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Introduction. The present paper is concerned with the general
problem of extending the classical theory of regular functions of
a complex variable. This problem was discussed by many authors
from various directions. Our approach differs from most of the
others in two main respects, namely, in the type of domain and
range of the functions and in the definition of regularity. We
deal with functions which have for their domains and ranges
subsets of a commutative Banach algebra with unit element and
we use a definition of regularity introduced by E. R. Lorch [1].
It is known [4] that a regular function by this definition is di-
fferentiable in the Fréchet sense but not every Fréchet-differentiable
function on a commutative Banach algebra is regular in the Lorch
sense. Accordingly, the Lorch theory is the richer.

For the most part, the development of the Lorch theory goes
parallel with that of the classical theory. As one would expect,
the Cauchy integral theorem and formula occupy a central position
and yield the Taylor expansion. Our purpose is to discuss his
theory in detail and to get more precise consequences. Our inves-
tigations contain some results which were not studied by Lorch.
For example we have discussed the functions log z and 77"z from
the view point of analytic continuations. The logarithmic function

was also introduced by Lorch, but his definition seems to be
artificial.

The main results of this paper is the theory of analytic con-
tinuations in which Theorem 3.1 employ an essential role. And
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the proof of this theorem is not simple by the reason that the
Jordan curve theorem does not hold in Panach algebras and con-
sequently we can not make use of the Rouché theorem.
Throughout the present paper, the symbol B designates a
commutative Banach algebra having a nuit element e.

§1. Definitions and elementary theorems.

DerINITION 1.1 (Lorch). A function f(z) whose domain D (open)
and range R are in B is said to be differentiable at z=2z,€ D, if
there exists an element « € B which satisfies the following relation

£ 2o+ 1) — f(20) —ahll = <({|Al])

where o is the Landau notation. If f(2) is differentiable at z=2z,,
then it is easy to prove that an element « which satisfies the
above relation is unique. Hence we denote this @ by f’(z,) and
call it the derivative of f(z) at z=z, or we say that f(z) has
derivative f’(z,) at z=z,. If f(z) is differentiable at every point
in D, then it is called to be regular in D. For any regular function
f(z) defined on D, f'(z) is also a function defined on D and is
called the derivative of f(2). If f'(2) is regular in D, we define
f’(2)=(f"(z)). Similarly, we can define the derivative of i-th
order of f(z) by f¥(2)=(f“(z)) if f“ "(2) is regular in D.

THEOREM 1.1. Let p(2)= ia,,(z—a)" (a and a;s are elements
n=0
in B) be a power series. Let p=lim sup ||a,||"", and put
1/p when 1 ==0
1.1 p =4 o when =0
0 when ;= oo,

Then p(2) defines a regular function in the domain D= {z; ||z —al|<p}.
And we have

(1.2) p(2) = g na,(z—a)*! for every z€ D

move generally,

(1.3) p(z) = ;%_‘, nn—1) - (n—i+a(z—a)"? for every z€ D.
Hence we have

(1. 4) p™(a) =nla,, n=1,2, .
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The proof is similar to that of the usual power series and is
omitted.

REMARK. For any r_>p, there exists an element z, such that

||z,—all=7 and the series ia,,(zo—a)” is divergent.

n=1

DermNITION 1.2, a,+a,(z—a)+ -+ +a,(z2—a)"+ -+ (a and ajs are
elements in B) be power series. And let p be as in Theorem 1. 1.

We call p the radius of convergence of the power series ia,,(z—a)”.

n=0

DerINITION 1. 3. Let I’ be a rectifiable curve in B which is
parametrized by an equation z=2(f), 0<t<1. (The concepts

[ RT3

“curve”, “rectifiable” and “length” are defined in the usual way.)
Let f(2) be a continuous function defined on 1' and having its
values in B. We then define

(L.5) [ F@)dz = lim 31 £t et~ 2(t:-)]

where 0=1,<t,< .- <t,=1, t, ,<t;i<t;, i=1,2, .-+ and max (¢;—

t;_;)—0. (The existence of the integral is proved in the usual
manner.) The following inequality is evident

(1.6) I f@dzl < max | ) 1-10)

where /(1) is the length of I

THEOREM 1.2. Let ¢(2) be a continuous function defined on a
rectifiable curve ' B and having its values in B. Let D be the

set of elements z such that £—z has an inverse in B for every E€ 1.
We define

(1.7 fz) = Srg(p_(—ildf for zeD.

