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Introduction

As I. G. Petrowsky has defined in his paper [14], the Cauchy
problem fo r a  system o f linear partial differential equations with
constant coefficients, of evolution form

t, ce4 r ( a l i )  . . . ( a
aj m u i (x, t)

is said to be uniformly correctly posed in the interval [0, T ]  with
respect to the space (93) (for the notations of function spaces, see
L. Schwartz [15 ]) , if the following conditions are satisfied.

i) F o r each t, E [ 0 ,  T )  and for each system o f  functions
qi (ik) (xi, • •-, x„,) (93 )x  k = 0, 1 , ni  — 1, j=1 ,  •-• , 1, there is one
and only one system o f  functions U(x, t)—(u i (x, t), ••• ,

u i(x , t)) such that this is the solution of (0, 1) for

to<  t T  and ( l ku i (x, t o) , p,"(x).at
ii) I f  U(x, t 0)  converges to 0 in ] ' I ( ) ,  then U(x, t) converges

to  0  uniformly with respect to t 0 ,  0 < t0 < T , in  IF ,E )x.t•
Petrowsky has shown that the Cauchy problem fo r  (0, 1) is

uniformly correctly posed with respect to (93) if and only if the real
parts of the zeroes of the polynomial in X:

(0, 2) det. E • (i )""
, V (')

1 )  We have announced the essential part of this paper in [16].

(0, 1)
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••• , being vector variable of rea l m  dimensional Euclidean
space Em, do not increase more rapidly than log ( I + 1 ) as I
tends to  infin ity. L . Garding, however, has remarked in [ 6 ]  that
this condition is equivalent to the condition that the real parts of
the zeroes are bounded when runs over the whole space s'n. He
has also noticed that the class o f equations satisfying this condi-
tion contains other than hyperbolic equations, e.g. the parabolic
equation and the Schrtidinger equation, and he has found that in
order to exclude these equations and pick up the so-called hyper-
bolic equations, it is necessary to change the function space (3)
to  (g ) in the Cauchy problem, that is, to evalute the variation of
functions on every compact subset o f R m .  His result, in the case
of a single equation, is as follows :  the uniform correctness of the
Cauchy problem with respect to the space (S) is equivalent to the
statements that the equation is o f Kowalevsky type (that is to say,
the highest degree in t  is equal to that in t  and a n d  that the
characteristic equation satisfies Petrow sky's condition mentioned
above. Hence so far as we consider the equation o f Kowalevsky
type we need not distinguish between the space (93) and (6). We
remark here that it is easy to extend Garding's result to the case
of a  system o f equations in the following form :  namely that the
uniform correctness of the Cauchy problem for the system (0, 1)
o f Kowalevsky type with respect to the space (g) is equivalent to
the statement that the polynomial (0,2) is hyperbolic in the sense
o f  Gar- ding (see also V. M. B o ro k  [1 ]  and P. D . Lax [9]). A
system with this property will also be said hyperbolic.

On the other hand, classically, in the case of a single equation,
many mathematicians have investigated a little more restricted class
called normally (or strictly) hyperbolic equations which are defined
by the property that the characteristic polynomial of the principal
homogeneous part of the equation has real and distinct roots in X
for any 0  o f  E m . The equations o f this category have one
main feature, namely that they are always hyperbolic for any choice
of the lower order parts (see Gat-ding [ 6 ]  p. 19). Conversely if a
single equation is hyperbolic fo r any choice of the lower order
parts, the characteristic equation of the principal homogeneous part
must have only real and distinct roots. T h u s  in the case of a
single equation, the property that the hyperbolicity does not disap-
pear by any change of lower order terms is completely characterized
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by the behaviour of the roots of the characteristic equation of the
principal part.

Then there arises a problem : in the case of a system o f equa-
tions what are the corresponding conditions which characterize the
property that the hyperbolicity does not disappear by any change
of lower order terms.

It is  very  important and interesting to investigate the hyper-
bolic operator from this point of view, because several types of
hyperbolic systems treated up to the present have this property.
Indeed, equations of second order studied by Friedrichs and Lewy
[4 ], symmetric systems o f  equations o f Friedrichs [5 ]  and Lax
[8 ], and Petrowsky's "hyperbolische Systeme" [13, 14] enter into
th is  category. 2) W e call th is property strong hyperbolicity as it
is  more restrictive than  the hyperbolicity in the sense of GArding.
In th is paper, we shall be concerned with the problem o f charac-
terizing strong hyperbolicity in the case of Kowalevsky system,
and w e shall p rove that the class Petrowsky has found in [14]
p. 64, is just w hat w e seek for.

1. Notations and the reduction o f systems.

In what follows we shall consider linear differential operators
with constant coefficients exclusively. Let R m  be real m-dimensional
Euclidean space, and Ern be its dual. We shall denote elements
of l e n  b y  x = ( x , ,  ••• , x „,)  and those o f  Ern by , „ , ) ,  and
b y  S the unit sphere of Em, S =  : = 11.

Let us consider a Kowalevsky system  of partial differential
equations :

(1,1)
 ( -3- ) i u  ( x ' t )  = t)at t

where a = (a o , • • • , a,„) and  al and n3 >0 ,  i=1 ,  • • • , 1.

i j J(

a
 ) n i l l i ( X , E ce( 2

a,r(sa  r u uat 
i =1, • ,  1 ,

is called the principal part of (1, 1).

