (4.3) was proved.

Next consider a sequence {G,} of open sets in M which satis-
fies the conditions in Lemma 3.2. Then any weak limit x of the
sequence {u,} each of which corresponds to u;, in (4.3) is a
measure over D. Therefore (4.4) can be easily derived, analogously
to the arguments for (4. 3).

THEOREM 4.2. If C is a Borel subset of 9X+\JR;, uc can be
expressed in the form

(4.5) se — Sc}%(c, ., &) u(dE)

by means of some positive measure u over C.
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Proor. Choose an increasing sequence {D,} satisfying (3.12).
Then putting v,=up, for n=1 and =wu,,—u,,  for n=2, it follows

that uc= >v,. For v,, we have
n=1

v, = S R, -, &) p(dE) .
D,

For n=2, v,€9"(X) and (v,)p,=(%p,)p,— (Up,_)p,=Up,— Up, ,=V,.
Therefore v, is expressible in the form

v, = SD R(c, -, &) u(dE) .
Extending each pu, to the set C by u,(C—D,) =0 and putting
m= im, we get

O = 31 mlC) = 2 0a(€) = ucle),

oo

S [ K, opar) = | Kic, -, 01t
C C

=1

I

Uc

H]

so that (4.5) was proved.

To continue, we shall prove that if # is nonnegative and x,-
harmonic, then #=wu,%, ;. This fact will play an essential role
for the proof of the main theorem in Section 11.

THEOREM 4.3. If u €DV (X)ABX), upgsp; IS the greatest x,-
harmonic function which does not exceed u, namely, it is nothing but
w in the formula (2.22). Therefore u is a potential if and only
lf uaf(+uﬁ’,~:0-

To prove this theorem, we shall prepare two lemmas.

LEmMmA 4.2. If a function u is expressible in the form

(4. 6) = S&K(c, -, E) {dE)

by some positive measure u, u is a potential.

Proor. Since the restriction €5 of 6 to N is continuous and
one-to-one, 05 (N— N) is measurable. Therefore, noting that
K(c, x, »)=G(x, y)/G(c, y) for y€ N, we have

" — S&K’(c, ., E) uldE) = SNK(C, ., y)udy)

_ Y() G ) = .
5 669 = | Fce, a,
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where »(dy)=u(0(dy)), f(3)=2(9)/G(c,y)=0.

The next lemma is the maximum principle for x,~subharmonic
functions.

LemMA 4.3. If u€9Y(X) and A is a finite subset of N, then
Hy_ , u=u.

Proor. If we put v=u—Hx_,u, v is a nonnegative x,-sub-
harmonic function vanishing over X-A. Considering that, if a set
E of X contains no traps, I1*(x, E)=11"*(x, E) for any #» and that
the set X— A contains all the traps, we get

4.7) o(x) Z 1", (x) = ™. (x) = %1 v(y) 11"(x, y) .

Now assume that v takes the (strictly) positive maximum at the
state a€ A. But Lemma 1.6 implies that 1I*(e, A)<'1 for some #.
Consequently we obtain

0 <v(a) < v(a)11%(a, A) < v(a),

which is a contradiction.

Proor OF THEOREM 4.3. First suppose that # € *(X). Then
our statement is this: w=w;%,4;. For this, by virtue of Theorem
3.5, it suffices to show that u=wu,=Hs;u for any open set G
(in M) which includes the set 8X+\j1§,~. Take any sequence
{A,} of finite sets approximating X—[G] from below and put
B,=X—[G]—A,. Now we shall prove that Hy u | v=0. In fact,
in the same way as in Theorem 3.3. (iii), /\B,=0 implies that
e HT(X). On the other hand, analogously to the proof of Theorem
4.1, we have

4.8) usp=Hyu= STK(C’ ., &) u(d§) for any subset A of X.””
A
Therefore

0<v=<Hpu<Hyou=| K - aldf).

But since N> M— G, by virtue of Lemma 4.2, Hy_ % is a poten-
tial, so that ¥=0 comes from Corollary of Theorem 2.8. Now
applying Lemma 4.3 to each A,(CN), it follows that

Higiu <u = Hy_au = Higiip, =< Higyu+Hpu — Higu,

12) A denotes the closure of the set A=9(A). Further, notice that the first equal-
ity comes from the fact that fl is an Fs, set in M.
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which proves u=Hu.

For a general function » of ${(X)NF(X), consider the decom-
position (2.22), that is, #u=v+w. Then since v is a potential and
Vokrup(<0) is x,~harmonic, v,3,,2,=0. On the other hand, w is
x,~harmonic, so that we have

UptrLR; = Vaxv R TWakeLk; = W,

which completes the proof of our theorem.
The formula (4.3) or (4.8) proves that any function # of
DY (X) A B(X) can be represented in the form

4.9) u = SMlﬁ'(c, ., &) u(df)

by means of some positive (Radon) measure p over M. But as
will be shown later, such representation is not always unigne. In
the following two sections, we shall treat the uniqueness problem.

10. Minimal x,-superharmonic functions. The classification
of the minimal part M, and nonminimal part M, of M.

DErFINITION 4.1. A function # of 9} (X)ABX) is minimal if
it satisfies the condition below: If u=wu,+u, and ;€ $;(X) for
i=1,2, then each u; is a constant multiple of #. Equivalently
we can say that # is an extremal element of the function family
DHX)ABX) A {v; v(c)=u(c)} which is convex clearly.

REMARK 4.1. It is easily shown that a function # of $"(X)
is minimal if and only if any function » of $*(X) which does not
exceed # is a constant multiple of #. Thus our definition is a
generalization of the concept ‘minimal harmonic’ in Martin [12].