Let a be an element of D. If we set l/rzlzflinil(f—a)“ll, then the
er

set {z;||z—al|<r} is contained in D and we have

(1.8) f(z)=g(z—a)"gp(?i’i%)md§ for lz—all<r.

Hence D is an open subset of B and f(z) is regular there. Moreover
we have

(1- 9) f(n)(a) = ﬂ! Sp(é—f_(ag))""_ld% Py n = 0, 1, 2‘ et
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It is easy to see that £—Xe (¥€I') has an inverse if |A|>
I\;ng ||£]l. Hence D is not empty. The theorem is proved similarly
as in classical function theory, and the details are omitted.

THEOREM 1.3 (Cauchy). Let D be a convex open subset of B.
If f(2) is regular in D and I is an arbitrary rectifiable closed curve

in D, then S F(2)dz=0.
r
This is proved in [1].
CorROLLARY. Let I', and I', be two rectifiable closed curves in
an open subset DCB. If f(z)is regular in D and V', is homotopic*

to I, in D, then

SPO F(2)dz = Sm f(2)dz.

For a proof of this result, see my note [9].

§2. The integral formula and expansion theorem.

In the sequel we shall use the following new notations.

NotaTION 2.1. Let D be an open subset of B nad @ an ele-
ment of D. The symbol p(a; D) designates the radius of the
maximal open sphere which is contained in D and having its center
at a.

NotaTION 2.2. Let p(z)=i(; a,(z—a)" be a power series. The

symbol p(p(z)) designates the radius of convergence of the power
series p(2).

LEMMA 2.1. Let f(2) be a regular function defined on an open
subset DB and a an element of D. Let I' be a closed curve
defined by an equation §(t)=a+r exp 2nit)e, 0=t <1, where 0<r
<pla; D) and ¢ is the unit element of B. Then we have

@2.1) fla) = J_S I 4

2zilrE—a

Proor. It is easily seen that

* Let I'y and I'; be parametrized by z=2z,(¢) and z=2,(¢), 0<t<1, respectively.
Ty is called to be homotopic to I'y in D, if there exists a continuous function ¢(s, #)
(0<s<1, 0<t<1) of two variables s and ¢ such that ¢(0, £) =2,(8), (1, ) =2z,(#),
(s, 0)=¢(s, 1) for every 0< s< 1 and ¢(s, ¢) is in D for every (s, ) in the unit square.
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- S f€) R Slf(d-l-?’eXp (27[”)8)-2%1'-7' exp (27it)e dt

27iJrE—a  2mide  rexp (2wit)e

- S ' fla+rexp @rit)e)dt .

Let D, be the set of elements z such that z€ D and z—a has an
inverse in B. Then D, is evidently an open subset of D. Let
1'.(0< &< 7) be a curve which is defined by an equation &(¢)=a
+&exp (2mit)e, 0<t<1. We can easily see that I' is homotopic
to I, in D, and the above function f(§)/(§—a) is regular in D,.
Hence by the corollary to Theorem 1.3 we have

1 ( f© 1 ( 5@ ! :
_— = - —— = (9 2 t .
27risr§—ad§ = Sraf——adg [| fla+eexp @riteyat
Letting €—0, we obtain (2. 1).

