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Introduction. The present paper is concerned with the general
problem o f extending the classical theory o f  regular functions of
a complex variable. This problem was discussed by many authors
from various directions. Our approach differs from most of the
others in  two main respects, namely, in the type of domain and
range of the functions and in the definition o f  regularity. W e
deal with functions which have for their domains and ranges
subsets of a commutative Banach algebra w ith unit element and
we use a definition o f regularity introduced by E. R. Lorch [1].
It is know n [4] that a  regular function by this definition is di-
fferentiable in the Fréchet sense but not every Fréchet-differentiable
function on a commutative Banach algebra is regular in the Lorch
sense. Accordingly, the Lorch theory is the richer.

For the most part, the development of the Lorch theory goes
parallel w ith that of the classical theory. As one would expect,
the Cauchy integral theorem and formula occupy a central position
and yield  the Taylor expansion. Our purpose is to discuss his
theory in detail and to get more precise consequences. Our inves-
tigations contain some results which were not studied by Lorch.
For example we have discussed the functions log z and V Ï  from
the view point of analytic continuations. The logarithmic function
was also introduced by Lorch, but his definition seems to be
artificial.

The main results of this paper is the theory o f analytic con-
tinuations in  which Theorem 3. 1 employ an essential role. And
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the proof o f this theorem is not simple b y  the reason that the
Jordan curve theorem does not hold in  Eanach algebras and con-
sequently we can not make use of the Rouché theorem.

Throughout the present paper, the symbol 0  designates a
commutative Banach algebra having a nuit element e.

§ 1 .  Definitions and elementary theorems.

DEFINITION 1.1 (Lorch). A function f (z ) whose domain D (open)
and range R are in 0  is said to be differentiable at z= z o E D, if
there exists an element a E which satisfies the following relation

Ilf(zo+h) — f(zo) — ahll = 0(11hlt)

where 0 is the Landau notation. If f (z )  is differentiable at z=z„
then  it is easy to  prove that an  element a which satisfies the
above relation is  un ique. Hence we denote this a by f '(z o )  and
ca ll it  the derivative of f ( z )  a t  z = z , or w e  say  th a t f ( z )  has
derivative f '(z o )  a t z=z o . If f ( z )  is differentiable at every point
in D, then it is called to be regular in  D .  For any regular function
f ( z )  defined on D , f/ (z) is a lso  a  function defined on D  and is
called the derivative of f (z). If f ' ( z )  is regular in  D, we define
fA z )— (f/ (z ))'. Sim ilarly, we can define th e  derivative o f  i-th
order of f (z )  by f ( i ) ( z )= ( f " - 1 ) (z ))' if f ( i - 1 ) (z ) is regular in  D.

THEOREM 1. 1. L et p(z)— c'É a (z— a)" (a  and 4 9  are elements
n-0 "

in  0 ) be a pow er series. L et p, =Aim sup Ilan ll'in, and put

11 when I  0
(1.1) P  = lo ° when it t , =  0

0 when IL, 0 0 .

Then p(z) defines a regular function in the domain D= {z;Ilz — all< P }.
A nd we have

(1.2)p ' ( z )  = na„(z—a)"' f o r every zEDn=i
more generally,

(1.3) p ° ( z )  =  c"  n(n —1) • (n— i +1)a ,(z — f o r every z E D.

Hence we have

(1.4)p c " ) ( a )  = n!a„, n = 1, 2 , •-• .
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The proof is similar to that of the usual power series and is
omitted.

REMARK. For any r> p ,  there exists an element z o such that
O .

11z0— all = r  and the series E a„(z o —a)" is  divergent.
n.=.1

DEFINITION 1.2. a o + a ,(z — a) + • + a n (z — +  (a and a s  are
elements in 0) be power series. And let p be as in  Theorem 1. 1.

We call p the radius of convergence of the power series E-  a (z — a).
0  n

DEFINITION 1. 3. Let F  b e  a rectifiable curve in  0  which is
parametrized by a n  equation z = z (t), 0 < t < 1 .  (The concepts
" curve ", "rectifiable" and "length" are defined in the usual way.)
Let f  (z ) be a  continuous function defined on .1: and having its
values in 0 .  We then define

(1.5)f ( z ) d z  = lim f (z (t))[z (ti) — z(ti-i)]

where 0 = to <t, < • • • <  t n =1, i =1, 2, •  and max (t i -
ti _1) —> O. (T h e  existence of the integral is proved in  th e  usual
manner.) The following inequality is evident

(1.6) I1 <  max i f ( z )  • /(1')
z E r

where 1(1') is the length of F.