DEFINITION 4.2. The set of £ such that K(c, x, £) is minimal
(nonminimal) is called the wmunimal (nomminimal) part of M and
denoted by M,(M,). Moreover the set M,/ \oX is denoted by (2X),.

LemMma 4.4. Suppose that the nontrivial (F=0) minmimal x,-
superharmonic function u is expressed in the form

(4.10) %= Sclé(c, ., &) u(dE)

with some positive measure u defined over a Borel subset C of M.
Then w is unigely determined and the total mass of p concentrates
on some point E,€e M,nC. Therefoer, for any mnontrivial minimal



88 Takesi Watanabe

x,-superharmonic function wu, there exists one and only one & € M,
such that u=u(c) Kic, -, E,).

Proor. Putting u(M—C)=0, we take x4 for the measure over
M. Since u is nontrivial, w(M)=u(C)=u(c)>0. Therefore, there
exists at least one point § such that u(G)>0 for any open set
G>3&. Such point & is called a carrier point of w. The set C
contains at least one carrier point of u, because u(D)_>0 for some
closed DcC. Now let & be a carrier point of x4 in C and G,, a
sequence of open sets such that G,3&, and G, | &. Then we have

U = S Kc, -, E),w(de—S Kic, -, &) u(df),
G M

-Gy

in which each term of the right side is a function of 97 (X)A (X)
by virtue of Fubini’s theorem. Since « is minimal, it follows that

VUn ES K(c, -, &) p(dE) = ko,
Gn
0k, = va(0) _ pw(Gy) ’
< uc)  w(M)
so that, putting u,(d€)=Fk;*u(d€) over G,, we get

= kv, = S K¢, ) £) pn(dE) .

Noting that u,(G,)=u(c)=u(M) and K(c, x, &) is p-continuous in &
for each x and letting #— oo, we have

U= u(C) K(C’ ) Eo) ’

which implies that & € M,nC. To prove our statement, take any
carrier point & of w Then the same argument as above proves
that
u = u(c)K(c, -, £),
which shows that §=£&,. Therefore u is the measure concentrated
at &,.
LEMMA 4.5. If Ku(c, ¢, E)=1, then E€ M,.

ProOF. Let % be any function of 97(X)A%(X). Then accor-
ding to (4.4), we have

(4. 11)  wug = Smk(c, -, Mpldy) = p(EDK(, -, E)=uwm©)K(, -, £) .
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Putting #=Kic, -, &) and considering K}E}(c, ¢, £)=1, we get
Kuc, -, €) = K, ¢, K, -, §) = K(c, -, ).
Therefore, if K(c, -, £)=u,+u, and u; € D7(X), it holds that
K, -, 8 = u,+u, = W)+ w)e = Kile, -, §) = Kic, -, 8,

so that we have u,= (u,)wy, u,=(u;)iy. But each (u; )(g} is a con-
stant multiple of K(c, -, §) from (4.11) and hence Kic, -, &) is
minimal.

LEMMA 4.6. If E€ X, then Ku(c, ¢, £)=1 and hence X M,.
Proor. It is enough to show that KG(c ¢, £)=1 for any open
set G containing & because Ky(c, ¢, 5)—mf Kdc, ¢, E)<Kic, c, E)=1.

Take any y€ X such that 6(y)=& It is clear that [G]>y. Con-
sequently it follows that

KG(C ¢, E) = [H[G]K ¢, »y)] 2[H(y)K(c’ *y y)] (C)

H, =1
p( [ wnb(s ¥].(c) =

which proves our lemma. i
Lemva 4.7. Let & be a point of (9X),+\JR; and C, a Borel
subset of 9X+\JR;. Then K(c, -, §) is x,~harmonic and further
(4.12) Kdc, -, &) = Kie,+, &)  if EeC,
=0 if §¢C.
Therefore Kl(c, ¢, £)=1.

Proor. To prove the first statement, consider Riesz decom-
position (2.22) of I{'(c, ., 8). Then, if the potential part v of
If'(c, +, &) does not vanish, the harmonic part w should vanish, for
K(c, ., &) is minimal and strictly x,~superharmonic at some state
in X. Consequently K(c, -, &) is a potential, so that we have

Rie, -, & = | 6, dy = | K, 9f»Gle, d)

- S‘k(c’ -, 7) p{dn) ,

where p(dn)= f(49 1(17))G(c 0~(dn)) =0. Applymg Lemma 4.4, it
follows that K(c, -, &)= K{(c, ., &) for some & €N, ie. E=E, This
contradicts to the assumption &¢ N.
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To prove the second statement, we shall begin with the case
C3&. According to Theorem 4.2, we get

(4.13) R, -, &) = Kdc, -, §) = gcm, ) ) aldn) .

Assume that Kc(c, ., £)==0, contrary to our statement. Then, since
K'c(c, ., ) is x,-harmonic, it follows from the first statement of
this theorem and Remark 4.1 that K, -, &)=kK(c, -, E) for k=
Kc(c, ¢, £)=F0 and therefore Kc(c, ., &) is also minimal x,~harmonic.
Applying Lemma 4.4 to the formula (4.13), we have

Kie, -1 §) = 3 Kele, -, §) = —Kele, e, HIKGe, -, &)
= K, -, E) for some &,€C,
which contradicts to £¢ C. Thus we have shown that K, -, £)=0
if £¢C. Next, in the case of C3¢&, putting C'=0X+\/R;—C and
recalling Theorem 4.3, we have
K(c, -, &) = Kyproiile, - 8) < Klc, -, )+ Kole, -, 6) .

Since C’' 3¢, ch(c, ., £)=0 and hence K’(c, ., E)zKC(c, ., ).