LEmMmA 2.2. Let f(2) be a regular function defined on an open
subset DB and a an element of D. Let ' be as in the above
lemma. Then we have

I3
2.2) fl2) = .-LS SO gt for llz—all<r/2.
27 JrE—2
Proor. Let I', and I', be two curves defined by the equations

f(t):z+_;_ exp (27it)e(||z—a||<r/2) and £(t) =a+ " exp (2wit)e, 0<
t<1, respectively. According to Lemma 2.1, f (z):i_ g f—(gzd’g'.
2mi Jroé —2z

Let D* be the set of elements & such that §€ D and £—2z has
an inverse. It is evident D* is an open subset of D. Setting

@(s, 1) = a+s(z——a)+% exp (27it)e, we can easily see that I is

homotopic to I'; in D*. Hence by the Corollary to Theorem 1.3
we have

_ 1 O 1 fE)
2.3) F&) = 27f Srof——;d‘f 27 Sm&—zd‘f'
Since I', is clearly homotopic to I' in D¥*, we have also
1 & . 1 f&
@4 2t % " o b s

Form (2.3) and (2.4) we obtain (2. 2).
LemMmA 2.3 (Expansion theorem in the weak sense). Let f(z) be
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a regular function defined on an open subset D B. Then f(z) has
derivatives of all orders at every point in D. Let a be an arbitrary
element in D. Then we have

f™(a)

25  f@=f@+f@e-a+ -+
for ||z—al|<p(a; D)/2.

ProOF. Let 2z be an arbitrary element in the set {z;|/z—al|<_
p(a; D)/2}. Then there exists a number » such that »<p(a; D)
and ||z—a||<r/2. Let I' be a closed curve defined by an equation
E(t)=a+rexp (27it)e, 0<¢t<1. Then by Lemma 2.2 we have

(z—a)"+ -

fz) = LS SO i for llz—all<r/2.

27 Jré—z
Hence by Theorem 1.2 we obtain (2.5).

LEMMA 2.4 (Theorem of identity). Let f(z) and g(z) be two
regular functions defined on a comnected open subset D B. If
f(z2)=g(2) on some sphere SCD, then f(z) coincides with g(z) in D.

Proor. By using Lemma 2.3 this can be proved quite simi-
lary as in classical fuction theorey.

THEOREM 2.1 (Integral formula). Let f(2) be a regular function
defined on an open subset DB and a an element in D. Let r be
an arbitrary number such that 0<r< p(a; D) and 1" be a curve
defined by an equation E(t)=a-+r exp 2nit)e, 0<t<1. Then we have

(2.6) f(z)=2im.s O gt for lz—all<r.

ré—

Proor. Let D* be the set of elements z such that z€ D and £—2z
has an inverse for every £€I. It is evident that D* is an open
subset of D and contains the sphere {z;||z—a||<r}. If we define

@2.7) g(z):ziﬂgrggdf for z€ {z: || z—al|<r} CD*,

then g(z) is regular in {z;|/z—a||<r}. On the other hand by
Lemma 2.2 we have

2.8) f&) =L ) e for lz—all< 7/2.

2ni JrE—2z
From (2.7) and (2.8) we see that f(z)=g(z) on the sphere
{z;llz—a||<r/2}. Since the sphere {z;||z—al||<#} is connected,
we obtain (2.6) from Lemma 2.4, Our theorem is thereby proved.
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THEOREM 2. 2 (Taylor’s expansion). Let f(z) be a regular func-
tion defined on an open subset DB and a an element of D. Then
we have

(n) a
@9 @ =@ f@+ L Qg
for ||z—a||<p(a; D).
Proor. Let z be an element in {z;||z—al|<p(a; D)}. Then
there exists a number #» such that ||z—a||<r< p(a; D). Let I be
a curve defined by an equation &(f)=a-+7exp 27it)e, 0<t<1. By
the above theorem we have

f@) =L

271

From this and Theorem 1.2 we obtain (2.9).

THEOREM 2.3 (Cauchy’s inequalities). Let f(z) be a regular func-
tion defined on an open svbset DB and a an element of D.
Suppose that || f(2)||<M for every z€ D. Then we have

(2.10) @)l =n!M/pla; D", n=1,2,--.
Proor. This is proved by Theorem 2.1 as in the usual manner.

CorOLLARY (Liouville). If f(2) is a regular function defined on
the whole space B and such that ||f(2)||<M for every z€ 9B, then
f(2) is a constant.

Sf(g)df.

ré—z

§3. Inverse functions.

Lemma 3.1. Let f(2) be a regular function defined on an open
subset DB and a an element of D. If f'(a) has an inverse, then
f(D) contains a neighborhood of f(a).

