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O . Introduction. Consider a  Markov process o n  a  regular
domain f i  in  122 whose generator is given as an elliptic differential
operator
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y')}v(x,y)(dx' dY '), f o r  u(x, y) E C2, (x, y) E aD ,

where .(x, y) 0 or 1, V(x, y) is non-negative a n d  v(x. y )( •) is a mea-

sure  on  aD satisfying vcx. y )(aD -  U(x, y)) <  c x )  a n d  y ) (X %  .0) 2

y ) (dx' dy') < +  c o  f o r  any neighbourhood (L x ,  y )  of (x, y).
y'), 1=1, 2 }  is  a  C 2-function on iS  a n d  is a  loca l coor-

dinate in U(5 y) satisfying : y )(x' y')=0 if and only i f  (x', y') E aDD .
f o r  (x', y') E U(x. y ) ,  x, y )(X '  Y )+  ( . y )(x', .3/))2 > 0  i f  a n d  on ly  if
(x', y')=1, (x, y ) .  It is easily seen from A. D. Wentzell's results [24]
that this boundary condition is o f th e  most general type  provided
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that the process does not jump from the boundary o f D  into its
interior.

The main purpose o f  this paper is to construct the path
functions o f  such Markov processes by means of the method of
stochastic integral equations initiated by K. Ito [12]. It should
be noted that we used not only the ordinal time but also the local
time at the boundary in formulation our stochastic integral equa-
tion, to meet the difficulty arising from the boundary condition
which did not appear in Ito's case.

It suffices for this purpose to discuss the case in which D  is
a unit disk and A  and the boundary condition are given in the
polar coordinate as

(0.3) Au (r,  O ) = 1  + 1 +0 a(r,
 0 ) a

u ) }u(r, û ) ,
2 37' 2 r  a r ao

(r, 0) E D ,

8(0) lim Au(r, 0)—  a  u(1, 0)+ M(0)  a u(1, 0)
an so

(0.4) + (1/2) V(0) u(1, 0)+ (u(1, 0 + ) — u(1, 0)ao2 V_„
a u(1, 0))n(* ; O),ae

where 8(0)=0 or 1, V(û)—b 2(1, 0)8(0) is non-negative and n(• ; 0) is

a measure on aD satisfying n(aD—U( 0 ) < +  oc,n ( , *  ;  0 ) < +

for any neighbourhood U( 6 ) of (1, 0) and some regularity conditions,
for the general case can be reduced to this special one under the
some regularity conditions.

Consider two Brownian motions B(t, (o) and g(t,(0), Poisson
measure p(ds du, (0) and the Bessel process r(t, co) with the sticky
barrier at 1 which are all independent o f each other, and denote
with 0-,.0(0)) and t(s, co) the first passage time and the local time
at 1 for r(s, co) respectively. A s  is seen in Section 2 the r(t, w)
proess together with the solution of the stochastic integral equation

no-ro(,) , no-ro(.)
, At, (0= a(r(s, (0), n(s, (0))ds+ b(r(s, co), n(s,(0))dB(s, (0)

0 0
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t(t A c ro(w ). co) t(t A cro ( w) , . )

+ m(97(t-1(s, co), (0))ds + 00 - (9 7 ( t-1 ( s , (0 ) , (0 ) )d g (s , (0 )
0

(0.5)s, tuna-J.0(w), f
n(t-1(s, (0), (0))p(dsd, (0)

0 iis1.1<+00

t(t A c r o(0,),w) f
n(t-'(s, (0), (0))q(dsd, w),

0 Jlui<1

will give the polar coordinates of the Markov process on D 0 with
the generator described in  (O. 3 )  an d  (O. 4) (8(0)=-1 )  where D r 0

{0, 0 ); 0< r0< r< 1}, q(B (0) =p(B, .)-E(P(13, (0), m(0) = M(0) —
a(1, 0), 0-2(0)= V(0)— Y(1, 0), 0 ) is  a  non-decreasing and right
continuous function in — cro< < +  co, with some regularity
conditions satisfying :  18(u, 7r)— —z), ,8(+ co , 0)= — I (+  c o ,  0 )

13(, 0) 2 cl' 2 < +  co and

inf ; n((a, 7r]; 0)<3_-

OR, 0)=
sup ta ; n([ - 7 r, a); 0 )<

W e sh a ll n eed  s ligh t modifications to discuss the case
as is seen in Section 4.

Our paper consist of two parts.
Part 1  is  for the construction of the path functions of our

Markov processes. In Section 1, we shall introduce preliminary
notions and assumptions which will be used later. Sections 2 and
3 are devoted to the construction of the path functions. Further
in  these section we shall prove some theorems concerning the
strongly Markovian property of the diffusion on a unit disk D
determined by the stochastic integral equation mentioned above.
In Section 4 we shall define a M arkov process on the boundary
concerning the diffusion on D constructed in Section 2 (or Section
3) and prove two theorems (Theorem 4. 1 and 4. 2) which will play
important roles later. In  Section  5 we shall give the description
of the boundary condition corresponding to the diffusion process
on D constructed above. We can construct the rotation invariant
diffusion without appealing to the stochastic integral equation, as

for ,

for < 0 .
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is shown in Section 6. In Section 7 we shall give a transform of
scale to reduce the general elliptic differential operator to the
special one discussed in Sections 3 and 4.

In Part 2  we shall discuss the boundary value problem by
using the special case of the process constructed above. Although
it is well known that J. L. Doob constructed the solution of the
first boundary value problem (Dirichlet problem) probabilistically
using the Brownian motion, no analogous method has not yet
been known for the second boundary value problem (Neumann
problem). We shall give a probabilistic method in Sections 8 and
9 to solve the boundary value problem which is even more general
than the second boundary value problem using the Brownian
motion with some appropriate boundary condition. Our method
will suggest that the second boundary value problem can be dis-
cussed probabilistically in the case of the general elliptic differential
operator constructed in Part 1 just as the first boundary value
problem was extended by several authors such as J. L. Doob [7 ],
and K. Ito [13].

The author is heavily indebted to Professors K. Ito and H. P.
McKean fo r  generous help during the work on this problem.
Messrs. T. Ueno, H. Tanaka and K. Sato took much interest in the
reserach and joined in discussions orally o r  b y  communication.
The author expresses his thanks to these friends. Thanks are
due to Professor T . Hida for his kind and useful opinions on the
manuscript.

Part 1 . Construction of path functions.

1. Notations and Assumptions". Let S  be a subset of the
N-dimensional Euclidean space R N . For convenience we add an
extra point { co } to  S  as an isolated one and get a  topological
space S*=S\ j{00}. For a measurable function w  from [0, + co]
to S*, we define

1 )  This general set up, except the special assumptions, are due to the lectures
given by Prof. K. Ito and Prof. H. P. McKean at Kyoto in 1957-8.
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inf {t ; w(t)= {0 0 } ,  t > 0 } ,  if such t  exists,
cr(œ)(w) = +

, if otherwise.

Let W  be the set of a ll w's satisfying

(W.1) w(t)= 00 , f o r  t > 0- ( œ) (w) ,

(W.2) w (t) is  r igh t cotinuous and h a s  le f t  lim it  a t  fo r every
t, 0 < t < 0 ( œ) (w),

(W. 3) w( + 00 ) = 00 .

W e call W  the space o f path functions. The value of w at
time t  is denoted by w(t), x(t, w), n(t, w), w ) and so  on (or
simply wt , x i., ?it, i t  and so on). Let g(S ) b e the fam ily o f all
Borel susets o f S ,  g  the Borel field generated by the w-sets of
the form  {w  ; w (s)E B}, s>0, B  Eg(S ), and g t the Borel field
generated  by the w -sets o f th e  fo rm  {w ; w(s)E B}, 0 < s < t ,
B E g ( S ) .  Given cr(w) a non-negative function measurable (g ) ,  we
shall define the s to p p ed  ( sh i ft ed )  path w ; (w ):

' we ,t < o - ,
(wW:)t=• wcr, c<t< + oc (w;E)t =w t+,,

00 t + 00

and the associated Borel fields :

B = Borel field generated by the w --se ts o f th e  form
{w ; w; E B} , B E g  ,

g o - + [ - \  g o - ±i/n •
i

We assume that a family of probability measure Px (•), x  E S,
over g  is given and satisfies the following conditions :

(P .1 )  For any fixed B E g ,  Px (B ) is  Borel measurable in x.

(P. 2) Px(x(0, w)= x)=1, x E S .

(P. 3) (M arkov property)

13 ,113 ,(w;' E B I g i )=13 (wE B)). = 1 , BE gB.

{W , x (t, w ), g, P„, x  E S }  is called a Markov process on
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S  with right continuous paths, and it is often denoted simply by
{x(t, w ), t>0 }.

We shall introduce function spaces g(K ), C (K ) and Cn(K).
B (K ) is the space o f all bounded measurable functions defined on

K *  taking the value 0 at {0.0}. C(K ) is the space of all bounded
functions defined on K * ,  continuous with respect to the relative
topology and taking the value 0 at fool. C ( K )  is the space of
all n-times continuously differentiable functions on K  and vanishing
a t  {0 0 }.  The norm in B (K )  a s  w ell as  in  C (K ) is given by
11f11= sup If(x)1.

EK

As is usual theory of Markov processes we shall define the
transition probabilities, the semi-group and Green operators as-
sociated with our processes. We write

P(t, x , E)= 13 ,(x(t, w) E E ) , fo r E E g(S ), (transition probability),
T, f (x )=E x { f (gl, w ))1 , f  E g(S), (semi-group),

+0-
Gc,f ( x )=E x { f (x(t , w)) dt}, f  E 3(S), ce>0,

0
(Green operator).

The hitting tim e 0-, for a set E E g(S) is defined by

inf {t ; x(t, w) E E, 0 } ,  if such t  exists,
(TE(w) —  + . 0 , if otherwise.

A  random time 0-(w) is called a M arkov t im e , if

{w ; cr(w) <t}  G  t , fo r  0 <  t <+ 00 .

A Markov process 9JI on S  with right continuous paths is
called a strong Markov process, if for any Markov time o-(w),

',{P(w;,t E B I g „) = 1 3 , ( 0 .c a ,,,,„) (w G B)} =1 ,  x E S  and B E 3 .

A  strong Markov process 9N on S  with right continuous paths
is called a dif fusion process, if any path is continuous as far as
it runs in the interior o f S 2 ) .

2 )  This definition is somewhat different from ordinary one (C f. K . Ito and H. P.
McKean [14]  an d  E. B . Dynkin D J).
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Let D be a unit circular disk with closure /7) and the boundary
SD, that is, D= ix ; x— (r, 0)E R 2,  0 < r < 1 1 .  W e use the abbre-
viation of f (0 ) instead of f (1, 0)E c(Sp).

Throught this paper, we shall denote with A

A u ( x ) —  A u ( r ,  0 ) —
a' + 1  a a'+ b2(r , 0) + 2a(r , 0) —

a  

u(r, O),
2  tar' r ao2 561

where a(r, 0) and b(r, 0) satisfy some regularity conditions, for
example, a(r, 0), b(r, 0) E C2 (S ), and the domain 2 (A )  o f  A  is  a
certain subset o f C2(S).

The ref lecting barrier B essel process is defined as a diffusion
process Ç.lil= {W, r(t, w ), g , P r ,  r  E [0, 1]} w ith Feller's invariants

m (dr)=-2r dr an d  s(dr)=r - 1  dr ,

and the boundary condition

d -

u(1) = 0 " ,

and the sticky  barrier B essel process is defined by replacing the
boundary condition above with

d  dlim u(r)— u(1) .
r s '  dm  ds dr

The infinitely divisible law of probability whose logarithmic
characteristic function (1. c. f .) is

z 2 12 (e1"z —1)du 1 le (eiuz —1— izu)du 1 ,

will be called the fundam ental inf initely  div isible law  (i. d. 1.) in
this paper. A  M arkov process with S = (  00 C O )  is said to be
differential i f  its probability law is translation invariant. A differ-
ential M arkov process 5D1= W, /(t, w), g ,  P r ,  r E R 11 on  I ? ' is
called a fundamental Levy process, if the probability law o f /(s, w)—
/(t, w) has the 1. c. f .  (s— t) k o(z ), where lko(z ) is the 1. c. f . of the
fundamental i. d. 1.. Any jump o f  /(t, w) is expressed by a point

d -

3 )  — u  means the left derivative o f u.d r

dr
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(t, u) E [0, ±  0 9  ) X R ',  t  being its position and u  being its hight :
/(t, w)— /(t— 0, w). The number p(E, w) of the jumps in E, E E
9-([0 , + ..)xR '), can be considered a real random variable, which
proves to be governed by the Poisson distribution with the mean

r(E) cIT du I u2 .

P(E, w) is evidently a function of 1 (t, w ) . 1 ( t, w ) , 0 <t<+ 00,
can be expressed as

1(t, w )-1(0, w )— t+ g(t, w )+ up(dT du, w )+f uq(dT du, w) ,0 itti>i 0 liti<1

for any t ,  0 < t < +  co ,  for almost all w, where q(E, w)— p(E, w )-
7r(E) and { g(t, w ), 0 < t< +  00} is a Brownian motion, which is also
a  function o f  { /(t, w), 0<t<+ 00}, (Cf. P. Lévy [17] or K. Ito
[10]).

2. Construction of path functions (1). In this section, we
shall construct the diffusion in the unit disk whose generator and
boundary condition are given by (O. 3) and (O. 4) with "8(9)=1 ".
To do this, we use the stochastic integral equation.

Let a(r, 0 ) and b(r, 0) be the real valued functions ", defined
on D satisfying the following conditions :

(A. 1) a(r, 0), b(r, 0) E C(D — 0) .

(A . 2 ) For any (r, 0), (r ',  0') E D 0 ,

la(r, 0)— a(r/ , 0') I<A{10 +
and

lb(r, 0)— b(r' , 0')1 <13{ 10 — 0' + —  r' I }

where r  is any fixed positive number <1 and /7),.0 is  the annulus
ix = (r, 0): ro <  1 1 ,  and A = A , 0 and B—B r o  are independent of r
and 0 , but may depend on ro in general.

(A . 3 ) For any x= (r, 0) E

b(r, O )> 0 .

4 )  It is autom atic from  th is that a(r, 0 )  an d  b(r, 0) are  periodic in  t/ with the
period 27r, and this remark is available to all functions defined on D.
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Let m(1, 0) (-_- _- --m (0)) and c(1, 0) (_ -_- 0-(0)) b e  the real valued
functions, defined on aD, satisfying the following conditions :

(B. 1) m(0), 0-(0) E C(SD).
(B. 2 )  For any (1, 0), (1, 0') E aD,

I m (0)-m (9 ')i<  MI 0 -  W I  a n d  10-(0)-0-(0')I < S I0

(B. 3 )  For any (1, 0)G aD,
0 0 ) .