We shall give a criterion for M, and M, in the following

THEOREM 4. 4.

(4. 14) Kuc,c,§) =1 if £eM,,
=0 if EeM,.
Proor. Summing up the lemmas above, we have Km(c, ., 8)=1

if and only if £€ M,=X+(X),. On the other hand, putting
u=K(c, -, &) in (4.11) and noting that (u¢)s=wue), we get

K(S)(C’ *y E) = (K(E))(E)(Ca b} E) = K(S)(C, c, E)K(E)(c) *y E) y

so that
K(ﬁ)(c, c, f) = I:K(E)(C’ c, E)]z .

Therefore K'(g}(c, ¢, £)=1 or 0, which implies that K(g)(c, ¢, £)=0 is
equivalent to £ € M,.

THEOREM 4.5. M, is an F, set of M. Therefore both M, and
(0X), are Borel subsets in M.

Proor. Since the proof is completely analogous to that of

Martin [12], Section 4, Theorem II, we shall only give a simple
sketch. Let I, be the set of & in M satisfying the following
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condition: If an open set G in M contains & and its p-diameter
d(G) (=sup p(&, 7)) does not exceed 1/n, then Kgl(c, ¢, &) =
n,£€0

[Hig K, -, £)].(c)=<1/2. That each I', is closed in M comes from
the fact that K'G(c, ¢, &) is lower semi-continuous as a function of
&, Moreover it is shown that I',{ and \/1!',=M,, which proves
our theorem. ’

11. Main results.

DEerFINITION 4.3. A bounded signed (Radon) measure u over M
is canonical if p(C)=0 for any Borel subset C of M,. The re-
presentation

S Kic, -, &) u(dE)
M

is a canomical represetation if 4 is a canonical measure.

MAIN THEOREM. For any function u of 97 (X) A B(X), there exists
one and only one positive canonical measure p such that

(4.15) u=| K - opan = K, &uldf).
M M
This measure p is characterized by
(4.16)  p{C) = uclc) : if CcoX+\UR;
— | [~Gu.(1Ge dy) if CCN,
k(o)
where C is a Borel set in M. Therefore, if u is x,~havmonic,

vanishes over N.
Before proving this theorem, we prepare two lemmas.

LEMMA 4.8. Consider the representation (4.9) of a function
u € QT X)NJFX). Then, for any Borel set C in M, we have

4.17) Ue(x) = §Ml€c<c, %, E) uldE) .

Proor. If C is an open set in M, our statement is clear from
Fubini’s theorem. Next, if C is a closed set, (4.17) is a direct
consequence of the above result and Lebesgue’s theorem. Finally,
for a Borel set C, choose the sequences {G,}, {D,} which satisfy
(3.12) at the state x. Then it follows that

uc(x) = SM lim Ke (¢, x, &) p(dE) = SM!EE Kp, (¢, x, £) pldf)
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so that lim KGn(c, x, &)= Kd(c, %, £)=1im KD"(C, x, &) for any £¢ an
exceptional set of w-measure 0.
LEmMMA 4. 9.

(4. 18) Up, =0 for any function u of D7 (X)ABX).

Proor. Let L', be the set defined in the proof of Theorem 4. 5.
Since \JI',=M,, according to the general property of capacity, it
is enough to show that u, =0 for every n. L', is compact and
therefore it has a finite open covering {G;} each of which satisfies
d(G;)<1/n. Putting C;=1,nG;, we have

k k

1

]‘n:_\jlci) uI‘,,éE”C;’
i= i=

Thus our statement has been reduced to showing #c,=0. To prove
this fact, we shall first notice that

Ke(c, ¢, &) < Kgle, ¢, ) < % for any £€C;,

which is clear from definition of I',. On the other hand, since
C; is a Borel set in aX, it follows from Theorem 4.2 that

uC,’ = SC'K(C’ *y E)/"’(dé) ’ uC,'(C) = ll’(cx) .
Therefore, applying the preceding lemma, we have
uele) = e, @) = | Kefe, ¢, ud) < - p(C) = | uafe),

which implies that uc(c)=0, ie. uc;=0.

PrROOF OF MAIN THEOREM.

1°  The existence of a canonical representation with a positive
measure. Consider Riesz decomposition (2.22) of w. Then the
potential part v of # can be expressed as follows :

o= FIGE dn = | K - 5 A(5)Gle, dy)
N N

_ S Kic, -, &) p(dE) ,
N

where p,(d€)=f(07))G(c, 07'(dE))=0. On the other hand, as to
the harmonic part w of u, it follows from Theorem 4.2, 4.3 and
the preceding lemma that
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W= Wy UR; = Wepitor LR+ Waty = Wiy = W,

so that
W = Wz +UR; = S k(cx -, &) p(dE)

@D, +UR;
with some positive measure p,. Therefore # is expressible in the
form (4. 15) with the positive canonical measure px defined by

#(C) = p(C A N)+12,[C A {@X), +\J:R}]

for any Borel set C in M.
2°  The uniqueness of the positive canonical measure in (4.15).
Let ¢ be any positive canonical measure representing . Put

(4.19) v= Sﬁli’(c,-,é)/b(dE), w = S Kic, -, &) p(df) .
AIN+HUR;

Then v is a potential of the function f(y)=p{0(dy))/G(c, dy) (see
Lemma 4.2) and w is a nonnegetive x,~harmonic function (see
Lemma 4.7). Therefore the decomposition #=v+w is nothing but
Riesz decomposition (2. 22), so that we have f(y)=—®u.(y), which
proves the second equality of (4. 16). Moreover, recalling Theorem
3.5, 4.3, Lemma 4.7 and 4.8, it follows that, for any Borel set
C in 2X+\JR;,

4200 o= (pioide=@e= | Rele - uap)

A A
IX+UR;

_ Sck(c, ., E) u(dE) .