THEOREM 1. 2. L et p(z ) be a  continuous function defined on a
rectifiable curve and  having its values in B .  L et D  be the
set of  elements z  such that z has an inverse in f o r every  el'.
We define

(1.7) f ( z )  =  rr) f o r  z eD  .

L et a be an  element o f  D .  If we set 1/r=Min il(—a) - '11, then the
tEP

se t {z ; Hz — all<r} is contained in  D and we have

(1.8)f ( z )  = (z — a)" r f o r  ilz— all<r.

Hence D is an  open subset of  3 and f (z) is regular there. Moreover
we have

(1. 9) f ( a )  = n! g'() n = 0, 1, 2, ••• .
r( —a)n-1
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It is easy to see that Xe E 11 has an  inverse if IX 1>
Max 11 1 .  Hence D is not empty. The theorem is proved similarly
tEr

as in  classical function theory, and the details are omitted.
THEOREM 1 . 3 (Cauchy). Let D be a  convex open subset of 523.

I f  f (z )  is regular in D and is an arbitrary rectifiable closed curve
in D, then f(z)dz=0.

This is proved in  [1].
C O R O LLAR Y. Let r o and F , be two rectif iable closed curves in

an open subset D C O .  I f  f (z ) is regular in D and F,,  is  homotopic*
to F i  in  D , then

f(z)dz f(z)dz .
ro ri

For a proof of this result, see my note [9].

§ 2. The integral formula and expansion theorem.

In the sequel we shall use the following new notations.
NOTATION 2. 1. Let D be an open subset of 3  nad  a an ele-

ment o f D .  The symbol p(a; D ) designates the radius of the
maximal open sphere which is contained in D and having its center
at a.

–
NOTATION 2. 2. Let p(z)= E a (z— a)" be a power series. The

n = a
symbol p(p(z)) designates the radius of convergence of the power
series p(z).

LEMMA 2. 1. Let f (z )  be a regular function defined on an open
subset D c 8  and a an element o f D .  Let I ' b e  a  closed curve
defined by  an equation (t )= a + r exp (27rit)e, 0<t <1, where 0 < r
< p (a ; D) and e is  the unit element of 0 .  Then we have

(2.1)f  (a) —  1 f  

27ti r e — a

PROOF. It is easily seen that

*  Let ro and T i  be parametrized by z=z o ( t )  and z=z i ( t ) ,  0_< t 1 , respectively.
T o is called to be homotopic to T i  in  D, i f  there exists a  continuous function yo(s, t)
(0_<s5:1, 0 t S l )  o f two variables s and t such that Ço(0, t) zo (t), 50 (1 , t)=-

v(s, 0)=v(s, 1) for every OS and v(s, t) is in D for every (s, t) in the unit square.
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1 f  _   1f  (a+ r exp (27rit)e). 
2 7 7 1  •  r  e x p  ( 2 7 , i t ) e  d t271-i J —a 27ri Jo r exp (27rit)e

=  a f  (a+ r exp (27rit)e)dt

Let Do b e  the set of elements z  such that z E D and z— a  has an
inverse in 0 .  Then Do is ev iden tly  an open subset o f D .  Let
Fe(0< 6 < r )  be a  curve which is defined by an  equation  (t) = a
± 6 exp (27rit)e, 0  t < 1. W e can easily see that F  is homotopic
to 1', in  D, and the above function f ( ) 1 ( — a)  is regular in  Do .
Hence by the corollary to Theorem 1. 3 we have

2
1

 i  r  ( (e)
a —  2

1
 i    —  f  (a + & exp (27rit)e)dt

Letting 6--> 0, we obtain (2. 1).
LEMMA 2. 2. Let f ( z )  be a regular function def ined on an open

subset D c T J 8  and  a  an  element o f  D .  Let F  be as in the above
lem m a. T hen w e have

(2.2)f ( z )  —  1f   ck fo r  Hz —ail <r 12 .
27ri ra —z

PROOF. Let Fo and  r, be two curves defined by the equations
exp (27rit)e(l z—all <r/2) and  (t) = a  +  exp (27rit)e, 0 ‹

2 2
t < 1, respectively. According to Lemma 2. 1, f (z)—  1f ( 0  

27-ti J —z
Let D* be the set o f elements s u c h  t h a t  E D  and has
an  inverse. It is ev ident D *  i s  an open subset o f  D .  Setting
ço(s, t)= a+ s(z— a)+  r  exp (27rit)e, w e can  eas ily  see  th a t F , is

2
homotopic to Fl in  D * . Hence by the Corollary to Theorem 1. 3
we have

(2. 3) f  (z )  — roPf  ( ) ck  2 1 z

Since r, is clearly homotopic to F  in D*, we have also

(2. 4) 1  f   1  f  f   ck .
27z-i J ri —z 27ri J —z

Form (2. 3) and (2. 4) we obtain (2. 2).
LEMMA 2. 3 (Expansion theorem in the weak sense). Let f  (z ) be
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a regular function defined on an open subset Dc . T h e n  f (z )  has
derivatives of  all orders at every point in  D .  L e t a be an  arbitrary
element in  D. Then we have

( 2 . 5 ) f  ( z )  f  (a ) +  f  ( a ) ( z  —  a) +  •  •  •  +  
f (")(a) 

( z  a ) +  •n!
f o r H z —  1 <p (a; .

