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1. INTRODUCTION

Given a standard n (> 2 ) dimensional Brownian motion with
1  22

sample paths b(t) (t > 0) and generator 03 =    + •-• + ) ,  its
2  am.

radial part r(t)= I b(t) (t > 0 ) i s  the Bessel motion with generator
_ 1 (  c12  + n - 1  d ) ; in fact, if Pc (B) is the n  dimensional Wiener

2 W t 2I  dr
measure of the event B  as a function of the starting point a= b(0)
of the Brownian path and if t 1 < t 2 , then

1. 1P • E r ( t 2 )  <  /  ± ( s )  :  s <

(27rtrni2e—  11) —(112/2 t db
15— al</
t = t,—  t„ a b(t1)

depends upon I a I = r(t i ) alone, i.e., [r , P.] is Markov, and the identi-
fication o f its generator as 13 ±  (=the radial part of 6) is immediate.

Because 0 -  i s  the sum o f th e  generator of the standard
1-dimensional Brownian motion and the generator of translation

at speed ± = n
 2  

1 -r -1 ,  it  is  plausible that if b(t) (t >0 )  is  a 1-dimen-

sional Brownian motion with b(0)>O, then the solution of

1 )  F u lb r ig h t  g ra n te e  1957-58, d u r in g  w h ich  t im e  se c tio n  2  o f  th is  p ap e r  w as
w orked out.
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1.2 t(t) = b(t)+ n  t - ' d s t >  0
2 0

should be a Bessel motion starting at T(0) = b(0) ; this is not correct
because, if b(0) = 0, then 1.2 has both a non-positive and a non-
negative solution, but it becomes correct, if, as will be understood
below, solution means non-negative so lu tion 2).

Given 2 non-negative solutions T , and r ,  o f 1. 2, their difference
te  satisfies e= e i r l t 2 d s ,  and, using I etr,r 2 d s <  (rrl+ len d s <

0 0 0
+ 0 0 , it follows from a =  — e2 fr ir2< 0, that e 2 —=0, i.e., 2 has at most
1 non-negative solution.

Now the trick is to prove that i f  T  is a Bessel motion, then
b   t - ' c l s  is a Brownian motion and to use the 1 : 1 nature2 0
of the map b ---> r to conclude that, neglecting a class o f Brownian
paths b  o f W iener measure 0, 1. 2 has a  non-negative Bessel
distributed solution T.

2 .  PROVING THAT b r —

n - 1
2  0  

r - l d s  IS BROWNIAN

Given a Bessel motion [r, P .] as described above, an applica-
tion of

2. 1o t - i d S ]  = ds(27rs)-"i2e—II112/2si b - i d b

f t  d s

30Vs

<  +

(27r ) - "12e - 1 1 ' 12/2 1 b I - 1 db

shows that n - 1 t - i d s  is well defined, and, using the
2 0

Markovian nature of the Bessel motion, it is found that, if  t2>t„
then

2.2E . E e i ftb ( t 2 ) s <  t

e iab(t i ) e —iat(ti )E . E e iat(t2) t2  - id s  
I r ( s )  :  s  <

e iceb(t i ) e —iar(o E c E e ia(r(t)— n
;

1
 (

t
) t - l d s ) ]

t la I = r(ti)

2 )  See K. I t t i  [3 ]  for the ideas behind this.
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Now the evaluation o f such Bessel expectations is routine : 3 )

t t
2.3u ( t ,  r) E : [e t ( t )

7 1 \
.0 ] ' =  lal

is the bounded solution

2. 4 e1ctre-a"12

of

2. 5 a au _ ice(n -  1)u — 1 [a2
+

 n - i  a  ia(n — l ua
_   2 1

2  ar 2 r  at r

2. 5 b u(0 + , r) =

and, using the fact that b (s ) : s<t, is a Borel function of r(s) : s<ti
and inserting 2. 4 into 2. 2, it is seen that

2. 6 a E.Lei ' b ( t 2 )  b ( s ) : s < t 1] = e i ab ( t De - 0 2 t /2 t  =  t 2 - t „

or, what is the same,

2.6 b R[b(t2) G d b lb ( s ) : s <t i
e
--(1,-.)2/2t
-\ /27-ct

t = t 2 - t , ,  a =b(t,),
i.e., that b is Brownian.

3. b +
2

r  'cis IS  SO L V A B L E FO R  EACH CONTINUOUS

b (b(0)> 0)

Because r = b +n  - r- ld s  is singular (at r =0), it is not clear2
that it has a non-negative solution for each continuous b (b(0)> 0).

Consideration of the map j : r +
n - 1  t

r'ds defined on the class
2 0

of non-negative continuous r such that c id s < + 00 (t > 0) con-
verts the problem into showing that j  has a fix point ; the method
of Leray-Schauder should be able to decide this, but I had  no
success with it. H ere , I shall present another method, putting n=3
to eliminate the nuisance factor (n-1)/2.

b (0 )>0  implies the existence of a positive solution for t < t ,
=min(t : b(t)= 0) because, i f  t < t 2 < t „  if 8= min b(t), and ifIst2

3 )  See, for example, R. Hasminskii [2].
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3.1r =  b +1. TV -cis n >  1, T i b  ,
0

then
3. 2 ri < r 3 < r , <  etc.