Let gu, 0) be the real valued function, defined on ( - 00, + 00)
x (- 00, + ° ° )  satisfying the following conditions ;

(C. 1 )  For any u E  (-  0 0 ,  + c o )

O(u, 0)=0(u, 0 +2n7r), n=0, ±1, ±2, ••• ,

and for any 0 E (- 0 0 , +  0 0 ) 16(u, 0) is non-decreasing in u and

- 00, 6) =. - n- and g( + 00, 0)- 7r

(C. 2 )  For any 0, 0' G (- o c ,c o ) ,

1/21110(U, 0 ) -  0(0 / )111= ---=- g I /8 (tt, 0 ) -  /(9( i i ,  (Y )  &the} 0 - 1 9 '

where F  is independent of 0 and 0'.

(C. 3 )  For any OE ( - co, ±  co), 0(u, 0) is  a right continuous func-
tion in u and

3(u, 0) 2 clu/u2 < +  .

Let {W ',  r ( t ,  0 1 ) ) ,  g " ) , 13 .̀1 ) , r E [0, 1 ]}  b e  a  sticky barrier
Bessel process, { W"), B(t, 0 2 ), ..0 2), r E R 1}  a one-dimensional
Brownian motion and { W " ) , /(t, 0 3 ) ,  g " ) , 13 .̀3 ) , r E R 11 a  funda-
mental Lévy process. Denote an arbitrarily fixed random variable
on a probability space (1-2

( 4
), _Bo), * , (4)s)  b y  C(co")) where 2 ( 4 )  is  a

Borel field generated by subsets of n").
N ow  w e can form  a  product probability space ta, P

r E [0, , where 111 =  W" )  x W ( 2 )  x W ( 3 ) x f2 ( 4 ) , g = g") x g " )  x g" )

x  g ") and P = P;.1 ) x P x P T x P ( 4 ) in the usual way.
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We define a random variable  t(t, w " )  by

t(t, w ' )  =  tx(l)(r(s, w ' )) ds 5 )

Following K. Ito and H. P. McKean [14], we can prove that

P '{t (t , w ' ) > O }  = 1, for any  t> O .

Let t '( t ,  w ')  be the inverse function of t(t, w °), j. e., for any
t ^O

t 1(t, w " )= ml {s ; t(s, w 1 )> t}

We shall consider a stochastic integral equation, for any  T > O ,

t A O r o ( ' ' )

(t, w) =  C (w ) +  
r A r o ( w d 1 ) ) a w 1 ), ( s ,  w )) ds

r t A o r o ( W

+ b(r(s, w ') ,  ( s ,  w))dB(s, w 2 )J r A s r 5 ( w ' )

t ( tA O y 5(W ( ' 5 , wC'))

+ tm ( ( t ' ( s ,  w ') ,  w))dsJ t ( rA o r5 (w ) : ) )

C t ( f A r o( W I ) )  w (i))

+ t o-(s,(t'(s, w "), w )) dg(s, w 3 )J
1 t(tA o ro (w (')) , W (I) )

+t
J< +

 $ ( u ,  ( t  '(s, w '), w))p(ds du, w 3 )
ftC t A 5 0 ( W ( ') )  W (1 ) )

t C t A r o ( w ' ) , w ) ^
 $ (u , ( t ' ( s ,  w 1 ), w )) q(dsdu, w 3  

6 )

)

where 1>r0>O .

First using the methods similar to those in K. Ito [12], we
shall prove the following.

LEMMA 2. 1. L e t  r 0  b e  an  an y  p o s itiv e  n u m b e r su c h  th at
O<r0< 1 . T h e n , f o r an y  f ix e d  w ' (u p  to  P '-m e asu re  O), there
exists one and only one (up to P-measure O) stochastic process (t, w)

satisfying the stochastic integral equation (2. 1) for any  t, T < t <  + 0 O

and f u l f i l l i n g  the follow ing property:

(n): 1(t, w ), s < t < +  oo, i s  a  B orel m easurable function of

5) x i (*) means the indicator function of a set E.
6) a A  b  means the smaller of a and b.

(2.1)
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n(s, (0), r(t' , w(81 )-'), 1(t(t' , w ,"'), w(tT„,(1) ) )— 1(0, w ,.„(1)) )  and B(t' , ies
2 )+)

— B(0, wV)+), 0<t'<t— s.

PR O O F. W e note that the P̀ .1 ) -measure of the w")-set

TV ; crro (w o))< +  c o }

is 1 , for any r , r 0< r < 1 .
It is therefore enought to prove that Lemma 2. 1 holds for

any w 'E W .
We introduce a probability space {f2, j) , P}, where ti= W" ) x

W") xn "), J= ..B (2 ) x g3(3 ) x .0 4)  and P = P W 'x  P ,? ) x  ( 4 )•

Firstly we shall prove the existence and uniqueness of the
stochastic integral equation (2. 1) in the case 1C(a)(4))1<N, j. e.,
CN(w" ) )-- --  xc-N,N)(C( 6 ) ))C((1)( 4 ) ).

In  order to find a solution we make use of the method of
successive approximations ;  we define nn (t, (0), n=0, 1, 2, • •• , recur-
sively by

no(t, co) cN(0 4 )) ,
and

t Ac'ro

ttro
77„(t, (0)=CN ± a(r(s), n„_,(s, (of t) stdA

0)
A

crr

:AA  cra:0°
b (r(s),( 0))dB(s)+ n'l(nn-,(t-1(s), (0))dst(rA0.0)
t(tAcrro)(2. 2) +  t ( , A c r r 0 ) 0 - ( n „ _ 1 ( t - 1 ( s ) ,  (0))dg(s)

t(tAcrro)
0 ( u ,  nn_1(t - 1 (s), (0))p(dsdu)

t(rAcrro ) 1_.<1u1<+00
t(tAcrro)

ro 0(u, nn-i(t - 1 (s), (0))q(dsdu) .
Ao- ) 1.1<i

By (2. 2), n =1, we have, for any t, 7 < t < o - r 0 ,

E f f n i ( t ,  .)1121
7 [E {(C N ) 2} + {(Ç a(r (s) , C N ) d s) 2}

+ E f (P (r (s ) ,  C N ) d B (s )) ++
21.8.. It 'c f ,ft (ct) m (C ,)ds) 2}

1+E-- ( : : : : 20-(CN )d g (s ))} C N )duds I u2) 2}
( (  f t(t) (+E
I.

(

j  t(T)J1.1<+.0
13(u, C N ) q ( d s d u ) ) 1 ]
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and write this as

7 [ { J + E - {(I1 2 )1 + g{(I,,,) 2}

+E{(Ii.4) 2} +E {( 1 1.5)2} + { ( 1 i,6)2}1

It is easily seen that for any t ,  7 < t < o - r 0 ,

{ ( 1 ) 2 } < N 2 , Ê s" G (A r e  0- r o )2

{(f1 .02} = t g{(b(r(s), C N )) 21 ds_<( 1-3 r0 )2 °- ro

E{(Ti.3)2} <(2 7r0)2 E{V2.4)2} « g ) 2 Cro

E {(1 1,5 ) 2 }  <20 -
ro  : : )

) P C N)II12} ds<2(o- r o P )2

{( 1 1,6)2} CN)I112} ds<o- r o P 2 ,

where A  0 =  m ax 1 a(r, 0)1, 13 m ax b (r , 0 ), M =  max
(r , W I N 0-, A )Ebro

=  max 0-(0), and =  max 1113(u, 111.
(1. e)can

(1,13)0D 0) In the estimation above,
e)EaD

we used the fact t(t, w" ) )< t ,  for any t, 0 < t< +  0 9 •
Thus É l ( n i ( t ,  (0) 2}, T< t< +  co, is bounded and also Ê {  1(t, w)

— 0(t, (0)1 ,  G t  ‹ +  co ,  is bounded. Furthermore 971(t, 00) belongs
to dr class with P-measure 1 and so measurable in  (t, (0) 7). Besides,
for any fixed 71/( " E  W ;. 1

o
) ,  in ,( t , 0)), gt(S, W (

T
1 ) # ), /0%„(1))),

B (s, w(i.2 )4 ) — B (0, w(.,2 ) +), 0 < s <  t-71., is independent of
{/(t(s, w (»+ ), w ,„(1 ) ) ) -1(0, zetT„,(1)) ), B(s, B (0 , uT )+ ), t<  s
<0-,. 0 (w"))—t, for any T<t<0-,. 0(w" ) ), as is easily verified.

Thus we can define 972 ( t , co) by (2.2) and so 27„(t, (0), n=1, 2, ••• ,
recursively and we have for any t ,  T < t< c r r o

n„4.1(t, ( 0 ) —  n„(t, (0 )

{a(r(s), 27„(s, 0_ ))— a(r(s), n n _1(s, (0))). ds

(2.3){ b ( r( s ) ,  9 7 „( s ,  w ) ) — b ( r( s ) , w))} dB(s)

t(t)
{m(27(tAs), (0))—m(1,(t'(s), (o))} ds

t(r)

I m(
0 ) I ,

7 )  We say that f ( t )  belongs to dl -class if f ( t )  is continuous in t except for dis-
continuities of the first kind.
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t(t)
{a-(7 „(t - '(s), (0)) — 0-(9 „_,(t - 1 (s), (0)1 dg(s)

ter)
51(()

{13(u, 77„(t - 1 (s), w))—$(u, q„_ 1(t - 1 (s), (0))} duds I u2

t(r)
t(()

{13(u, „(t - '(s), w))—/3(u, n„_,(t - i(s), cop} q(ds du, (0)
t(T)1,41<+-

and write this as
1

2,1 +
1

2,2 +
 1 2,3 + 1 2,4 + 1 2,5 + 12,6 •

Using (A. 2), (B. 2) and (C. 2) we have for any t, T< t< (T ro ,

8 -  {(1.3.1)2
} <

A 0 0  r E { 97„(s, (0) —  ?In-Xs, (0)1 2} ds ,

t
E{([2.2)21 fg o ,r k.-{  77n(S ) 9b1-5(s/ COI ds

{(4,3)2}n ( t - ' ( s ) ,  ( 0 ) —  n n -1(t - 1 (s), (01' ds)

<_M2 r o B {V I Y(s, Yn-i(s, (01 2 t(ds))

<  M 2 ( F ro E {  
q ( s )  w)— n„-i(s, co) 1 ds ,

(2. 4) -g{(12.4)21 <S 2 t ::: E{ I 970.
- 1 (s), w) — (0)11 ds

< S 2 V Efin n (s, (0)— n 5(s, (0)1 2} ds ,

- {V2,02}  2 F 2 0 :: )) 17(t - 1 (s), (0)— 97 „_,(1 - 1 (s), (0) I 2 dS}

< 2F 2 0-ron n ( S )  w )  17n- 5(s, w) I  ds ,

{(12.6)2} _<F 2 f t:, ,rt )
) 1 n (t - 1 (s), .)—  n _5(t - 1(s), w) I 2 dS}

< F 2  - 8-  {I 97,,(s, w) 2} ds .

Combining (2. 3) and (2. 4) we have for any t, T < t ‹ +

.8 -  {19in+1(t, (0) —  nn(t, w) 1 2}
(2.5) tivrro

E { 1 (s, w )— ? ) (S, (01 21 ds ,
rAo- r o n

where K ,  6[A 6 ar c, + M. o + M 2 , o +S 2 +2F 2 0-,.0+F2].
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But { I Th(t, (0)— no (t, (0)11, < t < + 0.0 , h a s  a  finite upper
bound G , as is proved above. W e obtain recursively fo r  any
t,

PI nn+i(t, w) — (t, (0)1 2 I <K7 - ' G r"In ! ,

É lU t (a(r(s), „(s, w))— a(r(s), 27 ,(s, co)))ds]
<K ri G cr r o t” I n! ,

RIF (b(r(s), y n (s, w))—b(r(s), 0))))dB(s)1}

<K 7 - 1 GB%tn In! ,
(2. 6) Ea.„ ( t - 1 ( s ) ,  ( 0 )) — m(2 -in-let- 1 (s), (DM ds]2}

< K 7 - 1 G M 2 Œr 0  tn /n!

Ef Y( t )[ (0-(nn(f - ' (s), (0) —  Cr(nn _1(t - i (S), (0 ) ) ) d g ( s ) f itc,)
<K 7 - 1 GS 2 tnIn!,

ii.1<+.0
( 1 8 ( u ,  y n ( t ' ( s ) ,  c o ) )

t(t) c

—/(u, n„_ 1(t - 1(s), co))duds I 
u2t}

< K r - GPtn In! .

Now putting t 0- r o (uP)) in (2. 6) and using Tschebycheff's
inequality, we obtain for any fixed w") E W".1

0
) ,

P  {Sup [a(r(s), y„(s, w))—a(r(s), (0))]ds >X „114}
7 < l ‹ .

-
ro 7

Vr° a(r(s), y n (s, w))— a(r(s), y (s, (0))Ids >X 4}
<xn 1/2

<2K 7 - 1  GF 20-r o tn In! ,
k f f r o f

IL i t ( - ) .11.1<+..0

( 0 ( u ,  n n ( t - ' ( s ) ,  c o ) )

—0(u, n ,(t - i(s), com q ( d s d o  ll

where K7-1 GA%(Œro )" 'In! . Since E+ —  xn '14 , x„v2 < + . ,  for

any fixed w") E W;.1
0 ' ,
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(2.7) g t [ a (r(s , w ( " ) ,  n (s, (0))— a(r(s, uP)), 9 7 „_ 1(s, (0))]ds ,

rr< t< o - r o (w ( "),

is uniformly convergent in t, T< t< o - r o (w (" ), with P-measure 1
by Borel-Cantelli's lemma. Since, for K71GB%(0-ro)ln !,

Pi Sup f t [b(r(s), 9 „(s, w))—b(r(s), n n _1(s, (0))]c1B(s)L>X n 1' ir<t<aro

< (X 1 1 4 ) k l cr° (b(r(s), (0))—b(r(s), ,(s, (0)))dB(s)1 2 }

<X„ 1/2

we can prove, in the same way a s  before that, fo r  any fixed
w o) E wTO

(2. 8) 2 1 t [b(r(s, w")), y n (s, w))— b(r(s, 0"), n„_ 1(s, w ))]dB(s, w 2 ) ,

7<t<Œ r 0 (w( 1 ))

is uniformly convergent in t, 7- < t< o - r o (w ( 1 ) ) ,  with P-measure 1.
Similarily for any fixed w W ,

f
,t(t,a )())

J t (7 .(0 )
+„, t , t ,,,(0 )

[0-( y  „(t l s  ,  w(0), w ))—  0-(y  ,i_1(t - 1(s, w(i)), w )) ]d g (s ,  0 3 ))
5

=1. 1 ( , •  W (1 ))

(2. 9) r̀<  t < C r o (10( 1 ) )

t(t,u,C 1) )

[3(21, n n (t - i (S, U) ( 1 ) ) ,  ( 0 ) )
n= 1 J  t(7,w ( 1 ) )

—3(u, 97,,,_,(t -As, 0 1 )), (o))]ds du u 2

ft(t.i , (0)
1_3(u, n n (t - 1 (s, w(o), w))

lui <+
— n - i ( t ' ( s ,  10( 1)), co))]q(ds du, w"))

are uniformly convergent in t, T< t< o - re (w ( 1 ) ), with P-measure 1.
Consequently combining (2. 9) with (2. 7) and (2. 8) we see

that, fo r any fixed w(1) E W ,  w ) ,  t< + Do, is also uni-
formly convergent in t, 9-.<t<+ 00 , with P-measure 1. We denote
this limit by n(t, co).