PROOF. Let z  be an arbitrary element in  the set {z ;11z —
p(a; D )/2}. Then there exists a  number r  such that r<p (a ; D)
and H z — all<r1 2 . Let 1' be a closed curve defined by an equation
( t)=a+r exp (24t)e, 0 < t < 1 .  Then by Lemma 2. 2 we have

f (z ) —  1   f  f d f o r  z — all<r12.
27ri Jr —z

Hence by Theorem 1. 2 we obtain (2. 5).
LEMMA 2. 4 ( Theorem o f  identity). L e t f (z )  and  g (z )  be two

regular functions defined o n  a  connected open subset D C O .  I f
f ( z ) =-- g(z ) on some sphere S D, then f ( z )  coincides with g(z ) in  D.

PROOF. By using Lemma 2. 3 this can be proved quite simi-
lary as in  classical fuction theorey.

THEOREM 2. 1 (Integral f orm ula). L et f (z ) be a regular function
defined on an open subset D C O  an d  a an  element in  D .  L e t r be
a n  arbitrary number such that 0 <r<p ( a  ; D )  an d  l ' be a  curve
defined by an equation ( t)=a+r exp (27rit)e, 0< t < 1 .  Then we have

(2.6)f  ( z )  —   1 f
 ( )  de for 11 z — < r

27-rz

P R O O F . Let D* be the set of elements z  such that z E D  and
has an inverse for e v e r y  e P . I t is  ev id en t th a t D* is  an open
subset of D and contains the sphere {z;—  a 11<r}  . If we define

(2.7) g ( z )  —  1   f  f   c/ for z E {z ; z — all <r}  D * ,
27ri r — z

then  g(z ) is  regu la r in  {z ; I z — . On the other hand by
Lemma 2. 2 w e have

(2.8)f ( z )  —  1   f  f   c/ for <172.
27ri

From  (2. 7) an d  (2. 8) w e  s e e  th a t  f (z )=- g(z ) o n  th e  sphere
{z ; <r/2 } . Since the sphere {z ; Ilz— cd<r} is connected,
we obtain (2. 6) from Lemma 2. 4. Our theorem is thereby proved.
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THEOREM 2. 2 ( Taylor's expansion). Let f (z )  be a regular func-
tion defined on an open subset D C 93 and a an element o f D . T hen
we have

(2.9)f  ( z )  =  f  (a) + f  (a) + • • • +  f  (n ) ( a )  (z — a)" ± • • •
n!

fo r  I z — al<p (a; D ) .

PROOF. Let z  be an element in  {z ; z  —  a  < p(a ; D )  .  Then
there exists a number r such that 11 z — a I<r<p (a; D ) .  Let 1` be
a curve defined by an equation  (t)=a-Fr exp (27-t i t ) e ,  0 < t ‹  1. By
the above theorem we have

f (z ) —  1 f e") 
27ri

From this and Theorem 1. 2 we obtain (2. 9).
THEOREM 2.3 (Cauchy's inequalities). Let f (z )b e  a regular func-

tion def ined on  an  open subset D C O  and  a  an  elem ent o f  D.
Suppose that I f(z)II <M  fo r  every z E D . T hen  w e have

(2. 10) I f n (a)  II
PROOF. This is proved by Theorem 2. 1 as in the usual manner.
COROLLARY (L iouville ). If f ( z )  is a regular function def ined on

the whole space 0  and such that  H f ( z ) H M  for every  z E 3 , then
f ( z )  is  a constant.

§ 3. Inverse  functions.

LEMMA 3. 1. Let f ( z )  be a regular function def ined on an open
subset D C O  and a an element of D .  I f  f t (a)  has an inverse, then
f (D )  contains a neighborhood of f (a).

PROOF. By Taylor's expansion theorem we have

f  (z ) = a o + a,(z — a) + • • + a n (z — a)" + • • • f o r  Hz— all <p (a ; D) .

