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Introduction. Let (2, &, ) be a measure space and T an inver-
tible measure-preserving transformation on Q. Let B(Q, &, u) be
the set of all equivalence classes of measurable sets of 2, where
two measurable sets E and F are called equivalent if and only if
their symmetric difference ES F has measure 0. Then the set
B(Q, &, 1) is a Eoolean algebra under the natural Boolean oper-
ations and the measure . can be considered as a measure on this
Boolean algebra. (This Boolean algebra B(Q, &, x) is called the
measure algebra associated with the measure space (Q, &, u).)
The transformation 7 induces in a natural way a measure-
preserving automorphism of the measure algebra B(Q, &, ). The
set of all complex valued p-measurable functions f(x) for which

S | f(x)|*d u(x)< oo forms a Hilbert space L,Q, S, ), and the
Qo

transformation 7 induces a unitary operator on L,(Q, &, u) if we
correspond to every f(x)e€L,(Q, S, ) a function g(x) such that
g(x)=f(T(x)). In this way an invertible measure-preserving trans-
formation T on 2 can be regarded as a measure-preserving auto-
morphism of B(2, S, x) or a unitary operator on L,(Q, &, u).

Let us suppose that S and T are invertible measure-preserving
transformations on 2. To discuss relations between such two
transformations there has been introduced the concepts ‘“similarity”,
“conjugacy” and “equivalence”. First, S and 7T will be called
(geometrically) similar if there exists an invertible measure-
preserving transformation @ on Q such that S=Q'7Q. (In this
case we say that two transformations S and T are essentially the
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same as transformations on a measure space 2.) Next, S and T
are called (algebraically) conjugate if there exists a measure-
preserving automorphism € of B(Q, &, u) such that S=Q'TQ,
where S and T are regarded as measure-preserving automorphisms
of B(Q, &, ) respectively. (In this case we say that two trans-
formations S and T are essentially the same as automorphisms of
the measure algebra B(Q2, &, x).) Finally, S and T will be called
(spectrally) equivalent if there exists a unitary operator @ on
L(Q, &, 4) such that S=Q'TQ, where S and T are regarded as
unitary operators on L,(Q, &, u) respectively. (In this case we say
that two transformations S and T are essentially the same as
transformations on the Hilbert space L,(Q, &, px).) It is easy to
observe that similarity, conjugacy and equivalence can also be
defined for pair of transformations that do not act on the same
domain ; in this case the implementing transformation @ will map
one of the two domains onto the other. In an obvious sense
similarity implies conjugacy, and conjugacy implies equivalence.
But the converse is false for both these implications.

In the theory of ergodic transformations it is an interesting
problem to discuss the relation between two transformations from
viepoints of these concepts. J. von Neumann proved that an
ergodic measure-preserving transformation with discrete spectrum*
is conjugate to a rotation** on a compact abelian group. This is
an interesting consequence which is called the representation
theorem. And this theorem reminds us of the following question.

“Under what conditions does it follow that an invertible measure-
preserving transformation T on a measure space (2, S, u) is similar
to a rotation on a compact abelian group?”’

The purpose of the present paper is to give an answer to the
above question by proving three Representation Theorems (see
below). In the proofs of these theorems the results in [4]
employ an important role. Incidentally we shall prove a theorem
that if a Riemanian manifold Q admits an ergodic measure-
preserving transformation which is also an isometric transform-

* A transformation T on a measure space (L, &, p) is said to have discrete
spectrum if there exists a basic {f;} of Ly({, &, p) each of which is a proper vector
of the induced unitary operator U on L,(Q, &, u).

**¥ et G be a compact group. A mapping x—ax (where ¢ is an element of G)
is called a rotation on the group G.
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ation of Q onto itself, then 2 is a torus. This might be an
interesting consequence.

§1. Group of isometric transformations.

The following lemmas are easily deduced from the theorems
in [4].

LEMMA 1.1. Let Q be a metric Space and © the group of all
isometric transformations of Q onto itself. For every €0, an

arbitrary positive integer n and any n elements x,, x,, -+ ,x, of Q
we set

(L1) UE; %, %o, -, %,) = {o; ploxs, )& i=1,2 no€D}
If the set of all such U(E; x,, x,, -+ ,x,) is taken as a complete

system of neighborhoods of the identity of 9, then O becomes a
topological group. (See Theorem 3.7 in [4])

It is easy to see that the topology which is introduced in our
lemma coincides with the topology which is defined in Theorem
3.7 in [4].