Thus 27(t, (0) belongs to dl -class with P-measure 1, and  so
measurable in (t, co), since it is so the case with n „(t , (0), a s  is

[m (y, r(t - 1 (s, w@)), w))—m(y Op), (0))]ds
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recursively proved. By letting n -. +  cc in (2. 2), we can easily see
that / (t, (0) is a solution of the stochastic integral equation (2. 1)
in the case C((0 ( 4 ) ) =CN( 6 )( 4 ) ).

Thus the existence of the solution of our stochastic integral
equation under the restriction 1C((0( 4 ) )1< N  was completely proved.
Once this is done, we can prove our lemma exactly in the same
way as in K. Ito's [12] paper and we shall omit the rest of the
proof.

It is to be noted here that {7)(t, (0), s < t < +  Do}, is a Borel
measurable function o f in(s, (0 ), r(t', 08

2 )+), 10(r , w(s ')+ ), W ',,(1) ) ) -
1(0, w (0) )  and B(t' , w 2 ) —B(0, w?)+), 0<t' —  ;  this follow
from

r t A.-n ov(0)
n(t, w)=-77(s, (0) 1 a(r(t' , wo)), n(r, co))d

s  A c r r o (w (1 ) )

r

+
5: no-roo.(0 )

b(r(t' , w( 1)), n(t' , (0))d.13(r w( 2))

t (
s A:; ,,,w0:1)c)0) ,w(1),

+ , m(710 - 1 0' , w")), (0))de
t(sA,Tr o cw(0 ),w, o)
t  t A crro(w(1)), w ( 1) )

0-(27 ( t - 1 (r,w( 1)), (0))dg(t', w"))
t (sAcrr 0 (u,(0 ),w0 ) )

tct Acrro(w(i))..(0 )
+  $ (u  n(t - 1 (r, wo ) ), (0))p(drdu, w" ) )

t(sno-r o (wel)),.(1)))1siul<+-
tctivrro(w( i) ).wm )

+  '3(u, n(t - V ,  V I ) ) ,  (0))q(drdu, wo))
t(sActr o (u,(1)).. I.I<1(1), 

In the following discussion, let n (t, (r, 0), w) be a solution of
the equation (2. 1) satisfying the following conditions : (1) T=0,
(2) C((0c4 ) )-- 0 and (3) P r  {r(t, w( 1)) = r }  = 1 .  (For convenience we shall
write n(t, (0) sometimes instead o f  n(t, (r, 0), w)). Here without
loss of generality we may assum that n(t, (r, 0),(0), 0 < t < +  C.0 , is
right continuous in t  for fixed (r, 0 ) and (0.

Let {W( 1 ) , r(t, trip), PP) , r E R '}  be a Bessel process and
{W( 2 ) , B(t, (i) ( 2 ) ) ,  j ( 2 ) , 15 ;.2 ), r  R I } a  Brownian motion on RI, and
consider th e  probability space 1161, -6, Pr, r E fro ,  1 1 ,  where
A=s2xW ( ' ) xW ( 2 ) ,  . .6 = g x j ( 1 ) x..49- ( 2 ) and P r = P I x P .I 'x i5 V).

Using the method of successive approximations as above we
can obtain the solution n(t, (r, 0),7,1) of the following equations :

(2. 10)



On the construction of d iffu s ion  p ro cesses 383

97(4 (r, 0 ) , T-7-•; ) _  O ± ft A '(,.0,1)((0)

J0
a(r(s, w o )  (s, (r, 0), it)) ds

(2. 11)
+  

tivr(ro,i)07,(1),
b(r(s, ii)( 1)), 71(s, (r, s), i-ripdB(s, w( 2)) ,

0
f o r  0<t<+  00 , and 7-0- E -6-1 0xT4-7 , 2),

where P;.1 ){r(t, ai"))—r} =1.
Without loss of generality we can also assume that ?At, (r, 0), -Zs)

is continuous in  t, 0< t< +  co , for any fixed (r, 0) and -61=(ai" ) ,
Our diffusion desired will be now constructed a s  follows.

Starting from the interior of the annulus, it will perform the motion
given in  the po lar coordinate by th e  p a ir  o f r(t, Co(1) )  and the
solution 97 (t, i t )  of (2. 11) before o- (,.0,1)(fi 1 ) ) ,  and then it w ill stop
for ever or perform the motion given by the pair of r(t, w(D) and
the solution of (2. 1) according as it is on a D =  , 0); r = r }  o r
on a D at time c ( „,i ) (21P) ).

We shall express this procedure precisely in form ulas. Con-
sider a stochastic process {x(t, (r, 0), 6 )  (=- (r(t, r, 6 ), n(t, (r, 0), 6))),
0 < t< +  0 0 1  over a  probability space {h, .43, Pr , r E Era , 11} (for
simplicity it is sometimes written a s  {x(t, b )  (=-_-(r(t , 6), n(t , ))),
0 < t< +  0 0 1 ) defined as follows

(1) if  Œi(ff, " ) ) > 0 - ro (li) ( 1 ) ),

(2. 12) (r(t , r ,  6 ) , i (t, (r, 0), 6 ))=  (r(t A ur o (tTP ) ), C o w ), ?At, (r, 0), ,

0<t<+ 00  ,

(2) if  0-# 0 ) ) <G-ro (i'om),

(r(t, r, 6 ), n(t, (r, 0), ())= (r(t, Co'), n(t,(r, 0), it—))
0 < t< c r 1(i2 1)) ,

(2. 13) (r((t 0-,(UV))) A crr 0 (20" ) ), Wm ) ,  n((t —  0- ,(t-o(1 ))) A
(1, n(cr,(OYD), 0), 75)), (0)),

cri(ITP)) <  t < ±  co ,

where (r, 0) E D,.0 .
Let W be the space of path functions taking values in

and define a  system of measures .13 ( ,.,e ) (* ) over g by

P(,..8)(B)= Pr16 ; x(•, (r, 0), 6) E , for any B E g .
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Then

(2.14)9 J 1 =  1 W ,  x(t,w), .B, 13
( r ,,,) , (r, 0) ED r o l

is  the diffusion satisfying the boundary condition (O. 4). Though
we shall prove this fact in § 5, we shall here prove the following
theorem by means the methods similar to those in K. Ito [13].

THEOREM 2. 1. TR is a Markov process satisfying the following
properties :

1) the semi-group {T „ t> 0}  is strongly continuous,
and

2) T, f(r, 0) is continuous on Dro  i f  f  is  in  a p ro )*

P R O O F . Let us observe first that ç.111 i s  a Markov process.
(2. 10) and (2. 11) show that

a) i f  s<t<Œ,(ie" ) ), n(t, 6) - 97(s, 6 ) is  a Borel measurable of
r(t' ,z,V,"') and B(t' , I'VV) +)- B(0, COV ) + ) ,  0 < t ' ( t - s,

b) i f  s<0-1(û $ ')< t, n(t, ) - ( s ,  6 )  i s  a Borel measurable
function o f  r(t' A o-

1 (1761 ) 4 ) ,  2-0(
3

1 )+ ) ,  B(t' A o- ,(C61 ) + ), fiY,2 ) 4 )  -  B(0, (0 ) 4 ),
r((t' c i ( i0 ) +))v 0, 0 1 ), B ((t' 0 -,((0 ) +))\/ 0, w( 2 ) ) - B(0, w ( 2 ) ) and
/(t((t'-(7- 1(a) (

8
1 ) 4 )) v 0, w( "), w ( 3 ) ) - 1(0, w" ) ) ,  0 < t ' ( t -  s ,

and
c) i f  a-i (ie" )< s< t, (t, (3)- n(s, 6 )  i s  a B orel measurable

function o f  r(t' , w(s 1 )+), B(t' , w 2 4 )-B(0, w 2 ) and /(t(t', w 1 ) 4 ),
uA( 3

-
w c1)) )) -/(0, w (1)) ), 0 <  t- s. N o w  n o tin g  th a t a(r, 19),

b(r, 0), m(0), 0-(0) and 13(u, 0 ) are periodic in O with the period 27r,
we can prove that for any B E A ,

P r { f(x(t, (r, 0), 6)) ; B}
P r  {B ; s<cr,(fv" ) ) ;  P r ,,, r ,,;,) {f(x(t- s, (r(s, r, (o),

9)(s, (r, 0), 0), (ç))); t- s<0- 1(0 '))}}
(2. 15) +P,.{B ; s<0-.

1
(1-6 1 )) ; f(x (t s , (r(s , r, 6),

n(s, (r, 0), 6)) 4) ) ; s}}
+ P r  {B ; cri (rv( 1 ) ) <5 ; s, (r(s, r, ("0),

n(s, (r, 0), (0), ('0'))}}
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= Er {13 ; <O E 1 ( 14)(1)) ; PrC s ,r.,'6){ f (x (t— s, (r(s, r„'6),
n(s, (r, 0),( .0)), c'0))}}

+Pr 1B ; ŒIOV" ) ) s ; (r(s, r, 6),
n(s, (r, 0), (6)), )))}}

= k r {B ; s, (r(s, r, ( 0 ) ,  n(s, (r, 0), 6)), e6))}}

which shows that siTt is  a Markov process.
Next we shall construct a suitable version of {Wm, r(t,z,V 1)),
13 ;.1), r E R 1} . G iven a  Brownian m otion { B(t, le ) ) ,

r E on  121,  we can define a  increasing function
r, ii)"'') by

r,f0 ( ''') = 0 exp [2(13(7, ziP) / ) +s(r))]ch-

Let
r(t, r, io" ) / )=r exp [130 - '(t, r, (O n, 9 - (1 1 )].

T h e n  it  fo llo w  th a t  fr(t, r, 2:0( 1 1 ), 0<t<+ 00 , is a
version of O m , r(t, Iv"), A"), P r i), r E R '} .  Hereafter in this proof
we shall always use this version. Now we consider a probability
sp ace  {tY, A', Pi}, where ,(2' = f2  X Wm ' X ff ( 2 ) , :4) x " ) ' X .03( 2 )

an d  P  = Po x x IV ). Throughout th is section { r(t, r, aim),
0 < t ‹ +  co , PV }  is denoted sim ply by M t, r, 0 <t<+ c o ,
N 1 ) }  and 0 ',  3 ',  P ' }  b y  0 , PI.

Let

inf It ; r(t, r, ("6)=1, , i f  such t  exists,
r ) =

+ C o ,  i f  otherwise,
inf It ; r(t, r, (ù)=r0 , , i f  such t  exists,

r o ( ( ) ,  r ) =  

+ 00 , i f  otherwise,
cr(ro , , r)=0- 1((6, r) A crr A, r) .

Since 0-1(6 , r) and (3-( „,1 ) ((;), r) are independent o f (0 and CO( 2 ) ,
we shall sometimes write (T,(CP , r ) and cr(ro ,i)(û» ) , r )  instead of

r)  and cr(r0 ,1)(b, r)  respectively for the convenience of notation.
Similarily Œr (6 , r)  is independent o f  (65, 9)(2 )). Hence we shall
sometimes write c r 0 (( 0 1), 9P)), r) instead of 0-r o (e, r). Here without
loss of generality we may assume
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0- (0e ) , r) ‹ +  c o  a n d  c(r0,1 )(w , r)<+ co •

Next let
( inf {t ; B(t, OD) + s(r) s (r 0)  or s(1), t> ,

Tfro,i)(11Y 1 , r)— if  such t  exists,
±  00,  if  otherwise,

and
inf It ; B(t, s(r)= s(1), t> , i f  such t  exists,
+  0 0 , if  otherwise.

T h en  it is  ea s ily  seen  th a t 0-,(4, r)=(T(ibm' , r), r, if,(1)) and
cr( ",1) ( ( ,  r)=.,(7 -

t ro ,i ) (f.om' , r), r, CO) ) .  Hence if r r, then  (a)
r(t, r„, b)—> r(t, r, 6 ) ,  (b )  o-,(4,r„)—.0-,(4,r) a n d  (c) cr(r0,1)(6, r
crtr0,1)(6, r).

Now shall consider th e  d ir e c t  probuct probability space
..49* , P *1  o f { n, P }  a n d  0 (2 ) , :B ( 2), p (2 ) ,j• B y  (2. 11), if

t<o- { „,1) (W 1 ) , r), then, for any sufficient large n,

k* {I ?(t , 0 ), 6) —  77(t, n ,  O.), Q1 2}

< 3  [(0  0„) 2 + A 0 cr(r0,1)(1 2)( 1 ) , r, r(s, r , 2
0

(2. 16) +  n (s, (r, 0), 6 ) —  n(s, (r n , „), 4)1 21 ds
+ {Ir(s, r, 6)— r(s, r„, 6)1 2

0
+ I n(s , (r, 0), d )  77(s, (r n , 0 „), 4)1 21 ds]

+ {I,(n, (r, 0), (r n , 0 )  ; 6)1

where lim 13 (n, (r, 0), (r,,, 0,,); 6)=0 for almost all (",‘).

Using (2. 16) and Fatou's lemma, we have

lim E* {I n (t, (r, 0), 4)— n (t, (r,,, 0 „), 4)1 2}
(r„, 00 -w , 0 )

< 3 [M . 0 + J1.0 0-{ r0 ,1) (io 1 ) , r)] lim 1E- * {I n(s, (r, 0), d )
O( i - „, en) -).(r, 0)

—  n(s,(r„, 0„), d ) I  ds , f o r  t<cr(r o,1)W 1 ) ,

which implies an d  th e  left side is identically zero for almost all
(Ay)) ,

Next, i f  0-,.0(6'), r „) > t>  0 - 1(4, r), then there exists an integer N
such that
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(2. 17) cr" ((b , r„,) > t> c - , ( (b, r,,), for every n > N .

