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As is well known, the Stone-Cech compactification of a product
space is not generally identical (more precisely, homeomorphic)
with the product of the Stone-Cech compactifications of coordinate
spaces. M. Henriksen and J. R. Isbell [5] pointed out that the
relation B(Xx Y)=BXxBY" implies the pseudo-compactness of
the product X x Y>®, Recently, the converse has been established
by I Glicksberg [4]. He proved more generally that the relation
BIIX,)=IIBX, holds true if and only if TI1X,* is pseudo-compact.

In this note, we shall restrict ourselves to consider the product
of two spaces, and give some conditions equivalent to that the
relation B(XXY)=BXxBY hold. We shall show that 3(Xx Y)=
BXx RBY if and only if the tensor product C*(X)Q C*(Y) is dense
in C¥(XxXY).

The pseudo-compactness of the product Xx Y implies the
pseudo-compactness of each coordinate space. However, it is not
true that the product of pseudo-compact spaces must be pseudo-
compact®. Several additional conditions sufficient to insure the
pseudo-compactness of the product of pseudo-compact spaces are
given and discussed in [1], [4] and [5]. We shall generalize those
results in somewhat unific form.

1) Throughout, we shall consider X as a subspace of BX.

2) The trivial case that X or Y is a finite set will be excluded throughout. If
X is a finite set, then 8(XX Y)=8BXXBY for any space Y.

3) T. Ishiwata [7] has proved that if B(XxX)=gBXXxpBX, then X is totally
bounded for any uniform structure of X. (X is pseudo-compact if and only if it is
totally bounded for any uniform structure of X. C.f. T. Ishiwata: On uniform spaces,
Sugaku Kenkyuroku, Vol. 2 (1953) (in Japanese).)

4) IIX, denotes the product of Xy.

5) C.f. [9], [10].
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All spaces mentioned here will be assumed to be infinite
completely regular 7,-spaces, and all functions to be real-valued.

A compactification of X is a compact Hausdorff space contain-
ing X as a dense subspace. The Stone-Cech compactification B8X
is characterized among compactifications of X by the property
that every bounded continuous function on X has a continuous
extension over BX®.

Let C¥(X) denote the Banach space of all bounded continuous
functions on X with the usual nom ||f stgg |f(x)|. We shall

denote by Z(F) the set of zero points of FeC¥*¥(XxY), that is,
Z(F)={(x,y) € XxXY; F(x, y)=0}.
THEOREM 1. The following conditions on the product XxY

are equivalent.

(@) Both X and Y are pseudo-compact and prx| Z(F)]" is closed
in X for each FEC¥*(XXY).

(b) Both X and Y are pseudo-compact and pry[Z(F)] is closed
in Y for each FeC¥(XXY).

(c) The tensor product C¥(X)QC*(Y) is dense in C¥(XXY).

d) B(XxY)=BX+BY.

The pattern of proof is (a)>,‘(C) — (d)<(a)
(b) *(b).

Proof of (a)—>(c): Let F be an element of C¥(XxY) and
let F, denote the restriction of F on xxY. Then F, defines a
continuous function on Y. By assigning F, to x€X, we have a
map F of X into C*(Y). The map F is continuous as we now
verify : Put H,(x, y)=&—min (&, |F(x, y)—1QF,(y)|), then H.(x, )
=&on xxX Y and H,(x, y)==0 implies that |F(x, y)—1Q F.(y)|<2é.
Since pry[Z(H.)] is closed in X by (a), there is a neighborhood
Ulx) of x such that U,x)xYNZ(H,)=¢. If x' € Ulx), then
|F(»)—F,(y)|< & for each y€Y, and consequently ||F,—F./||<&
for each x’ € U(x). Therefore F is continuous.

It follows that the image F(X ) C*(Y) of X is compact, since
the continuous image of a pseudo-compact space is pseudo-compact
and since pseudo-compact metrizable space is compact®. Therefore

6) See [3], P. 831.

7) prx[Z(F)] denotes the projection of Z(F) into X.

8) Note that every metrizable space is paracompact (c.f. [8], P. 160) and that
pseudo-compact paracompact space is compact (c.f. [6]).
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we have a finite number of functions, say F,, -, F,, in FX)Z
C*(Y) such that _\i”le,,(F,-) covers F(X), where V,(F;)={f€C*(Y);
If—FI<1/n}. Put fix)=max [0,1/n—||F;—F,Il], then 0<£;(x)
<1/n and 3\ fi(x)>0 for each x€X. Letting p,(x)= f,.(x)/g’"l Fi),
we have :;—lﬁnite partition of unity i;rp,-(x)zl. Now,‘ let us
consider the function F,(x, y)=iZ:]lrp,-(x)<§F,-( ») which is evidently

an element of C*(X)®C*(Y). Obviously @;(x)==0 implies that
|F(x, »)—1Q Fi(y)|<1/n for each y€Y, and therefore we have

1B, $)—F(x 9)|1=11(E 2@ -Flx, 3) = 33 (2:x)@1)- AQF3)l
= 3P0 @111+ 1F(x, ) ~ 1O F() | < 1/nll T o) = 1/n. Tt
follows that C*(X)®C*(Y) is dense in C*(Xx Y).