Substituting ¢ in place of ., we get the first equality of (4. 16).

REMARK 4.2. In the end of Section 9, we stated that the
representation (4.9) is not always unique. Now our main theorem
clarifies the circumstances. In fact, if & € M,=9=¢, the function
K(c, ., &) is expressible in the form (4.9) by means of both some
canonical measure and the unit distribution at &, which are
clearly different. On the other hand, if M,=@, (4.9) is nothing
but a canonical representation and therefore it is unique for any
u€ DN (X)ABX). In the next chapter, we shall give two examples
of M,==¢ (see Examples III, VI).

REMARK 4.3. If X is closed in M and 6 is the homeomorphism
(X ~—>X), for example, if the conditions (CMP. 5), (CMP. 6) are
satisfied, our arguments will be much more simplified. In fact,



94 Takesi Watanabe

then, we need not use Choquet’s capacity theorem to obtain the
main theorem, and the original proof of Martin [12] for ordinary
harmonic functions is applicable without any change to our case.

To continue, we shall state some important results derived
from the main theorem.

THEOREM 4.6. (i) The canonical representation of a function
u € FX) is unique. Speaking in detail, if u admits of a canonical
repreSentation, the canomical measure ; vepreSenting u is uniquely
determined.

(ii) In order that a function u€ F(X) should have a canonical
representation, it is necessary and sufficient that u is expressible as
the difference of two function of DF(X)ABFX).

Proor. For (i), it is enough to show that if
0| K-, & pae)
M

with some canonical measure g, then x=0. Let p= p,—u, be
Jordan decomposition of u, that is, p; =0 (/=1,2) and w, A @,=0."”
Then we have

(4. 21) SMK'(c, o) E) pu(dE) = SMKxc, ) ) ().

But since the function defined by (4.21) is a function of 97(X)A
B(X) and each w; is a positive canonical measure, it follows that
= =, A ;=0 and therefore x=0.

We shall omit the proof of (ii) which is quite easy.

THEOREM 4.7. Let u be a function of O7(X)ABFX) and C, C,
Borel sets in 29X+ \jk,-.

(i) For any fixed x in X, uc(x) is a positive canonical measure
over X+ \jl@;, namely, it satisfies

4.22) Ucoc(X) Ftc~c(x) = uc(x) +uc(x) .

(i1) #wc~cr IS the greatest ome among all the nonnegative x,-
harmonic functions which do not exceed both uc and uc. Moreover
we have

(4. 23) (wc)er = (Ue)e = U -

13) u; /A e denotes the greatest one among all the measures which do not exceed
both u, and u,.
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ProoF. Let s be the canonical measure representing #. Then
(i) and (4.23) are immediate from the formula (4.20). To prove
the first part of (ii), consider any » of 9™(X) satisfying v=<uc,
v=uc. Putting C":8X+U1@;—C and using (4. 23), we have

0= v < (ug)e!” = themcr = 0,

so that v=uv4%, p,=0c+vcr=vc. Consequently, uc~c/=(Uc')c=0c
=9, which proves our statement.

In Theorem 2.1, we have already obtained the facts below :
Put »,=uVO0, v,=(—u)VO0, v,=|u|. Then if ueH(X), each v; €
93(X) and therefore I1"v;1 with n. Moreover the function u;
defined as
(4. 24) u; = lim 117,

belongs to 7 (X) and, if u, € F(X), to H(X).

We shall now give a useful result for an x,~harmonic function
which is not necessarily nonnegative (see [15], [167]).

THEOREM 4.8. An x,~harmonic function u admits of a canonical
representation if and only if u,(c)<+ oo, or equivalently, if 11| ul. (c)
is bounded in n. In this case, the canonical measure i for u vanishes
over every Borel sets in N. Moreover, let p—pu,—pu, be Jordan
decomposition of p and put p=p+p,. Then w; is the canonical
measure for the function u; defined by (4.24).

Proor. 1° Suppose that wu,(c)< +oco. Since wu,€ $7(X) and
c¢—x for any x in X, it follows from Corollary 1 of Theorem 2.2
and Theorem 2. 1 that u, € F(X) and therefore u; € 9(X), u=u,—u,.
Thus, by virtue of Theorem 4.6.(ii), # admits of a canonical
representation. Conversely, if # has a canonical representation,
we have

lu| < SMK(c, ) &) uy(dE) ,
so that

011" ul.(c) < SM[fI"K(c, s 8. () s (dE) < (M) < 400,

which proves our first statement.

2° Consider an x,~harmonic function admitting of a canonical
representation. Then, as was shown in 1°, u=u,—u,, u; € DY (X).
According to the main theorem, the positive canonical measure v;
for u; (1=1, 2) vanishes over N. But p=v,—v, from the uniqueness
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of the canonical representation, so that our second statement is
proved.

3° Denote, by w;, the nonnegative x,~harmonic function de-
fined as the canonical representation with u; (/=1,2). Then,
since each p; (:1=1,2) is a component of Jordan decomposition of
#, we have p;<v;, which implies that w;<wu;. On the other
hand, since u=w,—w,, it follows that w;=v; ((=1,2). Therefore
we get

w; = 1"w; = 11"; — u; ,

which proves that w;=u; (1=1,2), i.e. u; is the canonical measure
for ;. Noting that u,=u,+u,, it follows that u, is the canonical
measure for u,.

