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1. Introduction

The main results of the present paper are a theorem on the
existence of a  'backward moving average representation' for
purely non-deterministic stationary random distributions (Theorem
5. 1), an d  another, giving a spectral criterion ensuring the
existence of such a representation (Theorem 6. 2). We follow the
method o f  H anner [2 ] fo r establishing the former ;  the tool for
proving the latter turns out to be a slight generalization (Lemma
6 .1 ) o f a  well-known theorem o f Paley and Wiener [ 4 ]  on the
Fourier transforms o f functions vanishing on a half-line.

At a time when work on this paper was substantially complete,
it was brought to the author's notice that the prediction problem
fo r  stationary random distributions has been  so lved  by G .
M aruyam a, an d  earlier still, presumably, by Rozanov [5].
Maruyama's results have not yet appeared in print but were pre-
sented recently to a seminar at Kyushu University ;  his technique
consists essentially i n  reducing a  random distribution t o  a
stochastic process by smoothing. A similar idea has been exploited
by Rozanov. The corresponding problem for stationary n t h  order
increments has been solved earlier by Yaglom [8].

T h e  author is heavily indebted to Professor K .  I tô  for
generous help during the preparation o f this paper, in particular
for the proof of the crucial Lemma 4. 4., and to Mr. N. Ikeda for
a  critical discussion. Thanks are due to Professor K. Chandra-
sekharan for kind encouragement all through.
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2 .  Generalities

We summarize, for ready reference, a  few facts relating to
stationary random distributions ; details may be found in  [3].
We employ the terminology and notations SI, ID', 9', * ,  y ,  - -
etc. as standardized in [6].

A  random distribution X  is a continuous linear functional on
the space 2)--- --_21(R1 )  [6 ] w ith  values in a Hilbert space L 2(f2),
S2.----- (S2, 93, P )  a  probability space. We suppose throughout that
EX(p)=-0, p E 5), where E  denotes the expectation. We consider
only the case in which X  is (weakly) stationary, i.e. for every pair

E

hX (99), hX (*)) (X (P), X(Air));

here (• , •) denotes the inner product in L '(2 )  amd T h  is the trans-
lation operator on X  defined by

(Th X)(q)) = X(7. _09), (T h p)(x) =  p (x+h), p  E SI, h  real. (2. 1)

The covariance distribution p of X , defined by

(X(P), X (* )) = P(P*'çrr)

can be represented by a formula of Khintchine type :

p ( P )  = . . ( g  9 9 )(X) d P(X) (2. 2)

where dia, the spectral measure of X , is a non-negative measure of
slow growth on the real Borel sets. In analogy with a standard
formula in the theory of stationary processes, we have here

X(99 ) = (gP)(X)dM(X) (2. 3)

where M  is a random measure with IldM(X)11 2 =p(dX).
Formula (2. 2), in particular, will be of some consequence to

us. Notice, in the first place, that it leads to the relation

(X (P ), X (* )) = g(P * 4;') (X) dia(X) = (g P)(X)(g c tb(X)

which shows that the correspondence X (p ) — Uq' establishes an
isometry between a dense subset in LA X ), the subspace spanned
in L2 (11) b y  IX((p), ED}, and one in  L'(— co , 00 ; c1 ,a), and as
such can be extended into an isomorphism between L 2 (X )  and
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L 2 (d,a)--- -_-_, L 2 ( -  00, 00 ; d p ).  It follows that L A X ) is  a  separable
Hilbert space.

A  further consequence of (2. 2) is the following basic lemma,
presumed new, which will be of crucial significance to us in § 5.

LEMMA 2. 1. I f  d p  is absolutely continuous, then L A X ) is
generated by translates of X (p ) for a single fixed p

More explicitly, i f  dp is absolutely continuous (relative to
Lebesgue measure), then fo r arbitrary E D and a given fixed
p E 5), we can find a  finite number n  o f  real constants k  and
complex constants c , such that

iix(k)— c,x (T  p)i4

is arbitrarily small. And by the isomorphism X (p )-)-U p , this is
equivalent to the statement that fo r  arbitrary 8>0, ( p ,  fr E To,
there exist suitable constants n , c,, h , such that

.0
I (g -0 (x )  -  ( g 99)(x) e v e "" ' x , a ( x ) < 8  .