<
n

G  =  l i m  r ,nt+-
<  etc. < T 6 < t 4 <  f

3.3r ,  b +  W as ,
0

3.4 . e0 ( e  1 r _ r + )ds<_& - 1 eds t <  t, , e  =  r + —t_ > 0 ,0
and, iterating 3.4 and letting t2 t  t„  r_ r +  is found to be the
desired solution.

Given a solution I  that cannot be continued past t 1 > 0 ,  it must
be that

3.5b ( t 1 ) lim (t,— t) i [b(1i) —  NO] = — c° ;
it 1 1

ti
indeed, r - ids E  t (K t i )  implies r(t i — ) = b(ti )+ 1 ° r - tds; here, r(t1-0 t,
cannot be = + 0 0  because rids would then be <+00, and r(t1 -0
cannot be > 0  because then the solution of r i [b(t + ti) — b(ti)
+ t(t,— )]+ r -rOds would effect a continuation of r  past t1 ; thus,

t(t 1 —) has to° be 0, and so

3.6( t ,—  t ) i [b ( t  , ) — b ( t ) ] (t t )- i— r (t )—  501 t1ds]

t,
— co t t 1 .

Consider the case b (0 )> 0  and let I._  be the supremum of
positive times t, such that, fo r  some continuous perturbation

h E  t (0<h<1 ),=b  +  611+ r - lcis (t< t i )  has a  positive solution0
for each 0 < 6 < 1 .

t. > 0  because b(0)>0 ; in fact, tc., >  m in ( t b(t)=0).
t.=  +CO because, i f  t1 <4<etc. t t.<+  00 , i f  121 , 122 , etc. are

the corresponding perturbations, and if h E 2- n-1 12„+1 12. with
2

some continuous h. E  t (0<h .<  1 )  such  that (b +El 1.) - (t co)>
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— 00 (0 < e <  1 )", then r =b +6 1 2 _ +r - ld s  is  solvable up to time
0

to = m in(t b(t)= O) at least ; the solution r, lies above the solution r„

of r = b +6 2 ' - lh„+ t r'c ls  because the difference e=r,—  r„ satisfies

3.7 l i m  e(s)— e(t) >  e  r E t

t t s s — t  —
causing e  to turn upwards as soon as it crosses e =0  ;r,  is then
positive and continuable up to t = t n ,  and, making n t  + c o  and
using (b +sh j - (t_) >  - 0 0 ,  it is seen that r , can be continued up
to  t=t c., and past, contradicting the definition o f t c.a .

But now the same proof shows that i f  t i < t K e t c .  t c.s = + co
i f  h„ 112 , etc. are the corresponding perturbations, and if h =E 2 - "h„,

then the solution r, of r = b + e h + r 'd s  is continuable over [0, + 00)
0

for each 0 < 8 < 1  ;  in addition, r <  re2 (81< 82), and, using mono-st
tone convergence, rn, =lim  r, is found to be a solution of r =b +El  0

r - ld s (t<+ 00).
As to the case b(0) = 0, it suffices to put h= 1 above, to solve

=b + &+ t r - 'cls for each 5 > 0 , and to make 8 1, 0 as before.

Given °b„ b, as above, i f  r„ r , are the corresponding solutions

o f  r =b+ o r - lds, then

3.8r 2 ( t )  —  r i ( t )  I < 2 max I b2— bil,s<t
as will now be proved ;  it can be supposed that r ,  and r ,  are
positive because a small perturbation (Eh) will make them so.

But, in that case, if e =r 2 — r„ i f  o-  =  dstr i r, , and if a=b 2 —b1 ,0then

3. 9 e(t) = a(t)— e - 6 (1 ae'do- ,

and so
3. 10 e(t)l <  [2 — e ] max la!.

4 )  h— can be constructed as follows :  define hc.,(0)=0, let
ho.(t—)—h—(t)—constant X ',/e(t), where e (t )=  m ax I b(t_)—b(s)j for t< tc, ,

t •.2- t
and, adjusting the constant (> 0 ), f i l l  in  h_ on the rest o f [0, + .0) so as to have
0<h_<1 continuous and increasing ; then, as tt t_, a=b+sh_ satisfies

a ( L ) — a ( t )
> (t — t) V  e  [constant X 8—NJ e 1>0.t o o  —t
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4 .  OTHER SINGULAR EQUATIONS

Given o > 0 ,  t h e  problem r= b - ld s le s  is amenable to the
0

method of section 3 ,  the point being that the T  on the left and
the 1 / I  under the integral sign balance, preventing the solution
from getting too small or too big.

I  do not know o f any integral equation  t =  b +  k(r, s)ds that
0

can be solved for alm ost all Brownian paths b but not for all con-
tinuous paths ;  it would be interesting to have such an example
(see R. Cameron [ 1 ]  and D . Woodward [ 4 ]  fo r additional infor-
mation on this point).

Massachusetts Institute o f Technology
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