By (A. 2), (B. 2), (C. 2), (2. 1) and  (2. 17), w e can  p rove that if
crro ((e ) , 0 1

)), r ) > t> 0 -,(0 ' ) , r), then, for any n> N,

k *  I n (t-c . - 1((b, r), (1,n(0 - i((b, r ), (r  0 ), (b)), (b)
- 974 - 0 - 1((b, r„), (1, n(o- A , r„), (r„, 0 „), (b)), (b)121

<12[E* 11 7/( 0 - 1 ((b , r), (r, 0 ), (6 ) -  97(OEA ,  r„), „, , , ) ,  (b)12}
, 10 7 0 (1 ),r )

+  X 0 0 - r o ((w" ) , 11)m), r) E* {19)(s, (1, r), (r, 0), (b)), (b)0
- 7) (s, (1 , n (0-1((b, r„), (r,,, 0 „), (b)), (b)121 ds

t.  -  ( row ,r )

+ E* {I n(s, (1, n(0- 1((b, r), (r, 0 ), (b)), (b)0
- n(s, ( 1 , n(0-1(6, r ( r , , ,  „ ) ,  (b)), (b)1 2 }  ds

• t(t-cr (iv(1 ),r),w (1 ))
± M 2 o _r o (* (1 ) , 00)9 E*11,7(±-1(s , wm), (1, r), (r, 0)„(b)), (b)

J o
(2. 18) - 97(t - 1 (s, w( 1 ) ), (1, 97(.--,((b, r,,), (r,,, 0„),6)), 6)11 ds

t (t - cr (Fi(1),r),w(1))

+  S 2E *  {  1 (t 1(s, 0 1 ) , ( 1 , (0-A , r), (r, 0), (b)), (b)0
- n(t - 1 (s, 0 1)), (1, n(0- 1((b, r,,), (r,,,  0  „), (b)), (b)121 ds

rt((-0-,(i6(1).r).w(1))
+ 2(C tvr r o ((W C 1 ) , ( 1 ) ), r1F)2E *  I l y ( t - 1 (s, wo)), (1, n(o-l ( ;), r), (r, 0 ), (b)), (b)0

- 97(t - 1 (s, O D ), (1, r„), (r,,, 0 n ), (b)), (b)121 ds
t (t -0- ( 1 7 ) ( 1 ) , r ) ,  m. 1) )  -

+F21 E* {1 97(t - 1 (s, 0 1)), (1, n(0- ,(6, r), (r, 0 ), (0), (b0
- 97(t-1(s, w( u ), (1, 97(0- A ,  r n ), ( r„ On), ()), 01 21 ds

+E* {14 ((r, 0), (r,,, n ); 401]

Then since lim t(t-o-,( e ) , r,,), On) = t(t - o-,(0 1 ) , r ), 0 1 )),  we have

lim I4 ((r, 0), (r„, 0 „) ; 6)=0 , for almost all (P ),
”÷4 00

By (2. 18) and Fatou's lemma, we have

lim E" {I y(t, (r, 0), (b) -  n (t, (r,,,  0  ,,), (b)1-2}
(ro, 0,)÷(r, 0)

t-  o-(17,(1),r)

< K, 1 urn k *  Y (s, '77(0 Acl) , r), ( r  0), c ) ) ,  (b)
o (r„, 0,0÷(r, 0)

-97(s, (1, n (a.,(7,v(1 ), r,,), (r,,,„) , ( 0 ) ,  (b)121 ds
for 0-,.0 ((w( 1 ) , 1,V(')), r) >t> cr,W 1 ) , r)

where K 2 =  12[A 0 cro ((wm, aim), 1) + Br 0 + M - r o ((w( 1 ) , 7 1 ( 1 ) ) ,  1) + S2+



388 Nobuyuki Ikeda

2(0-,,,((w" ) , fe ( "), 1)F) 2 + F2 ]. O n the other hand it is easily seen
that for almost all (Olt', th '') ,

lun R*1197(t—,i(c`6, r), ( 1 ,  97((7 1(6 ,  r n ), (r,„ On), 6)), 6)(r,,  0 „ )-) .( r , 0 )

(2. 19) — ( t — c,(4), r„), (1, n(c1(, rn), On), 6)), 6)11 =0 ,

for cr,-0 ((ev̀ 1 ) , te n ), r) > t > r 1C-1,0") , r) .

Hence combining (2. 18) with (2. 19) we have

(2. 20) Inn E* (t, (r, 0), /0)— n (t, (r„, „), 6))1 2 ). = 0
cr„, 0 ,,)*(r ,0)

if Œ,.0 ((w" ) , 8) ( 1 ) ), r) > t > 0 - i(zr)( 1 ) , r), for alm ost all (OD, ti; ) .

And it is easily seen that if t> 0- ro (W 1 ) , /VD ), r), then (2. 20) also
holds.

Thus, (2. 20) is true fo r an y value o f t  an d  it follows from
this that i f  (rn , ( r ,  0 ) ,  there exists a  subsequence 0„k)
such that

(2. 21) 17(t, end, ) — ( t ,  (r, 0), ,

for almost all (P) , 6̀). Therefore using Lebesque's bounded conver-
gence theorem we can prove that if ( r,,,  0 n ) ( r ,  0 ) ,  then there
exists a  subsequece (r„,, 0„,) such that

f (r,,,, 0,0— > T f f (r, O), f o r  f(r, 0)E C(D,- (,) •

Since this is true for every sequence (r,,, „)— > (r, 0), we see that

lim T, f(r' , 0 ') =  f ( r ,  O), f o r  f (r, 0) E r o )  •
c r' ,0 )

T h e  right continuity o f x (t, (r, 0 ), () i n  t  im plies that T ,
t > 0 ,  is strongly continuous and  Theorem 2. 1 is therefore com-
pletely proved.

According to E. B. Dynkin and A. A. Yushkebich [8], Theorem
2. 1 implies the following

PROPOSITION 2. 1. 9 J1 has the strong Ma. rkov property.

3. Construction of path functions (2). I n  th is  section we
shall construct the path functions of the diffusion in the unit disk
whose generator and boundary condition are given by (O. 3) and
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(0. 4) with "8(0)--_-= 0". W e sh a ll use the same notations and de-
finitions introduced in the previous section, except { W " ) , r( t , w " ) ),

g3( " ,  P  r  E 1 1  and t(t, w" ) ) which will denote here a reflecting
barrier Bessel process and its local time at point {1}.

Now we consider a  stochastic integral equation of the same
type as (2. 1) ;

? A t ,  t o =  C ( 0 ) ( 4 ) )  

.çt Acrr0(w(0 )
a(r(s , w ")), n (s , w ))ds

7 AO- ro(W ( 1 ) )
t A 0 - r o( W ( 1 ) )

b (r(s , w " ) ) 97(s, (0))dB (s, w "')
A Tro(w ( 1 ) )

t Ct A 0 r o (
W M

) .
w ( 1 )

)

in(n(t - 1 ( S ,  UP ) ), ( 0 ))ds
t(, Acrr o cw(0 ).w(o)

+

S(3. 1) tuna-ro(w(0),w(0)
a.(97 (t - '(s, w")), (0)) dg(s, uP))

rno-r o cw(0 ),,,,(1))
t(tAT r o (wo)).w(0)

tu noor o cw(0 ). .( 0 ) i<1„1<+.
t(t A , ,, „(w( P).w ( 1 ) ) f

+ l9 (u , n ( t '( s , w " ) ) , a))) q(ds du, w ( 3 ) )
tern,„(w(1)).w(1)) J <I

for an y  T > 0  and 0<r
0
< 1 .  Corresponding to Lemma 2. 1 we

have

LEMMA 3. 1. L em m a 2. 1 is  also  true  in  th is  case of 8 (0 )=0 .

PROOF. First we note that there exists W,(.'„) such that

{w"); / d o e  W( 1), 0- r o (w( 1))< + ., t ( ( - r o (w("), uP))<+ ,
and

V-1 ) (W ) = 1  ,  for any r0< r< 1  .

Hence it is enough to prove that Lemma 3. 1 hods for any
w o) G W .

In  order to  find  a solution of (3. 1) w e m ake use of the
m ethod of successive approximations ; w e  d e f in e  nn (t, a)),

n = 0 , 1 , 2 ,  ••• , exactly in the same way as in  the case 8(0) 1.
Now using the same methods as those in the proof o f Lemma

2. 1, w e can  prove the both o f  k{ (97 1( t, 0)))21 and :E{ y ,( t , (0)—
no(t, co)11, 7- < t< +  0 0 , a re  bounded and n1(t, (o), 7 < t < - 1 -  0 ,  is
measurable in ( t ,  w ) .  Furthermore for any fixed w") E W ,  1771(t, (0),
/(t(s, w.1 ) 4 ), 4r,„,,(1) ) ) —1(0, 4 4,„(1)) ), B(s, w`,.2 )')—  B (0, w .̀»+),
is independent of {/(t(s, 4;,',0(1)))-1(0, wft',„(1) ) ), B (s, 10)+)—

13(u, 97(t - 1 (s, w ( 1 ) ) , 0 ))p (d s du, w " ) )
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B(0, tv(t
2 )+), 0<s<c r 0 (w( ")— t, fo r a n y  T <t<o - r o (w( "). Thus we

can define 972(4 co ) and so recursively n„(t, w ), n=3, 4, .  Now it
follows for any t, T< t< c r r o (W 1 ) ),

C (a(r(s), „(s, a))) — a(r(s), ,,-1(s, (D))) d s n

G4„crr o 5t  - "II a))— (012} ds ,

tr ( b ( r ( s ) ,  „(s, (0))—b(r(s), nn-,(s, (0))) dB(s)] 2 }

< BO T B{ n n (s, (0 ) —  ?in  (S ,  (0 )  I ds ,

E l (m (( t - '(s), 0)))—m(n„_,(t - '(s), co))) ds1}

G M 2 1(crro ) {1 97.(s, 97.- 1(s, (01 2 } t(ds) ,

St ( t ) (0-(7 „(t -  '(s), (0)) — 0--(7 „ _ ,(t - 1 (s), co))) dg(s)12 }
t(r)

<S 2

t

 {  1 97.(s, a))— w)1 2} t(ds) ,

nn(t - 1 (s), (0))— R(u, nn-i(t - V ),  co))) du ds 1 u21}

< 2 F 2 t(o- r0 ) ST E{ 1 n„(s, (0)12} i(ds)

and

' 8 - 1 [

t (t )
(13(u, n n (t - '(s), (0))— 8(u, (0)))q(ds du) ] 2 }

t ( r )  lu l  <  + co

t
< F 2 E l l? )  n(s, (0)— 9]„_,(s, 0)W} t(ds) .

Hence we have that for any t, TG t < +

Ell nn+i(t, (0) —  nn(t, (01 2 1
tAo- y o (w ")), Et I y n (s, w)— (0)I2}i(ds, w ') ,
,A0-ro (w-i-)

where K2=7E,V. 0 ( j .  r o(w M
)  B%+ M 2 t(0 r 0 (w ( 1 ) ), w" ) ) + S 2 + 2F 2 t(a• r 0 ( w 9

w ")+ F 2 ] ,  and î(t, w m )=t+t(t, w" ) ) ,  T < t < +  00•
Since

ÇS t t / N t A
(3.2)t ( d s „ ,  w " ) ) •  •  • i \(ds„ tum)— ( t(ds, w(D)) I n !<+ 00,
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we can complete tne proof, repeating th e  same arguments as
those in  the proof of Lemma 2. 1.

Now we define a  combination Tt= {W, x(t, w), B, P o . , 0 „  (r, 0) E

Dro } using the same procedures a s  those in Section 2.
Then corresponding to Theorem 2. 1 and Proposition 2. 1, we

have

THEOREM 3. 1. Theorem 2 . 1  i s  a l s o  t ru e  i n  t h i s  case  o f
0".

Now we have, as an  immediate result from this,

PROPOSITION 3. 1. f f t  has the strong Markov property.

Repeating th e  same argu m en ts  a s  those in  t h e  proof of
Theorem 2. 1 and  noting (3. 2) we can prove Theorem 3. 1. The
proof of Proposition 3. 1 is clear.

4. The M arkov process on  th e  boundary concerning the
diffusion  on  b r o . I n  th is section we shall derive a  system

a > 0 }  o f Markov process on SD from the diffusion 9.11 on
i i ro constructed in Sections 2  an d  3 , an d  u se  it to discuss the
Green operator of T1.

L e t  { W"/, B(t, aim), Om% P V } b e  a  Brownian motion on R 1

introudced in Section 2. Now we define k(t,r, 1:0 1 ) ')  by

(4. 1) F-(t, r, iv"/)=r + —2
1  r (k(s, r, tiP/)) - 1  ds+ B(t, aim')

0 < t < +  0 0  a n d  0< r< 1 .

T h e  {k(t , r, z,i)"/), , r), P  }  is  a version  of
{r(t, coc"), 0 < t< 0 - 0 -0 ,1) (tV , r), P n ,  where

inf {.3 ; k(s, r, U-;(1 /)= 1 or r ol , if  such t  exists,
Cfro,1)(1:6 " ) /  r ) =

+ 00 , i f  otherwise.

Noting that the infinitesimal generator of minimal diffusion
corresponding to 9)1 constructed in Sections 2  an d  3  is  a local
operator in  D r o , viewing (4. 1) and (2. 11) as the stochastic integral
equation for a two dimensional diffusion (r(t , , 71 (4  e))) and using
Theorem 3. 2 in  K . Ito [1 1 ] we have the following
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PROPOSITION 4. 1. W e assume th at a(r, 0) and b(r, 0) belong to
C(D r o ). I f  u(r, 0) belongs to C2 (D1 0 ), then

lirn  T t u(r, 0)—  u(r, 0)]I tt“)

—

1 (  a2a a 2
2  ar2  

+ 
r

+b(r, 0) +2a(r, 0) 
 a  

 )u(r, 0) ,ao2 ao
f o r  (r, 0) G131 0 ,

where T t  is the semi-group of  DI constructed in Section 2 or Section 3.
The proof is easy and so is omitted.
From now on we shall always impose the following :

ASSUMPUTION A :  a ( r ,  0 )  and b(r, 0) belong to (A p r).

Throughout Sections 4 and 5, though some statements in the
sequel will be also true without Assumption A.

Here, we cite some known results in the theory of differential
equations for late use.

LEMMA 4. 1.8 ) 1 )  For any  a > 0 ,  the equation

(4.2) (a — A )u(r, 0)= 0 , on a o ,

with the boundary condition

(4. 3) u(r, 0) = f(r, û),o n  aDr o ,  f  E CODr o ) ,

has a unique solution u(r, 0) E O r o ), which is expressible in  the form

(4. 4) u(r, 0)= f (r ,0)= h`f  f (r , 0)+14 f (r, , 0) ,

where

f (r, 0 )= 0); dr' doe) f(r/ , O'),

f ( r,  0 ) -- a g i)1i((r, 0); dr'd0 ')fir', O'),

and  h7((r, 0); dr' d0'), i =1, 2, are the positiv e m easure on  aD and
a D ' respectively such that h7((r, 0): aD)+ M r,  0); a r ) )<  1.