This fact turns out to be an extension of the well-known L 2--closure
theorem of Wiener [7] and can be proved by an appropriate modi-
fication o f  Wiener's argument. W e  content ourselves with the
remark that each gp is a  rapidly decreasing function which can
be extended to the whole complex plane as an entire function of
exponential type ; hence gp has at most a countable number of
(real) zeros which form a Lebesgue null set and by assumption
of the lemma, a dp-null set. The facts that gp is rapidly de-
creasing and that dp is absolutely continuous enable us to push
Wiener's argument through.

3 .  The W old decomposition

The prediction problem for X consists in the following : denote
by L AX ; a )  the closed linear subspace o f L A X ) generated by
IX(p), p E Da } w h e re  D a  = {p : (p E D, supp (7) ( - 00 , ; given
1,2 (X ; a) we ask for the best estimate, in the sense of minimum
mean square error, of X((p0) for given p o E T. Obviously there
exists a unique linear predictor f((cP0) =- - (X(rP0)1L2(X ; a)); the symbol
(./orc) denotes the projection of the element on the subspace Mt.

Let us observe first that the shift-transformations Th induce a
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one-parameter abelian group of unitary operators Th  on 12(X ), the
definition o f  T h being the natural one :

Th ( c, X(ço,)) = c,X(T _ h p , ) ,  c, E C , p, E D, n 1, 2,

We then have
T  LAX ; a) = L 2 (X ; a + h) . (3.1)

The LAX; a) 's  form a non-decreasing family o f subspaces :
L 2 (X ; a) L A X  ; b), a <b . (3. 2)

Two extreme cases may be envisaged in this situation, leading to
the following

DEFINITION. I f  r\ 1,2 (X  ; a)= L A X ), then X  is c a lled  deter-,
ministic ; if n L A X ; a) 101, then X is called purely non-deterministic.

a

It is easily seen that the former alternative is equivalent to
1,2 (X  ; a)= L 2 (X )  for each a; the latter to the fact that as a 03

I I (X(rp)I LAX ; 0  for each q ' E D.
The first step in  prediction is to obtain the Wold decompo-

sition o f X  embodied in the following
THEOREM 2. 1. A  stationary random distribution X  can be

expressed uniquely in  the form X = Y+Z, where Y and Z  are
stationary random distributions, mutually orthogonal in the sense
that Y (q9)1Z(p) for every .fp ESI. Besides, one of these is deter-
ministic while the other is purely non-deterministic.

W e omit the proof which is the same as that o f the cor-
responding theorem for processes [2 , Theorem 1].

Since the deterministic component always survives as it is on
projection to any 1,2 (X ; a), we shall hereafter assum e that X  is
purely non-deterministic. We shall show in the next section that
this assumption entails the absolute continuity of the spectral
measure.

4. The absolute continuity of the spectral measure

For every pair of real numbers a, b, a <b , we consider the
space LA X ; a, b)= 1.2 (X ; b) e  LAX ; a) , A  denoting orthogonal com-
plementation. For any (7,  E 3),„ (X(p)I L 2 (X ; a, b)) is orthogonal to
LAX ; a) and may be interpreted as the part of X (p) which is not
determined by the distribution up to time a. Since we are in the
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purely non-deterministic case, each L 2 (X ; a, b ) contains elements
of positive norm. W e have evidently

T „LAX ; a, b) = 1, 2 (X ; a + h, b +h) .( 4 . 1 )

Following H anner [2, § 3] we proceed to construct a  random
measure B, i.e. an L 2 (X )-valued set function B (•) on the ring of
Borel sets in 12' with finite Lebesgue measure m, having the pro-
perty (B(S,), B(S 2 ))= m(S i n SO . We choose a fixed positive number
u and an arbitrary element z E LAX ; 0, u) and set for each interval
(a, b]

B((a, b]) = (LT h z dh I L 2 (X ; a, b)) ( 4 . 2 )

A < a — u, B > b. T h e  integral exists a s  a  Riemann-Stieltjes
integral, a  l a  Cramer, and is independent o f A  and B, and the
definition along with (4. 1) leads to the following properties :  if
a <b <c, then

( i ) B((a, b])+ B((b, c]) = B((a, c]); (4. 3)
( i i ) B((a, b]) j_B((b, c]); (4. 4)
(iii) T ,B((a, b]) = B((a + h, b + h]) . (4. 5)

B y a routine procedure then B  is extended to all Borel sets and
w e observe that 11B( -)I12 defines a  measure on linear Borel sets
which is translation-invariant and hence

IlB((a, b])11 2 = K(b — a), K=  K (z ) 0  .