2 )  In the case of variable coefficients, see  a lso  Mizohata E ll, 121



4 K. K asahara  and M. Yamaguti

B y Fourier transformation, this system goes over into a system
of ordinary differential equations of the form

I d\̀ "0
(1, 2) ( d  ) n i V.(t, = E r (i. 1)1( k m ) )d i

 v ( t ,dt
ao<ni

i =1, , l .
In th is system  w e put

(is)" i-k( —d )
k v l ( t ' = v i ,k + ,(t, s), k = 0, 1, ••• ,

s  being a  real param eter. Then w e get a  system of ordinary dif-
ferential equations of the first order with respect to the unknown
functions v„ , ••• , v 1 ,,1 , v 21 , ••• , • •• , vi „  •  ,  of the form

d(1, 3) - v• (t, s)—isv i , , ( t , s ) = 0,k = 1 ,  ••• ,
dt z k

d
v-I0+1(t' s )

a i ( ' ) ' '  •s s is s) = 0

o r briefly, using a  new  notation for the unknown functions and

-

(1,4)d
ci t  v*(t, s)— is a i ,(& , • • — b , s)vi' = O.s s

W e use also the matrix representation

(1.5)( E d d t  — i s A ( — s))V*(t, s )  =  0 ,

where E is the unit matrix, A ( = (a 1 1 ( .9 ) )  and s) = (1) s)).

Remark 1 .  It is important to remark that A (  )  is determined
en tire ly  b y  the coefficients of the principal part of (1, 1). Hence,
when (1, 1) is  a  homogeneous system, s )=0 .

Remark 2. A s is  eas ily  seen , every  non-zero y E  Em  can be
written 97 =s, E  S, s being the length of y. H en ce  w h en  varies
on the whole S and  s  over th e  real num ber field, 71 varies over
th e  w hole E m , an d  so  w e consider A ( )  o n ly  for E S. The
elements a .0 )  and b s )  are bounded functions i n  E S and I sj >1.
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The matrix of polynomials

(1,6)( x m i S i i — n i act'peo(i&ri (iL r'n )

where '3 Kronecker's delta, is called the matrix associated with
(1, 1). We study for a while the relation between (1, 5) and (1, 6).

LEMMA 1. L et there be given a matrix of Polynomials in X:

/ X"' +Pii(X) P12(X) ...... Pir (X) \
P21(X) Xn 2 +P22(X) P21(X)

M(X) =

\ ii(X) 1312(X) Xn ' + P 11(X)
where each P o (X ) is a Poly nom ial in X  o f  degree at m ost n i -1 ,
namely

P„. f (X ) = 4 1
.1)+ aTX + k , j = 1, 2, •-• , 1.

Imbedding this matrix  in  an  (N ,N )-m atrix  (N = n; ) of  the form,-1

we associate w ith it another (N ,N)-matrix

M2 (X)

/  X —1
X —1

an aft) • • • X + al'p) a(11
2)

X
0

0

a 2
1

 .......aT )

0

aa) a?,) a-12) • X +. aA2). an,Z).

aa) a (1
 21) (47i) di

1
2) az(;2) .. X +  d el"

Then there exist two (N, N)-matrices P(X ) and Q(X) whose elements
are Polynomials in  X and  whose determinants are  ± 1 , such that
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P(X)1141(X)Q(X) = M2(X)
A ccordingly, i f  w e denote the elementary divisors o f M (X ) by e,(X),

• , e,(X), then the elementary divisors of M 2(X) are 1, ••• ,1(N — l times),
e i(X), e  1 ( X ) .

W e omit the proof o f this lemma, since it is very easy. In
the matrix M 2 (X) we call the rows containing al'y  the main rows.

LEMMA 2 .  Every  (N—  v)-rowed m inor of M 2 (X ) belongs to the
ideal generated by all those (N—  v)-rowed m inors of  M 2(X ) which are
obtained by omitting v  rows from among the main rows.

Hence the greatest common divisor o f  a l l  (N — v )-row ed minors
of M 2(X) is equal to the greatest common divisor o f all those (N— u) -

rowed minors which are obtained by omitting v main ro w s. (Of course
it is also equal to the greatest common divisor of all (1—  v)-rowed
minors o f M(X).)

PROOF. By lemma 1 , it is clear that every (N — v)-row ed minor
of M 2 (X ) is  a  linear combination, with polynomial coefficients in
X, o f  (l — v)--rowed minors o f  M ( X ) .  O n the other hand, each
(l —  v)-rowed minor o f M (X) appears in  the (N —  v )-row ed minors
of M 2 (X) obtained by omitting 1.) main rows. In fact, let an (1—

k

 v ) -
••• krowed minor o f  M (X) be C  ."  '  ,  where k„ ••• , k ,  and j„
••• iv

••• , j ,  denote the numbers o f  th e  omitted rows and columns
respectively. In the matrix M,(X), we take the (N — v)-row ed minor

which is obtained by omitting k „•-• , k ,- th  main rows and E  n i +1,

••• , E  n i  + 1 - t h  columns. Then this minor is clearly equal to

C (k  - •  k.'
,  

•"  . ' ) .  The proof is complete.
/1

Remark 3. I f  each Pk ;  o f  M (X ) in  lemma 1  is  a  homogeneous
polynomial in X  and s  o f degree n i :

P k i (X , s )  = c asn i+4 2
i

) sni - 1 X +••• k ,  j  1 ,  • • •  , 1  ,

then the same results as in lemma 1 and lemma 2 are valid, putting

„1 ,(Xni8 i i + P i i (X, s))
s -- /

M,(X, s) =

S E N _ I  I
0

0
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X  —s
X — s

and

0
••

1142 (X, s) =

—s
sun' saa)•• -X + sal?i) saii2) ....... s c i '? )  .......  saw)

X — s
0 • •. .