Since f  ( z )  is continuous on D  and ['(z )  h a s  an inverse a t  z = a,
f '( z )  h a s  an inverse on a suitable neighborhood o f  a. Hence
without loss o f generality we m ay assume that
(3.1)f  ( z )  II m  ,  II f ' (z) -

 ' HI Mf o r ‹ R
where R  i s  a sufficient sm all num ber such that O <R <p (a; D).
We choose a number r  such that r < R I 2  and let 6  be a positive
number satisfying the following conditions

‹n !M I p (a; , n  = 1, 2,
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1(3.2)S M I r  <
' , 2M  (M ir) 2 6 <  .
2 2

We shall show that for every b  with 11 b —f(a)II<& there exists
an element z o such that

(3.3)f ( z 0 )  =  b ,  11z0—all<r.
First we se t z, a + (b — f (O f (a ) We shall estimate the value
of f (z ) at z=z i .

f(z1) = a  + a i(b — f (a))f (a) -  1  + • • • + a „[(b — f (a)) f  (a) 'Y  + •
From a o = f (a) and a,= f ' (a) we have
(3.4)f  ( 2 .0—  b = a 2E(b — f ( a ) )  (a) -  1 12 +

+ a [(b — f (a)) f  (a) - 1 ]n + • • • .
and hence

Ilf(z1)—b11_11a211-11b—f(a)11 2 .11.nar11 2 +
+11a.11.11b—f(a)11"-11Parlin+

(using the relations lian li<M1r", n=1, 2, • • • (see (2. 10))
M E a , 2  0 0  ( g  r  n< e_m2   n Mn LV-L M  E  

rn r2 ,•=o r  )

(using (3. 2))

< 2MS= M 2  — 2M(  M   )2&2 < &/ 2 (see (3. 2)).
r 2

On the other hand
(3.5) II a— z ill = II(b —  f (a)) f  i (a) - 1  I Ell <1 - 1 2  (see (3. 2)).
The function f ( z )  is also expanded in the following form

(3. 6) f (z ) = bo+b,(z— z1) + • • • +b„(z— z 1)n + • • • fo r  I z — z, II < r .
The sphere {z ; H  —  I < r }  is clearly contained in  th e  sphere

; z — a <RI. Hence we have
(3.7) I Pz1) - 1 1 I M 11%11 r n  (see (3.1), Theorem 2. 3 )).
We se t z o=z ,+(b — f (z i) ) f i (zi) a n d  estimate the value of f ( z )  at
z=z 2 .

f(z2) = bo+bi(b — f ( z i) f i (zir + ••• +b[(b—  f (z ,))f / (zi) - 1" + •
By using the relations bo = f (z ,), b l = f  (z i ) an d  II b —f (zi)II < el 2
(see (3. 4)), we have similarly
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(3. 8) Ilf(z2)—bil <  8 /4  , 1 Z 1 Z2 H<  r/4  .

The function f ( z )  is also written in the following form

f  (z ) =  co + c,(z — oz,)+ ••• +c„(z— z 2 )"+ ••• .

If we set z 3 =z 2 +(b— f(z 2 ))f ( z 2 ) ' ,  then it is also proved that

(3. 9) f(z3) — bll < 8 18, 11z2 — ;11 < r1 8 .

Repeating this process indefinitely we have a sequence z„ z„ ••• ,
z„, ••• of elements of B such that

(3.10) I tf(z„)— bil << 6/2,z ,  — zi,11 <  rl 2" , n =  1, 2, • • • .

The sequence z „ z 2 , ••• , z„, ••• is  c learly  a Cauchy sequence and
hence it converges to an element z o . It is evident that f ( z 0 )=b
and

(3.11) 11z 0 —all a—z111+11z1—z211+ •-• +II z„-1 —  zn11+ ••• <r •
Our lemma is thereby completely proved.

LEMMA 3. 2. Under th e  sam e assum ptions in  th e  preceding
lem m a, there ex ists a neighborhood U  o f  a  such that f ( z )  is one-
to-one on U.

PROOF. By Taylor's expansion theorem f ( z )  is expanded in
the following form

f ( z )  =  a o +a,(z — a)+ ••• +a n (z— a)n+ •••.

for any element z  in  { z ;lIz — aIl<p(a; D)} . Let R  be a  number
such that O <R <p ( a; D ) .  Then there exists a  number M  such
that

I f(z)H M for z — all<R .

By Cauchy's inequalities we have

(3.12) I I an < M /R , n  = 0, 1, 2, .

