
M E M O IR S  O F  T H E  C O L L E G E  O F  SC IEN C E , U N IVERSITY  O F  K Y O T O , S E R I E S  A
Vol. XXXIII, Mathematics No. 2, 1960.

A  theorem on closed mapping

By

Hisahiro TAMANO

(Received September 10, 1960)

Let f  be a  closed continuous mapping o f  a  space X  onto a
paracompact space Y. It is well known that X  is again paracompact
if f ( y )  i s  compact for each y E Y , (c .f . [ 3 ]  an d  [5 ], p . 81).
A similar result on the normality o f X  will be obtained, and we
shall show  a necessary and sufficient condition for the normality
of X  in  terms of the properties of point inverse f - 1 (y), which is
the purpose o f th is n o te . W e shall show that i f  f  i s  a  closed
continuous mapping o f  a  space X  onto a  paracompact space Y,
then X  is  norm al if and only if  f '( y )  is  normal and normally
embedded in  X  (that is , every bounded continuous function on
f - 1 (y ) has a  continuous extension over X )  fo r each y E  Y .  As a
direct consequence o f  th is , it w ill b e  p ro ved  th at th e  product
X x Y of a paracompact space X  with a normal space Y is  normal
if the projection mapping p :x x  is closed (c.f. [3 ]) .

All spaces mentioned here will be assumed to be completely
regular Tc spaces and all functions to be real valued.

§ 1 .  P re lim in ary . T h e  Stone-6ech compactification 13X  o f a
space X  is  a compact (Hausdorff) space containing X  as a dense
subspace such that every bounded continuous function on X  has
a  continuous extension over le X . It is easy to  see that if  F, G
are closed subsets of X  which are  functionally separated (that is,
there is a  continuous function h  on X  such that h = 0  on F  and
lz= 1  o n  G ), th en  C/R x (F)r\C/ 3 x (G)—(1, ,  where C/o x (F)(C/ o x (G))
denotes the closure o f F  (resp. G ) taken in  i3X .  Therefore we
have :

Lemma 1 . "  X  is  normal if and only i f  C/o x (F)r\C/ 5 x (G)=4)

1 )  This result is due to 6 e c h  I 1 j.
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for each pair of disjoint closed sets F, G of X.
T he follow ing is the principal theorem on  the Stone-Cech

compactification and will play an important role in the present note.
Lemma 2. Let f  be a continuous mapping of a space X  into

a compact space Y , then there is a  continuous extension f *  of f
which carries 0 X  into Y.

For the proof, see [7 ], p. 153.
A  mapping i s  s a i d  t o  b e  c l o s e d  if the im age of a

closed subset of X  is closed. Let f  be a  continuous mapping of
a  space X  onto another space Y, then f  can be considered as a
continuous mapping o f  X  in to  /3 Y. A ccordingly, there is by
Lemma 2  a  continuous extension f *  o f O X  onto ,8 Y  (c.f. [8],
p. 476).

Proposition 1 .  Let f  be a  continuous mapping of X  onto Y
and let f *  be the continuous extension of f  over 8 X .  Then f  is
closed if and only if f '(y )n F =  y5 implies f* - '(y)nC1,3x (F)=45 for
any point y E Y and for any closed set

Proof. Suppose that there is a  closed se t F ( X  such that
f - 1 (y )nF=y 5 and f * - '(y)nCl o x (F )+  qb for some y E Y .  Let z be
a point of f * - 1 (y )nC/8 x (F), then z is  an accumulation point of F
and therefore f *(z)= y  i s  an  accumulation point of f* (F )= f(F ),
by virtue of the continuity of f * .  Obviously, f - 1 (y)nF=4) implies
y E f ( F ) .  It follows that f (F )  is not closed and hence f  is not
closed. Conversely, if f  is not closed, then there is a closed subset
F  of X  such that f ( F )  is not closed in  Y .  Let y be a point of
C/ y (f (F))— f (F), then F n f - '(y)=.;6. We shall show that C l ( F )
n f* - '(y) +Gh which will complete th e  proof. Suppose, on the
contrary, that Cla x (F )n f* - i(y)=G5, then we have f *(C/ o x ( F ) )  y.
On the other hand, f*(C/ o x (F))n Y is  a  closed set of Y  containing
f ( F ) ,  since f* (C l o x (F ) )  i s  com pact and since f *(C / s x (F))/ - ■ Y