•• —  s 0
sag] s d 2

2,) .......  s a i )  s  an) • • •X + s aA 2 )  • - •  •  •  •  s aV )

sa 1,)  sa ft)

 

s cO ) sa ( , 1
2)  ....... sc42) • • •X. + sa. (ini') I

 

Remark 4. From lemma 1, we see that the reduction of (1, 1)
to (1, 5) does not change the determinant of the associated matrix,
that is, the following equality holds identically in X.

(1, 7) d e t .  ( X n i 8 i ;  — E a r j ( i e i ) i  ( i t i ) „,x00)

det. (XE— isA (e')— B (e', s)) ,

where e = t 'e s
Remark 5. T h e  matrix XE— isA (e) has th e  same form as

M2(X, s )  in  remark 3. The elements o f B ( e ,  s )  are 0 except for
those of main rows, namely

0

bi 1
1) ••• b il2 ) ... m=2)

0

ba) •-• N 71) b 1-2) • •• bA2) .......  b V )

b(,1„) • • •  b 7 i)  b (,1
2)  • • •  b ;P )  .......

(1, 8) B (e , s )

2 .  Strongly hyperbolic systems and the main theorem

The Cauchy problem for the system (1, 1) is said to be uni-
formly correctly posed with respect to (6) if :

given a  system of in itia l functions p (i k)(x)E (g),, k  = 0,1, •••
n 1 -1 ,  j= 1 , • • •  , l ,  there exists a unique solution vector U(x, t)

= (u ,(x , t), • -•  ,u i (x , t)) E 1
U

f(6),,, of (1, 1) such that
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( 1 ) k ui (x, 0) = g)(k)(x)

and the linear mapping { p } -1 (x , t)  of the topological vector

space 11(6) x  into the space 1l(6)
'

x  is continuous.
We call the system (1, 1) hyperbolic if the Cauchy problem

for this system is uniformly correctly posed with respect to  the
space (8).

THEOREM 1. (Garding [6])
The Kowalevsky system (1, 1) is hyperbolic if and  only  if the

real Parts of the zeroes in  X of the determinant of the associated
m atrix  (1, 6) are all bounded as e  runs over Em.

By virtue of this theorem, in order to examine the hyperbolicity
of (1, 1) we have only to consider the behaviour of the zeroes of
the determinant of the associated matrix (1, 6).

Remark 5 .  Writing the system of operators (1, 1) in the matrix
form, we can calculate its determinant, in the sense o f operator
multiplication. Then we obtain a single operator. I f  we call this
operator simply the determinant of the system (1, 1), then theorem
1 reads :

(1, 1) is hyperbolic if and only if  its determinant is hyperbolic.
Now we define strong hyperbolicity.
Definition. A  homogeneous Kowalevsky system

(2,1)P (  U )  =  (8- (a)ni— 
1
E

i
 ( a r  

a x ,
(  a( \ a

x n ,
 yinx, t)

,61-- at 
o<

is called strongly hyperbolic, if for any system of operators of lower
degree

(  a(   a (2,2)R (  U) ( 1,X ;  \  a t /  Ox,/ ax„,
y inx, t)

the system o f equations

(2, 3) P(U)+R (U) = 0

is hyperbolic.
Our purpose is to prove the following
THEOREM 2. A  necessary and sufficient condition for a homoge-

neous Kowalevsky system  (2, 1) to be strongly  hyperbolic, is that the
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follow ing conditions on the m atrix  A ( )  in  the representation (1, 5)
are satisfied.

( I) A ll characteristic roots of  A ( )  are  re al f o r an y  E S.
(II) A( )  is  diagonalizable f o r a n y  E S.
(III) There ex ists a Positive number 8 su c h  th at  f o r an y  E S

w e can f ind a dia gonaliz or N () o f  A ( ) ,  (that is to say,
N ()A ()N (e) - 1  i s  a diagonal matrix), whose row vectors
are o f  length 1, a n d  det. N ()1> 8 .

