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Let f be a closed continuous mapping of a space X onto a
paracompact space Y. Itis well known that X is again paracompact
if £7%(y) is compact for each yeY, (c.f. [3] and [5], p. 81).
A similar result on the normality of X will be obtained, and we
shall show a necessary and sufficient condition for the normality
of X in terms of the properties of point inverse f~'(y), which is
the purpose of this note. We shall show that if f is a closed
continuous mapping of a space X onto a paracompact space Y,
then X is normal if and only if f7'(y) is normal and normally
embedded in X (that is, every bounded continuous function on
f7(») has a continuous extension over X) for each yc€Y. As a
direct consequence of this, it will be proved that the product
X XY of a paracompact space X with a normal space Y is normal
if the projection mapping p: XxY—X is closed (c.f. [3]).

All spaces mentioned here will be assumed to be completely
regular T,-spaces and all functions to be real valued.

§1. Preliminary. The Stone-Cech compactification BX of a
space X is a compact (Hausdorff) space containing X as a dense
subspace such that every bounded continuous function on X has
a continuous extension over BX. It is easy to see that if F, G
are closed subsets of X which are functionally separated (that is,
there is a continuous function %z on X such that 2=0 on F and
k=1 on G), then Clz(F)NClsx(G)=¢, where Cl;(F)(Clsx(G))
denotes the closure of F (resp. G) taken in BX. Therefore we
have :

Lemma 1.” X is normal if and only if Clgx(F)NClsx(G)=¢

1) This result is due to Cech [1].
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for each pair of disjoint closed sets F, G of X. .
The following is the principal theorem on the Stone-Cech
compactification and will play an important role in the present note.

Lemma 2. Let f be a continuous mapping of a space X into
a compact space Y, then there is a continuous extension fx of f
which carries 8X into Y.

For the proof, see [7], p. 153.

A mapping f:X—Y is said to be closed if the image of a
closed subset of X is closed. Let f be a continuous mapping of
a space X onto another space Y, then f can be considered as a
continuous mapping of X into BY. Accordingly, there is by
Lemma 2 a continuous extension f* of B8X onto BY (c.f. [8],
p. 476).

Proposition 1. Let f be a continuous mapping of X onto Y
and let f* be the continuous extension of f over 8X. Then f is
closed if and only if f (y)NnF=¢ implies fx(y)NClax(F)=¢ for
any point y€ Y and for any closed set FC X.

Proof. Suppose that there is a closed set FCX such that
fi(nF=¢ and fx ' (y)NClgx(F)=s=¢ for some y€Y. Let z be
a point of f*x (¥)NClgx(F), then z is an accumulation point of F
and therefore f%(2)=y is an accumulation point of fx(F)=f(F),
by virtue of the continuity of f*. Obviously, f'(y)NF=¢ implies
yEf(F). It follows that f(F) is not closed and hence f is not
closed. Conversely, if f is not closed, then there is a closed subset
F of X such that f(F) is not closed in Y. Let y be a point of
Cly(f(F))—f(F), then FNnf7(y)=¢. We shall show that Cl,(F)
Nfx"(y)==¢ which will complete the proof. Suppose, on the
contrary, that Clgx(F)N fx7'(y)=¢, then we have fx(Clzx(F)) 3% y.
On the other hand, f«(Clyx(F))NY is a closed set of Y containing
f(F), since fx(Clgx(F)) is compact and since f*(Clzx(F))NY
DOf*(Clex(F)NX)=f+(F)=f(F). It follows that yeCl (f(F))
C f*(Clgx(F)), which is contradictory.

A partition of unity on a space X is a family {®,} of continuous
function on X such that Z@,=1 for each x€ X and all but a
finite numbers of ®,’s vanish outside some neighborhood of each
point of X. For the sake of convenience, we shall designate by
O(p,) the elementary open set defined by [@,|. That is O(p,)
={x € X ; p\(x)==0}.
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Lemma 3. A space X is paracompact if and only if for any
compact set CCBX—X there is a partition of unity {®,} on X
such that Cl;x(0(p,))NC=¢ for each A.