Proor. By Taylor’s expansion theorem we have
f(2) =a,+a(z—a)+ -+ +a(z—a)*+ - for ||z—al|<pla; D).

Since f'(z) is continuous on D and f’(z) has an inverse at z=a,
f’(2) has an inverse on a suitable neighborhood of a. Hence
without loss of generality we may assume that

G  lf@&I=M, llf')7 =M for [z—al|<R
where R is a sufficient small number such that 0<'R<p(a; D).

We choose a number 7 such that »<'R/2 and let & be a positive
number satisfying the following conditions
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(3.2) EM/r < % . 2M(M/rye< % .

We shall show that for every & with |[0—f(a)|[< é there exists
an element z, such that

(3.3) f@) =0, llz;—a|l<r.
First we set z,=a-+(b—f(a))f(a)”. We shall estimate the value
of f(z) at z=z,.
f(z) = ata(b—f(a)f' (@) + - +a,[(b—f(@) f (@) ]+ --.
From a,=f(a) and a,=f’(a) we have
(3.4) F)=b = a,[b—f@)f @ T+ -
+ a,L(0—f@)f (@) ]+ .

and hence

1 @)=l < llall-1b—£ @111l F/(@) 1+ -

+llanll-llo—=fF@"1lf @ |"+ -

(using the relations ||a,||<M/r", n=1,2, -+ (see (2.10))

M M M = (eﬂ)”

< _2§2M2+ ces _|__”,$”M"+ .= EM? Z
e v v »=0 v

(using (3. 2))

< ome M 2M(ir’-’_)282<e/2 (see (3.2)).

o
On the other hand
3.5  lla—all=l0—f@)f' @l <=eM<r/2 (see (3.2)).
The function f(z) is also expanded in the following form
(3.6) f(z) =b,+b(z2—2)+ =+ +b,(2—2,)"+ -+ for |lz—z]|[<7.
The sphere {z;|/2—2z,||< 7} is clearly contained in the sphere
{z;1lz—al|< R}. Hence we have
B.7  Nf@)NEM, ||bll<M/r" (see (3.1), Theorem 2.3)).
We set z,=2,+(b—f(2,))f'(2,)"" and estimate the value of f(z) at
z2=2,.

F(2) = bo+b,(0—f(2)f'(2) '+ o+ +0,[(0—f(2))f' ()" T+ -+
By using the relations b,=f(z,), b,=f'(z) and |[[b—f(2)||<&/2
(see (3.4)), we have similarly
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(3.8) I f(z) =0l <&/4, lla,—z|l<7/4.
The function f(z) is also written in the following form
f(R) = ¢t (z—2)+ -+ +c(z—2)" + -+
If we set z,=2,+(b—f(2,))f'(2,)”", then it is also proved that
(3.9) 1 f(z:)—bll<€/8, llz,—2l <7/8.

Repeating this process indefinitely we have a sequence z,, 2., -,
2,, - of elements of B such that

(3' 10) Hf(zn)*b”<8/2n’ Hzn—l_znll<r/2n’ n = 1,27'“'
The sequence z,, 2,, -+, 2,, -+ is clearly a Cauchy sequence and
hence it converges to an element z,. It is evident that f(z,)=0b
and

(B.11) lz;—all = lla—zll+llz, =2+ = +l2, =2, M+ - 7.
Our lemma is thereby completely proved.

LemMA 3.2. Under the same assumptions in the preceding
lemma, there exists a neighborhood U of a such that f(z) is one-
to-one on U.

Proor. By Taylor's expansion theorem f(z) is expanded in
the following form

f(z) = a0+a1(z—a)+ ces +an(z—d)"+ .

for any element z in {z;||z—al||<p(a;D)}. Let R be a number
such that O<CR<p(a; D). Then there exists a number M such
that

NfRII=M for |lz—al| <R.

By Cauchy’s inequalities we have
(3.12) la,|=M/R*, n=0,12--.

We choose a number 7 such that »<ZR/2. Suppose that f(a+#h)=
f(a+g) for two different points % and g with ||2||<r and || g||<7.