Proof of the Sufficiency

Though Petrowsky has proved the sufficiency of this theorem
in [1 4 ] ,  we shall give another proof using the characterization of
the hyperbolicity in  theorem 1. Take an  arbitrary system of
operators o f lower degree (2, 2) and consider the system of equa-
tions (2, 3), which we associate with the matrix representation of
the form (1, 5). W e are going to show that the real parts of the
roots of the determinant (1, 6) are all bounded as runs over
Let X 0 ,  j= 1, • • • , N  be the characteristic roots o f A( ) and D( )
be the matrix (x.3 ( )8,1). Then we have, by virtue of the equality
(1, 7),

(1, 6) = det. (XE—isA(e)— B ( ' , s))
= det. (XE— isD (')—  N (e')B (e, s)N ('')')

= fl(N, — sX )) (X — sX .('))
J = 1k - - 1 j * k

- E A(k1,k2) 11 (X —  isX(.'))— • —  det. s) = o
k1k2 J*kj, k2

where A (k„ • , k,) denotes the principal minor of N  (')B (' , s)N (e) - 1

formed by k 1 , ••• , k,-th rows and columns. By the condition (III)
A(k„ ••• , k ,)  is bounded for E S and s 1. Let e r( )  j=1 ,  ••• , N
be the roots of (2,4) and put 1.6 Rea" i ( )  and l, 1( ) S r n t r g ) .

Dividing (2,4) by II (X— isX ; (e)), we have
J= ,

A(k) A ( k i , k 2 )  += x _ isxk(e ) cx — isxki ceimx — isxko »

So, for any o-
i ( )=//, ; (e)+

(2, 4)
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N   A ( k ) 1  I b k ( k i ,  k 2 ) I  1 < E . + E ...
k=1i + ki, k2I i + SX01 •  [ 6  j +  i( 1)S X k 2 ) 1  

+

N ( 0 1 I  A (k k2< E )I2  ±

k=- 1 I i h j ( e )  I kf 712 I 1.6 .0)I
Since all the minors A(k), A(k„ k2 ), •• ,  are bounded, pi (e) must

be also bounded for e' E S  and I s 1 .  p i (e )  is clearly bounded
for e' E S  and I s  < 1, and hence the proof is complete.

Proof of the Necessity

The condition (I) is necessary because if  we choose the zero
operator for (2, 2), then (2, 1) itself must be hyperbolic.

Necessity o f (II). W e  are going to show that if the condition
(II) is not satisfied, then there exists a system o f the form (2, 2)
for which (2, 3) is not hyperbolic.

LEMMA 3 . If  the  equation

(2, 5) (  3
—

t
) N u(x, t) E  e(—a,) °'°( a  ) (

61 •••( ) 'n u (x ,t)a aloel5r1V. O . ; ax„,

is hyperbolic, then f o r any fixed e E S,

(2, 6) 6
a
 rv(0-, t) E  a n ••• è,"».(—a  ) 6° (  a t )

laI S N at ao-

is a  hyperbolic equation with respect to the two variables t  and cr.
PROOF. Since (2, 5) is hyperbolic, the real parts of the roots of

XN —  E  aa'(i1) 4 1••• (lt„)naas° =

are bounded as e  runs over E " .  Now fix an element e E S  and
consider the straight line {se : — 00 < s  < c o } . Then on this line,
the equation is

x N  E 0

and the real parts of the roots are of course bounded. Hence
(2, 6) is hyperbolic.3)

LEMMA 4 .  (A . Lax [7 ]) For an equation of Kowalevsky type in
two variables t  and o-

3) The converse of this lemma is not true (see Courant-Lax [2 ]) .
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(1)N, (°_, t)a a _ a  a y
\at) \SŒ/ v ( œ

'  
t)

to be hy perbolic, it is necessary  and sufficient that, i f  we arrange the
equation as the  sum  o f  operators o f  homogeneous degree,

a  a
1 , 4  

,  
a  

) V(Œ, t)+PN_1(
at ' '-)vc, t)+ ••• + Po v(0- ,  t )  = oa t  ao- ao- 

a awhere P,( a  ,  3   )  i s  a  homogeneous polynom ial in a t  an d  a ,  o f  de-a t  ao-
gree y , an d  if  w e have

P N (X , s) = (X —  X, )"'i (X —X p s)" p

then X„ ••• , Xp are  real num bers and 17 „( X ,  s )  contains the factors
of  the f o rm  (X —X i s)m,  w hen m •>  Y.

We omit the proof.
Now we return to the proof of the necessity of the condition

(II). Suppose that the homogeneous Kowalevsky system (2, 1) in
question satisfies the condition (I) but not (II). Then there exists
an element °=((,), ••• , )  E S  such that A(e) is not diagonalizable,
that is to say, the minimum polynomial of A(e) has a multiple root.

Factorizing det. (X E— sA (0), we have

det. (XE—sA(e)) = (X  — X i (e)s)m • • • (X —X p (e)s)n p

Then the minimum polynomial of sA (e )  is of the form

(X— X,(e)s)ki ••• (X— Xp (e)s)kp

where k „••• ,k p  are positive integers and one of them is larger
than 1, and without loss o f generality we can suppose 14> 1 .  It
follows that the greatest common divisor o f  a ll (N -1 )-ro w e d
minors o f X E— sA (e) is

(X— Xi (e)s)mi - ki ••• (X— Xp( 0 )s)'np - kp •

Now it is clear from the construction of the system (1, 3) that
XE — s A(e) has the same form as /142 (X) in lemma 1. Therefore by
lemma 2 , all (N - 1 ) - ro w e d  minors obtained by omitting a main
row, have the form

(X — Xi (e)s)mi -  ki • • • (X — X (e)s)mp -  k pq)(,'1( X, s)

where i ,  j  and v denote the same suffixes as those of the elements
of the main rows, and the polynomials (KY(X, s )  have no common
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factor. Hence there exists a polynomial pa(X, s) for which we have
p i(01(X1s, s) *  0.