*(Clo x ( F ) n X ) = f * ( F ) = f ( F ) .  It f o l lo w s  th a t  y E Cl y ( f (F ) )
f*(C l e .,c (F )), which is contradictory.

A partition of unity on a space X is a family {p , }  of continuous
function on X  such that /(p,---1 for each x E X  and  a l l  but a
finite numbers of (73,'s vanish outside some neighborhood of each
point of X .  For the sake o f convenience, we shall designate by
0(cpx)  the elementary open set defined by T h a t  i s  0 (PA)
= {x E X ; p ) ,(x) 4 0}.
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Lemma 3. A  space X  is  paracompact if and only if fo r  any
compact set C 3X — X  there is a partition of unity {q,,} on X
such  that C/f, x (0(p,)) n C = cf. for each X.

Pro o f . (Necessity) For each x E X, take an open neighborhood
U , of x such that Cl8 x (Ux )r\C=.13 and consider a covering { Ux} xEX
of X .  I f  X  is paracompact, then there is a locally finite refinement
{ U ,} o f {Ux } ,E x . Furthermore, there is a partition of unity {T.,}
which is subordinate to { U ,} (c.f. [2], p . 71). It is evident that
C/8 x (0(cpx))r■ C= 0, and the necessity of the condition is proved.
(Sufficiency) Let { U }  be any open covering o f X .  For each U.,
we take and fix one open set U*„ of 0 X  such that U *„nX =U „
Put Cc. = EU:l c ,  where [U * ]c  denotes the complementary set of
U*0„  and put C= A C,„ then C  is  a compact set contained in

/9X — X . From the hypothesis of the lemma, there is a partition
o f unity {TO such that Cis  x (0(9),)) n C —.1). Since V  U*03=0 X — C,

{ U* } covers C/8 x (0(p3) fo r each X and consequently there is a

finite number o f  U*„s's, say • • , U*„,,, su c h  th a t .0  thc a,k

D Ci, x ( o ( p ) ) .  Put 11,, k =0 ( (p ,) r\U * „ k , then 0(q')= H,, k .  Thus,

each 0(ep,) can be represented as a finite union of open sets of the
form 11À, k• Constructing H x , k  fo r each O (p ) in  th is  way, we
have an open refinement IHx,k1 of {U .}, which is obviously
locally finite. It follows that X  is  paracompact.

Proposition  2. Let C be a compact set which is contained
in 3X — X .  Let F, G be two closed sets of X  for which C / 8 (F)
nC / o x (G)+(P. I f  th e re  is  a partition  of un ity  {p x }  such that
Cis x(0(T x)) C  = (I) for each X, then Cl x (P) C l o  x (G) C .

Proof. Suppose that Cl8 x (F)r\Cl8 x (G) C, and  pu t
A,—  Cl x(O(P))r\ Cis x(F), Bx— Clex(0(Px))r\Clox(G). F o r  each  X,
let us define a continuous function h , as follows. Set

h , = 0  if A,— (I), and
= 1  if B , =

In another case, it is true that both A , and B , are non-void com-
pact set of $ X  and A , n  B  ¢ ) , because A , n C l  x ( O @ P À ) )
=(/). There is a continuous function h*, on OX  such that h*x =1
on A x and h*x =0 on B , .  Let us define h ,  to  be the restriction
o f h*x on X, in this case. Thus,
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h , = 1  o n  A x n X  and
hx = 0  o n  Bx n X ,  if A   I ¢ )  a n d  B ,  0 .