ReMARK 4.4. According to Theorem 2.12 and Remark 2.7, if
x, is a Markov process with a discrete time parameter or with
independent increments, the condition in the above theorem can
be replaced by the following one: H!|u|.(c) is bounded in ¢.

CHAPTER 5. EXAMPLES AND SUPPLEMENTS

12. The discrete boundary and the continuous one. It is
clear that the results which were established in the preceding
chapters do not depend on ¢, but only on II. In other words, it is
unessential for the general potential and boundary theory whether
our CMP is of a discrete time parameter or a continuous one.

We start with the simplest example of the discrete boundary.

ExaMprLE 1. Random walks and birth-death processes over the
set of positive integers. Let X be the set of positive integers,
{1,2,3,.-:}. Consider the system {g, I1} satisfying the following
conditions: 0<g(x)< + oo for any x € X.

H(1,2)37’1>0, [I(l,OO):dlgo, r1+d1:1’
and if x=2,
65.1) x,x+1)=7r, >0, Mx,x—-1)=1[,>0, T(x, o)=d,=0,
v+l +d, =1.

The CMP corresponding to the above {g, I} is called a random
walk or a birth-death process according as its time parameter is
discrete or continuous. Since p(x, y) >0 for any x, y € X, according
to Lemma 1.5, we have two possible cases below: (a) X is a
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single indecomposable recurrent set, or else (b) any state in X is
nonrecurrent. The condition (CMP. 4) is satisfied evidently. To
fix the idea, definiteness, we choose the state 1 as the center.

In the case (a), we have d,=0 for any x€ X. The Martin
space M consists of a single point & and the function K’(l, x, &) is
identically equal to 1, so that any nonnegative x,-superharmonic
function is a nonnegative constant.

In the case (b), the conditions (CMP. 5), (CMP. 6) are satis-
fied. We now construct the Martin space. Noting that p(x, z)=
Dlx, ») p(y, 2) for x<y=2, we have

K, z, 3) = p(x, ) — 1
p,y) P, x)

which implies that the Martin boundary 92X consists of a single
point, denoted by + oo, and that

for any pair of x <y,

pummg 1 .
p(1, x)

The above function is minimal x,~harmonic and any nonnegative
x,~harmonic function is a constant multiple of K(l, x, + o). More-
over it is easily shown that the canonical Martin space is nothing
but the usual one-point compactification of X.

If d,=0 for x=2, it is known that the explicit formula of
K(l, x, +o0) is given by

(5.2) K(, %, + )

(5. 3) K, x, +00) =14+ 3 dily -l

S, e Y
Consequently, if d,=0 for every x, we have
(5. 4) K(1, x, +00)=1,"

so that any nonnegative x,~harmonic function is a constant.
Next assume that the condition below is satisfied :

5.5) Pyo,. < +00)>0.

As was noted in Theorem 2.9, this is impossible for a random walk
and, in our case, it implies that p(x, +c0)=P (0,.< + ) >0 for
every x € X, or equivalently that the equation

14) This formula is derived from the fact that IA{(I, x, + ) is the unique solu-
tion of the equation Tu=u, u(1)=1. Also see Karlin and McGregor [11].
15) Note that this fact also comes from Lemma 1.6 immediately.
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(5. 6) (x—@wu =0

has a bounded (strictly) positive solution for any a«=0. p(x, + o)
represents the probability that the paths starting at x converge
to the boundary point + o after finite time, so that + o is an
exit boundary point in Feller's sense.® The condition (5.5) has a
close connection with the choice of ¢. In fact, if d,=0, (5.5) is
equivalent to

(5.7) §~ g(x) < +oo.
The random walk (or birth-death process) over the set of all
integers, X=1{---, —1,0,1, -}, is the CMP with a discrete para-

meter (or continuous parameter) corresponding to the system {g, 11}
which satisfies 0< ¢q(x)< + o and (5.1) for any integer. In the
same way as before, we have only two possible cases. In the
case (b), it follows that 2X consists of two points, say — o and
+ oo, and taking the state O as the center, we get

5 1
(5.8 KO, x, +0)=—— (x=0), =px 0 (x<0),
(0, x) ? ( ,<
5 1
K@, x, —o0) = p(x,0) (x=0), =—— (x<0),
p(0, x) <
each of which is minimal x,~harmonic. The canonical Martin space
is the usual compactification of X, {— oo, .-, —1,0,1, --+, + o0},

Moreover, in such case, any x,-harmonic function is expressible as
some linear combination of the two functions in (5. 8), that is, it
admits of a canonical representation. In the case (a), however,
there exists an x,~harmonic function which has no canonical re-
presentation. In fact, our bounary theory proves that any x,-
harmonic function having a canonical representation should be a
constant. On the other hand, as is well known, the equation

My = u

has two independent solutions one of which cannot be a constant.
Thus our statement was proved.'”

16) It is an interesting problem to extend Feller’s boundary classification to the
general Martin boundary. We shall discuss this problem in another chance.

17) The simplest example is this: d,=0, »,=/,=1/2 for any x. Then the func-
tion #(x)=x is an x,~harmonic function admiting no canonical representation.
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Now we shall introduce a notation. The réduite of the indi-
cator function Xy of the whole state space is denoted by

Xyp)e(x) = h(x, C)  for CcoX.

It has been shown in [4], [16] that, in the canonical Martin space,
h(x, C) expresses the probability that the paths from x converge
to the boundary set C and palys an important role for the first
boundary value problem and the study of bounded x,-harmonic
functions.

In [15], we have proved that the Martin boundary of the
space-time Bernoulli process is the interval [0,1] with the usual
topology. Moreover, in [16], by a simple modification of the
above process, we have obtained a process for which #X(c, -) is
Lebesgue measure over [0,1]. We shall give another example of
the continuous boundary.