Since f(a+h)= i}anh": ‘Zoa,,g”=f(a+g), we have
a(h—g) = —{a i —g)+  +a, g+ -}
= —(h—gfalh+g+ - +a,W" " +1"*g+ - +g" )+ -}

Hence
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la(h—g) | < I1h—gll 3 lla, 1" < | h—gll 5 n iy

(using the relation 1/(1—x)’=14+2x+ -+ +nx""'+ ---)
= (=gl M/R)- {1/ (1) =1} (1111~ gl M/R)-(r @R 1)/ (R—r)

(using »<'R/2)

< (llh—glIM/R)-(r2R/(R/2)") = ||h— g||8Mr|R*.
Consequently we have
(3.12) [la(h—gIl <Ilh—glI8Mr/R* = ||a,(h— gai*||8Mr/R*

= lla,(h—g)ll-llar*||8Mr/R*.

From the above relation we obtain
(3.13) r ZR[BM-|lf(@)"ll) (a = }'(a))
Hence if we set »,=Min {R/2, R*/(8M-||f'(a)"']]), then it is easily
seen that
(3.14) ||z,—all<7,, ll2,—al|<7, and z,==z, imply f(2,)==f(2,).
Our lemma is thereby proved.

THEOREM 3.1. Let f(2) be a regular function defined on an
open subset D B. If f'(z) has an inverse at z=a€ D, then there
exists an open neighborhood U of a such that f(U) is open and f(z)
is one-to-one on U. Hence, to every point w € f(U) an element z€ U
satisfying f(z)=w is uniquely determined, which defines a function
z2=@(w) whose domain and range are f(U) and U respectively. Then
p(w) is regular at w=f(a) and we have
(3.15) P'(b) = f'(a)™ where b = f(a).

Proor. The first half of the theorem is evident from the above
two lemmas. We shall prove the last half. If we set

Fla+h)—f@)—hf'@) = 8a, 1),

we have clearly lim ||&(a, 2)||/]|2]|=0. Let f(a)=0b and f(a,)=b,.
1is11->0

Then we have

(3.16) f(a)—f@)—(a,—a)f'(a) = &a, a,—a).
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This implies that
3.17) b,—b—(a,—a)f'(a) = &a, a,—a), that is,
P(b)— p(b) — (by—b) f'(@) " = —&(a, a,~a) /(@) .

In order to prove (3.15) it is sufficient to show that the following
equality holds

(3.18) lim [|3(a, @,—@)£'(@) " [1/ 116, ~ Il = 0.

On the other halmd from (3.17) we have

(3.19) b, =bll-llf @'l =lla,—all—|¥a, a,—a)||-]| f(@"]] .
Since thigoll‘o‘(a, )|/ k||=0, there exists a number p >0 such that
(3.20) |la,—al|<p implies |8, a,—a)ll-|lf (@) || lla,—all/2.
Hence we have from (3.19) and (3. 20)

@.21)  2llf' @'l =lla,—all/llb,=bll  for [la,—al[p.

Without loss of generality we may assume that f’(z) has an inverse
at every point z€ U. By lemma 3.1 and 3.2 f(z) is a one-to-one
open mapping from U onto f(U). Hence @(w) is continuous on
f(U). This shows that lim b,=b implies lim @¢,=a. Thus we have

tim 8@, &= @£ @71 _ ;1 118, &~ @)1l @']] la,—al
s [0, bll la,~al =3
< lim (/|3(a, &, a)||-1l (@)~} la,~ all)-2| F'(@) "l =0 (see (3.21).

Our theorem is thereby completely proved.

COROLLARY (Theorem of Nagumo). Let & be the set of all
regular elements of B and S, the component of & containing e. In
order that an element a belongs to O, it is necessary and sufficient
that a is expressible in the following from

2 n
a= e+i+_z_+ e d

11 21 TR

Proor. If we define f(z)=e+%+éi:+ +ni‘”+ -+ for every
z2€®B, then by Theorem 1.1 f(z) is regular in B and f/'(z2)=f(2).
As is easily seen f/(z) (=f(z)) has an inverse f(—z), f(2) is an
open mapping from B into itself (see Lemma 3.1). Let &/=7£(B).
@, is clearly an open subgroup of & and consequently &, is also
a closed subgroup of 8. On the other hand &, is connected. So
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we can easily see that @/=3,. The corollary in thereby proved.
2 n
DEFINITION 3.1. The function f(z):e+lir+2i'+ R
z €%, is called the exponential function and is denoted by exp (=2).
NotaTiON 3.1. In the future the symbol & always denotes
the set of all regular elements of B and &, denotes the component
of & containing e.