2 )  If  f  E c3(5D1 0 ) , then le f  E C2 (D 1 0 ).

8 )  C f . S .  Ito  [15 ] a n d  T . Ueno [21].
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LEMMA 4. 2." There is a  system o f  linear operators {a} on
the space C(D r e ), satisfying

(4.5)I I G g f 1 1 < - 1 1 f 1 1 , f e a b r o ),

(4.6)f  —  f  +  —  1 9 )  a  G gf =o , f E c (D r o ) ,

(4.7) (a —  A )  f(r , 0 ) f (r, O), ( r,  0 )  E Dr ° , f  E C (D r o ) ,

(4. 8) G f  E e(D r o ) , f E C(D r o ) ,

where
aDro)= ff E C(D r o ); ffr, 0 )= 0  on aDr 0 1

(4. 9) G f  E O D , . 0 ) , f or f  E Cl(D r o ) ,

(4. 10) lirn aa ), f — f H=0, f or f  E C(Dr o ) ,

(4. 11) lirn aGg f(x)= f(x) , f o r x E Dr o  , f E C(D r o ) .

Making use of Propositions 2. 1, 3. 1 and 4. 1 and Lemmas 4.1
and 4. 2, we have

PROPOSITION 4. 2. L et 9.11 be a  diffusion process constructed in
Section 2 or 3. Then

G„f(r, 0) = f(r, 0) ± 14(G f)(r ,  O ) ,  f  E C(Dro )

where Go, is the Green operator corresponding to the diffusion TZ,
and a f =G g f +  f

Using th e  strong Markov property o f WI, the proof is easy
and so is omited.

We shall discuss only the diffusion ajt = {W, x(t, w), 0, 13 ,.,„,
(r, 0) E p ro }  constructed in Section 3, while we shall only state the
f in a l result a s  Theorem 4. 2 fo r th e  d iffu s io n  constrncted in
Section 2.

We shall first derive the Markov process V" on the boundary
ap from the dffusion 9.31 on  r) . L et W ° be th e  space o f path
functions with values in  D .  A n d  we define a  system of proba-
bility measures Pg(•), (1 ,0 ) E aD, by

9 )  C f. S. Ito [15 ] and T. Ueno [21.1.
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PS(w° E B )= P „(0 (t -  '(t , w), w) E B) , B E g°

where t -1 (t, inf Is ; t(s, w ) > t } .  Then we have

PROPOSITION 4. 3. T rt" ) = {W°, z (t, w °), g°, PS , (1, 0) E aD} is  a
strong Markov process satisfying

1) T is strongly  continuous,
and

2) c( p) is  invariant under 71,
where 7 '2 , t>0 , is  the semi-group corresponding to 911") .

T his fact was established by many authors even for more
general Markov processes'". We shall here sketch a proof which
is due to K. Ito and H. P. McKean [14].

PROOF. First we note that

'(t+ s, w)= wt-i(s..))+t-1(s, w) .

Given t > 0,

{w ; w ) > t }  {w ; s >t( t ,  w)} r\ {w ; t- '( + on, w)} G g t .

Hence we have, for Borel measurable g  and f ,

ES( f(wS - )g(z(t + s, WO)))
—E(1 ,0 ) { f(0(t - '(• , urc i( S ,w ) ), z.v.-1( 3 . ) ))g(0(t - i(t, ev+,-)(s,„„))1

=E(1,0){f( 19 4 - 1 (• , z,v-ics..)))E0.0(t-ks,.),„,,{g(0(t-1(t, w), w))}}
=ES { f(wS - )ES,s ,w 0,1g(z (t, w °))} }  , t, s>0 .

Hence 931") h as the Markov property.
O n the other hand, using th e  same procedure a s  those of

Section 2, it is easily seen that there exists a version {n(t'(s, w (1)),
(1, 0 ) , 6 ) ,  0 <s <+ co}  of 911") satisfying

lim  E { f(n(t -  t(s, wm), (1, 0'), (0))1(1, 0'),(1,0)
= E If(n(t - '(s, w ( D), (1, 0), 6)))1 , for f  E c(ap) .

Hence using the same method as those in Sections 2 and 3 we can
prove 1) and 2). According to E. B. Dynkin and A. A. Yushkebich

1 0 ) C f. K . Ito and H. P . McKean [14 ] and G. Maruyama [18].
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[ 8 ], 1) and 2) imply the strong Markov property.
Next we shall define a  new Markov process following M . Kac

[16]. A tta ch  a  distingished coordinate o n  killing tim e Œt .0 )  E
[O, + co] to w; an d  extend P t ) ,  (1, 0)E aD , to x g ( [0 ,  +  0 0 ])
so that

PT0)(0 -tco> t / g ) - -- - e - c6 t- 1 ( t . w ) , t > 0 :

w ), w )= 00 ; t> = P G o ) {0- ( 0 0 ) — 0 I g}  =1;

z (t, w *)= z ( t ' w )

00 t>crtoo

where z(t, w)=0(t -1 (t, w), w).
Then we have

PROPOSITION 4.4. { z ( t ,  w*), t>0, x g([0, + 0 0 ] ) , ,  x E
aDU fool} is a version of strong Markov process sl.TI (' ) = z(t,u1'),

P o") , (1, 0) E  aD }  satisfy ing the following properties:
1) Tr is strongly  continuous,

and
2) c(ap) is  invariant u n d er T r,

w h e re  T r is  the semi-group corresponding to

PROOF. To show  that {z(t, w*), t>0, x  g ( [0 ,  + 1=T),
x EaDv { 0 0 } }  is Markov, it is enough to show that

4  12) 
EV 0 ) {f(w?- )g(z(t, w*))}

( .  
=ET 0){ A w'r-)En(..w.),{g(z(t — s, w*))}} , t, s > 0 ,

holds for any Borel measurable g  and f .
T his equation is evident when g  is  constant and therefore

substituting g— g(00) for g , we can suppose that g(00)— 0 ; also if

i f  cr( o 0 ) <t ,
(4. 13) 3(w *)=f

o

(w) , if  otherwise,
then

Er,o)(13 (w* )) =E(l,0){3(w), 0 co> t} =E(1.0){0(w) exP  — at -1 (t, w)]}

let

let
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a n d ,  s in ce  g(00)= 0, /Awl =g(z(t, w*))f(w? - ) satisfies (4. 13).
Finally we have

ET ,„{ f (w ? - )g(z(t, w*))} =-. ) {f(wP - )g(z(t, w)) expL w)jil
=E (,,e){f( 61(1- 1 (• , .•)), 1" . w ) x

(4. 14) x g(0(t - 1 (t- s, w 4, - tv 't 1( ,„ ) ) )  e x p  -  a t - 1 (t - s, w 4, w ) )]}
=E (,,e){f09 (t - i ( -, ) in :  , exp w)11x- L -  cs,w),, -

X Eo . ect- i(s .w). to» {g( 0 (t - l (t - s, w), w)) exP L--  s, }
/1) 1 ( , ,w ) ) )  e x P  L - a t  i (s, w)lix

x E1`e(t-i(5,„,),,„))1(g(z(t - s, w*))}} .

But 0(w*)= f (w ? - )E T z ( s ,w ) ,(g(z (t-s, w *))) also satisfies (4. 13),
thus (4. 14) implies (4. 12).

In the similar way to that in the proof of Proposition 4. 3 we
can prove 1) and 2).

To avoid repeations we introduce

DEFINITION. A  strong Markov process T r 6 ) will be called the
boundary process of o rd e r  a >0. I n  particular Ait̀ ()) is called simply
the boundary process.

In the sequel we may consistently u se  th e  following

NOTATIONS. T r ' ,  t> 0, and  K;7 ) , 7 > 0, denote the semi-group
and the Green operator corresponding to the boundary process of
order a  respectively, that is

(4. 15) f (0 )= If(z (t, w ( ' ) ))1 , t > 0
and

+-
(4. 16) K ' f (0 )= 7 7') f(0)dt (--=-Er) e-7f f(z(t, w ))dt 1 )0 •

Denoting the infinitiesimal generator of the semi-group T°' in
Hille-Yofida's sense by 5..) 1( ` )  an d  its domain by g)( V ) ).

We are now going to prove the following theorem which gives
us the relation between 9.3.1 and 9.)1( ' ) which will be useful to prove
that our diffusion satisfies the boundary condition (O. 4) OM —0).
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THEOREM 4. 1.' 1 ) . 1 )  A  function u= G o, f  in the common range
.R  of G „ , a > 0 , can be expressed in the form

(4. 17) u(1, 0 )= K r4
) (—a---0 f ) ( 0 )  ,  fo r  any  (1, 0) E a D.

an

2 )  For any  a, 0 > 0

(4. 18) K r g(0)— K;P ) g(0)+  (a — 0) 0 (7) ( 1 4 K r  g ) ( 0 )  0 ,  g E  c(aD)

and

(4. 19) T(3) u =',)_t( a) u +(a—  0 ) a n h T  u (0 ) ,

where

G r  g (0 )= E ,, , , (
1 0  e - ''s e - ''"f'w ) g (r ( s , w ) , 0 (s , w ))d s )g  G ) •0

We shall begin with several preliminary lemmas.

LEMMA 4. 3. For any  f ( r ,  0 )  E

—

a— C.; f ( r ,  0 )  E C(D,.„ y a p )  , > o .
ar

PROOF. I f  f ( r ,  0 )  E C(D r o ), then  there  ex ists , fo r any g iven
&>-. 0, a  function f ( r ,  0 )  such that

J(r , 0 ) G C3(D,. 0 ) a n d  I fO  0)—JO,.
Then

1Cg f(r, 0)— (-_;,) f( r , 0 ) j < 8 p (r) ,
where

,(2,0,00,1»
P0) e-`" dt1+ -

1
- {e - "r0 (" " ) ; 0- r 0 (w" ) ) < 0 - ,(w )}  .

0 a

On the other hand using Lemmas 4. 1 and 4. 2 w e have

0i, r(r, 0) E C2(D r o ) ,

an d  b y  th e  definition, th e  left derivative p(1) o f p ( r )  a t  1
d r

exists and is finite.

H )  S e e . T . U en o  [2 0 ] an d  1_21_1.
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a  - oa  -Therefore there exists G f(1, 0 ) and G :f(1 , 0) E cop).an an
S in c e  a G2 af(r, 0) E C(Dr o ) and  h2f(r, 0) E C(Dr o  y ap ) , we can

a r ar
-prove in the usual w ay that  a  Ggf(r, 0)E C(Dr o VaD).

ar
LEMMA 4. 4. For any  integer n > l ,

(4. 20) Eil){(0-,_,(0"))"} =0(6 2 n) , as  6 ,I, 0,

and
(4.21) ET) 1(40 .7 e (w o)) 7  w ci))).), _ en

)  7
 as 6 1, 0.

PROOF. It is easily seen that

Ei l )  {(0- i-e(w))1 =n!S ••• g t,(1, r i )g e (r„
1—e 1—

ge(r n r )  dm(r1) dm(r2)• • .dm (r)
where

Hence

g e (r, r') =
s(r')— s(1— 6) , for r' < r  ,

I. s(r)—s(r -6 )  ,  for r' > r . .

E(0 1 ){(0-1 (0 1 ) ) )1 < n ! ( g,(1, r)dm(r)) =O (62 ") .
• - E

In the sim ilar w ay w e have

{(t(cr i _e (wm), w(1 )))1<n! (1  g ,(1 , r )d ih (r)) =  O(6 " ) ,
- E

where k(d6= m(dr)+ 8 0 ) ( d r ) .  q . e. d.

LEMMA 4. 5. For any  t, 0< t<err o (w( 1 ) ),

(4. 22) E l 97(t, (1, 0), (2)) — 01 2 1 <  K4 { ( t  t 2 + t(t , w(")-1- (t(t , w( 1 ) ))1 •

where K , is independent of  t  and w( 1 ).

U sing the sim ilar methods to those in  the proof of Lemma
2. 1 the proof is easy and so is omitted.

PROOF of THEOREM 4. 1. F irst w e define tw o  sequences of
M arkov t im e s  {9- (w, 6), n=1, 2, • -} a n d  {.1- 4(w, 6), n= 0, 1, • • .}
respectively by
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T 1(w 7  8 ) ç  inf It ; r( t ,  w ) =1 - 6 ,  t> ,  if  such t  exists,
+  o,  i f  otherwise,

2 ( w ,  8 ) _
.= ç inf It ; r(t, w+T i, , ) )  =1 ,  t>0 }  ,  if  such t  exists,

+ c,  i f  otherwise,
7 (w , 8 )=0  , 7-1(w, 8) = , E),
7 (w, 8 ) = 7-1 (w (W ,E ), + `r7i-T(w,6 ) , n = 1 ,  2, •...
• 6 ) = 72 (w+4,(..e), 6 ) +T4(w, 6 )

By the strong Markov property of 9..11, we have

f (1, 0)
+ 00

= E E,,,,,te
T1(w, e)

l ( W  E „, 0 - _ 1(w. e). w» e f (r( t, w ) , 0 ( t, w )))d t}

E ( 1 ,0 ) {e- "(w . E)6 f ( 1  —8, B(ri(w, E), w))}, f o r  any E>0.

Since for any (1, 0) G ap

(4. 23) e' f (r(t) , 0 (t))d t}  <211  f = 0(E2) ,
0

 

c,

Eo, 1e— E ( i .  0 (  2 ) ) (  1  e- '` f  (r(t), 0(t))dt)}0
4

<o(1)E„, 0 ) { E i e 'rL 8}  =o(1 ) .

We have by Lemma 4. 3

co

E cc:f a  — &, 0(T ))}
(4. 24)

E    f ( 1 ,  On ) }  + o(1) .an

On the other hand we obtain, for any g(0) E c (3p),

(4. 25)
E E ( 1 ,0 ) {e - 6 T1,g(0(4))1 E— E(1,0 ) 1 S o  e 't  g (0 (t)) t(d t, w )}
/1 1.

E i)){(e-T1 g(0(7 1))8— cc" g(0(t))t(dt)0
and
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E ( ,„) {e'( g ( 0 ( 7 1))8— S : g(0(t))t(dt))}

= E0, 0 ) fe - aTi(g(0(7-'))—g(8))} &

0 e't (g(0) —  g(0(t)))t(dt)}

+ EY ) 18 — t(dt)}  g(0) + E Y- ) {e - a'cri-E-1 1  g(0)8 .