It is easy to verify that f =I h x •q), is  a continuous function on X
and that f = 1  on F  and f =0 on G . Therefore F, G are function-
ally separated closed sets of X, and it follows that C/B x (F)r\C/ o x (G)
—(1) which is contradictory.

§ 2. The Theorem . We first introduce the notion of normally
embedded subspace. W e shall say that a  subspace E  o f X  is
normally embedded in X  if every bounded continuous function on
E  has a  continuous extension over X .  It is easy to see that E
is normally embedded in  X  if  an d  only i f  C/B x (E )=3 E  (more
precisely, C l ( E )  i s  homeomorphic w ith ,8 E ) .  In  fac t, if  E  is
normally embedded in  X, then every bounded continuous function
fE  C*(E) has a  continuous extension over X  and hence over /3X.
Taking restriction on C l ( E )  of the continuous extension of f
over $X , w e  h a v e  a  continuous extension of f  over Clo „(E).
Thus, C l ( E )  is  a compact space containing E  as a dense sub-
space such that every bounded continuous function on E  has a
continuous extension over C/o x ( E ) .  Therefore Cl8 , ( E ) =3 E , by
virtue of the uniqueness of the Stone-Cech compactification (within
homeomorphism). Conversely, if Clo x ( E ) = S E ,  then  every
bounded continuous function f  e C*(E) has a  continuous extension
f '  over Clo , ( E ) ,  and, since C l ( E )  i s  a  closed subspace o f a
normal space f iX ,  f '  h as a  continuous extension f *  over 3X .
Clearly, the restriction on X  of f *  is  the desired extension of f
over X.

For any space X, every compact subspace is normally embed-
ded in X  and every subspace having unique uniform structure (or
equivalently, having unique compactification) is normally embedded
in X.

In  a  n o rm al space X , every closed subspace is normally
embedded in X .  Moreover, it is true that X  is normal if and only
if  every closed subspace of X  is normally embedded in X .  If f
i s  a projection mapping o f  a  product space X x Y onto Y, then
f '( y )  is normally embedded in X x Y for each y e Y.

Theorem . Let f  be a  closed continuous mapping of a space
X  onto a  paracompact sp ace  Y . Then, X  is  normal if and only
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if f - 1 (y ) is  normal and normally embedded in X  for each y E Y.
Pro o f . The necessity of the condition is  clear, therefore we

have only to prove the sufficiency. Suppose that X  is not normal,
then there are two disjoint closed sets F, G of X  such that C l ( F )

C l x (G)+ (t., by virtue of Lemma 1. Put C= Ci s  x (F) C l x (G ),
then  it is c lear that C O X — X . Let f *  be the continuous ex-
tension o f f  o v e r  /3X. ( f *  is  a continuous mapping o f 13 X  onto
13 Y .)  W e shall show firstly that f*(C) ,9 Y— Y .  I f  this is not
the case, then C '=f * (C )  i s  a compact set contained in  3 Y— Y.
Since Y  is  paracom pact, there  is  a partition of un ity {* ,}  on Y
such that Clp ,(0(1frx))r\C '= ,1) fo r each X, by virtue o f  Lemma 3.
Letting p x(x )=1/r,(f (x )), we have a partition o f unity {p,}  on X.
In  fact, the local finiteness o f  {0(yox )} follows from the local
finiteness o f  {0(11P,)} and the continuity of f .  Since C l p  y (0(Afrx))

C' =cf), w e have C l x (0(q) x)) f * '( C ') = q ) .  It follows from Pro-
position 2  that C f * - 1 (C'). On the other hand, f * ( C ) =C ' and
hence C C f * - 1 ( C ') .  We have thus a contradiction. Consequently,
we see that there is a point z E C  such that f*(z)—y E Y.