Now a minor modification of Hanner's argument [2 , Prop. C ] shows
that there exists at least one z E LA X; 0, u) such that K> O. W e
then normalize B  by taking K = 1  and call it the Brownian random
measure.

With respect to B  we define in a standard way a  stochastic
integral

= g(u) dB (u)

for functions gE 00 , co) and observe that i f  g , h  belong to
L 2 ( — co ,  Go), then

>0
g(u)dB(u), .h(u)dB(u)) = g(u)h(u)du .( 4 . 6)

Thus, i f  LAB) denotes the closed linear subspace in LAX) generated



248 K . Balagangadharan

b y  {B((a, b]), —00 < a <b < co } ,  th e n  t h e  sp aces L A B ) and
IA— o c ,   co ) a r e  isomorphic. W e wish to show eventually that
LAB) = 1,2 (X ).

If we now write

X,((p) = (X((p)I LA B )), (I) E D ,( 4 .  7 )

then X, is itself a stationary random distribution. For each real t,

LAB) = L A B ((a, b]), a < b < t) L ,(B ( (a, b ]) , t  < a < b) .

I f  t (p )= su p  : (p(s) =1=0, qi E ,  then  by the definition o f B  we
have

X((p)1_1,2((B(a, b]) ; t((p) <a < b) ,
B ((a, b]) ( LAX ; a, b) cTJ LAX; b) .

Hence

Xi(P) E P((13(a, a < b t ( P ) ) 1-2 (X ; t((p)) . (4. 8)

From this it can be seen that X, is purely non-deterministic. On
the other hand X i((13 )  I   0, or X (P).1L 2 (B) for every (p E 21 and so
L 2 (X) __LL2 (B) ; but this would contradict the fact that .L,2 (B) L 2 (X )
and contains elements of positive norm.

Now X ,(p) E LAB) and so for some g, E L 2 ( — oc ,  co )  we have
tuo

X ,(p) = g,(u)dB(u) ; (4. 9)

that g ( u )  vanisnes fo r almost all u> t((p) following from (4. 8).
This representation has some interesting consequences which are
indicated in the lemmas which follow.

LEMMA 4. 1. g ,  commutes with translations, in the sense that

g r =  h gi° • (4. 10)

PROOF: We have, on the one hand,
ty,o)-h

X l er h (p) = g„(u) dB(u) ,
h

and on the other,
I( )

X ,(T,,(p) = T_ h X ,(p) = T hg ( u ) d B ( u )  = 5
1(4,9 -  h

h g,(u)dB(u) ,

by definition of the integral and (4. 4). Hence



The prediction theory o f  stationary random distributions 249

LEMMA 4. 2. There exists a (Schwartz) distribution G such that

g, = G*(p (4. 11)

Further G E T' and UG is  a  function which is the product of a
polynomial and a square-summable function.

PROOF: g „  E L 2 ( — 0 0 , 0 0 ) and hence g, E D'. (4 . 9 ) shows that
the correspondence i s  a linear mapping o f 1  into D'. It is
continuous because if  q i„-. p  in I, then

2
X ( q ) 011ri —  X ( 2  =  " n 3  g,„(u)dB (u)- " )  g,(u) dB(u)

2
a  (g„ „(u) - g,(u)) dB (u)

fo r some a ,  recalling the definition of convergence in D, and by
(4. 6) the last espression is equal to

g, n (u)- g,(u)i 2 du ,

and so g „„-  g , in L 2 and therefore in On the other hand by
Lemma 4. 1, the mapping commutes with translations. Hence by
a  well-known theorem of Schwartz [6, II, p. 53], the represen-
tation (4. 11) holds for some G E  .

Next, since p E G *p= g,E C -  . But e E L 2 ( — co) for each
p = 0 , 1, 2, ••• , so g, E M e .  Since for every p E D, G*(p G TL

2 ,  again
by a  theorem of Schwartz [6, II, p. 56], G ED 2. O n  the other
hand a Fourier transformation gives 5 G • 5  = 5g, E L 2 ( —  oo ,  c o ) ,

so that 5G is a function—recall that g (p has at most a countable
number o f zeros. But G E1 1

1,2. Therefore [6, II, p. 126] 5G is
the product of a polynominal and a square-summable function. This
completes the proof of the lemma.