We choose a number r  such that r < R I 2 .  Suppose that f ( a+h ) =
f ( a+g )  for two different points h and g with I hll < r  and

-
Since f  (a + h)= (IX  = ,E  a „gm= f  (a+ g), we have

a i (h—  g) = —  la 2 (h2 — + • • • + a „(hn — g")+ • • •}
= —  (h—  g)la,(h + g)+ • • + a „(hn - t + hn - 2  g+ • • • +g " ') +

Hence
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litz,illnrn - l < — nRmnrn-i

(11h—gil t • g n ( )R
- ) . - - i

(using the relation 1/(1—x)==1 +2x+ ••• +nx" - '+ •••)

—(11h—gilM R).111(1— r)2
Oh— R)-(r (2R— r)I(R— r ) 2 )

(using r <R/2)

<  (II h— R)•(r2RI(R12)2) = ilh—g- 118Mr I R 2 .

Consequently we have
(3.12) Ha 1(h—g)11<lih—gil8Mr/R 2 = g)ani8Mr1R2

g)11 a ' 8 M r / R 2 .

From the above relation we obtain

(3. 13) r R 2 I (8M•11 f'(a) - 1  II) (a, =  (a))

Hence if  w e set r0 =Min {R/2, le1(8M.11 fi(a) - 1 11), then it is easily
seen that

(3. 14) I  z 1 — all<r 0 ,  I I z,— a  < r0 a n d  2.
1 + z ,  imply f (z 1 ) +f ( z 2 ) .

Our lemma is thereby proved.
THEOREM 3.1. L e t f (z )  be a  regular function defined on an

open subset D If  f '( z )  has an inverse at z =a e D, then there
exists an open neighborhood U o f  a such that f (U )  is open and f(z)
is one-to-one on U. Hence, to every point w E f( U ) an element z E U
satisfying f(z)----w is uniquely determined, which defines a function
z =p(w ) whose domain and range are f(U) and U respectively. T h e n
yo(w) is regular at w = f (a) and we have

(3. 15) ql(b) p a r ' where b = f (a).

PROOF. The first half of the theorem is evident from the above
two lem m as. W e shall prove the last h a lf . I f  w e set

f  (a + h)— f (a) — hf ' (a) = a (a, h)

we have c lea r ly  lim 11 8(a, h)11 I PO = O. Let f  (a)---b  and f (a,)
I lh I-).0

Then we have

(3. 16) f  (a ,) — f (a) — (a,— a) f  (a) = (a, a , — a) .
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This implies that

(3. 17) b 1 — b — (a,— a) f ' (a) =  8(a, a,—  a), that is,
P(bi) —  P(b) — b )  f i (a) - 1 —  8 (11, (1 1—  a) f  (a) - 1 .

In order to prove (3. 15) it is sufficient to show that the following
equality holds

(3. 18) lim H8(a,a,—a)f'(a) - 1 H/11b1—bil =  0 .

On the other hand from (3. 17) we have

(3.19) lib1— bli•li f (a ) - 1 11 — 8(a, a1 — a)11.11f (a ) - 1 11.
Since lim tl 8(a, h)11 I Il hli= 0, there exists a number p > 0  such that

1 1h11+0

(3.20) 11 a1 — ali < P im p lies 11 8 (a, al —  a)11•11.P (a) - '11< lla i —  ail/ 2 .

Hence we have from (3. 19) and (3. 20)

(3. 21) 211P a y 1 N Ha,—all I lbi—bll for < 1 9 .

Without loss of generality we may assume that f ' (z )  has an inverse
at every point z E U .  By lemma 3. 1 and 3. 2 f (z )  is  a one-to-one
open mapping from U  onto f ( U ) .  Hence p(w) is continuous on
f ( U ) .  This shows th a t lirn bi = b  implies lim a,— a. Thus we have

lirn
118(a, a) f  ( a ) _ < 8(a ,

6,-*b
,—aai)11 1111P a r 11 .11 a l l  

1)1
- 1)11 MI

liM  (11 (a , a,— a)11•11f (a ) - 1  11111111+ f'(a)-1i1= 0  (see (3.21)).
i ->ez

Our theorem is thereby completely proved.
COROLLARY (Theorem of Nagum o). Let 6  b e  th e  se t o f all

regular elements of 0  and 0), the component o f 6  containing e. In
order that an element a belongs to 6, it is necessary  and sufficient
that a is expressible in the following from

zz 2z "a e + + + ••• +—+ ••• .
1! 2! n!

"

PROOF. I f we define f (z )= e + —
z  

+—
z 2  

+ • • • + —
z  

+ • • • for every
1! 2! n!

zE  0 , then by Theorem 1. 1 f (z )  is regular in 0  and f'(z )=  f(z ).
As is easily seen f '(z )  (=  f (z ) )  h as  an inverse f (— z ), f (z ) i s  an
open mapping from 0  into itself (see Lemma 3. 1). Let 6,'= f (0).
0,' is clearly an open subgroup of 0  and consequently 0,' is also
a closed subgroup of 6 .  On the other hand 6 ,' is connected. So
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we can easily see that 6 , '= 0 , .  The corollary in  thereby proved.
zDEFINITION 3. 1. The function f (z )=e+

1 !