I f  it is  true  th at F '= f * 1 (y)nF---k-96 and G '=f * - 1 (y )nG 4-0 ,
then F ',  G ' are disjoint closed sets of f - 1 (y ), and, since f ' ( y )  is
normal, there is a continuous function g  on f - 1 (y ) such teat g= 1
on F ' and g = 0  on G '.  Since f 1(y )  is normally embedded in X,
there is a continuous extension g* o f g  over X  and consequently
F ',  G ' are functionally separated closed sets of X .  Therefore we
have Clpx(F')nCipx(G')— (1). It follows that at least one of C/ f3 x (F')
and C/ f3 x (G') does not contain z. Assume that z Clp x (F')  and let
V be an open set of O X  containing Clpx (F')  such that Clp x (V )i3z.
Put H =F n E V Y , then  H , G  are disjoint closed sets of X  for
which C/ o x (H )r\C / o x (G) 3 z. Furthermore, it follows immediately
that f - 1 (y )nH =y 5 and f * '( y ) n C l p x (H ) z ,  by virtue of the defi-
nition of H .  Thus, we see that there exists a closed set H  of X
such that f - 1 ( y ) r\H =0  and f* - 1 (y)n C/ o x (H)  I  0  for some y e Y.
It follows that f  is not closed, by virtue of Proposition 1. But
this contradicts the hypothesis of the theorem, therefore X  must
be normal.

Remark 1 .  We cannot replace the paracompactness o f Y  by
the normality o f Y , in  th e  preceding theorem, as the following
example shows : Let S I  denote the set of all ordinals less than
the first uncountable ordinal and let 1-2 , denote th e  se t o f all



314 Hisahiro Tamano

ordinals less than or equal to the first uncountable ordinal, each
with the order topology. Let X=-12 x n o , and let X = ,  and let f
be the projection mapping o f X  onto Y . Then f  is closed, and
f ' ( y )  is  compact for each y e Y .  A s  is well known, X  is not
normal while Y  is normal (c.f. [5 ] , p. 93 and [7 ] , p. 132).

C oro lla ry . Let X x Y  be a  product space of a paracompact
space X  w ith  a normal space Y . If the projection mapping
p :X x  Y—..X is closed, then Xx Y  is normal.

Proof. This is  an immediate consequence o f th e preceding
theorem, in view of the fact that f - '(x ) is normally embedded in
X x Y.

Remark 2 .  A slightly stronger result may be proved : I f  E
is  a  subspace o f  X x Y  in  th e  preceding corollary such that
En {x} x Y  is closed for each xE X, and if the restriction on E  of
the projection mapping is closed, then E  is normal.

Remark 3. If the projection mapping p :X x  Y--->X is closed,
then Y  is pseudocompact ([6], p. 67) provided that X  is not a
finite s e t. In  fa c t, if Y  is not pseudocompact, then there is an
unbounded continuous function h(y) on Y .  Let f (x )  be the con-
tinuous function o n  X  such that th e  elementary open set

EX ; f(X )> 01  is not closed (c.f. footnote (10) of the preceding
paper "A note on the Stonetech compactification of a product of
two spaces"), then the projection of the closed set {(x, y) EXx Y;
f(x )h (y )=1 } is not closed in X .  Accordingly, if  X  is not a finite
set, then the space X x  Y  in the above corollary is countably
paracompact. To prove this, let us recall Dowker's theorem [4 ]
which states that a space Z  is normal and countably paracompact
if and only if Z x / is normal, where I  is the closed unit interval.
A s  is well known, a normal pseudocompact space is countably
compact [6 ]  and hence countably paracompact, therefore Y x / is
normal. On the other hand, the projection mapping 1* : X x (Y x /)
--->X is closed, because p* --p op ' and since I  is compat p' : Xx Yx /
-->Xx Y  is closed. Applying the above corollary to Xx (Yx I),
we see that Xx Yx / is  normal. Therefore X x Y  is  a normal
countably paracompact space. The same is valid for the space E
in Remark 2.
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