We have thus shown that X , defined by (4. 7) has the repre-
sentation

X1(q) (G * p)(u) dB(u) .( 4 . 1 2 )

(We shall sometimes omit the limits o f integration ; in any case
they may be taken to be - co and Do.) A  consequence o f this is

LEMMA 4. 3. X , has a spectral measure d p , which is absolutely
continuous relative to Lebesgue measure.

PROOF: A  rou tine computation using (2. 2), (4. 12), (4. 6) and
the Parseval relation shows that
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Jg(9, *+)(x) d ibi(X) 5(P * )(X) 1 5  G(X) 12 d X

And since elements of the form p q r  are dense in 99 ,  we get

d =  15G(X)1 2 dX

Thus dp,, is absolutely conttnuous.
This enables us to prove the following crucial
LEMMA 4. 4. dp is absolutely continuous.
PROOF: L e t  dy,==dy, c +dics b e  the Lebesgue decomposition of

dp, into its absolutely continuous and singular parts respectively.
By (2. 3), i f  dM , and dMs are the random measures corresponding
to d p,, and dp,s , then we have

X(p) (g p) (  dM( (5 P)(X) dM,(X)+ (g P)(X) dMs(X)

-=-: X AO+ X s(P)

where X, and X s  now are clearly mutually orthogonal stationary
random distributions, both purely non-deterministic in view of the
relations

X (q)  = (X(P)11, 2 (1C ) , X s (P )  (X (0 1 1 2 (1 3 ) )  ,

LAX) and L 2 (M s )  having the obvious significations. Now consider
X, and write

X s (p) X ` , 1 ) ((p)+ X 2 ) (P)
where

X(8 1 )(p) a s (P ) L i (Bs)), X 2 ( P ) X s(P)  0  (X s (P)  j 12 (13 s))

B s b e in g  th e Brownian random measure corsesponding t o  X ,
constructed according to the procedure we have described for X.
L e t X (; )  have spectral measure d g  ,  1 = 1 , 2 . Now suppose, if
possible, that X s (cp)  I   0; by an earlier argument X ( q )   I   0  and
X 8(1 )  has a  representation of the type (4. 12). Consequently, by
Lemma 4. 3, d 1 4 '  is absolutely continuous. The XV) being mutually
orthogonal, the spectral measures add up : d +  d142 . B u t
this equation states that the singular measure dtts has a  non-
trivial absolutely continuous component. This contradiction shows
that X s (p)=-- --0, i.e. that dp, is absolutely continous.

A  familiar argument [1 , p. 532], suitably altered, enables us
to prove the following partial converse to Lemma 4. 4; it extends
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to random distributions a theorem of Kolmogoroff and Karhunen
[1 , P. 532] on stationary processes.

LEMMA 4. 5. I f  a  stationary random distribution (not neces-
sarily purely non-deterministic) has a n  absolutely continuous
spectral measure, then it admits a  (possibly two-sided) moving
average representation

X (p) = 1(T * p)(u) dB(u)

where T  is a  tempered distribution.

5 .  The backward moving average representation

We wish to uphold th e  representation (4. 12) not only for XI
but also for X .  For this it would suffice to show that X ,= X ;
equivalently, that L 2 (B )=1, 2 (X ) .  T his we proceed to do by an
adaptation of Hanner's argument [2, Prop. D], using Lemma 4. 4
in  conjunction with Lemma 2. 1.

LEMMA 5. 1. X, = X.
PROOF :  Let

17-(P) = X (P) e  X i(P) ;

then Y is a stationary random disiribution and from (4. 8) it easily
follows that it is purely non-deterministic. Also Y (p) which is
equal to (X(cp) I L2 (X) e LAB)) is orthogonal to L 2 ( B ) .  We have thus
a  decomposition of X  as the sum of two purely non-deterministic
random distributions : X = X ,  Y  and X ,  O. W e shall show that
Y = 0 .  If not, we construct for Y , as we did for X , a  Brownian
random measure B '; an d  projecting on LA B') we get

Y(P) = 17 1(9;) + 17 2(0

with Y 1 (p)=(Y (p)1.1, 2 (f r)), Y 2 ( p ) 1 L 2 (13`) and Y 1 (p) I O. T h e n

X(P) X i (P )+  Y # P )+  172(0

For X , we have the representation (4. 9) :
icy))