Since lim (E;. 1 )1t ( d t ) } I  8 ) = 1 ,  and lim =1,ey0 0 84,0

we can see that for any (1, 0) E aD,

c'71 (g(0(- 1)) —  a
t g(0(t))t(dt)}

— E(1,0){e - a . 7 1 (g( 61(7 1 )) —  OM 8

± E (i.0 ) {
0 

e'(g(0)—  g(0(t)))t(dt)}

+8 0 )(&)& ,

where 8( 1 ) (&) tends to zero uniformly in 0  as &I 0.
By the defn ition  o f an we have

J,(8  ; E0,01e- (6 ' 1 (g(0(7'))— g(0))1
=E - OW ))—  g(0);

(4. 27) 197(c (1, 0), (') - 0 1< 8 1 / 1 ]
+EY ) [e 'cri-eB -{g(97(0-,_„ (1, 0), 0)—  g(0);

9-1(0-,_„ (1, 0), (0)— GI> 811 ]  .

Let M : =  max max g(0')—  g(0)I , where (10 (0)= {0' ;0 _ 8 ' I<
(1,0)on e'eu0(0)

6v4}. Since g (0 ) is uniformly continuous in aD, we have

(4 28)
g(?)(0-1_,, (1, 0), (6))— g(0)I; (1, 0), (6)— I<& 114}

. 
, as . —*0.

Using Tchebycheff's inequality, Lemmas 4. 4  and 4. 5, we have

E f f e - " . g(71(0-1_„ (1, 0), (c))) — g(0)I ;

(4. 29) , ( 1 , 0 ), c',\)) — _ . _ 8 1 1 4 } ]
Icri-e+((ri-e) 2 +t(0- 1-8)+ (t(cr1-E)) 2} 18 1 "

= 8(2 )(6) ,

(4. 26)
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where 896) tends to zero uniformly in  0 as & 1 0.
Thus combining (4. 28) with (4. 29) we see that J1(0, 6) tends

to zero uniformly in  0 as 6 1 0.
Now we shall estimate the second term of the right hand side

of equation (4. 26). B y the definition of Tt, we have

J2(0  ; E(1, 8)1 e - 6 t (g(0 ) -  g(9(0)t(dt)}
0

0
e- c"fl{g(0)— g(y(t, (1, 0), 6‘)))

.  
(4. 30) ; J O— v(t, (1, 0), 6\J)1 < 8 1 1 4 1 t(dt)]

-FE (
1

1 1e t {g(0)— g(n (t, (1, 0), 6'))) ;

I — n(t, (1, 0), (,))1 >811 t(dt)] , for (1, 0) G ODD.

Now Lemmas 4. 4 and 4.5 com bined w ith the Tchbycheff's
inequality, will imply

E4 Ê{g(0) — g(97(t, (1, 0), 6))) ;
0

(4. 31) I 0  — ?(t, (1, 0), (0)1 > 8 1/4} t (d t)]

<211g1 E (11 ) {0- , t(c i,)+ (a -,_0 2 -t(0- ,_2)+ (t(cr1-e)) 2 + -F))18-1/2
= 8( 3 ) (E)

where 8( 3 ) (6)  tends to  zero uniformly in  0 a s  & 1 0. It is easily
seen that

E VIVe e't {g (0 )—  g(n (t, (1 , 0 ), ()) ;
0

(4. 32) 10— n(t, (1, 0), (/,‘))1<E 1/41 t(d t)]

< Ilr„ENt((i _ 2)) = 8 (4 ) (&) E

where 8( 4 )(&) tends to  zero uniformly in  0  a s  & 1 0. B y (4. 30),
(4. 31) and (4. 32), we can see that 12 (0 ; 8) tends to zero uniformly
in  0 as & 1 0.

Therefore

(4.33) I E ( 1,0 ) {e - 6 T1 g(0(7 1 ))8— e- 6 t g(0(t))t(dt)}1 G88( 5 )(8)

where 8( 5 ) (&) tends to zero uniformly in  0 as E J, O.
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Combining (4. 25) with (4. 33) we can see that

4 c o

E g(0(91,(w, E)))}8, f o r  (1, 0) E ap

tends to E( l ,0 ) { e' g(0(t, w ))t(dt, w)} as 0.

Applying this to (4. 24) we have, b y  (4. 22) and (4. 23),

Gf(1, 0) = E(I,0){ 1 -  e  c ' t " 'w )  f (0(t-1(t, w ), w )) d t}  , (1 , 0) G aDD .0 an

Thus we have completed the proof of 1).
Now we shall prove 2 ) and 3). By the definition of Kr), we

can see that for any g(0) E C(aD),

Kr) g(0)— K ((3) g(0)
-

e
-lta.74,)e-mt e g(0(t, w))t(dt, w)}(19

-
= Eo ,„{e e -""s .w )d s e - l t ( t .w ,1  )0 ( t , ))t(dt, w:)}  (4 —

e - Ps e- 7 "'" (117 KV+) g)(r(s, w), 0(s, w)) ds}(4 — ce), a, ,8>0 .
0

Hence using 1) in  theorem we have, for any a, 4 > 0 ,

(4. 34) Kr )  g(0) —  K g(0) + (ce— g)G : ( 1 )(14 KWs. g)(0)= 0.

By (4. 34) and Lemma 4. 3 we can prove that the range space
of KV.,) coincids w ith that of I-Cof'.,) . Since Kr), 0 <7  0 0  ,  are
the Green operators for '1)1( c°, the range space o f Kr) is inde-
pendent o f 7. Therefore by Hille-Yosida's theory we can prove
that g(K ( ' ) )  is independent of a, a>  0.

Hence using (4. 34) we have

(4. 35) (W44)— W(6 )) g(0) — (ce 4)  3   a '11 K g!,) g(0) .an
(4. 34) and (4. 35) imply 3) of Theorem 4. 1. Finally we completed
the proof of Theorem 4. 1.

Feller's resu lts o n  th e  boundary co n d itio n  fo r th e  one-
dimensional diffusion will be interpreted in  the terminology used
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above, and T. U eno  [20 ] and [2 1 ]  has recently proved (4. 17) in
the our case using the analytical methods.

For the diffusion constructed in Section 2  we have correspond-
ing to Theorem 4. 1,

THEOREM 4.2. 1 )  A  function u =G „f  in  the  range R  o f  G„,
a > 0 ,  can be expressed in the form

u(1, 0)= K r( f  + ___ag f)(0 ), f o r any  (1,0) G 3/3
an

2) g M e n  is independent of  the choice o f  ce> 0.
3) For any

JÇ g(0) — KV1,) g(0) + — 0) K W!, ) (K r, )  g + 
a a 0,3(h1(K ò'.,)g)))(0)= 0,an

g E c(Sn) ,
and

aTi,  )u=w w u+ (a-3) (u + - --G 0,„ n)an

This theorem is proved by using the same procedure as those
in the proof o f Theorem 4. 1 and therefore the proof is omitted.

5. T h e  infinitesimal generator of the boundary process and
th e  boundary con d ition s . In  this section we shall seek the
boundary conditions corresponding to the diffusion process 'JR con-
structed in Section 2  or Section 3.

We shall first discuss the diffusion process 9.11 constructed in
Section 3  whose boundary condition will be given by the following
Theorems 5. 1 and 5. 2.

THEOREM 5. 1. Let 03 be the infinitesimal generator corresponding
to 'DI and g ( 0 )  be its domain. Suppose that u(r, 0) belongs to
Then

a(5.1) —  - [u—  /sTu] (1, 0)+T .P*)u(1, 0)= 0 , f o r amy a > 0 .Sn

A nd the equation

(5.2) ( a  — A) u(r , 0) = f (r , 0) ,( r ,  0) E D , , f(r , 0) G Cl (Dr o ) ,
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has one and only one solution satisfy ing the following conditions

(5.3) lim A u(r, 0)=0 ,( r o , 0) Ear) ,
r

and f or any  given ,e>O,

(5 a. 4) Lu — u y i,  +w o ,  u(i, 6 )  =0 .
an

PROOF. Since u(r, 0) G M (M), for any given ce>0, there exists
a  function f (r, 0) E C(b 0 ) satisfying

u(r, 0)=G„,f (r, 0) , (r, 0) E Dr o

According to Theorem 4. 1, u(1, 0) E g)(K (')) . By (4. 17) we
have

(5.5)K ( ')  G  f ( 1 ,  0 ) =
 a n

a ( 1 ,  0) , (1, 0) E a D.

Since 0'2 f (r, 0) =u(r, 0) — 14u(r, 0), (5.5) implies (5. 1).
Let u,(r, 0) and u 2 (r, 0) be two any solution of (5. 2) satisfying

(5. 3) and (5. 4). Putting

v(r, 0)=u,(r, 0) —  u 2 (r , 0) ,

we can prove that

(ce — A) v(r , 0) = 0 ,

and that v (r, 0) satisfies the conditions (5. 3) and (5. 4).
Theoef ore

v(r, 0)=h7v(r, 0) + 0) .

Using (5. 3) we have

0= lim (h7v(r, 0)+14v(r, 0)) ,
r 4t

that is
0= lim  14v(r, 0)=v(r0 , 0) .

Therefore

(5.6)v ( r ,  0 ) = h 7 v ( r ,  0 )  .

On the other hand by (4. 17) and (5. 4) we obtain that
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(5.7)v ( 1 ,  0 )= K 4   3   [ v  M y]] (0) .

Combing (5. 6) with (5. 7) we have

v(1, 0)=0 , (1, 0) E al) .

H ence v(r, 0) (r ,  0 )E D " , that is u,(r, 0) =112 (r, 0).
Next in  fact using Lemmas 4. 1 and 4. 2 and Theorem 4. 1

we can prove that

u(r, , 0)— C2 f (r , 0) + h(Kr_(  a  6,°,f)) (r , 6),
an

is  a solution of (5. 2) satisfying (5. 3) and (5. 4).
Hence we have finally completed the proof of Theorem 5. 1.
We are going to seek a certain representation o f % ('). I f we

impose some appropriate regularity conditions to  the function
u(r, 0), K ( ' )  can  be w ritten  in  a  concrete form as will be soon
proved in Theorem 5. 2. First we prepare several lemmas

LEMMA 5. 1. Suppose 72 (w ) is a  random time such that

Te(w)= cri-e(w)+ ai(w 40-,_,(w)) •

Then we have

(5.8)W ( 6 ) u ( 0 ) =  l i m  E ( ,,,,f(e - (w)u(O(r s (w), w))— u(0))/0

f o r u(0) E 9 i ) .

PROOF. The condition u(0) E g (W )  implies that for any 13> 0
there exists function f(0 ) E c(ap) satisfying

u (0 )= K r f(0 ) , (1 , 0 ) E aDD .

Hence using the strong Markov property o f 9.)Z, we have

u(0 ) =E0,0)
f

e t e f(04-1(t, w), w), w))dt
)ç

1 30
+ E c 1 ,0 ) {e -  '3 "T K(0̀ 4) f E (w), w))1 .

Since E(i3O){t(re(w), w)} <+ co, we have
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t ( T e ( w ) , W )

( 5 .  9 )  u(0)---= e't-1("91cc')u(19(t-1(t, w), w)) dt}
0

+E 0 ,8 ) {u((0(9- ,(w), w))e - a're( w l  ,  for any (1, 0) EaDD.

On the other hand by the definition of Ç.TA and TY' ) w e  have

E (1 ,0 ) {  Ç( 6 1 - e ) e—, - i(t) i(o)u(o(t - 1(t)))dt} — E0, 0 ){t(T, ) } sAccou(9)

ji%(")ul I E( ,,0 ) { t
o

( c r i  E ) (e- '"'")— 1 )dt}

t  ( 6 1 — e) —
+ E {IW ( `6 ) u(0)— %()u(7)(t - '(t), (1, 0), (0))1;

0
(5.10) I n(t - i (t), (1, 0), co) — 91>El/41dt]

+  E [ — w cob) u(y (t - 1 (t), (1, 0), (0))1

1, 7(t - '(t), (1, 0), w)-01 <E'/ 41 dti

--==13,,(6 ) + 1 3,2(E)+4,3(6 ), say.

Using Lemma 4. 4 and 4. 5 and some properties of reflecting
barrier Bessel process we have, by lim E ( i ,o ) {t(TE(w), w)} /6=1,E4.0

/3, i(&) =0(&)

(5. 11) 113.2(8 ) <211%`' ) u llE il r  E )1 3 {1974- 1 (t), (1, 0), co) —0

> E 0 1 dt] .

(5. 12) urn E , ,{) t ( r r i  e c w ) . w ) e- ' 1("11."u(61(t - w ) ,  w)) dl  /&
e 4, 00

=  W C 6 ) 1 (0 ) (1, E aD

Hence using (5. 12) it is easily seen that (5. 9) implies (5. 8).

LEMMA 5. 2. We define two random variable X 0 (4o) an d  17
0 ((;)) by

X,(('. ) =
(5. 13) m(8)±(6- 1_0(w" ) ), O D ) +16(u, 0)p([1, +  o c x  [0, t(Œ,_ E(wm), w"))), wc")

+ 61)q(E0 , 1)x Eo, t(0-,_0(w( 1)), Wm )), le ) )
+ o- Mg(t(G-

1_0 (0 1)), OD)), w( 3 3 )

and 17 ,(6))=77(0-,„(w ( 1 )), (1, 9), 4)) — X E(Q .

113 ,3 (6)1 < 1  q l ( co u E i' ) {t(cri-e)} =o(E) .

Using (5. 10) and (5. 11) we have
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Then we have
1)

[É i te izxe 'l ] [
1/E'

(5. 14)
exp Um(0) z — (r2 (G)z/2 (e'z  — 1—  iz OnW  ; ,

as  6  0 ,  w here n(ck  ; 0) i s  the  Lévy m easure o f  i. d. 1. satisfying
(0. 6).
2)

P, { YE (c'6)} o (6 )  a n d  P i l l  (41)1 = o(&) .

PROOF. By (5. 13)

_ le - to -1_s( w(o) ,w(1))4,(z1

where 11/.(z) — —im(0)z + (T 2 (0) z2/2 + (eiz —1—  iz )n ( c l  ;
Using Lemma 4. 4, w e have

EY ) lexp — EQ4)(1% w" ) ), w( t))*(z)111 =  1— Afr(z)6 + 0(62 ) .

Hence
lim ( p ) - exp (-qp(z)) .

2 )  is proved by the same methods as those in the proofs of
Lemma 2. 1 and Theorem 4. 1, using Lemma 4. 3 and 4. 4, Assump-
tions (A. 2), (B. 2 ) and (C. 2). Hence the proof of 2 ) is omitted.

Using Lemmas 5. 1 and 5. 2, w e have

THEOREM 5. 2. I f  u(0) G c ( p), then w e have

1) u(0) E  .0(a ( `4 ) ) , for ev ery  ce>0  .

2) 3ar h`f u(1, 0) + m(0) ;  u ( 0 ) +  0-2 (0) aa(;-,
(5.15)

+ (u(0 +)—  u(0)   u(0))n(d ; 0) .