Let B(e) be an  (N, N)-matrix whose elements are 0 except for
the element b1 ) in the same position as (1) 0))0

) , where we put ba -
(e r,)fio - '0, ep being a  coordinate for which O. Then B(e) hass
th e  same form a s  (1, 8). Clearly th e  matrix XE—isA()—B(0
corresponds to the following Kowalevsky system :

. .i= ii.I= n ;  ' '  at a x , a x „ , i ,( a )n i  u —  E  °  ( a  r ( a  r  •  ( a  Y  u
m(2, 7) at 

f o r  i+i 0

at "  J - 1  1 , — a; oi t a , ax„,( 
a \

 p u .  = E  a c t  ( a r x( a  ) ( a
 Y

m u .,
4 . / a vo-i( 

a

a  \ n;o -, 0
u p .at) .x,)

On the other hand, as a polynomial in two variables X and s,
det. (XE—sA(e)— me))

=  0 ,-x i(osy n i •  •  •  ( X -> ,(0 ).9 )-  p - b a c x -x (o )s y n c k , •  •  •

(x -x p (e )s )m p -k p p uo(x , s )

does not satisfy the condition of lemma 4, since the second term
of the right hand side of this equality is th e  homogeneous part
o f  degree N -1  an d  le, > 1 ,  while pa(X, s )  has not the factor
X— Xi (e )s . Then it follows from lemma 3 and lemma 4 that the
determinant of (2, 7) is not hyperbolic, that is , by virtue of remark
5, (2, 7) is not hyperbolic.

Necessity of the condition (III). Supposing that a Kowalevsky
system of the form (2, 1) satisfies the conditions (I) and (II) but
not (III), we shall again add to it a  system of operators of lower
degree (2, 2) such that the whole system (2, 3) is not hyperbolic.

Before we proceed to the proof, we describe its outline. First,
we take a  sequence L  n =1, 2, ••• in  S such that the determinant
of /V(„) tends to zero as n—>co. Let B be a  matrix whose elements
are 0 except for (io , j 0 )-th element. Then, denoting the (i, j)-th
element of N(e) by n i i ( e )  and that of N() - '  by n7j(e), we have
N( n )BN(„) - 1 —(nri o (e,t)bi a i o n.To (en)), and so

(2,8)d e t .  (XE—isA(„)—B) = det. (XE—isD(„)—N(e, )BN(.) - 1 )
= 11 (X — n)) nki

0 (en)bi0 0
 n.";1(n) 11 (X  —  isX gn))

j=1 0 i t k
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In  order to make the real part of a zero of this polynomial
in X tend to infinity as n—> co, we should modify the suffix (4, j 0 )
so that a coefficient ak (en ) —np i o (en )bi o o nT01(Q  tends to infinity, since
if not the real parts of zeroes would remain bounded, by the same
reason as in the proof of the sufficiency.

This modification is easy when Xi(e.), ••• X N (n ) are distinct.
We merely find a non-bounded n.To l(e„), and among the coordinates
o f k - th  row vector o f  N(e n )  we take an nk i o (en )  which does not
tend to zero as n—.00. This is possible since the length o f each
row vector of N („ )  is 1. Then I ak(en)I I nhio ( n)bio i 0 nT,l(n)1 tends
to infinity. But when Xi(n), XN(n) are not distinct, say X g n )

X2 ( „), the equation is

det. (XE— isA(e n ) — B) = 1-v1(X— isX# n ))
5 =1

— la,(e n ) + a 2 ( „)} fi (X — isX1 ( 0) —  a k ( n )II (X— is X ( . ) )
k= 3

and hence, even if  we may modify the suffix (4 , j a )  so that ct,( n )
tends to infinity, the value a1( „)+a 2 ( n )  may not tend to infinity.
We can get over this difficulty by modifying N(e n ) so that the sum

a2(en) has only one non-zero term.
There is another difficulty :  the matrix B  which we wish to

find must be of the form (1, 8), that is, the unique non-zero element
bo o  o f  B  must belong to a m ain row . This problem will be solved
by virtue o f lemma 2.

After these modifications, we shall prove that the real part
of a zero of (2 , 8 ) tends to infinity i f  we choose a  sequence of
vectors 7/„=0-„ n  in  E,'"  and let

Now we show the detail o f the proof. Since the condition
(III) is not satisfied, there exists an infinite sequence E S, n = 1 , 2,
••• , such that for any method of construction of N („ ) ,  I det.
tends to zero as n—CX). By taking a subsequence, we can assume
that converges to an element 

0 = ( ,
, 0„)  E S and the multi-

plicity of the characteristic roots of ./4( „) remains invariant for all n.
Hence we can write

det. (X E — is A ()) (X — isX,(en ))nt •• • (X — isXp(Q r P

where m„ ••• , mp  are independent of n.
A s  is well-known, a row vector o f th e  d iagonalizo r N (e ) is
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an eigenvector of A ( ) .  Therefore in order to construct a diagona-
lizor we must solve the equations
(2,9)( x , ,  • • •  ,  xN )A (Q  =  X i()(x ,,•••  , xN ), i = 1 , •••  P •