Proof of (¢)—(d): To prove (d), we have only to show that
each FeC*(XxY) has a continuous extension over BXxBY. Let
F(x, ) be any element of C¥(Xx Y). Then there is, regarding our
hypothesis, a sequence {F,(x, y)} of elements of C*(X)R® C*Y)
which converges to F(x,y). It is clear that each element of
C*(X)®C*(Y) has a continuous extension over BXxAY, and we
shall denote by F¥(x,y) the extension of F,(x,y) over BXxPBY.
Then {F¥(x, »)} forms a Cauchy sequence of C*(BXxBY)”, and
since C*(BXxBY) in complete {F}(x, y)} converges to a function
F*¥eC*(BXxBY), which is the desired extension of F over
BXxBY.

Proof of (d)—>(a)3 The first statement of (a) is an easy
consequence of Stone-Cech’s theorem (see [8], P. 153) which states
that if % is a continuous map of X to a compact Hausdorff space
Y, then % has a continuous extension A#* which carries B8X to Y.
Let R* denote the one point compactification of real space R
(i.e. R¥*=Rwuoo), then each continuous function fé€C(X) (where
C(X) denotes the set of all real-valued continuous functions on X)
has a continuous extension f* (R*-valued function) over 8X, and
f is unbounded if and only if f*(p)=cc for some peBX. If Y
is not pseudo-compact, then there is an unbounded continuous
function g(y)€C(Y). Since X is assumed to be infinite, we can

9) See [2], P. 17, Proposition 5.



228 Hisahiro Tamano

see that there is a bounded function %€ C(X) such that Z(k*) is
not open in BX', where &* denotes the extension of % over BX.
Consider the function G(x, y)=h(x) ® g(y), then it is easy to see
that G(x, y) has no (R*-valued) extension over BSXxAY. But this
contradicts the assumption that B(XxY)=BXxBY. It follows
that both X and Y are pseudo-compact. We now prove that
prx[Z(F)] is closed in X for each FeC*(XxY). To this end, we
first observe that prax[ Z(F*)N(XXY)] = prex ZE*)Nn(XxBY)],
where F'* denotes the extension of F' over BXxBY. Suppose not,
then there is a point x,€ X such that F(x,, y)==0 for each y€Y
and F(x,, ¢)=0 for some ¢ € BY. Let F, be the restriction of F* on
x2,XY, then F(y)==0 for each y€Y and F¥(q)=0 for some g € BY.
Evidently, (1/F,)? is an unbounded continuous function on Y, and
hence Y can not be pseudo-compact. This is contradictory, therefore
- we have prox[Z(F*)N(XXY)]=prex[Z(F*)n(XxBY)]. On the
other hand, it is clear that Z(F)=Z(F*)n(Xx Y) and it follows
that pry[Z(F)]=prex[Z(F*) n (XX Y)]=prex[Z(F*) n (XX BY)]=
prex [ Z(F*)]1NnX. Since Z(F*) is compact prex[Z(F*)] is compact
and consequently pray[ Z(F*)INnX=pry[Z(F)] is closed in X. The
proof is completed.

The proof of (b)—(c) ((d)— (b)) is entirely similar to that of
(@)—(c) ((d)—(a)).

We now discuss the pseudo-compactness of the product Xx Y.
Throughout the sequel, both X and Y are assumed to be pseudo-
compact. By virtue of the theorem due to I. Glicksberg ([4],
Theorem 1), the pseudo-compactness of the product XxY is
equivalent to that the relation B(XxY)=BXxBY hold true. It
follows from Theorem 1 that Xx Y is pseudo-compact if and only

10) Suppose that Z(#*) is open for each A€ Cx(X) then Z(f) is open for each
feCx(BX). It follows that every continuous function on BX assumes only finitely
many values, since {*€8X; f(x)=a, a€R, fEC+(BX)} is open (and closed) in BX.
Take two points x, ¥ of 8X and let f be a continuous function on X such that f(x)=0
and f(y)=1. Then both {x€BX; f(x)=0} and {x€BX ; f(x)==0} are open and closed,
and at least one of them must be infinite because BX is infinite. Consequently, there is
an open and closed subset A; containing infinitely many points such that BX—A,==¢.
Similarly, A; contains an open and closed A, containing infinitely points such that
A,— A,=F=o.---It follows that there is a sequence {A,} of open and closed subset of BX
such that A, DA,y; and A,—A,+,%F¢ for each n. Let g, be a characteristic function

of A,, then g=3)g,/2" is a continuous function of 8X assuming infinitely many values.
n=1

But this is a contradiction.
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if pry[ Z(F)] is closed in X for each Fe C¥*(Xx Y) (or, equivalently,
if and only if pry[Z(F)] is closed in Y for each FeC*(XxY)).
We first give a simple proof of the following proposition.