ExampLE II. Feller’s dyadic branching scheme (c.f. Feller [6],
Section 17, Example IV). Let X be the countable set which con-
sists of a point ¢ and all the points denoted by aa, - @, (a;=0
or 1, k=1,2,3, ). The point aa, - a, is called a point of the
length k. We now introduce the following semi-order relation: ¢
is the maximal element and, if x=a, --a, and y=a, -- a;b, -+ b,,
then x>y. We consider the Markov process over X defined as
follows: 0<g(x)<+ oo for any x € X and

Ii(c, 0) = 1I(¢, 1) = 1/2,
TI(x, x0) = 1I(x, x1) = 1/2.

Clearly c is the unique center and the conditions (CMP. 5), (CMP. 6)
are satisfied. Moreover we have

(5.9) K(c, x, y)=#>0 if x>y,
b(c, x)

=0 otherwise.

We shall prove that our Martin boundary is Cantor set in the
interval [0, 1], namely, the countable direct product, say S, of the
compact Hausdorff space consisting of two points 0 and 1.

1° For any £=a,a, - of S, define the sequence {y,} of X by
y.=a.a, - a,. Using (5.9), it is easily shown that the above {y,}
is a fundamental sequence and the limit function of Klc, x, ,),
denoted by Kl(c, , £), is given by
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1 =
plc, x)

=0 otherwise.

It is clear that Kic, x, &)+ K(c, x, &) for E=&.

2° We shall show that, for any fundamental sequence {z,b},
there exists the fundametal sequence which is equivalent to {z,}
and satisfies the condition of 1° for some £€S. Let y, be a point
of the length k which satisfies the following condition: () There
exists an infinite subsequence {z,:} of {z,} each of which is
smaller than y,. The existence of such y, is immediate from the
fact that {z,} has no limit points in X. We now prove the uni-
queness. In fact, if the two points y., y, satisfy the condition
(@), it follows from (5.9) that
5.11)  LmK(c, yp, 2,) = Hm K(¢, 3o, Zui) = —2— >0,

e p(c, )
= lim K(Cv Ve zn(x’)’) =0 y

i

(5. 10) K, x, §) = 2 if x=a, - a

which is a contradiction. Further we can easily see that y, >y, >
y, >---. Therefore the sequence {y,} defines a & of S and accord-
ing to 1°, it is a fundamental sequence. The equivalence of {y,}
and {z,} is clear from (5.10) and (5. 11).

3° We have proved that our Martin boundary 2X coincides
with S as a set. We shall show the topological equivalence of
the metric p with the usual metric d. For this, assume that
EM=qg™Ma ..., E=a,a, -~ and d(E™, E)—0. Then, for any fixed #,
we can choose some 7, such that a{”=a; (i=1,2, -, k) for every
n=n,. Therefore we have

K, x, &™) = K(c, x, £)  if the length of x is less than &,

so that
lim Kic, x, &) = K(c, x, &) for any x in X,

which means p(E™, £§)—0. Thus 9X is homeomorphic to S.
4° Next we prove that K'(c, x, &) is minimal x,~harmonic
for every £€S. Let £=a,a, --- and consider the sequence A,= {a,
-~ a,; k=n} of subsets in X. Then, for any open (in M) set
G, [G] contains A, after some #n,. Consequently, we get
1=Kulc ¢, & = inf [HimK, -, 6].()
GeU({Eh)
= lim [Ha K, - &].(c)=1.
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5° We introduce several conventions. For x€X, ¥ and x
denote, respectively, the points x11..- and x000.-- of S. The
interval [%, x] of S is defined by the set of all the points of the
form, E=xbb,b, --- (b;=0 or 1). For any é=a,a,--- of S, @) is a
real number of [0, 1] defined by

= S @i
PE) = 2 or °

The point & is called a rational point of S if there exists an n=-§&
such that @(&)=@(%). Since each K(c, -, £) is unbounded and the
set of all the rational points of S, say S’, is countable, the
canonical measure x representing a bounded x,-harmonic functions
satisfies u(S’)=0. Moreover ¢ defines the into-homeomorphism
from S—S’ to [0,1]. Therefore, as was noted by Feller [6], we can
take the interval [0, 1] with the usual topology as a boundary so
far as we treat bounded x,-harmonic functions. Now we calculate
h(x, C). It is easily shown that the canonical measure #%(c, -) for
Xx is given by

(5.12) hic, [ 3, y]) = 9(5)— (),
so that, if x is a point of the length k2, we have
h(x, [ 5, y]) = 2"[p(3)—2(y)] for any y<x.

Consequently, if the interval [0,1] is taken as a boundary, the
réduite h(x, -), defined over [0, 1], is the uniform probability mea-
sure over [@(%), @(x)]. In paricular, k(c, -) is Lebesgue measure
over [0,1]. Using Theorem 3.2 in [167], the bounded x,~harmonic
function # is in one-to-one correspondence with the bounded
measurable function f over [0,1] by the formula

(5. 13) w(x) = S FE Iz, dE) — 2 S:iz FE)dE

These arguments show that, as the boundary to analyze bounded
x,~harmonic functions, the interval [0, 1] is more convenient than
the Martin boundary S.

