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1. INTRODUCTION

Given a standard #(>>2) dimensional Brownian motion with
sample paths b(#) (#2>0) and generator ®=%<%+”‘+a%;>, its
radial part t(¢#)=|b(#)|(#>0) is the Bessel motion with generator
@5’-“:% ( j: i +”—;1%> - in fact, if Pc(B) is the n-dimensional Wiener

measure of the event B as a function of the starting point a=1b(0)
of the Brownian path and if #<¢,, then

1.1 PJx(t,) <lI|xs): s<t]
=S @ty e~ 100172t gy
[b—al<z

t=1t,—t, a= b<t1)

depends upon |a| =1(¢,) alone, i.e., [ t, P.] is Markov, and the identi-

fication of its generator as @' (=the radial part of ®) is immediate.

Because &7 is the sum of the generator of the standard

1-dimensional Brownian motion and the generator of translation
n—1__,

at speed i:Tr , it is plausible that if 6(¢) (¢>>0) is a 1-dimen-

sional Brownian motion with #(0) >0, then the solution of

1) Fulbright grantee 1957-58, during which time section 2 of this paper was
worked out.



318 H. P. McKean, Jr.

1.2 *(t) = b(t)+’1—1g vds 10
should be a Bessel motion starting at t(0)=5(0) ; this is not correct
because, if b(0)=0, then 1.2 has both a non-positive and a non-
negative solution, but it becomes correct, if, as will be understood
below, solution means non-negative solution®.

Given 2 non-negative solutions 1, and r, of 1.2, their difference

e satisfies e= — Ste/rlr2 ds, and, using It[e/rlrzlds_{gt(r;1+r;l)ds<

+ o0, it follows from eé= —e*/1,x,< 0, that =0, 7.e., 2 has at most
1 non-negative solution.
Now the trick is to prove that if r is a Bessel motion, then

_ t
b=t —TS t7'ds is a Brownian motion and to use the 1:1 nature
0

of the map b—1t to conclude that, neglecting a class of Brownian
paths b of Wiener measure 0, 1.2 has a non-negative Bessel
distributed solution .

2. PROVING THAT bEr—n—_—l—Str“ds IS BROWNIAN
0

2

Given a Bessel motion [, P.] as described above, an applica-
tion of

2.1 [S vids| =

<

shows that bEI——Z—l—S r'ds is well defined, and, using the

sg @ms) "2~ 101725y -1gp

[a
S D (@) e U2 0]
+

Markovian nature of the Bessel motion, it is found that, if #,>>¢,,
then

2.2 E.[ei“b(’Z) [x(s): s<¢]
= b =it B T eiwr(tz)—”—g—lgffr"ldslr(s): s< 1]
— bt gt T ez‘a(r(t)~L;1§;r—1ds)]
t=1t,—t, |lal=r1(t).

2) See K. Ito [3] for the ideas behind this.



The Bessel motion and a singular integral equation 319

Now the evaluation of such Bessel expectations is routine : ®

2.3 u(t, 1) = E[e"COTT| ] p = g

is the bounded solution

2.4 ez‘mre—azt/z

of

2.5a g—? = (&*u-m(gr_ I_)u = %[a?; n;l%_ia(nr—l)]u
2.5b u(0+, 1) = &,

and, using the fact that &(s): s<¢, is a Borel function of t(s): s<¢,
and inserting 2.4 into 2.2, it is seen that

2.6a E[®®)|p(s): s< 1] = o bh)p=a"t/2 = t,—1,,
'or, what is the same,
2.6b P[b(t,) € dblb(s): s< t]
_ o~ (b—ad?/2t
V2wt

t= tz_tn a = b(tl) ’
i.e., that b is Brownian.

3. r:b+7ig—1$tr“ds IS SOLVABLE FOR EACH CONTINUOUS

b (6(0)=0)

Because r:b+n—g~1S:r“ds is singular (at t=0), it is not clear
that it has a non-negative solution for eack continuous & (b(0)>0).
Consideration of the mép J: 15—>b+n—;1 S’

t
of non-negative continuous r such that S 17'ds<+oo (12>0) con-
0

verts the problem into showing that j has a fix point; the method
of Leray-Schauder should be able to decide this, but I had no
success with it. Here, I shall present another method, putting =3
to eliminate the nuisance factor (n—1)/2.

b(0)”>0 implies the existence of a positive solution for #<#.
=min(¢: b(¢)=0) because, if t<t¢,<t,, if €=min b(¢), and if

t<t,

17 'ds defined on the class
0

3) See, for example, R. Hasminskii [2].
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3.1 Tppy = b+Slr;1ds n>1, t,=b,
then
3.2 T, <1, <r, < et