Proof. (Necessity) For each x € X, take an open neighborhood
U, of x such that Cl;x(U,)NnC=¢ and consider a covering {U,} .cx
of X. If X is paracompact, then there is a locally finite refinement
{U,} of {U,}.cx. Furthermore, there is a partition of unity {@,}
which is subordinate to {U,} (c.f. [2], p. 71). It is evident that
Cls x(0(py))NC=¢, and the necessity of the condition is proved.
(Sufficiency) Let {U,} be any open covering of X. For each U,,
we take and fix one open set Ux, of BX such that Ux,nX=U,,
Put C,=[U¥]¢ where [Ux,]¢ denotes the complementary set of
Ux,, and put szw\C,,,, then C is a compact set contained in

BX—X. From the hypothesis of the lemma, there is a partition
of unity {®,} such that C/; x(0(p,))"C=¢. Since \J Ux,=BX—C,

{Ux,} covers Clgx(0(@,)) for each A and consequently there is a
finite number of Ux,’s, say Ux,,:, Ux,,, such that \i/U*a,k
DClgx(0(py). Put Hy, ,=0(p,) N Ux,,, then 0(¢A)=k\;‘{ H,,,. Thus,

each O(@,) can be represented as a finite union of open sets of the
form H,,,. Constructing H,,, for each O(p,) in this way, we
have an open refinement {H,,,} of {U,}, which is obviously
locally finite. It follows that X is paracompact.

Proposition 2. Let C be a compact set which is contained
in BX—X. Let F, G be two closed sets of X for which Cl;x(F)
NClyx(G)4-¢. If there is a partition of unity {p,} such that
Cls x(O(p))NC = ¢ for each A, then Clgx(F)NClgx(G)C.

Proof. Suppose that Clzy(F)NClyx(G)CC, and put

Ay=Clg x(0(p)) N Clgx(F), Bx=Clgx(0(p2)) N Clgx(G). For each A,
let us define a continuous function %, as follows. Set

=0 if A,=¢, and

hy=1 if By=2¢.
In another case, it is true that both A, and B, are non-void com-
pact set of 8X and A,NB,=¢, because AN B, CNClgx(0(p)))
=¢. There is a continuous function /ix, on B8X such that Z*x,=1
on A, and /Z#,=0 on B,. Let us define %, to be the restriction
of /x, on X, in this case. Thus,
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hh=1 on ANnNX and
=0 on BwnX, if A,==¢ and B,==¢.

It is easy to verify that f=3/h,-®, is a continuous function on X
and that f=1 on F and f=0on G. Therefore F, G are function-
ally separated closed sets of X, and it follows that Clgx(F)NClgx(G)
=¢ which is contradictory.

§2. The Theorem. We first introduce the notion of normally
embedded subspace. We shall say that a subspace E of X is
normally embedded in X if every bounded continuous function on
E has a continuous extension over X. It is easy to see that E
is normally embedded in X if and only if Clzx(E)=BE (more
precisely, Clgx(E) is homeomorphic with BFE). In fact, if E is
normally embedded in X, then every bounded continuous function
f€ C*(E) has a continuous extension over X and hence over SX.
Taking restriction on Clgx(E) of the continuous extension of f
over BX, we have a continuous extension of f over Cl,y(E).
Thus, Clsx(E) is a compact space containing E as a dense sub-
space such that every bounded continuous function on E has a
continuous extension over Clgy(E). vTherefore Clsx(E)Y=BE, by
virtue of the uniqueness of the Stone-Cech compactification (within
homeomorphism). Conversely, if Clzx(E)=BE, then every
bounded continuous function f€ C*(E) has a continuous extension
f’ over Clgx(E), and, since Clgx(E) is a closed subspace of a
normal space BX, f' has a continuous extension fx over BX.
Clearly, the restriction on X of f* is the desired extension of f
over X.

For any space X, every compact subspace is normally embed-
ded in X and every subspace having unique uniform structure (or
equivalently, having unique compactification) is normally embedded
in X.

In a normal space X, every closed subspace is normally
embedded in X. Moreover, it is true that X is normal if and only
if every closed subspace of X is normally embedded in X. If f
is a projection mapping of a product space X XY onto Y, then
f7(») is normally embedded in XX Y for each ye Y.

Theorem. Let f be a closed continuous mapping of a space
X onto a paracompact space Y. Then, X is normal if and only
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if £7() is normal and normally embedded in X for each y€ Y.