+ z2

 2 ! 
+ ••• +—

z n

+ •-• ,
n!

E 0 , is called the exponential function and is denoted by exp (z).
NOTATION 3. 1. In the future the symbol 6  always denotes

the set of all regular elements of a n d  6, denotes the component
of 6  containing e.

§ 4. A n a ly t ic  continuations.

DEFINITION 4. 1. A power series p(z)=a 0 +a 1z+ ••• +a„(z—a)n
+ ••• is called a  function element if  its  radius of convergence is
positive, and a  is called the center of the function element p(z).

Another concepts "direct analytic continuation", "analytic
continuation" are defined similarly as in  classical function theory.

DEFINITION 4. 2. Let p(z) be a function element. The totality
of function elements which are the analytic continuations of p(z)
is called the analytic function defined by p(z).

NOTATION 4. 1. The symbol pa (z) designates a function element
having its center at a.

LEMMA 4. 1 ( Theorem of  invariance of  analytic relations). L et
F(z, w) be a  function defined f o r z E A „ w  E  A , (where A, and A,
are  connected open domein in a n d  satisfying the  following
conditions

1) F(z, w) is a  continuous function with respect to two variables
z E A, and w E

2) F(z, w) is a regular function o f  z E A, f o r any fixed w e  A,
and similarly a  regular function of  w E A, f o r any fixed z E A,.

3) The functions w ) (d e r iv a t iv e s  w ith  respect to  z ) and
Fu,(z, w) (derivatives with respect to w) are continuous functions in
two variables z E A , and w E A, respectively.

L et p(z) and q(z) be two function elements havihg their centers
at the same p o in t a. L e t r  be a curve which starts from the point
a an d  is parametrized by an  equation z O t < 1 .  Suppose
that the function elements p(z) and q(z) can be continued analytically
along the same curve r  by corresponding to every p o in t  (t) E .1.1 func-
tion elements p t ( ,) (z), qt ( ,) (z) which hav e their centers at (t) E
L et us further assum e that f o r every point W )E  F  there exists a
positive number R(t) such that i f  Hz —(t)II<R(t), PE(t)(z) and qt(t)(z)
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a re  w ell def ined and Pet(Z ) E q t " ) ( z )  G  A , .  I f  the relation
F(P(z), q(z)) 0  holds o n  some neighborhood o f  a ,  then w e have
F(Pt(r)(z),qt,t)(z)) - - -=0 on the maximal domain in which both p e w (z) and
qt ( ,) (z ) are well defined simultaneously and p t ( t ) (z)E A „  qc ( ,) (z) e

The classical proof applies, mutatis mutandis, to  th is case.

LEIVEVIA 4. 2 (Theorem of monodromy). Let D be an  open convex
subset o f  0  an d  a  an  element o f  D .  I f  a  function element p a (z)
(see Notation 4. 1) can be continued analytically along every curve in
D starting f rom  the  po in t a, then there ex ists a  regular function
f(z ) def ined on D such that f(z)-_- ---p„(z) on some neighborhood of a.

This is proved quite sim ilarly as in classical function theory,
and the details are omitted.

Let f (w ) be a regular function defined on the whole space 0.
Let D be the set of those points w for which f (w )  has an inverse.
T hen it is easy to  see that D is an open subset of 0 .  Therefore,
D is  the sum of disjoint maximal open connected sets, D=U
the components o f D .  We choose a component D 1,  and denote it
by  D * . To avoid complications, we confine ourselves to D*.

DEFINITION 4. 3. L e t  E D * and f ( )= a .  Since f '( )  h a s  an
inverse, there exists by Theorem 3. 1 a regular function p(z) defined
on a neighborhood o f a  such  that f (p (z ) )=z  and p ( a ) =e .  We
have then

(4.1) p ( z ) = - 1 - - a , ( z — a ) +  • • •  + a a (z— a)+ ••• .

on some neighborhood of a. We denote this power series by pa (z)
(see Notation 4. 1) and ca ll it the inverse function element of f (w)
a t  w

It is ev ident that z— f(p 0 (z ))=0 on some neighborhood o f a.
Hence by the theorem o f identity we have

(4.2) z  —  f  ( p a (z)) --- 0 f o r  11 z — <  p ( p a (z))
(see Notation 2. 2).

The analytic function  'P (z ) defined by the inverse function
element of f (w) at an arbitrary point w  E D* is called the inverse
analytic function of f  (w ) w ith respect to D * . For the validity of
this definition we must  show th a t the analytic function 11, (z ) is
defined independently upon the selection of inverse function ele-
ment of f ( w ) .  But this is easily proved in the usual manner.