X ,(P) gv(u)dB(u) ,

g (u )= O  fo r  u > t(p). Correspondingly, fo r  B ', B '((a, b]) E 1,2 ( Y)
a n d  fo r  a  suitable h = h ,  E L 2 ( — ( >9  °C)) vanishing fo r  u > t(p),
we have
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tun
Y ,((p) = h ,(u) dB' (u) . (5.1)

Since I ,(P) L L 2 (B ) and L 2 (B/) 12(Y  ), we have LAB') _LL 2 (B).
Also Y 2(0  G 12(Y  ) 'L A B ) and Y 2(0  J L 2 (13'). Finally,

B' ((a, b]) E LA Y; b) c L AX ; b) ,

so that for each t  we have

LAB' ((a, b ]) ,  a < b < t) c L 2 (X ; t) . (5. 2)

Now consider, for a fixed p o  E D0 , X 1(p 0)+ 0 ,  and some k <0,
the element

t C 9   KV()

= h  o (k — u)dB(u) — g, o (k — u) dB' (u) (5. 3)

In  order to complete the proof we need only show that for pro-
perly chosen k, represents a non-zero element of L 2 (B ) which is
orthogonal to L 2 (X ) .  Now, since 4W  = 0,

0
11 112 =  k ikpo (k — u)I 2 du + k  gp 0 (k — u)I 2 du ,

and this is positive for some negative k  since

lim
ro

g
°

q —  u)I 2 du = gpo(u)12 du = IIX(q) > 0 .
k 

We now check th a t  j_ D ( X ) .  W e observe first that LL X(q 0 )
indeed

X (p o) 5°
 . 0 gy  o (u) dB (u) + 0.0 hv o (u) dB' (u) + Y2(P0)

and by virtue of (4. 6) and the orthogonality relations mentioned
above we have

X (.9)) =  c o g, 0 (u)h, o (k — u)du — . h ,  0 (u) g„,a (k — u) du 0.

Next, X (r1P0) for any 1. For, in view of Lemma 4. 1 we have
- -

X (r (I,  0) = 9- g, 0(u) dB(u) + 5  -  o (u)dff(u) + Y  2er

and consequently

X(.7-  1r P0)) = T gp o (u)14, 0 (k — u) du th,, 0 (u) gq, o (k — u) du ----- 0,
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since to translate a convolution we need translate only one of the
factors. Thus i s  orthogonal to  the subspace generated by the
translates of X(990 ). F inally , b y  the absolute continuity o f  d
established in Lemma 4. 4, Lemma 2. 1 becomes operative, so that
the space generated by the translates of X(p 0 )  is the entire space
LA X ) and hence L A X ). This completes the proof.

A s  a  result, equation (4. 12) holds w ith X , replaced by X.
Now p  h as its  support in ( — 00, t ( p ) ] while g, = G* p has its in
( — 00, t(p )] too. It is well known [6 , II, p. 12] that the support
of a convolution is contained in the sum of the supports of its
factors ; hence by the continuity of the mapping 93 to g„„ supp
(— 0 0 , 0 ] .  We have thus completely proved the following funda-
mental theorem on the 'backward moving average representation'
of a purely non-deterministic stationary random distribution :

THEOREM 5. 1. X  has the representation
t(v) top)

X (p) = g,(u)dB (u) = (G*p)(u)dB(u) ,( 5 . 4 )

where G  i s  a  tempered distribution w ith support in ( — 00, 0]
whose Fourier transform is a function which is the product of a
polynomial and a square-summable function, and B  is  a Brownian
random measure.

REMARK. As in Hanner [2, § 6], it can be shown easily that
G  is  unique up to multiplication by a factor o f absolute value 1.

(5. 4) taken along with (4. 8) gives us directly
LEMMA 5. 2. L 2 ((B (a, b]), a <b < t)= LA X ; t)  for each t.
This fact gives us immediately the solution to  the prediction

problem : the predictor of X (p) relative of LA X ; 0) is

(X (P)I 12(X  ; 0)) = (X(p) I LAB ; 0))
0

 (G* p)(u)dB (u) ;

and the error o f prediction 0- is given by
t(p)

0- 2
0 1 (G*P)(u)1 2  du .

6. T h e  s p e c t r a l  c r ite r io n

We proceed next to obtain a spectral criterion which would
guarantee a representation such as (5. 4). Our point of departure
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will be the following generalization of a classical theorem o f Paley
and Wiener [4 , Theorem XII].