Proof. The necessity of the condition is clear, therefore we
have only to prove the sufficiency. Suppose that X is not normal,
then there are two disjoint closed sets F, G of X such that Cl; y(F)
NClgx(G)==¢, by virtue of Lemma 1. Put C=Cl; (F)NClsx(G),
then it is clear that CCCBX—X. Let fx be the continuous ex-
tension of f over ABX. (f* is a continuous mapping of B8X onto
BY.) We shall show firstly that f«(C)qCBY—Y. If this is not
the case, then C’'=fx(C) is a compact set contained in BY-Y.
Since Y is paracompact, there is a partition of unity {y,} on Y
such that Clg y(0(yra))NC’'=¢ for each A, by virtue of Lemma 3.
Letting o \(x)=1v,(f(x)), we have a partition of unity {@,} on X.
In fact, the local finiteness of {O(p,)} follows from the local
finiteness of {0(y,)} and the continuity of f. Since Clzy(0(yr))
NC'=¢, we have Clyx(0(@r)Nfx(C')=¢. It follows from Pro-
position 2 that Cq_ f* (C’). On the other hand, f*(C)=C’ and
hence CC f*7(C’). We have thus a contradiction. Consequently,
we see that there is a point z€ C such that fx(z)=yeY.

If it is true that F/'=f*x"(y)NF==¢ and G =+ (y)NG=E,
then F’/, G’ are disjoint closed sets of (), and, since £ '(y) is
normal, there is a continuous function g on f'(y) such teat g=1
on F’ and g=0 on G’. Since f'(y) is normally embedded in X,
there is a continuous extension gx of g over X and consequently
F’, G’ are functionally separated closed sets of X. Therefore we
have Clgx(F’)NClgx(G')=¢. It follows that at least one of Clgx(F’)
and Clsx(G’) does not contain z. Assume that z ¢ Clgx(F’) and let
V be an open set of BX containing Clzx(F’) such that Clzx(V) % 2.
Put H=Fn[V]S then H, G are disjoint closed sets of X for
which Clax(H)NClgx(G)>2. Furthermore, it follows immediately
that f(»)nH=¢ and f+ (y)NClgx(H) >z, by virtue of the defi-
nition of H. Thus, we see that there exists a closed set H of X
such that f(y)nH=¢ and f+'(y)NClagx(H)==¢ for some yeY.
It follows that f is not closed, by virtue of Proposition 1. But
this contradicts the hypothesis of the theorem, therefore X must
be normal.

Remark 1. We cannot replace the paracompactness of Y by
the normality of Y, in the preceding theorem, as the following
example shows: Let  denote the set of all ordinals less than
the first uncountable ordinal and let 2, denote the set of all
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ordinals less than or equal to the first uncountable ordinal, each
with the order topology. Let X=Qx;, and let X={, and let f
be the projection mapping of X onto Y. Then f is closed, and
f(y) is compact for each y€Y. As is well known, X is not
normal while Y is normal (c.f. [5], p. 93 and [7], p. 132).

Corollary. Let XXY be a product space of a paracompact
space X with a normal space Y. If the projection mapping
p: XxY—-X is closed, then XX Y is normal.

Proof. This is an immediate consequence of the preceding
theorem, in view of the fact that f '(x) is normally embedded in
XxY.

Remark 2. A slightly stronger result may be proved: If E
is a subspace of XXY in the preceding corollary such that
En{x} xY is closed for each x€ X, and if the restriction on E of
the projection mapping is closed, then E is normal.

Remark 3. If the projection mapping p: XX Y—X is closed,
then Y is pseudocompact ([6], p. 67) provided that X is not a
finite set. In fact, if Y is not pseudocompact, then there is an
unbounded continuous function %(y) on Y. Let f(x) be the con-
tinuous function on X such that the elementary open set
{reX; f(x)>0} is not closed (c.f. footnote (10) of the preceding
paper “A note on the Stone-Cech compactification of a product of
two spaces”), then the projection of the closed set {(x, )€ XX Y ;
f(x)h(y)=1} is not closed in X. Accordingly, if X is not a finite
set, then the space XXY in the above corollary is countably
paracompact. To prove this, let us recall Dowker’s theorem [4]
which states that a space Z is normal and countably paracompact
if and only if ZXI is normal, where I is the closed unit interval.
As is well known, a normal pseudocompact space is countably
compact [6] and hence countably paracompact, therefore Y X1 is
normal. On the other hand, the projection mapping g : XX (Y xI)
—X is closed, because px=pop’ and since I is compat p': Xx Y x[I
—XXxY is closed. Applying the above corollary to Xx(Y xI),
we see that XX Y XI is normal. Therefore XXY is a normal
countably paracompact space. The same is valid for the space E
in Remark 2.
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