Let ph(z ) (see Notation 4. 1) b e  a  function elem ent of the
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analytic function  'I t(z ) having its center at b. Then there exists
a  curve 1 ' such that P b (z ) i s  the analytic continuation of pa (z)
along F. I f  we define F(z, w)= z —  f (w), then the function F (z, w)
satisfies the conditions 1 ) ,  2 )  and 3 )  in  Lemma 4. 1. Since
F(z , p a (z ))=0  (see (4. 2)), by Lemma 4. 1 , we have

(4. 3) F(z , p b (z )) = O, t h a t  is, z —f (pb (z)) = O.
Letting P b (b) = 97, we can easily prove that 71 E D * and P b (Z) is  an
inverse function element of f (w )  a t w=7/ E D*.

From these discussions w e can say, in short, the totality of
inverse function elements of f (w )  a t a ll the points of D * defines
an analytic function which is called the inverse analytic function
of f (w )  with respect to D*.

Let H = f  (D*). H  is a connected open subset of 5 (see Lemma
3. 1). From above it is evident that the center o f any function
element of NP(z) is contained in H  and conversely for any element
a in H  there exists a function element of T (z )  having its center
at a. And it is easy to see that any function elem ent o f ‘11(z)
cannot be continued analytically beyond the domain H.

Let pa (z) be a function element of the analytic function N1P(z)
having its center at a .  For any element b  su c h  th a t  b— a  <
p(pa (z)) there exists a function element P b (Z) o f NIf(z) which is the
direct analytic continuation of pa (z ) and having its center at b.
This implies that
(4. 4) P(Pa(z)) < P(a ; H) (see Notations 2. 1  and 2. 2).

If the equality p(p a (z))= p(a ; H ) holds for every a E H  and every
function element pa (z) o f klf(z), then any function element p(z) of
'If(z) can be continued analytically along every curve in H starting
from the center of p(z).

From the above arguments we have the following
THEOREM 4 .  1  Let f (w ) be a regular function defined on the

whole space 8. L e t D  be the set of those elements w  f o r  which
f '(w )  has an inverse. Being an open set, D is the sum of disjoint
maximal open connected sets, D =V  D „, the components o f D . W e

choose a  component Do,  of D  and denote it by D * .  We have then
(i) The totality of inverse function elements o f f (w )  a t the

points of D* (see Definition 4. 3) defines an analytic function 41 (z)
which is called the inverse analytic function o f f (w )  with respect
to D*.
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(ii) For any function element p(z) of the analytic function T(z)
it holds that
(4.5)f ( P ( z ) )  =  z

(iii) I f  we set H= f (D*), then H  is  a connected open subset of
0 .  And the center of any function element of the analytic function
T(z) is contained in H and for any element a  in  H  there ex ists a
function element of T(z) having its center at a .  (Any function element
cannot be continued analytically beyond the domain H).

(iv) For any  function elem ent p a (z ) of the analytic function
T (z ) hav ing its center at a we have

(4. 6) p(pa(z)) p(a; H ) (see Notations 2. 1 and 2. 2).

If th e  equality  p(p n (z)= p(a ; H ) holds f o r  e v e ry  a e ll and every
function elem ent p a ( z )  o f  qi(z ) hav ing  its cen ter at a , then any
function elem ent p(z ) o f  T (z )  can be continued analy tically  along
every curve in  H  starting f rom  the center o f p(z).

In  Theorem 4. 1 w e  set f(w )= exp  (w ). Then f '(w) (= f  (w))
has a lw ays an  inverse . Hence in  th is  case w e have a n d
H-=f(93)=03, (see the Corollary to Theorem 3. 1).

DEFINITION 4. 4. The inverse analytic  function  o f  th e  ex-
ponential function exp (w) is  ca lled  the logarithmic function and
is denoted by log z.

COROLLARY 1  to  THEOREM 4. 1. I f  p(z ) i s  a function element
of the analy tic function log z , then

(4. 7) exp (p(z)) =  z .

Let p a (z ) be any function element o f  log z  hav ing  its  cen ter at a.
Then we have always

(4. 8) P (P a(z)) = P (a ;
Therefore any function element p(z) o f log z  can be continued analy-
tically along every curve in 6 , starting f rom  the center of p(z), and
p(z ) cannot be continued analytically  beyond the dom ain (53,. Let
q(z) be an analy tic continuation of p(z) C log z  along a curve F053,
having its beginning point at  a and end point at b. W e  have then

(4.9)q ( b )  =  p ( a ) +  ' d z .
r  Z

PROOF. Let p a (z) be a function element of the analytic function
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log z  and S the open sphere such that S  =  { z; I z  -  a <p (a  ; ( ) } .