<r. =limu1,,_,
nt+o

<rt, =limuy,

nt+o
<ete. < 1, <1, <1,
3.3 T, = b+Str;1ds,

3.4.0= —S'(e/r_r+)dsge-zg'eds t<t, e=t,—1.>0,

and, iterating 3.4 and letting #,1¢,, r_=t, is found to be the

desired solution.
Given a solution t that cannot be continued past #, >0, it must

be that
3.5 b(t) =lim (£, £)"[b(E) —b(H)] = — oo ;

t t
indeed, S vdse | (t<1,) implies r(z.‘l—)zb(tl)+g t-'ds: here, t(f,—)
0 0
31
cannot be = + oo because S t'ds would then be <+ oo, and t(¢,—)
0
cannot be >0 because then the solution of r,=[b(¢+1¢)—0(¢)
t
+r(t1——)]+g t7lds would effect a continuation of t past ¢,; thus,

1(¢,—) has too be 0, and so
3.6 (t,— )~ [b(t) —b(t)] = (tl—t)"‘[—r(t)— S:‘r-lds]
< —(tl—t)Szlr“ds~ oo E14,.

Consider the case 5(0)>>0 and let £, be the supremum of
positive times #, such that, for some continuous perturbation
he 1 (0<h<]), r:b+€h+$tr‘lds (#<t) has a positive solution
for each 0<&<1.

t. >0 because b(0)>0; in fact, {,>min(¢: b(¢)=0).

t,=+oo because, if #,<t,<letc.tt < +oo, if hy, h,, etc. are
the corresponding perturbations, and if 2=} 2"’“h,,+%hm with

n>1

some continuous #_€ 1 (0<h_,<1) such that (b+¢&h.) (¢.)>
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t
— oo (0< €L 1), then r:b+Elzm+S t7'ds is solvable up to time
t,=min(¢: b(¢)=0) at least ; the solution t, lies above the solution 1,

t
ofr:b+82‘”“lz,,+s 17'ds because the difference e=r1.—1, satisfies
3.7 lim &)=~ oy,
trs S—t

causing e to turn upwards as soon as it crosses e=0 ;1. is then
positive and continuable up to #=#,, and, making n1 +c and
using (b+¢&h_) (¢.)>>—oo, it is seen that r. can be continued up
to t=t_ and past, contradicting the definition of £_.

But now the same proof shows that if ¢,<[f,<efc. . = + oo,
if h,, h,, etc. are the corresponding perturbations, and if 2= >}2""#,,

n>1
t ==

then the solution t, of r:b+8]z+S t7'ds is continuable over [0, + o)

0
for each 0<é<1; in addition, t, < 1., (§<(&,), and, using mono-
tone convergence, T, =lim 1, is found to be a solution of r=b+

gl0
S'rlds (t<+ o).
As to the case b(0)=0, it suffices to put 2z=1 above, to solve

r=> +8+Str‘1ds for each € >0, and to make & | 0 as before.

0
Given b,, b, as above, if t,, 1, are the corresponding solutions
t
of r:b+s 17'ds, then

0

3.8 [t () —x,(8)| < 2 max|b,—b,],

s<t
as will now be proved; it can be supposed that r, and r, are
positive because a small perturbation (€#) will make them so.

t
But, in that case, if e=t,—1,, if JZS ds/t,x,, and if a=b,—b,,
then 0

3.9 ot) = a(z‘)—e"’(')§tae"d<r,

and so

3.10 le()|<[2—e7] m<ax|a[.
s<t

4) h. can be constructed as follows: define %..(0)=0, let
hoo(te) — hoo(t) =constant X \/e(?), where e(#)= max |b(te)—0(s)]| for t<to,
s>t

to s
and, adjusting the constant (C>0), fill in 4. on the rest of [0, + o) so as to have
0<h.<<1 continuous and increasing; then, as ¢1{., a=b+¢&h, satisfies

a_(t_;a)_:t@ >(te—1)"'\/ e [constant X &e—+/e ]>0.



322 H. P. McKean, ]Jr.

4. OTHER SINGULAR EQUATIONS

t
Given a >0, the problem r:b+S ds/t* is amenable to the

method of section 3, the point being that the r on the left and
the 1/:* under the integral sign balance, preventing the solution
from getting too small or too big.

t
I do not know of any integral equation r:b+g k(x, s)ds that

can be solved for al/most all Brownian paths b but not for @/l con-
tinuous paths; it would be interesting to have such an example
(see R. Cameron [1] and D. Woodward [4] for additional infor-
mation on this point).

Massachusetts Institute of Technology
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