13. Some singular examples. It is very easy to construct
an example of M,==0 for which the conditions (CMP. 5), (CMP. 6)
are not satisfied (see Example VI). But even if (CMP. 5), (CMP. 6)
are assumed, we cannot assert M,=(@. In fact, we have
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ExampLE IIL'™ Let X be the countable set consisting of a
point ¢ and the lattice points A4,, B,, C, (n=1,2,3, :--) ordered on
three parallel lines A, B, C. Consider now the CMP corresponding
to the following system :

glx) =1 for any xe€X,

I(c, A, = I, C) =1/2,

1I(4,, A,,) = a,, 1A, B,)=1—a,,

INB,, B,.) =b,, 1(B,, ) =1-b,,

IKC,, Cpp) = ¢, 1KC,, B,) = 1—c,,
Moreover we assume that a,, (1—a,), b, and (1—0,) are strictly
positive for every » and

(. 14) a, = c, M a,=a>0,
n=1

Mosi L0 (n— +00).
l—a,

It is clear that ¢ is the unique center and the conditions (CMP. 5),
(CMP. 6) are satisfied. We can easily calculate p(x, y) as follows :

50, 4,) = p0,C,) = 1/2- T a;,

£0,B,) = 33 (Wa)1-a)b; b, .,

~Ma if x=A, n<m
b(x, Am){ i=n .
=0 otherwise,
J: 'ﬁlbi if »=B, n<m
i=n
blx, Bm)(z 2 ('I_I1 a;)(1—-a;)b; -+ b,,_, if x=A, or C,, n<m
i=n j=n
=0 otherwise,
="l a; if x=C,, n<m
b(x, C,,,){ t=n
= otherwise,

where we use the conventions, jilaiz 1 and (1—a)b;-b,,_.,=(1—a,)

for i=m. Therefore we have

18) This is no more than the discrete analogue of Martin’s example ([12], Sec-
tion 5, Example 2).
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=1 if x=¢
= 2 if x=A4,, n<m
K x A)4 ~ o T
t=1 !
=0 otherwise,

so that the sequence {A4,} is a fundamental sequence and its
corresponding limit function, say K, x, £,), is given by

=1 if x=¢
(5.15) K(c, %, £){ ~ - if x=4,
: > 11 q;
i=1
=0 otherwise.

In the same way, {C,} is the fundamental sequence to which
corresponds the following limit function,

=1 if x=¢
(5. 16) K, x, £)1 ~ ,—1;?- if x=¢C,
. b ) 3 II ai
i=1
=0 otherwise.

Next, take the sequence {B,}. Then if x=B,, it follows
from (5. 14) that
11 b, 5
K(Cv x) Bm) = i—1 t=1

m < m—1
2 (Ha)1—a)b; b, (Ta)l-a,)

b
_Tm=1 5 () — o).
<a(1—am) (m — + o)
Also, if x=A, or C,, we get

(T a)(1—a)b; b,

[

(Ha)1-a)b; b,
J=1

Ms

Il

K(C, X, Bm) =

“Mﬁ

g
o=

(1 l’la,.)(l—am)+ o(l—a,) 1

i =n - (m—> +OO),

(Ma)1-a,)+o0l-a,) a
t=1 i=1

Consequently {B,} is the fundamental sequence whose determining
limit function is as follows:
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=1 if x=c¢
1 )
5 = — if x=A,0rC,
(5. 17) K, x, &) llla,-
t=1
=0 otherwise.

Summing up (5. 15), (5. 16) and (5. 17), we know that 0X con-
sists of three points &, &,, & and that

K, %, &) = 1/2-{K(c, x, £)+ K(c, , &)} ,

which proves &,€ M,.

To continue, we shall show that the statements in Theorem
3.2 are not always true unless the conditions (CMP. 5), (CMP. 6)
are satisfied.

ExampLE IV. X and X are not homeomorphic. We shall give
an example in which the mapping (X — X) is one-to-one but not
topological, for otherwise our statement is evident. Let X be the
set of all nonnegative integers and x,, the CMP (over X) satisfying
the conditions below : ¢(x)=1 for every x in X, II(0, »)=1/2" for
y=1 and II(x, c0)=1 for x=1. Cleary the state O is the unique
center and we have

=1 if =0,
K@, x, y){ = 27 if y=1x,
=0 otherwise,

so that, for any sequence {y,} having no limit points in X,
K(0, x, y,) converges to K(0, x,0) as n— . Therefore we have
no fundamental sequences, namely, M =X. Thus X is compact
and hence is not homeomorphic to X. In particular, the p-metric
in the canonical Martin space which coincides with X as a set is
characterized by p(0, y) =0 (y— + o).

ExampLE V. X is not open in M. Let X be the set consisting
of a point O and all the points (¢, j); 7, =1, 2,3, ---. Consider the
CMP which is determined by the following system: g¢(x)=1 for
any x in X, 110, (7, 1))=1/2¢ for i=1 and I1(;, j), ({, j+1))=1 for
i, j=1. Since 0 is the unique center, we get

=1 if x=0
K@©, x, y){ = 2¢ if x=0679=0%k,j<k,
=0 otherwise.
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Therefore it follows that, for each 7, the sequence {y’=(i, n);
n=1,2, -~} is a fundamental sequence and its determining limit
function, denoted by K(0, x, &;), is given by

=1 if x=0
KO, x, £){ = 2 if x=(@ ),
=0 otherwise,

so that K(0, x, &) converges to K(0, x, 0) with 7— oo, which proves
that X is not closed in M.

Exampie VI. K(c, x, £) is not x,~harmonic for some E>0X.
Let x, be the CMP over X={0,1,2, ---} as below: ¢(x)=1 for
every x in X, 1I(0, y)=1/2” for y=1, II(1, )=1/2?"" for y=2, and
II(x, 0)=1 for x=2. Then it follows that p(0, y»)=p(1, y)=1/2"""
for y=2 and therefore

K(O,x,O){:l for x=0
=0 otherwise,
=1 for =0
KO, x,1){ =2 for x=1
=0 otherwise,
and if y=2,
=1 for x=0 or 1
KQ©, x, y){ = 27! for x=y
=0 otherwise.
Letting y— oo, we get
limK(Oxy)fZI for x=0 or 1
e T =0 otherwise

= 1/2-{K(0, x, 0)+K(0, x, 1)} .