Since S is a connected open subset of 3 and the function  l/z  is
regular in S, we have 2 -dz=0 for every rectifiable closed curve
F ( S .  Hence we can define a function  f (z )  such that

(4. 10)f ( z )  =

where the right hand of the above equation denotes the integral
of the function  l i z  along any curve contained in S and having
its beginning point at a and end point at z. Then it is easily
proved that f (z )  is  regu lar in  S  and  f'(z)==l/z. O n  the o ther
hand from (4. 7) we can easily see that p a '(z) =  liz. A s in  classical
function theory we have

(4. 11)p 0 ( z )  =  p (a )± f(z )on a  neighborhood of a .
This im plies that { z  I z — a < p ( p a ( z ) ) }  i S =  {z ; IIz — aII <p(a ;
that is, p (pa(z ))^ p(a; . From this and (4.6) we have  p(Pa(z))

p(a;T he last assertion  o f the  C oro lla ry  is  p roved  qu ite
similarly as in classical function theory.

In Theorem 4. 1 we shall consider a regular function  f (w ) =  wtm

(where m=f=l is a positive integer). In order that  f '(w )=m w "'
has an inverse, it is necessary and sufficient that w  belongs to (f?i

(see Notation 3. 1). Hence in this case the set D  coincides with
and any component of (  i s  a  coset of (  modulo  ( .

DEFINITION 4. 5. The inverse analytic function of the function
f(w) =  wtm  (m  I  1 is a positive integer) with respect to  ( (a  com -
ponent of  )  is called the radical function of order m  and is
denoted by In particular, the analytic function z  ( )

is called the principal radical function of order m  and is denoted
simply by

COROLLARY 2  to THEOREM 4. 1. I f  L (z) is a f unction elem ent
belonging to the analytic function log z, then the function exp (L(z)/m)
is a function elem ent belonging to the principal radical function

Conversely, any function element p(z) belonging to the analytic
f unction c a n  b e  e x p re s s e d  in  s u c h  a  f o rm ,  t h a t  i s ,  p(z) =

exp (L(z)/m) (where L(z) is a function elem ent belonging to log z).
Hence for any  function element p a(z) belonging to w e  h a v e

(4. 12)p ( P a ( Z ) )  =  p(a; ) ( n o t i c e  t h a t  f(W 1) =  ( ) .
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Thus any  function elem ent p(z ) belonging to the analytic function
z  can be continued analytically  along every curve in  03, starting

from  the center of  p(z ). For the radical function 11
1% z  (6.) 03. I (A),

any function element p(z) belonging to 1/  z  (( „) can be also continued
analy tically  along every  curve i n  6 f3 s tartin g  f ro m  the center of
p(z), where 630 i s  the coset of  m o d u l o  0 , containing the center
of p(z).

PROOF. The first assertion of the corollary is proved similarly
a s  in  classical function theory. We shall prove the last half of
the corollary. Let pa (z ) (see Notation 4. 1) be an arbitrary function
element belonging to the radical function V z  (% ) (0,, ,-1-0 , ) .  Let
03,„=e63,. Then it is easy to see that a E O f f i xm  ; x e 6,1 =e"1:531 = 0 8

(a is  the center of the function element p a (z)). Let

(4. 13) a = , b E .

On the other hand a  is also expressed in the following form

(4. 14) a = 91"' , E = W3, .

Suppose that

(4. 15) y  = , C E 0, .

From (4. 12), (4. 13) and (4. 14) we have

(4.16) cm = b .

Let S  be the maximal open sphere which is contained in 0 0 and
having its center at a. Then m S  i s  an open convex subset of
6, which contains an elem ent - - ""a=b . From (4. 16) there exists
a function element p(z) E V z  such that p ( b ) = c .  Furthermore, from
(4. 12) it  is  e a sy  to  see  th a t p(z ) can be continued analytically
along every curve in starting from the point b E  m S. F rom
this and the theorem of monodromy there exists a regular function
f (z )  which is defined o n  - - nz,S and such that f (z ) p(z ) on some
neighborhood of b. Hence f ( z )  satisfies the condition that

(4. 17) f (z)m = z .

Define
(4. 18) p(z ) = f  ( 'n  z ) f o r  z E S.

The function p(z ) is regular in  S  and 9)(z)m --mfWniz'n)=e "
= z . We have further p (a)= f  ( t"  a)  = f  (b )= = 97. Hence it is
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easy to see that p ( z )  coincides with pa (z) on some neighborhood of
a . T h is  implies that {z ; Ilz—all<P(Pa(z))} (damain of p ( z ) ) .

Our corollary is thereby completely proved (see last part of
Theorem 4. 1).
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