LEMMA 1.2, Let Q be a compact metric space and O the group
af all isometric transformations of Q onto itself. Let us suppose
that © is topologized by the method of Lemma 1.1. Then O is a
compact topological group. (see Theorem 4.4, Theorem 4.8 in [4])

Lemma 1.3. Let Q be a locally compact and connected metric
space and O the group of all isometric transformations of Q onto
itself. If © is topologized by the method of Lemma 1.1, then O is
a locality compact and o—compact topological group. Moreover, there
exises an & >0 such that the neighborhood

(1.2) UE;x) = {o;0€9, plox, x) &
has compact closure for every x € Q. (See Theorem 4. 4, Theorem 4.5
and Theorem 4.8 in [4])

Lemma 1.4, Let Q be a metric space whose bounded set is
always compact and O the group of all isometric transformations
of Q onto itself. We introduce a topology in O as in Lemma 1.1.
Then © becomes a locally compact and o-compact topological group,
and for every € >0 and every point x € Q the neighborhood

1.3) UéE;x) = {o; c€9, plox, x) <&

has compact closure. (See Theorem 4.7 and Theovem 4.8 in [4])
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REMARK. In this § we had not assumed that the group 9
satisfies the condition (C,) of Theorem 3.4 in [4]. But our
lemmas are proved quite similary as in [4].

§2. Some lemmas.

LEmMA 2.1. Let G be a locally compact topological group and
H an abstract subgroup of G such that H=G. If a measure i in
G is invariant under H, that is, the relation u(aA)=u(A) holds
Sfor every ac H and every Baire set AZG, then u is a Haar mea-
sure in G.

The proof is easy and is omitted.

LEMMA 2.2. Let G be a locally compact topological group. If
there exists an element a € G such that the cyclic group H= {a” ; n=0,
+1, +2, -} is dense in G, then G is a compact abelian group or
a discrete cyclic group. '

For a proof of this lemma see Lemma 2 in [2], p. 96.

LEMMA 2.3. Let Q be a Hausdorff space and O a group of
homeomor phisms of Q which satisfies the condition that

(2.1) for any two points x,ycQ there exists a homeomorphism
o €9 such that ox=y.

Let us suppose that © is topologized in such a manner that O be-
comes a locally compact and o-compact topological group. For any
point x € Q we define a mapping . of O onto the space Q2 such that

(2. 2) Yr.lo) =ox.

If the mapping r, is continuous and the space € is of the second
category, then the mapping . is open.

Proor. Let W be an arbitrary open set of . First, we shall
show that v, (W) contains an open set. We select an open set
V such that its closure V is compact and VZ W. Since the
topological group 9 is o—-compact, there exists a countable set of
elements o,, n=1, 2, --- of  such that the system of open sets
o,V, n=1,2, -+, covers the topological group 9. Suppose that
Vo, V)=F,, n=1,2,---. Since every F, is a continuous image
of a compact set, it is also a compact closed set. From the con-

dition (2.1) of the lemma we have OFn:Q. Since the space

n=1
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is of the second category, there exists at least one set F, con-
taining an open set. Then the set F=y (V)=0,"Y (0, V)=0,'F,
contains also an open set. Since V< W, (W) contains an open
set.

Let U be a neighborhood of the identity e€ ©. Then there
exists a neighborhood W of the identity such that W 'WCU.
From what we have just proved vy, (W) contains an open set W*,
Let pe W* and o an element of W such that Y (o)=p (cv=0).
Then o'W is a neighborhood of the identity e which is contained
in U. Consequently we have Y (U)2v, (W 'W)2y (o7 W)=
'Y (W)De'W*, Since W* contains the point p=+.(c)(=0cx),
the set «7'W* is an open set containing the point ¢ 'p=0c"'ocx=2x.

The above argument asserts that if U is an arbitrary neigh-
borhood of the identity e€®, then v, (U) contains an open set
which contains the point x. Let D be an open set of © and ¢ an
arbitrary element of D. Then o7'D is clearly a neighborhood of
the identity e€ . From what we have just mentioned the point
x is an inner point of the set Y. (c7'D)=c""yr (D). Hence
ox=vY,c) is an inner point of the set oo 'Y (D)=+r (D). This
shows that vy (D) is open. Our lemma is completely proved.