§4. Analytic continuations.

DeriNITION 4.1. A power series p(2)=a,+az+ -+ +a,(z—a)
4+ -+ is called a function element if its radius of convergence is
positive, and a is called the center of the function element p(2).

Another concepts ‘“direct analytic continuation”, “analytic
continuation” are defined similarly as in classical function theory.

DEFINITION 4.2. Let p(2) be a function element. The totality
of function elements which are the analytic continuations of p(z2)
is called the analytic function defined by p(z).

NotATION 4.1. The symbol p,(z) designates a function element
having its center at a.

LemMA 4.1 (Theorem of invariance of analytic relations). Let
F(z, w) be a function defined for z€A,, weA, (where A, and A,
are connected open domein in B) and satisfying the following
conditions :

1) F(z, w) is a continuous function with respect to two variables
Z€A, and wEA,.

2) F(z,w) is a regular function of z€ A, for any fixed weA,
and similarly a regular function of we A, for any fixed z€ A,

3) The functions F(z, w) (derivatives with respect to z) and
F, (2, w) (derivatives with rvespect to w) are continuous functions in
two variables z€ A, and w € A, respectively.

Let p(2) and q(z) be two function elements havihg their centers
at the same point a. Let | be a curve which starts from the point
a and is parametrized by an equation z=£&(t), 0<t<1. Suppose
that the function elements p(z) and q(2) can be continued analytically
along the same curve T' by corresponding to every point E(t) €’ func-
tion elements pey(2), qee(2) which have their centers at &(t)€ 1.
Let us further assume that for every point E(t)€L there exists a
positive number R(t) such that if ||z2—E@)||<R(t), pra(2) and qeuy(2)
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are well defined and pe(2) €A, qe(2)€AD,. If the relation
F(p(2), q(2))=0 holds on some neighborhood of a, then we have
F(pecx(2), qe:(2)) =0 on the maximal domain in which both pe.y(2) and
qex(2) are well defined simultaneously and py,(2) € A,, qeux(2) €A,.
The classical proof applies, mutatis mutandis, to this case.

LemMa 4.2 (Theorem of monodromy). Let D be an open convex
subset of B and a an element of D. If a function element p,(2)
(see Notation 4.1) can be continued analytically along every curve in
D starting from the point a, then there exists a regular function
f(2) defined on D such that f(z)=p,(2) on some neighborhood of a.

This is proved quite similarly as in classical function theory,
and the details are omitted.

Let f(w) be a regular function defined on the whole space B.
Let D be the set of those points w for which f’(w) has an inverse.
Then it is easy to see that D is an open subset of B. Therefore,
D is the sum of disjoint maximal open connected sets, D:\z/ D,,

the components of D. We choose a component D, and denote it

by D*. To avoid complications, we confine ourselves to D*,
DerFINITION 4.3. Let §e€ D* and f(§)=a. Since f’(§) has an

inverse, there exists by Theorem 3.1 a regular function @(z) defined

on a neighborhood of @ such that f(@(z))=z and @(a)=£ We
have then

4.1) P(z) = E+a(z—a)+ - +a,(z—a)*+ .

on some neighborhood of a. We denote this power series by p,(2)
(see Notation 4.1) and call it the inverse function element of f(w)
at w=E.