LEMMA 6 . 1 . A  necessary and sufficient condition that a non-
trivial function ic'(x) which is the product of a polynomial and a
square-summable function shall be such that p/(x).= v(x) I where

E 9" has its support in ( — 00, 0] is that

r  log //,'(x) dx > — 00 . (6.1)
1+x 2

PROOF: The case in  which p' E oc, c o )  is covered by the
Paley-Wiener theorem. We resort to smoothing to deal with the
general case.
a) Necessity : Suppose first that p '(x )=  I v(x) , supp 5 v((—  00, 0].
Choose m E 9' such that

r  log m(x) d  x  > ;
- 1 +  x '

such an m clearly exists. S ince a  f o rt io ri  m E o c ,   c o ) ,  by the
Paley-Wiener theorem we can find n such that

m(x) =  n(x)I , 5 n  E L' c 9 " ,  s u p p  n  c  (— 00, O].

Now consider p '(x )m (x ). This clearly belongs to IA —  o c ,  c o )  and
pi (x)m(x) v(x)h(x)I , w hile 5(v n) 5 v* 5 n , s o  th a t  supp 5(v n)

supp 5 v + supp n co , 0]. H e n c e , a g a in  b y  th e  Paley-
Wiener theorem,

log is/(x)+ log m(x) d x  >  c o

1 + x '

(6. 2) and (6. 3) together imply (6. 1).
b) Sufficiency : Now suppose th a t p/(x) is  of the stated order
o f growth, ii(x)—  I v(x) I  and (6. 1) holds. W e shall prove that
5 v C( — oc, 0 ] .  Let m (x) b e  as above. Then p'm E L' ( — o c , 00),

(x) m(x) I v(x)n(x)I , and since (6. 1) and (6. 3) hold, so does (6. 3) ;
another appeal to the Paley-Wiener theorem gives us supp 5(v n)

co , 0]. A g a in  supp 5(v n) supp 5v+supp 5 n  a n d  hence
supp 52< ( — 00, 0]. This finishes the proof of the lemma.

The spectral criterion we are looking for is now given by
THEOREM 6. 1. The representation (5. 4) holds if and only if

d1.6 is absolutely continuous with spectral density /il(x) satisfying
(6. 1). (It follows that /4/(x)>0 a.e.).

(6. 2)

(6. 3)
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PROOF: Suppose first that (5. 4) holds. By the computation
indicated in the proof of Lemma 4. 3, dp, is absolutely continuous
and p'(x)---- I (5G)(x)1 2 ,  so that N/p,'(x)= (5G)(x)1 is  o f th e  order
of a polynomial multiplied by a square-summable function and
supp o c, 0 ] .  By Lemma 6. 1  then p,' satisfies (6. 1).

Conversely, if  d p  is absolutely continuous with (6. 1) holding,
then by Lemma 4. 5 we have a representation of the type (5. 4)
with the support o f G  arbitrary, and by the same computation as
the one mentioned above, p,/(x)=1(5G)(x)1 2 . On the other hand,
by Lemma 6. 1, has just th is representation  w ith  supp G

00, 0 ]. Our result now follows from the uniqueness of the
Fourier transform. Theorem 6. 1 is thus completely proved.

We may finally summarize all our results in the following

THEOREM 6. 2. F o r a  stationary random distribution X  the
three following statements are equivalent

( i ) X  is purely non-deterministic ;
(ii) ) X  has a backward moving average representation (5. 4) ;
(iii) X  has an absolutely continuous spectral measure with

density satisfying (6. 1).

7. Concluding remarks

A  mean-continuous stationary stochastic process x (t) defines
a stationary random distribution X  by

X(p) x(t)(p(t)dt ,

the integral being interpreted as a Bochner integral. It is easily
checked that 1,2 (x)=1, 2 ( x )  th e  space spanned by {x(t)}. Also
L A X ; a)=L 2 (x  ; a) fo r  every  a ;  th e  definitions o f  th e  terms
'deterministic' and 'purely non-deterministic' coincide whether one
looks upon x (t) as a process or as a distribution. The prediction
theory o f stationary processes is thus, naturally, subsumed under
that o f stationary random distributions.

In  the case o f an  X  associated with a  process x ( t) , the
representation (5. 4) reduces to the usual backward moving average
representation o f  processes [2]. In  fact, G*rp now reduces to
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G*k, so that the kernel is a translate of a distribution which
which would reduce, in this case, to an L 2 -function.

Tata Institu te  of Fundamental
Research, Bombay and
K yoto University
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