§3. Ergodic transformations.

Lemma 3.1. Let Q be a melric space and i a measure in Q
such that every non-empty open set has positive measure. If an iso-
metric transformation o of Q onto itself is an ergodic measure-
preserving transformation on 2, them for every point x of £ the
set {c"x;n=0, £1, £2, ---} is everywhere dense in Q.

The proof is easy and is omitted.

LemMMA 3.2, Let Q be a locally compact metric space and 9
the group of all isometric transformations of 2 onto itself. We
shall assume that the following three conditions are satisfied :

1) If we introduce a topology in Q as in Lemma 1.1, then O
becomes a locally compact and o-compact topological group.

2) There exists an element o,€ D and a point x,€ Q such that
the set {o5x,; n=0, x1, +2, --+) is everywhere dense in L.

3) There exists a positive number & such that a neighborhood
Ué; x)={o;0€9, plox, x)<E has compact closure for every point
x €.
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Then we have

() The space Q is compact or discrete.

(B) We can define an operation in Q which associates with
each pair of elements x,y of Q2 a third element z of Q, written as
z=1x0y, satisfying the following conditions :

(i) Q becomes an abelian topological group by the product xoy
and the original topology of Q.

(i) The relation o,x=0,x.0x holds for every x €.

Proor. Let H be the cyclic group which is generated by the
element o,€9. Then H is clearly a locally compact and o-
compact topological group and H is everywhere dense in H.
Hence by Lemma 2.2 the group H is a compact abelian group or
a discrete cyclic group.

First, we shall assume that H is a compact abelian group.
We define a mapping v, of © into Q such that v, (¢)=0x, for
every o€ 9. It is easy to see that ., is continuous. Since H is
compact, yr, (H)={ox,;0 € H} is also compact and closed. Hence
we have QD+, (H)=v . (H)2v.(H)=2, that is, ¥, (H)=Q. Let
N be the set of all elements o€ H such that ocx,=x,. And let
H/N be the factor group of H by the closed normal subgroup N.
Then it is easily seen that the mapping ., can be regarded as
a mapping of H/N onto the space Q. Moreover, Vr,, is a one-to-
one continuous mapping of the compact space H/N onto the space
£ and hence a topological mapping. We associate with each pair
of elements x, y€Q a third element z € Q such that

(3.1) 2 = P ($2y (0) 95 () -

Then it is evident that £ becomes a compact abelian group which
is isomorphic with the topological group H/N. Let x be an arbi-
trary point in Q and o an element of H such that ocx,=x (notice
that v, (H)=C). Then it is easy to see that y;'(x)=cN. On
the other hand +v;'(s,%,)=0,N. Hence by the definition of multi-
plication of the group Q we have o,x0x=1r, (Y7 (5,%,) ¥z, (%))
=V, (oo Neo N)=r, (090 N)=0,0x,=a,x. The assertions («) and
(B) are thereby proved.

Next, we shall assume that H is a discrete cyclic group, that
is, H=H. In the first place, we shall show that vy, (9)=0. Let
x be an arbitrary point in Q. Since the set {stx,;n=0, =1, £2, ---}
is everywhere dense in 2, we can select from the set {o5x,;#
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=0, 1, -~} a subsequence oWx,, o x,, -+, o0 x,, -~ which con-
verges to the point x. Let & be a positive number as in the con-
dition 3) of the present lemma. There exists a positive integer J
such that p(s§"x,, o%ix,)< € for every ¢=]. Hence it holds that
p(xy, o8 ™ x,)< E for every ¢=]. This implies that o§: ™,
€ U(¢; x,), that is, i € 037 U(E; x,) for every i =]. Since the neigh-
borhood U(¢;x,) has compact closure we can easily see that

Voo (087 U(E; %0) 2V, (087 U(E s x) 2[closure  of the set{obix,;i
=J}]>x

Hence we have v, (9)=Q. Let N be the set of those elements
o €9 for which ox,=x,. From the condition 3) of the lemma it
is easy to see that IV is a compact subgroup of 9. If there exists
an integer n_>0 such that ofx,=x,, then Q consists of at most

n points x,, o,%,, -+ ,08'x,. In this case our assertion is trivial.
Hence we assume that
3.2) ot x, +=2x, for n==0.

Since NnH=e¢ (identity of 9), N is compact and H is discrete,
we can easily prove that there exists a neighborhood V of the
identity e€ O such that

(3. 3) VNV-AH =¢.