It is evident that z— f(p,(2))=0 on some neighborhood of a.
Hence by the theorem of identity we have

(4.2) 2—f(p.(2)) =0  for |[l[z—all < p(p.(2)
(see Notation 2. 2).
The analytic function ¥(z) defined by the inverse function
element of f(w) at an arbitrary point w=£& € D* is called the inverse
analytic function of f(w) with respect to D*. For the validity of
this definition we must show that the analytic function W(z) is
defined independently upon the selection of inverse function ele-
ment of f(w). But this is easily proved in the usual manner.
Let p,(2) (see Notation 4.1) be a function element of the
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analytic function W(z) having its center at 4. Then there exists
a curve I' such that p,(2) is the analytic continuation of p,(2)
along I'. If we define F(z, w)=z— f(w), then the function F(z, w)
satisfies the conditions 1), 2) and 3) in Lemma 4.1. Since
F(z, p,(2))=0 (see (4.2)), by Lemma 4.1, we have

4.3) F(z, p(2)) =0, that is, z—f(p,(2)) = 0.

Letting p,(b)=7%, we can easily prove that € D* and p,(z) is an
inverse function element of f(w) at w=»€ D*.

From these discussions we can say, in short, the totality of
inverse function elements of f(w) at all the points of D* defines
an analytic function which is called the inverse analytic function
of f(w) with respect to D*.

Let H=f(D*). H is a connected open subset of B (see Lemma
3.1). From above it is evident that the center of any function
element of W(z) is contained in H and conversely for any element
a in H there exists a function element of ¥(z) having its center
at a. And it is easy to see that any function element of W(2)
cannot be continued analytically beyond the domain H.

Let p,(2) be a function element of the analytic function ¥(2)
having its center at a. For any element & such that ||b—al|<
p(p.(2)) there exists a function element p,(z) of ¥(z) which is the
direct analytic continuation of p,(z) and having its center at b.
This implies that

(4. 4) p(p.(2) < pla; H) (see Notations 2.1 and 2. 2).

If the equality p(p,(2))=p(a; H) holds for every a€ H and every
function element p,(z) of W(2), then any function element p(z) of
¥(z) can be continued analytically along every curve in H starting
from the center of p(z).
From the above arguments we have the following

THEOREM 4.1 Let f(w) be a regular function defined on the
whole space B. Let D be the set of those elements w for which
f'(w) has an inverse. Being an open set, D is the sum of disjoint
maximal open connected sets, D=\mjD,,,, the components of D. We

choose a component D, of D and denote it by D*. We have then

(i) The totality of inverse function elements of f(w) at the
points of D* (see Definition 4.3) defines an analytic function V(z)
which is called the inverse analytic function of f(w) with respect
to D*.
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(ii) For any function element p(z) of the analytic function ¥(2)
it holds that

(4.5) f(p(2) = 2.

(iii) If we set H=f(D*), then H is a connected open subset of
B. And the center of any function element of the analytic function
W (z) is contained in H and for any element a in H there exists a
function element of V(z) having its center at a. (Any function element
cannot be continued analytically beyond the domain H).

(iv) For any function element p,(2) of the analytic function
W(2) having its center at a we have

(4. 6) p(p(2) < pla; H) (see Notations 2.1 and 2.2).

If the equality p(p,(2)=pla; H) holds for every a€ H and every
function element p,(2) of V(2) having its center at a, then any
function element p(z) of W(z) can be continued analytically along
every curve in H starting from the center of p(z).

In Theorem 4.1 we set f(w)=exp (w). Then f'(w) (=f(w))
has always an inverse. Hence in this case we have D=3 and
H=7f(®B)=@, (see the Corollary to Theorem 3.1).

DerINITION 4.4. The inverse analytic function of the ex-

ponential function exp (w) is called the logarithmic function and
is denoted by log z.

CoroLLARY 1 fo THEOREM 4.1. If p(2) is a function element
of the analytic function log z, then

(4.7) exp (p(2)) = 2.

Let p,(2) be any function element of log z having its center at a.
Then we have always

(4.8) P(Ds(2)) = pla; ).

Therefore any function element p(z) of log z can be continued analy-
tically along every curve in &, starting from the center of p(z), and
p(z) cannot be continued analytically beyond the domain &,. Let
q(2) be an analytic continuation of p(z)€log z along a curve 'S,
having its beginning point at a and end point at b. We have then

(4.9) a(b) = p(a)+SP%dz.