Consequently our Martin boundary consists of one point, say §&,
and the corresponding function K(0, x, §) is a potential, this is, it
is not x,~harmonic. Clearly this also is another example of M,==¢.

14. Supplements. The problem to extend the Martin boun-
dary theory to non-countable Markov processes is very much
interesting, but has been not solved yet in the complete form.
The typical example is seen in Martin’s work [12], in which he
discussed, to speak probabilistically, the boundary theory for the
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Brownian motion over a domain in #-dimensional euclidean space.
The main difficulty for the general boundary theory is in proving
the analogue of Theorem 2.7 which has played an essential role
in our special case. But under some strong conditions on the
given process, we can prove the theorem (cited above) in a weaker
form and, using it, we can only derive the unique representation
theorem of nonnegative x,~harmonic functions for the class of
Markov processes which cover one-dimensional diffusion, #-dimen-
sional Brownian motion (over a domain of R”), the space-time
Poisson process (introduced in [15]) and many others. We shall
discuss the detail in another chance.

Finally we shall summarize the dual boundary theory. First
note that the dual of x,-superharmonic functions should be taken
not relative to II, but to &. Strictly speaking,

DEFINITION 5.1. A set function » over X, vanishing on oo, is
x,~Ssuperharmonic at b if

(5. 18) —oo < y(y) < +o for each one point set {3},
and

(5. 19) vS.(0) <0,

that is,

vg L. (b) = Siu(dx)q“(x) II(x, b) < w(b)q~'(b) = vg~'.(b) .

The dual concepts of ‘x,~subharmonic’ and ‘x,-harmonic’ are
introduced in the same way. In particular, the x,~harmonic set
function » is a o-finite set function which satisfies

(5.20) »g'(E)= SXV(dx)Q"’(x) Ii(x, E) = g v(dy) g7 (y) = vq ' (E)
E

for every finite subset E of X. It follows that a positive set

function v is x,-superharmonic if and only if it is an excessive

measure in Hunt’s sense, namely, it satisfies

(5. 21) vH' (E) < »(E) for any t€ T and any set ECX.

To proceed to the dual boundary theory, we shall introduce
the dual of (CMP. 4) as follows:

(CMP. 4)* There exists at least one state c* such that
p(x, c*) >0 for every x€X.
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Such c¢* is called the dual center of the process.
Now define

e Go(x, )
(5. 22) K*(x> ) C*) - 111153 CT‘(X, C*)

1
=L*,,*R,*§ —R,*,
(%, 3, ¢*) R(y, c*) 2, o5 (3, ¢*)

where L*(x, y, ¢*)=p(x, y)/p(x, ¢) and R(y, c*)=1m G,(y, y)/G(c*,

c*). Let X, be the family of y-functions, {K*(x, ., ¢*); x € X},
and M, the set of all the limit functions of X,. Then M_ is
compact with the following metric

* _ EWD) =0 «
PHE, 7) SX1+l§(y)—7;(y)]m dy)  for & neMa.
Each function of M., consider as a set function, is x,-super-
harmonic. The dual Martin space M* and dual boundary 2X* are
defined as the spaces homeomorphic to Mx and Mx— X, re-
spectively. The element of M, corresponding to & € M* is denoted
by K*(, v ¢*). In the same way, the limit function of L*(x, y, c*)
corresponding to K*(, y, c*) is denoted by L*(, y, ¢*). M} is the
set of &€ M* such that K*(, y, ¢*) is a minimal x,-superharmonic
set function whose definition will be clear. Then we can obtain
the dual of the main theorem in Chapter 5 as follows:

For any nonnegative x,-superharmonic set function v, theve exists
one and only one positive measure u* over M¥ for which we have

6.23) »(0) = | K*E 5 00 urd) =R, o0 | 1¥E 5, 00 (@)

for every one point set {y}. In particular, if v is an x,~harmonic
set function, the total mass of w* is carried on the wminimal harmonic
part (0X*),VY R¥' namely, v is expressible

(5. 24) W) = Ryer) [ Ly o0 v
(9X%), U R
If our process is of the discrete time parameter, the formula
(1. 38) shows that the class of x,~harmonic set functions coincides

19) According to (CMP. 4)*, X contains at most one indecomposable recurrent
set, denoted by R;,. If such R, does not exist, Ilél*={d>} conventionally. Otherwise,
I’él* is one point set and I%*(I%l*, », ¢*) = K*(r, y, ¢*) for any r,€R,. Also, of course,
(@X*), =0X*NM}.
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with that of H'-invariant o-finite set functions. Therefore the
above formula (5. 24) determines the class of so-called H’-invariant
measures. This is the generalization of the well known Doeblin-
Lévy formula for the recurremt CMP (for example, see Derman
[2], p. 542) to the non-recurrent case. In fact, if X consists of
exactly one indecomposable recurrent set, M* is one point set and
L, y, ¢¥)=1 for every y€ X, so that any excessive measure (and
hence, of course, any H*-invariant measure) is a constant multiple
of R(y, c*). Clearly R(y, c¢*) can be rewritten as

SYH(y, 3)

(5. 25) R(y, c*) =lim=r— °

N -poo EHt((:*, c*)
t=0

’

which is no more than the Doeblin-Lévy formula.

Department of Mathematics,
Osaka City University.
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