PROOF. Using Lemma 5. 1, we have

(5. 16) W`6)u(0)= Hui [E(1 0) "e 'u (0 (T e(w), w))} — u(0)111&, u E  g(,V ).E.0)

(0)

On the other hand we have, b y  the strong Markov property of TZ,
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E ( l ,0 ) c'T E(w) u(0 (re(w), w))1
= E(1,0){e - " i -'("') u(1—  , 0 (0-1- (l'°), JO)}
= E 0 ,0 ,114 u(1 — 6 , 0(0-

1 - e (W ) ,  w ) ) }  0(&)

since lim —1]/s= O.
El.()

Using Lemma 4. 1 w e have

h7u(r, 0) E CAD r E c (ap).

Hence we can apply K. Ito's [12] Fundamental lemma (pp. 48 50)
and Lem m a 11 (p p . 40-41) to  eq u atio n  (5. 16). Then using
Lemma 5. 2 it is easily  seen  that (5. 15) follows from (5. 16). By
Hille-Yosida theory we obtain

u(0)E g)(W( ' ) )

since the right hand o f (5. 15) is continuous in O.
In the sequel we assume that T1 is  the diffusion process con-

structed in Section 2. Corresponding to Theorem 5. 1, we have

THEOREM 5. 3. Let M  be the infinitesimal generator correspond-
ing to 1J1 and . 0 ( ( )  be its domain. Suppose that u (r, 0 )  belongs to

Then

a En — +%(-) no, lim 63u(r, 0 ) ,  fo r  a n y  > 0 .an
And the equation

(a— A )u(r, 0)= f (r, 0), (r, 0)E D r o , f (r, 0)E  C '(D r o )

has one and only one solution satisfy ing the following conditions:

lim  A u(r, 0)= 0 , (r0 , 0) E aD;.in ) ,
r j r o

and

E t t 13)+521(0)u(1, A u(r, O), f o r  any  given ,e>0.
an r t l

The proof can be carried out b y  the same methods as those
in the proof of Theorem 5. 1.
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Corresponding to Theorem 5. 2, we have

THEOREM 5. 4. I f  u(0) E C (aD), then we have

1) u(0) E 2(K ( ' ) ), fo r  any c 0.

2) %(')u(0)= 
 a -  

 hclu(1, 6)+(m(8)+a(1, 0)) a u (6)
ar a0

1 a2
+ 

2
—(0-2 (0)+ b 2(1, 0)) u(0)

a02

(u(6+)— u(6) e u(0))n(d ; 0) ,
ae

6. T h e  r o ta t io n  in v a r ia n t  d if fu s io n  p ro c e s s .  A .  D.
Wentzell's rotation invariant diffusion w ith  the generator (O. 3)
and the boundary condition (O. 4) is only a  special case of the
diffusions constructed in Sections 2 and 3. However, we shall
propose another method to construct this process, making effective
use of the rotation invariant property ;  this method is the same
as the skew product method due to K. Ito and H. P. McKean [14]
except some modification which will become necessary because of
the boundary conditions being involved.

Let {W" ) , r(t, uP)), .0 1), r E [0, 1] 1 be a reflecting barrier
Bessel process and t(t, w" ) )  be the local time o f r(t, w")) a t  {1}.
Denote a  Brownian motion on R1 

b y
 {W 2 ,  B ( t ,  w (2)) , g (2 ) ,

{W , g(3), PP ) }  is a Lévy process whose 1. c. f. is

(6.1)J î ( z )  = lizm + (etI —1— z)n(d0 .}-0

Now we can form a  product probability space { f2, 3, P r , r
[ ro, 1]} in the usual way, where n= W ( 1 )  x W" ) x W , .B1x
....B(2 ) X -B( 3 )  and P r — P;.1 )  X P 2 1 X Pp)• L e t  {f2( 1), r(t, r, fe)), , P( 1

)}
be a version of Bessel process on [0, + 00), satisfying 13 " ) {r(t, r, Co"))
= r} = 1 . Then we can form a probability space {h, P } ,  where
sA/=1-2 x r2"), h-B x 13- ") and P = P  x P( 1 ). I f  we write

Ir(t, r, OP) ) ,
r*(t, r, (.)=

r(t — 0- 1(ti," ) , r), w`")
0<t<0-(z,V"), r),
i f  otherwise,

(1, 0) e aD

2

where
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inf ft ; r(t, r, Co(")=1 , t 0} , i f  such t  exists,
0-(w", r)—

+ 00 , i f  otherwise,

then {r*(t, r, 6), 0 < t <  + oo, P} is  a version of reflecting barrier
Bessel process. We define {r(t r, 6 ), 0 < t‹+  0 0 } b y

(6.2)r ( t ,  r ,  6 ) , = r * ( t  A a r ,(0), r), r, , 0<t <+ 00 ,

where

r o ( ' ,  r ) =  
inf ; r*(t,r, 6) =1'0 , t > 0 }  , i f  such t  exists,
+  0 0 ,  i f  otherwise.

In this section we shall always treat this version, and assume that
a(r), b(r)EC((0, 11 and b(r) is strictly positive on [0.1]. It sholuld
be noted that the function b(r) may be discontinuous at 0.

We define two random variables V ) (t, r, co) and .,( 2 ) (t, r, (0) by

V)(t, r, 6)= o a(r(s, r, 6))ds and
(6.3)

V)(t, r,6)=V b 2 (r(s, r, 6 ))ds ,0 < t < +  0 0 •

Now we proceed to the construction of the path function. Let

v *(t, (r, 0), eD' )= 0 + B(( 2 )(t, r, 6), w ( 2 ) ) +  V ) (t, r, 6)+
+(t((t— (3- 1(a)(", r))y 0, w( u), w( 3 )),

and
n(t,(r, 61), to) = n*(t A r), (r, 0), et.)

where t(s, w ) = 0, fo r  s < 0 .  Then the r(t, r, 6) process together
with the 9.1(t, (r, 0), 6) process will give the polar coordinate of the
Markov process on t .

Now we turn to the construction of the diffusion process. Let
W be the space o f path functions taking values on A.° , and define
a system o f measure Po - ,0 ) ( • )  by

P ( r ,0)(B) {co x( • , (r, 0), ('0 )(= -(r(• ,r, 6), 97( • ,(r, s), 6))) E B} , B e 3 .

Let
9J1 I W, x(t, w), 3, P ( r , o ) ,  (r, 0)E D r o } .

Define the boundary process Ç.D2("), a> 0 , using the same pro-
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cedure as those in Section 4.
Here we shall list the propositions which are easily proved

using the similar methods to those in Sections 2-5.
(A )  sfft is  a  markov process satisfying th e  following pro-

perties:
1) the semi-group { T 0 , t >  0 } is strongly continuous,
2) T f (r, 0) is continuous on Dro , if f  is in  C(Dr o ),
and
3 )  the semi-group {T,, t > 0 }  is invariant under the rotation.

(B )  Let 63 be the infinitesimal generator corresponding to Tt.
Then if  u(r, 0) E C2 (D7 0 ),

N u ( r ,  0 ) -
1  (  a2a   ± b2(r ) a 2  

+2a(r)  a
  )u (r ,

2 \ar 2 r  ar ao2 ao "
0)

for (r, 0) E Dr , .

(C) 9..T = {W", z(t, g ',  P r ,  (1, 0) E a D } , a > 0
is a  strong Markov process satisfying
1) the semi-group P t '̀) corresponding to sika') is strongly continuous,
and
2) c(3p) is invariant under T .

Furthermore Mc' )  is  an Lévy process on ap.
(D ) Theorems 4. 1, 5. 1 and 5. 2 remain true also in this case.
(E )  If u(0) is in  nap), then

a
1) a(o)u(e)— a   g u a

1 2
, 0)+m u(0)+ (7.2 u(0)

ar 30 2  302
a+ (uo+o— u(o) u(0))n(ck) , (1 , 0 ) E ap ,
30

and

2) u(0) E 2(%'")) .

PROOF. Noting that for almost all fixed (u » ) , CO) ) ,  ty (t s ,
(r, 0), ) — ( s ,  (r, 0), 01 is independent o f fy(t' , (r, 0), (;)') ,  0 < r < s }
and that its distribution does not depend on the valnes of t(s, w('))

t
and V ) (s, r, but on the values of t(t, w(,') 4 ), a(r(r, r, (.)))cbr

and 5t+s
b2 (r(r, r, 6`)))cbr, we can prove that .rft has Markov property
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b y  the same arguments as those in Section 2. Next noting that
if  (r„, 0„) , (r, 0), there exists a  subsequence (r„k , 0„k )  of (r„, 0„)
such that for almost all co

x(t, (r „k, 
0 , , k ) '

x ( t ,  ( r ,  0 ) ,  co)

and x(t, (r, 0), co) belongs to d1 -class, we can complete the proof
of (A).

The proof o f (B ) is sim ilar to the proof of Proposition 4. 1.
The proof of (C ) is easy and so is omitted.

The proofs of (D) and (E ) are exactly the same as those of
Theorems 4. 1, 5. 1 and 5. 2. H ence w e shall mention on ly the
outline of the proof. It is easily seen that

1 ° )  For an y  t, 0< t <0 -
 r o (w( " ) ,  there ex ists a constant K,

such that for almost all ( P ' ) 0 ' ,

E*2 ) xE 3 ) {197(t - V, wm), (1, 0), (0)— 0 12 1
<  K , w ')+  ( t - 1 (t, w")) 2 + ,

where K , is independent of wc" and t.
2°) Consider a  random variable such that

Te(w) ai-e(w) + 0-1(w +0-1 _8 (w)) •
Then

a( ,009)--- ii2[11,1) CE(1,0){e - 6 TE(w)u(0(T(w), w ) )1  WA/ 6

for u(0) G  2p P ) )

3 ° )  Consider a  random variable Y,(e' ) such that

17 (c'o) v ( a - i-E(w" ) ), (1, 0), —0—  (t(0-1-E(iv( 1 ) ), w" ) ), 0 3 ) ) .

Then
I E  ,(Y  , ( ) )  =  (6 ) a n d  E {(Y ,(())) 2 } = (6) .

4 ° )  Let

P,(z)— EifexP EizW(0-1--5(w“ ) ), w")), 017} •
Then

(p o (z))rv 2 3 ---> exp IJr(z) , as 6 O .
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N oting 1 ° )- 4 ° )  and repeating the sam e arguments as in
Theorems 4. 1, 5. 1 and 5. 2 we can prove (D) and (E).

g ro.)In  th e  seq u e l w e  assume th a t  {W( 1 ), r(t, w")), o) , P , G

[0, 1] }  i s  a  stick y  b arr ie r  Bessel process. Then following the
same procedures as above we can also define a diffusion an on

Dr, and a boundary process 9it( a') , >0, on  a n .  Now the propo-
sition (A)—(E) will hold i f  w e replace Theorems 4. 1, 5. 1 and 5. 2,
and (E) by Theorems 4. 2, 5. 3 and 5. 4, and the follow ing (E')
respectively

(E ') I f  u(0) is  in c3 (an ), then

%( )u(0)--- hTu(1, 0)+(m+a(1)) u(0)+ 1  (0-2 + b2(1))  a?  u(e)
Sr2 502

+ (u(e+ )—u(0)
a

a o
u(0))n(d0

and u(0) E

7 .  Change of s c a le .  To reduce a diffusion with the general
elliptic operator (0.1) as its generator to the special case discussed
above under the some rugularity assumptions we shall apply the
scale and time changes ").

Under the appropriate regularity conditions w e shall prove
that there exists a mapping

(7. 1) : R2DS—>D= {(r, 0): 0 < r < 1 }

such that, in the new scale, the given elliptic differential operator
it* becomes

a(7.2) : 617 u(r , 0) - m(r , 0)( 
 a 2  

 + 
1 a  

+ b2 (r , 0) 
 a 2

 + a(r , 0) )u (r , , 0) ,5r 2 r  Sr 502 50
(r, 0)ED ,

where b2 (r, 0) is  positive on
Let S  be a bounded simply connected domain R 2, and let its

boundary as be a twice continuously differentiable curve. Under
the appropriate conditions a linear elliptic differential operator

1 1 )  See, W .  Feller [9 ].
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axa a2 y u ( x '(7. 3) a2 a +A22(x, y) u(x, y)+ u(x, +  A2(x, .Y) a
a y  

u(x, .Y)ay2
a x
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can be reduced to the simple form

(7. 4)
A* u(x, y)=M(x, y){Au(x, y)+ A(x, y)  : x  u(x, y)

+ B(x, y)  a   u(x, y)}
ay

From now on we consider only differential operator (7. 4) with
M(x, y) .. 1  assuming that A(x, y ) and B(x, y )  are of class 111(S) 1 2 ) .
Let as be a  twice continuously differentiable curve. Let go (z o , z)
be the Green function for the Laplace equation in the domain S
with singularity at z „, and let u(z) be the [a 1 , di-pseudo-analytic

function similar to f (z ) —  

 a  go (z o , z) ai 
 ay  

g o (z o , z )  and such that
ax

u/f  I = 1 a t z , and Im {14 f} =0, where

4a(z)= A (z)— iB(z) , z=(x, y) E S .

Let z , be some point on as. Then the function

(7.5)g ( z o ,  z ) = R e I S  u ( z ' ) d z ' }

i s  the Green function for the operator (7. 4) with M(x, y) =-1 in
th e  domain S , w ith  singularity at z,. H en ce  th ere  ex ists  a
constant K , such that

a g(z o , z))
2

 +( a
a y  

g(z„ z)) 2

ax
• >K4(a  go(zo , z)) 2 1+(  a   g )(zo , z ))}

2

ax ay

and .K., ›  O. (S e e  L .  Bers [ 1 ] ,  Theorem 3  and Lemma 3  or L.
B eas [2 ]).

1 2 ) A  function u(x , y ) ,  (x , v) G S , will be called of class of H '(S ), i f  its partial
derivative of order 1 satisfy a uniform Holder condition on every compact subset of S.
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Therefore

(7.6)(   : x  g ( z o ,  z ) ) 2 (   a+ g(zo, z)) 2>0 ,

L e t S r  b e  the neveau cu rve  in  th e sca la r field with velocity
potential g(z o , z ): j .  e. Sr  = {z ; g(z o , z )=r} . Then S r  i s  a closed
curve such that zo belongs to the domin enclosed by Sr , for every
r, 0 < r< +  co, and w e can consider th e strem function 0(x, y)
satisfy ing  a0(z)/as(z) = ag(z o , z )/an(z ), fo r  z EaS, w here a0/as
means the tangential derivative of the function 0(z).

Let
r(x , y)= exp [ —g(z,,, z)] , z E S  .