Proor. Let p,(2) be a function element of the analytic function
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log z and S the open sphere such that S={z;||z—al||<p(a;S,)}.
Since S is a connected open subset of B and the function 1/z is

regular in S, we have S la’z:O for every rectifiable closed curve
rz

I’CS. Hence we can define a function f(z) such that
(4.10) f(2) = S L
a 2

where the right hand of the above equation denotes the integral
of the function 1/z along any curve contained in S and having
its beginning point at ¢ and end point at z. Then it is easily
proved that f(z) is regular in S and f’(z)=1/z. On the other
hand from (4.7) we can easily see that p,’(z)=1/z. As in classical
function theory we have

(4.11) D.(2) = p(@)+ f(2) on a neighborhood of a.

This implies that {z;|lz—al|<p(p(2))} DS={z;llz—allp(a; ),
that is, p(p.(2))=p(a;®,). From this and (4.6) we have p(p,(z))
=p(a;®,). The last assertion of the Corollary is proved quite
similarly as in classical function theory.

In Theorem 4.1 we shall consider a regular function f(w)=w"
(where m==1 is a positive integer). In order that f'(w)=mw"™*
has an inverse, it is necessary and sufficient that w belongs to &
(see Notation 3.1). Hence in this case the set D coincides with
@ and any component of & is a coset of & modulo &,.

DeriNITION 4.5. The inverse analytic function of the function
f(w)=w™ (m==1 is a positive integer) with respect to &, (a com-
ponent of &) is called the radical function of order m and is
denoted by ¥z (®,). In particular, the analytic function 7 z (®,)
is called the principal radical function of order m and is denoted
simply by 7 z.

CorOLLARY 2 fo THEOREM 4.1. If L(z) is a function element
belonging to the analytic function log z, then the function exp (L(z)/m)
is a function element belonging to the principal radical function
¥ z. Conversely, any function element p(z) belonging to the analytic
function V z can be expressed in such a form, that is, p(z)=
exp (L(z)/m) (where L(z) is a function element belonging to log z).
Hence for any function element p,(2) belonging to vz we have

(4.12) p(pa(2)) = pla; ®,) (notice that (&) =®)).
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Thus any function element p(z) belonging to the analytic function
¥ 2z can be continued analytically along every curve in &, starting
from the center of p(z). For the radical function V' z (S,) (S,+S,),
any function element p(z) belonging to 7 z (8,) can be also continued
analytically along every curve in Sz starting from the center of
D(z), where &g is the coset of & modulo &, containing the center
of p(2).

Proor. The first assertion of the corollary is proved similarly
as in classical function theory. We shall prove the last half of
the corollary. Let p,(2) (see Notation 4. 1) be an arbitrary function
element belonging to the radical function 72 (®,) (8,=-S,). Let
®,=£0,. Then it is easy to see that a € {£"x™; x € B} =£"6, =6,
(a is the center of the function element p,(z)). Let

(4.13) a==§&", be®,.

On the other hand a is also expressed in the following form
(4.14) a=q9", ne®, = £, .

Suppose that

(4. 15) n = é&c, ceS,.

From (4.12), (4.13) and (4.14) we have

(4. 16) c"=b.

Let S be the maximal open sphere which is contained in &; and
having its center at a. Then £”S is an open convex subset of
&, which contains an element £ a=5b. From (4.16) there exists
a function element p(z) €7z such that p(b)=c. Furthermore, from
(4.12) it is easy to see that p(z) can be continued analytically
along every curve in &S starting from the point b€£™S. From
this and the theorem of monodromy there exists a regular function
f(z) which is defined on £™S and such that f(z)=p(z) on some
neighborhood of 5. Hence f(z) satisfies the condition that

(4.17) f@"=z.
Define
(4.18) p(2) = Ef(E72) for z€S.

The function @(z) is regular in S and @(2)"=E"f(§ "2")=E"E"2
=z. We have further @(a)=§&f(5"a)=Ef(b)=Ec=7. Hence it is
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easy to see that ¢(z) coincides with p,(z) on some neighborhood of
a. This implies that {z;|lz—al|<p(p.(2))} >S (damain of ¢(2)).
Our corollary is thereby completely proved (see last part of
Theorem 4. 1).
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