ProposITION 1. If X is compact, then X XY is pseudo-compact
for any pseudo-compact space Y.

Proof. We shall show that pr,[Z(F)] is closed for each
FeC*¥(XxY), which will complete the proof. If y¢ pr [Z(F)],
then F(x, y)==0 for each x € X. There is, for each point (x, y) €
Xxy, an open neighborhood U(x)x V(y) on which F(x, y)==0.
Since XXy is compact, XXy can be covered by a finite number
of such neighborhoods, say U/(x,) X V(y), ---, U, (x,) XV, (»). Put

W(»)=[\Vi(3): then W(y) is open and W(y)npry[Z(F)]=¢.
It follows that pr [Z(F)] is closed in Y.

The next proposition shows that XX Y is pseudo-compact for
any pseudo-compact space Y if X has a “rich” supply of compact
sets, even if it is not compact. Recall that X is a k-space'” provided
every subset of X intersects every compact subset of X in a closed
set is itself closed. Every locally compact space, and every space
satisfying the first axiom of countability is a k-space.

PrOPOSITION 2. If X is a pseudo-compact k-space, then XXY
is pseudo-compact for any pseudo-compact space Y.

Proof. Suppose that XX Y is not pseudo-compact, then there
is a function F € C¥*(Xx Y) such that pry[Z(F)] is not closed in X.
Since X is assumed to be a k-space, there is a compact set C such
that Cnpry[Z(F)] is not closed. Let F’ be the restriction of F on
CxY, then F/eC*¥(CxY). Evidently Z(F)=Z(F)n(CxY) and we
can conclude without difficulty that pr [Z(F")]=pr [ Z(F)n(CxY)]
=pry Z(F)N(CX Y )]=prx[ Z(F)]NnC. Therefore pr[Z(F’)] is not
closed in C. On the other hand, it follows from Proposition 1 and
Theorem 1 that pr [Z(F’)] is closed, since C is compact. This is
contradictory, and hence XX Y is pseudo-compact.

The preceding proposition can be generalized, by utilizing the
notion of P-point™®, and Glicksberg’s technique on the equicontinuity

11) See [8], P. 231.

12) x€ X is said to be a P-point if every countable intersection of neighborhoods
of ¥ contains a neighborhood of x. C.f. L. Gillman and M. Henriksen: Concerning rings
of continuous functions, Trans. Amer. Math. Soc. 77 (1954) 340-362.
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of {F,(x)},cy, where F,(x) denotes the restriction of Fe C¥XXY)
on XXy.

Now, let us agree to call x € X as a k-point of X if x satisfies
the following condition: If x is an accumulation point of a subset
H of X, then there is a compact set C in X such that x is also an
accumulation point of CnH. Every discrete point of X is a k-point,
and X is a k-space if and only if every point of X is a k-point.

THEOREM 2. If X is pseudo-compact and if every non-P-point of
X is a k-point, then XX Y is pseudo-compact for any pseudo-compact
space Y.

Proof. Reviewing the proof of Prop. 2, we can see that x ¢
Pry| Z(F)]—Prx[ Z(F)] for each FEC*XxY) if x is a k-point of
X. Consequently, {F,(x)},cy is equicontinuous at each k-point of

X, because {F,(¥)},cy is equicontinuous at x if and only if x ¢ A(E)
—A(E) for any & >0, where A(8) = Pry[Z(é— min (&, |F(x, y)—
1®F.(»)]))]. On the other hand, equicontinuity of {F,(x)},cy is
equivalent to the equicontinuity of each countable subset by virtue
of the fact that Ascoli’s theorem holds in a pseudo-compact space
(c.f. [4], P. 370). Each countable subset of {F,(x)},cy is obviously
equicontinuous at each P-point, and consequently each countable
subset of {F,(x)},cy is equicontinuous on X. It follows that
{F,(x)},ey is equicontinuous on X, and hence Prx[Z(F)] is closed
for each Fe€ C¥Xx Y). Therefore XX Y is pseudo-compact.
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