We construct its solution vectors as follows. Take a characteristic
root of A( ) ,  say Xi(e.), then again choosing a subsequence of
if  necessary, we can find an (N—m 1 )-row ed minor A o ( Q  o f  X ,( „ ) E

)— A ( )  such that for any other (N—m 1 )-rowed minor
n A 0 ( 7 2 )

is bounded as n-->00. Moreover, by lemma 2, we can assume that
A o (e n )  is constructed by omitting m , main rows, say v, - t h ,  • • ,
t h  rows o f X g „ )E — A ( ) .  T h e n  an easy calculation using the
well-known Cramer's method shows that m , linearly independent
solution vectors o f (2, 9) are given in the following form :
(2, 10)

/ A  (Q A i g n )
= AlAQ A g n )   

 , 0 , •............A iN (e .)
Ao(Q

( A
 ( n )  ±  A

 2 2 ( Q • 1   0 ..............................
A 2 N ( f l )

2  
)

— A2:(n) A g n )
, , ,  , , ,

Ao(Q  /

( ±  Am i g n ) A „ „ 2 ( & ,)  • • •  ,  0 ,  • • •  ,  0 „  1, ••• A 'n 1 N (n ))
Ao( )A a n ) A a n )

v1- t h  v 2-th, ••• , v„, i - t h  coordinate

where A i g , , )  are (N— m ,)-row ed minors o f  X g, z)E— A( ). The
length of X i ,

H

1X i i = E
iSVp•'•,vm,

A i j n )

A o(n)

is bounded as n—.00, so when we normalize these vectors as

1(2,11)X i '  — X i, i  =  1, 2, • • • , m„I
the vi -th coordinate of the vector X i does not tend to zero as n--->00,
while the other v,--th , ••• , t,,,1-th ones are 0. We construct all
e ig e n v e c to rs  of the other characteristic roots X2 , ••• , X  the same
m anner. A  diagonalizor N ( „ )  is constructed by rearranging these
vectors. W e use N („ )  thus constructed in the sequel exclusively.

Since det. N („ ) - '  is not bounded by the hypothesis that det.
MO tends to zero as n—> co, there exists an element nTolo ( „) which
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tends to infinity as n—.00. Take the k 0 -th row  vector o f N („).
This is  an eigenvector o f some characteristic root o f  A ( „) ,  say
X 1(n ). We can suppose then that it is X 0 in  (2, 11), whose 1k 0

th coordinate does not tend to  zero, and whose other v 1 -th, ••• ,
vn i i -th  ones are O. Put o =  k0

 and let B( ) be  the matrix whose
elements are 0 except for the (is, j 0 )-element which takes the value

b -(9cr, where b  is a constant to be determined later, p  i s  a  co-s
ordinate for which C°(p-th coordinate o f  °) 0  and 0- is an integer
to be determined so that the matrix

(2, 12) XE— isA (e)—  B( ), E S ,

corresponds to a system of partial differential equations, as was
done in the proof of the necessity of the condition (II), which is
possible since B ( )  has the form o f (1, 8)

Now we shall prove that this system is not hyperbolic. First
we calculate the determinant o f this system.

(2, 13) det. (XE— isA () —  B( ))
= det. (N ()(X E — isA ()—  B ())N () - ')

= det. (XE— isD (0 —  N ()B (O N () - ') .

From the construction of N ( „ ) ,  it follows that nk10( n)= 0  fo r
1 k <  m1 ,  k k o , and s o  th e  first m ,  diagonal elements of
N (e„)B („)N („) - 1  a r e  z e r o  except for the k 0 -th e lem en t and

nk o io( n)n.To;,0( ,31 tends to in fin ity a s  n—> co. Moreover, since
is a matrix of rank 1, any minor o f degree larger

than 1 is 0. Therefore

(2, 14)

1_1 (X— i5X .
( ))m i

(2, 13) = 11 (X— isX ; ( ))m i —b .  nk o io n jolko( ) i=1 .
J-1 x—isx,(e)

.1
5 1  In; f l  (X— iSX1,( )) m v1 

— War gl > n k i , ( ) 1 1 -Joik( )1 '1  x  1 .  s x  j ( 0

k =  m + 1
1

= { h (x,— isx ,()r il { isx 1())— ak ( ) n (x,—isxp)}k=i k

where we put



16 K . K asahara and M . Y amaguti

a ( ) = b• - nk0 i0 (e)h 0 ( ),

E  mi

a 5 ( ) n k i 0 ( ) h T 0 1 , ( ) , j  =  2, , P.
k mi+1

It is clear from the construction of n i ( )  that ak (), k =1 , 2, ••• , P,
are homogeneous functions i n  E  Ein o f order 0 ,  and I ag „)I  tends
to infinity as n - - .0 0 .  But there may be another a # „)  which tends
to infinity more rapidly than ak (U .  Let a10 (U  be the most rapidly
increasing term o f a ll aa) ,  k = 1, 2, ••• , p .  Here we determine the

a i o ( n )

tends to 1.4 .5 ) Consider the equation

(2 , 15) 1P1 (X— i s X ( ) )— ak ( ) H  (X— isX j ( ) )  =  O.
k=1 .J*1,

We are going to show that if we take some sequence n=1, 2,

••• in  E m , the real part of a  root o f (2 , 1 5 ) is not bounded as
n— .00. Put

t„ I and s „  =  min I X .0 .) —  X k (n )J.k,;*k

Then 4 ,--.0 0  and .3„ is bounded as n -- - .0 0 ."  Next, consider the se-
quence o f vectors

97n n , 1 ,  2 ,  • • •
s„

which means that 97,8 h a s  the same direction as and

its length is . Then (2 , 1 5 ) is

TI(X — i = O.
S „ k=1 j $ k

W e denote th e  roots of this equation by cr i (n .)= / / , ; (97.)+1. 1";(77.),

4) Of course  a 1 °(  n — 1, 2, • • • is not a convergent sequence on the unit circle
aio(kn)

in  the complex plane in general, but we can assume its  convergence by taking a
subsequence of .

