MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 2, 1960.

Some remarks on prime divisors

By

Masayoshi NAGATA

(Received August 31, 1960)

A ring will mean always a commutative ring with a unit.

When R is a Noetherian ring, a prime ideal \mathfrak{P} of R is a prime divisor of an ideal \mathfrak{a} if and only if $\mathfrak{P}R_{\mathfrak{P}}$ is a prime divisor of $\mathfrak{a}R_{\mathfrak{P}}$ and it is true that every semi-prime ideal of R has no imbedded prime divisor.

In the present paper, we give an example of non-Noetherian ring in which the above two are not true. We prove more generally the following existence theorem :

THEOREM. Let $\{R_{\lambda}\}$ be a set of quasi-local rings which contain a common field K. Then there is a ring T such that (1) for each R_{λ} , there is a maximal ideal \mathfrak{m}_{λ} of T such that $T_{\mathfrak{m}_{\lambda}} \simeq R_{\lambda}$, (2) if \mathfrak{m} is a maximal ideal of T, then $T_{\mathfrak{m}}$ is isomorphic to either K or one of R_{λ} and (3) the total quotient ring of T is T itself.

Consider the case where R_{λ} are integral domains which are not fields. By (3), every non-unit of T is a zero-divisor, whence every maximal ideal of T is a prime divisor of zero. But, $m_{\lambda}T_{m_{\lambda}}$ is not a prime divisor of zero. Furthermore, that T_{m} has no nilpotent element for every maximal ideal m of T by (2) implies that T itself has no nilpotent elements, and the zero ideal of Tis semi-prime. But, each m_{λ} is not minimal, hence is an imbedded prime divisor of zero.

Thus we are to prove the theorem. Let A be an infinite set from which there is a map ϕ onto the set $\{R_{\lambda}\}$ and let B be another infinite set. Set $C = A \times B$. Let Ω be the set of functions f defined on $A \cup C$ (disjoint union) such that (i) if $a \in A$, then $f(a) \in \phi(a)$ and (ii) if $c \in C$, then $f(c) \in K$. Let M be the subset of Ω consisting of those f such that (i) f(c)=0 for every $c \in C$, (ii) f(a)=0 for all but a finite number of elements a of A and (iii) f(a) is in the maximal ideal of $\phi(a)$. Let K^* be the subset of Ω consisting of those f such that f(a)=0 for all $a \in A$ and f(c)=0for all but a finite number of elements c of C. Elements k of Kare identified with elements f of Ω such that f(x) = k for every $x \in A \cup C$. e_a is, for each $a \in A$, an element of Ω such that $e_a(x)$ is 1 or zero according to whether $x \in \{a\} \cup a \times B$ or not. e_c is, for each $c \in C$, such that $e_c(x)$ is 1 or zero according to whether x=c or not. Now let T be the subring of Ω generated by M, K^* , K and the Ke_a . Note that $e_c \in K^*$ for every $c \in C$. Since M and K* are ideals of Ω , they are ideals of T, and we have T=K+K* $+M+\Sigma Ke_a$. Assume that $f \in T$ is a non-unit in T and we are to prove that f is a zero-divisor. $f=k+k*+m+\Sigma k_a e_a$ with $k \in K$, $k \in K$, $m \in M$, $k_a \in K$ ($k_a = 0$ except for a finite number of a). If f(x) is a unit for every $x \in A \cup C$, then f is a unit in Ω . From our expression of f, we see easily that f^{-1} is in T, and f is a unit in T which is a contradiction. Therefore f(x) is a non-unit for some x. If $x \in C$, then f(x) = 0 and f is a zero divisor (for $fe_x=0$). Assume that $x \in A$. Then $k+k_x=0$. Since B is an infinite set, there is a $b \in B$ such that, for $c = x \times b$, k*(c) = 0, whence f(c)=0, and f is a zero divisor. Thus (3) is proved. Let m be a maximal ideal of T and let σ be the natural homomorphism from T into $T_{\rm m}$. Since a quasi-local ring has no non-trivial idempotent element, we see that $\sigma(e_x)$ is either 1 or zero for each $x \in A \cup C$.

(b) The case where $e_c \notin \mathfrak{m}$ for a $c \in C$: The set \mathfrak{q} of $f \in T$ such that f(c)=0 is an ideal of T and $e_c \mathfrak{q}=0$, whence \mathfrak{q} is contained in the kernel of σ . Since $T/\mathfrak{q} \cong K$, we see that $T_{\mathfrak{m}}=T/\mathfrak{q}\cong K$.

(5) The case where $e_c \in \mathfrak{m}$ for all $c \in C$ but there is an $a \in A$ such that $e_a \notin \mathfrak{m}$: The kernel q' of σ contains $1-e_a$ and all the e_x $(a \neq x \in A \cup C)$. Let q be the set of $f \in T$ such that f(a)=0. We want to show that $q \leq q'$. Let f be an arbitrary element of q. $f=k+k*+m+\Sigma k_a$, $e_{a'}$ $(k \in K, k* \in K*, m \in M, k_{a'} \in K, a' \in A)$. Since $1-e_a$ and e_x $(x \neq a)$ are in q', $f \equiv k+m(a)+k_a$ modulo q'. On the other hand, since f(a)=0, we have $k+m(a)+k_a=0$, whence $f \equiv 0$ modulo q', i.e., $f \in q'$. Thus $q \leq q'$. Since $T/q \approx \phi(a)$ which is a quasi-local ring, we see that $T_{\mathfrak{m}}=T/\mathfrak{q} \approx \phi(a)$.

(it) The remaining case is the one where m contains all the e_x ($x \in A \cup C$). Then $\sigma(e_x)=0$. Therefore, $\sigma(K*+\Sigma K e_a)=0$. Furthermore, if $c \in C$, then $1-e_c \notin \mathfrak{m}$ and $(1-e_c)M=0$. Therefore

 $\sigma(M) = 0$. Since $T/(K*+M+\Sigma Ke_a) \cong K$, $\sigma(T) \cong K$ and therefore $T_{111} \cong K$.

Since the above three cases exist and since ϕ is surjective, we see that (1) and (2) are true, and the theorem is proved completely.

Remark. With the same notations as above, M+K becomes a quasi-local ring with maximal ideal M. The total quotient ring of M+K is M+K itself. If the R_{λ} are integral domains which are not fields, then the zero of M+K is semi-prime and M is an imbedded prime divisor of zero.