Let D,=v, (o0 V), n=0, =1, ... By Lemma 2.3 the mapping v,
is an open mapping of © onto £ and hence every D, is an open
set containing the point o3x,. We shall show that D,nD,,=0,
n==m. Assume the contrary. Then there exist two elements
7., T, €V such that o7, x,=0f7,%,. This implies that T3 ot ™, x,
=x,. Hence we have v3'¢% ™7, € N, that is, ot ™€ 7, NT7T*C VNV .
Thus we have arrived at a contradiction (see (3. 2), (3.3)). Conse-
quently, we have D,nD,=0 for n=m and D,>otx,. Since
¥.(V)=D, is an open set containing the point x,, there exists a
positive number 8 such that {x;p(x,, )< 8} &D,. According to
the isometry of every transformation of we can easily see that
{x;p(clx,, )< 8} =cp{x; p(x,, )< 8} To2D,=D,. From this we
can easily prove that the closure of the set {sjx,;7=0, 1, +2, ---}
coincides with itself. Hence we have Q= {o%x,;2=0, =1, ---}. In
this case it is quite easy to see that the assertions () and (B)
are valid. Our lemma is thereby proved.

REPRESENTATION THEOREM 1. Let Q be a compact metric space
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and T an ergodic measure-preserving transformation on a measure

space (2, &, u) which satisfies the condition that

(A) © is the class of all Borel sets of Q and w is a countably
additive measure on & such that (D) >0 for every non-empty
open subset D of Q.

If T is an isometric transformation of Q onto itself, then T is

similar to a rotation on a compact abelian group.

ProOF. Let © be the group of all isometric transformations
of Q onto itself. We introduce in © a topology as in Lemma 1. 1.
By Lemma 1.2 © is a compact group. Hence the conditions 1)
and 3) of Lemma 3.2 are satisfied. We select an arbitrary point
x%,€Q. By Lemma 3.1 the set {T"x,;n=0, 1, £2, ---} is every-
where dense in . Hence the condition 2) of Lemma 3.2 is also
satisfied. By Lemma 3.2 we can define the product xoy for every
pair of points x, y of Q satisfying the conditions (i) and (ii) in
Lemma 3.2. In this way Q can be regarded as a compact abelian
group and the mapping 7T is a rotation on the compact abelian
group Q such that Tx=Tx,0x. Let H be the cyclic subgroup of
{ which is generated by the element Tx, of the group Q. Then
it is easy to see that the measure p is invariant under H and H
is everywhere dense in Q. Hence by Lemma 2.1 the measure u
is a Haar measure in the compact abelian group 2. Our theorem
is thereby proved.

REPRESENTATION THEOREM 2. Let Q be a locally compact and
connected metric space and T an ergodic measurve-preserving trans-
formation on a measure space (2, &, u) which satisfies the condition
(A). If T is an isometric transformation of Q onto itself, then T
is stmilar to a rotation on a compact abelian group.

Proor. By using Lemma 1.3, Lemma 2.1 and Lemma 3.2
we can prove quite similarly as in Representation Theorem 1 that
T is similar to a rotation on a compact abelian group or a trans-
lation* on a discrete cyclic group. Since £ is connected, T can
not similar to a translation on a discrete cyclic group. Hence we
have our theorem.

REPRESENTATION THEOREM 3. Let Q be a metric space whose
bounded set is always compact and T an ergodic measure-preserving

* Let G be a discrete group. A mapping x—ax (where ¢ is an element of G) is
called a translation on G.
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transformation on a measure space (2, S, u) which satisfies the con-
dition (A). If T is an isometric transformation of Q onto itself,
then T is similar to a rotation on a compact abelian group or a
translation on a discrete cyclic group.

This theorem is proved quite similarly as in Representation
Theorem 1 by using Lemma 1.4, Lemma 2.1 and Lemma 3. 2.

THEOREM. Let Q be a Riemanian manifold and ;i a measure
in Q such that every non-empty open set has positive measure. If
there exists an ergodic measure-preserving transformation which is
also an isometric transformation of Q onto itself, then Q is a torus.

ProoF. By using Lemma 1.3, Lemma 2.2 and Lemma 3.2
we can easily prove that Q is regarded as a comact abelian group
or a discrete cyclic group. On the other hand Q is connected and
locally connected. Hence we have our theorem.
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