5) I f  all the coefficients of A (6 ) are real, then we merely put b =1 .
6 )  Choosing again a  subsequence o f 6„ i f  necessary, we can assume that t„ and

s, are monotone sequences, and j = 1 , •••  , p.

value of the coefficient b  so  th a t  th e  r e a l part of
(zio ( n)1

in
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j=1, 2, ••• , p .  Dividing this equation by 4 ,  we have

(2, 16) ii- CX — i !1' X .(„» — Ê dk (,,) H  (i. — i t-' X  .(,,» =  o,

ak („)

..14 k S t :  j

— Xwhere X= 
t n  

and iik( n)--= — t n  , I (ik( n) I ‹  M . t h e  roots o f  this

, p i(N )• 2);(7),,)equation are ei-i (n„)=A ; (7M +i(970= - I- 1 .t nt n
PROPOSITION. There exists a one-to-one correspondence between

.tt X j =1, 2, ••• ,p  an d  5-(n„), j =1, 2, ••• , p, such that, denoting

.tth e  corresponding values by th e  same suffixes, a-; (97„)-- ' X g t,)s t,
are bounded as  n---> 0 0 .

PROOF. There exists no such that m.p< t  n for all n > no . Hence
2

we can find a  number p, ill•p < p <  t
2" fo r  all n no ,  which im-

p l ie s  d an )  M <  1;3 - , and

<  21

for all n no ,  since

.t .t2 ' X •( „)—

for all j  and k , j k.
Put

j -1= k ,

--= I ) -x a .)1 >  t„s„

. t . t
X  n ) —n X  n )

Sn S n

2 I 4

f ( z )  = ) )

and

g (z )  = —  Ê a-  k( >,) 11 (z — X (.) )  •
.14 k

.tWe compare their values on the circle C , with centre z-.̀X,A „ )  ands„
radius p  in  the complex plane, v=1, 2, ••• , p .  On this circle

.tIf.(z)1 = P H  z — 1 '-'XA )sn

and
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gn(z)I P Ê .)1 H  z—i AX )  + .t
.;*k S s„t ,

* v

t
<  p E z — i tiz x ( n ) +   p 1+1

. _n X
P j4k s n

< p l i
. t

Sn

Hence by Rouché's theorem in  function theory, th e  number of
zeroes of fn(Z) and that of f n (z )+ g (z )  coincide in the interior of

C .  B u t  t h e  on ly  zero of f n ( z )  i n  th is  d o m ain  is  i—ts nX.O n ).

Therefore there exists one and only one root a - v ( i ) n )  of (2, 16) such
that

.  t .t .ta-,(nn)— < p, while X A zn )— X,( n ) --> CC)

Sn Sn Sn

The proof of the proposition is thus complete.
.tPut i3 v (1 . )=  (Tin) — Xv(„), = 1 , 2, • • • , p .  Since
Sn

— (X -(e .)) ,i) H a-.(97.))s n k = 1 j * k S n  j

i s  an  identity in 5 , w e can substitute i t N.J
°
 (&,) for 5t., ( j o being

the suffix a j 0 ( n )i t n ), and then we have

— (its;n itf.)tA n)) = — RJ, (nn) H
' o S n

i ° ( n )  — ( 1 —  
I n n )  

j o ( 11n) i4 j0 it 
n

n x  .( U )
S  j ° S n

In th is relation, I 13  i(n.)1 ‹  P , I l i g . ) 1  1 and
.t

°X i ( n) i t n  X -( n) in c° as n oc .sns n  ' —

Therefore the right hand term o f (2, 17) tends to  1, and so we
have

urn. R • (n )-1° " 1
d o ( . )

=  I fn ( z) I .

Thus

(2. 17)
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Since the imaginary part of ii30 ( ) tends to zero, the real part of
iii i o (N )  cannot tend to  zero, which means that the rea l part of

1
ja-i o (91n ) does not approach zero, that is, IA- 4 0M! --/ z  (nn ) c > O.tn

Hence j ( ) _ 0 0  as n - . 0 0 .  This completes the proof of the
necessity of the condition (III).

3 .  Examples

1 )  Single operators

THEOREM 3. A  homogeneous equation o f  K o w a le v sk y  t y P e

(

--)n u(x, t) E err( a  yi (   a   r n to ,  t)at 1.1— at ax, axn,
ao<"

is strongly hyperbolic i f  an d  only if  the polynom ial

(3, 1) X"— E  a 1•-• , , =X°30 --- 0

a0<"
has real and distinct roots in  X f o r a n y  E S.

P R O O F . Necessity. Reducing the equation to th e  form of
(1,5) we have

0 1

0

 

0 1

0

 

A( ) A g) =  E •••
a i +• • • +a , n =i

      

A g)  2 4 2 ( )  . A , g )

From the condition (II) of theorem 2, A( ) must be diagonalizable,
that is, the minimum polynomial o f A( ) h a s  no multiple root.
But the minimum polynomial of A( ) is equal to (3, 1). Hence the
roots of the equation (3, 1) must be distinct.

S u ffic ien cy ." It w ill suffice to show th at the conditions in
theorem 3 imply the condition (III) in theorem 2. Let us denote
the distinct real roots by Xg), ••• , X( ). Then, since they are con-
tinuous in there exists a positive number c  such that for a n y  E S,

IXi( ) — X; (0 1 >  c  if i

7 )  See also Leray [10 ].
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A  diagonalizor 1V( ) is given as follows :
X 1( )" - '  X 1 (0 " -2  .......... 1 .........../ 1

x.g )n - 2 1 .,41( )1 0
A,( ) 1N( ) =

A , „ ( ) " - - 1 )t .„ ( ) " - 2  •  •  •  •  •  •  1  / An_ 1( ) A 2 ( )........ 1

Since each term is bounded a s  runs over S, we need not normalize
row vectors o f N ( ) .  We see immediately

I det. N ()1 = H  Xg) — Xi (01>_ > 0 .

2 )  H e rm it ia n  o p e ra to r s

Suppose that we are given a system of first order operators

(3,2)' Ê  hi ;  --u ; (x, t) = "Ê 'u i (x  t), = 1, ••• ,n .- 01 5=1 ax k 
where the constant matrix B—(1.1 ; )  is hermitian positive and A( )

a'4 „)  is hermitian for a n y  E  S .  One of the most familiark--1
examples o f this type is the system o f equations of Maxwell (see
Courant-Hilbert [ 3 ]  p. 377) :

cr  —  
au

5 + 

au
6

a u ,

–  
a u ,  au,

at ax , ax , 5a t a x , a x , '
au, au, au, au, au a u_ _,_ 3 ,0 -2

 d t  

—
a x ,  a x , ' at a x , ' a x ,

0 . 3  
au. att

4 +  au , au, au, a l l ,
at ax , ax ,

,

a t  =  a x , a x , •
Now (3, 2) can be written

aB 
 a  n x t) = A(- )nx , t)at ' a x

and so we have

a—
a  

m x t) = B - 1 A (— )u(x, t) .at ' a x
We shall show that B - 1 A ( )  satisfies the conditions of theorem 2.
Since B is hermitian positive, there exists a unitary matrix V such
that
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V BV* =

o-n

where 0-„ ••• , 0-„, the characteristic roots of B , are real and positive.
Put

1 

Then we have clearly Q* = Q and QV BV*Q* = E .  Since the matrix
QV A ()V *Q* is also h erm itian , we can find a  unitary matrix (I()
such that U()QV  A ()V *Q*W )* is a diagonal matrix whose elements
are all real. Put 111( ) =  U ( ) Q 'V .  Then

N () (B 'A ( ) )N ( ) - 1  = (U()QV  BV *Q* U( )*) - 1 (U()Q  V A () V*Q* U()*)
= E. U()QV  A (OV *Q*U()*

is  a d iagonal matrix whose elements are  a ll rea l. S o  B - i i4 ( )
satisfies the conditions (I) and (II) o f theorem 2. The condition
(III) is clearly satisfied since each element of U(0 is bounded and

det. N(0 I I det. Q - 1 1 = I 0-i 0- .1

Hence the system (3, 2) is strongly hyperbolic.

3) Petrow sky's exam ple

Petrowsky has shown an example which satisfies the conditions
(I) and (II) but is not strongly hyperbolic. (see [1 4 ] ,  p. 67)

a a a
u 1a x i  u i ax, u 2

 '

a a aua 2a 1
 —

x, ax,
u

 3

a 

at u ,  = o .

The associated matrix is

I cr,
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f 1 2 0  \ / x \ 0  \ .
x

■ 0  0  X  / x i 0 0 0

The characteristic equation takes the form

X(X2=  0.

11The roots X1= 
2 

+ X2= 
2

-\/T + and x3 =0 are

real. If  2 =I-0, these three roots are distinct, so A( )  is  diagon-
a lizab le . If  2 =0, A ( )  is itself diagonal. Hence the conditions (I)
and (II) are satisfied. We calculate the diagonalizor N( )  fo r  every

E S. If we can take N( ) = E .  Assume that 
2
 4-0 and we

have

2
8 8 X i 8

N( )  =
X28 )

0 01

I N /fHence det. N( ) 1= tends to zero ast +3

Rem ark. As was seen in 1), there are some cases where the
conditions (I) and (II) imply (III). F o r  example, systems o f two
equations o f first order, namely

au au m  av=  E  a; +  E  biat ,=i a x , I = ax,
ay auc i +  d i av 
at ,=i a x ,

come into this case. Another example :  in the case of a system
of equations o f first order, if m , the dimension of Irn, is 2 , and if
there exists a 2) such that det. (XE— A( ))  has only one N-
p le  root, then the conditions (I) and (II) imply (III). T h e  details
are left to the reader.

where 6= -\ / +3Z .
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