Then mapping g  onto D by

(7.7)f r  : s  (x, (r(x, y), 0(x, y)) E D ,

and using the following equations

(ar(z)/ax)(a0(z)/ax)+ (ar(z)tay)(a0(z)/ay) = O, z  E S — z „

and

A* r(z)— R
a

g(z„ z )) 2  

± ( g(z ) , z))
2

]r(z) , z  E S—  z„
ax ay

it  is  e a s y  to  s e e  th a t  the equation (7. 4) w ith  M(z)--= . 1  can be
written in the form

(7. 8)
d(r(z), 0(z)) ; l i t ( r ( z ) ,  0(z)) , z  ES— z„ ,

w h e r e  ii(r(z), 0(z))=u(z) m(r(z), 0(z))— (r(z)R:i g(z„ z )) '  +(  ay
g(zo,

 z ) )
2
] )

 k r(z ), 0(z ))— R   a   0(z))2 + ( - -a  0(z ))
2
]lm(r(z), 0(z)) andax ay

ii(r(z), 0(z))= A* 0(z)Im(r(z), 0(z)), w h ich  is  the equation required.
Using (7. 6) w e can prove that the mapping kfr is  a heomeo-

mophism of S  onto the unit disk with center O.
To reduce the A * o f (7. 8) to the case of m =1, which is the

A* u(z)—m(r(z), 0 ( z ) )
[aa:  +  lr 4(r(z)' 0(z)) a

a
;
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reduction desired, we use the random time change due to P. Levy 1 3 )•
Exam ple 7. 1. The assumptions in th is section could be make

weaker for many purposes. For example, let A* be the Laplacian
A  and S  b e  a  dom ain which is enclosed by the Jordan curve.
Then we can take a  conformal mapping satisfying S=1/P - '(D )  as
the mapping

P art 2. The boundary value problem.

8. The boundary value problem . Let us now consider the
equation

(8.1)A u ( x ) = 0 ,  x E D ,

with the boundary condition

(8.2) au  ( x )+L u (x )= f ( x )  ,  x E a D ,an
where L  i s  a certain linear operator acting on the subspace of
C (aD ). In the case L =0  that is well known as the second boundary
value problem, while if L  is  the multiplication b y  a function A(x),
x E aD, we obtain the so-called third boundary value problem . The
boundary value problem attached to a  general linear operator L
w as treated  fro m  the v iew  point of the theory o f differential
equations by many authors such as M. I. V isik and O. A. Ladyzen-
skaya  [23 ] and M. I. V isik [22].

The probabilistic approach o f th e  boundary value problem
was initiated by P. L evy, S. Kakutani and J. L . D oob [5]. They
treated  o n ly  the first boundary value prob lem  using the N -
dimensional Brownian motion. W e shall here give a probabilistic
method to solve the general boundary value problem, using the
Brownian motion in the unit disk associated with the general condi-
tion which is determined by L  in a certain manner explained later.

As is well-known, the second boundary value problem for the
bounded domain is solvable only for the function f  satisfying

1 3 )  C f. K . I to  and  IL  P . McKean [1 4 ] and G . Maruyama [18 ].
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f(0)(10 - (0)= 0 1 "

n.)

which we not need such an extra condition for the first boundary
value problem. From our approach of the general boundary value
problem, we can see that this extra condition is necessary or not
according as the Brownian motion in the unit disk refered to above
is recurrent or not, although we have not yet got its rigorous
proof.

Let { W" ) , r(t, w" ) ), r E [0, 1]} be a reflecting barrier
Bessel process a n d  le t  { W ( 2 ) , B(t, w")), 3 22 , 17 (  r  E R ' }  b e  a
Brownian motion on R 1. Denote a Lévy process whose 1. c. f. is

2te (t,w(2)). exp It[izm z2+ (ei' —1— izu)n(du)]}
2

b y  { W" ) , /(t, wm), .0"), P;.3 1 ,r ER1 . W e define a version of path
function 0(t, 0, w) as follows. First we write

9(t, 0, w)= BO(t - 1(t, w")), w( 1)), 7.0"))+1(t, w"))+ 0

where t- V, wm )  is the function inverse to the local time t(t, wm)
of r(t, w ( " )  a t 111 and

{r(s, ?pm)} ' ds .
o

Now can define the following operator

g(9) =E»  x EV ) xE, 3 ){ g(0(t, 0, w))dt}

0>0 ,
where g(0) E c(Sp).

It is well known that for any a > 0 , the equation

(a —1 /2 A) u(r, 0 )=0  , on 1) ,

with the boundary condition

u(1, 0)---f(0), o n  a D , f(0) E C( D),

has a unique solution u(r, 0) E c(r)), which is represented by

1 4 )  do-(o) m eans the u su a l lin e  e le m e n t o n  D .
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u(x)— 1if(x)— le(x , dx ') f (x ') , x  E D ,

and the equation

(a-112 A )u(r, 0)= f (r, û), (r, 0)ED  , f EC (D ) ,

with the boundary condition

u(1, 8)=O ,( 1 ,  0 )  E  ap ,
has a unique solution u(x) E c(b), which is represented by

u(x) = G f(x)= Sa D  e(ce  ; x, x') f(x') .

Let 9n= W, x(t, w), cB, P , x E DI be a diffusion process corre-
sponding to the Green operator satisfying the following equation

(8.3) G „ f(r , 0) = f (r , 0 )  + le tlf r_ (f  + G2f)1(r, û ) , (r, 0 )  E j .
an

Using the same methods as in Part 1 we can prove that such
a diffusion process exists and K;,') g(0) satisfies the following relation

(8. 4) K .7) g(0)— K;P) g(0) + (a — 3) G ('') {leK;7 ) g} (0) = 0, (1 ,  0) E D .

where

G r ) g(0 )=E0,0)1
+—  

c - P s  e
- ^ l t ( t . w )  g(r(s, w ), 0(s, w ))ds, g(0) E c(Ïi) ,

0

and t(t, w) is the sojorn time at {1 } of r(t, w).
In  the same way as  in  P a rt 1 it is easily seen that {0(t, 0, (0),
0<t‹+ 00 , F1, 1 ) x FV ) x PP )}  is a version of the boundary process
9.JI")  concerning the diffusion process alt. Let 21 be the infini-
tesimal generator of We ) . T h en  w e  have

THEOREM 8. 1. 1 )  L et f (0) be a continuous function defined an
aD  satisfying

(8. 5) f(0) d GO) = 0 .
ap

Then the equation

(8.6)A u ( r ,  O ) = 0 ,( r ,  0 )  E aD ,
w ith the boundary condition
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(8.7)u ( 1 ,  6 ) )  —f(0) , (1, 0) E ap ,
has a unique (up  to  an additive constant) solution u(r, B ) E C(ii ),
which is given by

(8.8)u ( r ,  , =  G  A r ,  G), (r, 0) E D ,

where f (r, 0 ) is  the ex tension of  f (0) onto th e  closed u n it  disk
obtained by putting f (r, 0 )=0  inside the disk.

2 )  Conversely i f  th e  equation (8. 6) has a solution (up to addi-
tive constant) satisfying the boundary condition (8. 7), then the func-
tion f (0 ) satisfies the condition (8. 5).

Before proving this theorem, we shall prepare three lemmas.

LEMMA 8. 1. T he transition  probability P(t, x , E), x  E /7) and
E E 9(1)) corresponding to sfft satisfies the Ddeblin condition.

PROOF. Let F  be the circle :

{(r, 0 )  ; r = +- }

and let C  be the disk :

{(r, 0); 0< r< 1/4} .

It is easily seen that for every E Eg(.1.5),

(8.9) P  x (x(t, w)EE)<1—  P x (x(t, w) E Ec, 0- ,(w )<t)  ,  x  E D .

On ther hand we can prove that for any 97>o,

P x (x(t , w) E D  n  , 0 -,,(w )<t)
> E xfrr(w )‹t ;P x (,,,(w ),.)(x (t —  cr(w),

(8. 10)
>  x  r( w )  +  < t  ; — cr(w),cn E r

where p°(t, x , y )dy  is the transition probability measure of the
absorbing Brownian motion. Since p° (t, x, y )  is continuous on
[9], t]x 1 -1 ><C, (8. 10) implies that there exists a positive constant
K(t, 11 , C) satisfying

(8. 11) x io-r (w)+ ?7<t ; ne -  0-(w), x(0-,(w), w), y) dy}

>K (t, 97, F, C )Px (cr,„(w )+ <t) rdr dO .
onnc

E C n E c )}

x(o-r (w), w), y)dyl ,
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By (8. 9), (8. 10) and (8. 11) we have

(8.12) Px (x(t, w) G E )G 1- K(t, 97, r, C)13 ,(0-„,(w)+ 97 <t) rdrd0 ,
e n,e3

x E r ) .
Now we define a  finite measure p(dr dO) over 17 by

cp(dr d0)— rdrd0 + dO 8 ( l) (dr) .

By the definition of fft we have

P r (o-r (w)+n ( t) —  ;.l) {0- „2(w( ') ) + t(a- ,h (w" ) ), wm) + o <t}  ,  x  =  (r, 0( E D .

Hence for fixed n>0, we can choose t ,  such that

(8. 13) Px(œr(w)+ ?K O> 1/ 2 .
Combining (8.12) with (8.13) we have

P x(x(to, w) C E)G1— K(t 0 , 97, r, C)rp(C  Ec)I2 , x ED .

Here we take a positive constant

&=7rK(t„, C)I (2+ K(t,„ 97, r , C)) 16

Then we can prove that if p (E )<6 ,

Px(x(to, w)E E)<1-6 , x E D  .

Consequently we obtain that there is a (finite-valued) measure
p ( • )  defined on F ( b )  with cp(b)>O, a positive t0 > 0  an d  a  posi-
tive 6, such that

P(t , x, E)<1—  & , if  p(E)<& .

This (p( •)  is just the measure required, (See J. L. Doob [4]).
Then we have proved Lemma 8. 1.
Using Lemma 8. 1 we have

LEMMA 8. 2. The distribution m(dr d0):

(8. 14) m (dr d0)---(2 r d r + ( ,) (dr))d0 147r .

is stationary and for suf f icicently  large T „ i f  t>  T o ,

(8.15) I P(t, x , E)—  m (E)I<K ,e't , f o r any E E 9"(17)  and x  E  ,

where K 7 > 0  a n d  > 0  are independent of  x  and  E.
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PROOF. The D6eblin condition for the transition probability
proved in Lemma 8. 1 implies that there is exactly one stationary
distribution M(dr d0) satisfying (8. 15). It is therefore sufficient to
show that the measure in(dr d0) concides with the measure m(dr d0)
defined in  (8. 14).

Let .R° be the rotation operator. Since

P(t, .R °E)=P(t, x, E), x E D  and EEg(D ),

we obtain

(8. 16) -M(E)=174(ffe E) , E E Y (D) .

which implies

(8. 17) ,

and for any f (0) E CTO, 11, we get

lim Ecr.8){f(r(t, w))1 f (r)rn(dr) .

On the other hand we can prove, by the same way as in  G.
Maruyama and H. Tanaka [19] (Theorem 4. 3), that the one dimen-
sional diffusion { r( t , w ) , 0 <t<+ col has the stationary distribution
1— (2rdr +8 ( l) (d r) ) .  Therefore we have
2

(8. 18) 1in(dr)—  (2rdr +8 ( 1) (dr)) .
2

Combining (8. 17) with (8. 18) we have

172(dr d0)= 
1  

- {2rdr +8 ( l) (dr)} d0
47-t

= m(dr dO) .

LEMMA 8. 3. L e t g (x )  be a  bounded function defined On

satisfying

(8. 19) _g(x )m (dx )=0 .
D

Then G,,g(x) converges uniformly in  x  as a and
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(8.20)G , g ( x ) = L  T ,  g ( x )  d t < +  0 0  ,  f o r any x  D

P R O O F . We define a  measure M(t, x, dy)dy

M(t, x, dy)=P(t, x,dy)+m(dy) ,

and let m(t, x , y ) be the density function of P(t, x, dy)— m(dy) with
respect to M(t, x , d y ). Putting

D1 = {y ;m(t, x, Y )> 0 }  a n d  D ,= ; m (t, x ,  y) < 0}

we have

(8.21)T tg (x )— L g (x )m (d x ) <Ile ( I P(t, x, D1) —m(D1)I

  

+ I P(t, X ,  D2)— m(D2) I } •

Applying Lemma 8.2 to (8.21) we obtain, for sufficiently large T,

T t g(x)—  g( y) m(dy) <211g111f7 e -  " , for every t > To .

  

Using the condition g(y)m(dy)— 0, we get
+co

Gg(x)— g(x)dt0 <11T0e r  I e- ast — 1 !dt+2K711g11 c' T ° , x  E D ,
0

which implies the uniform convergence of G„g as a — > 0 and (8. 20).

PROOF of THEOREM 8. 1. S in c e  Go, f  = f ,  Go, f  is
continuous on D .  Using the condition

47r fir, 0)m(drc10)= L f(0) (10 - (0) = 0,

and Lemma 8. 3 we can prove that G 0 +  f = lim G f  is also con-

tinuous. Since Ki(j a.,? f  =G 0, f  on al:), Kr+) f  tends to Ka+ ) f  uniformly
as a  1, 0, so that KS(r ) f  is continuous on D .

Hence it follows from Gc,f =le(K r.,' f ) that

(8. 22) G ,f  =h°(KP.,.+) f ) .

Putting u(r, 0 ) =G0+.(0, 0), (8. 22) show that u(r, 0) is harmonic
in D  and

u(1, 0 ) =G0+ 0 ) =KY++) AO) ,
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and using the resolvent equation for {K.;,' "}, it results from this
that

u(1, 0) = If" )( f  +  K J )
++)( f  ) ( 0 )  E g(%) , 7> 0 ,

which implies
91it(1, 6)— — f(0) , (1, E SD.

Thus the first part of our theorem was proved.
Now we shall prove the second part of Theorem 8. 1. Since

(7 —%)u(1, 6)=y u(1, O) — f ( 0 ) E C( D) ,

w e get u(1, 0) = g,(0),  7 > 0 ,  where g v (0)=-7u(1, O)—f(û). B y
the relation (8. 4) we have

(8.23) Go+ f(l , 0)1 = lim IKV+V(0 )1< 3 111411 , (1, 0) E aD
064.0

On the other hand

lim
(8.24)

G„/(1, 0)— [  .i .j f(0)dm(0)/ce]

T f(1, 0)— f ( 0) dm (0)
D

d t < +  , (1 , E  ap

Combing (8. 23) with (8. 24) we have

lim [ f(9 )do-(0 )/cd<d-  ,
aD

which implies f(0) do-(0)= 0. This completes our proof.
ap

The usual Neumann problem is a special case of Thorem 8. 1
as is seen in the following

EXAMPLE 8. 1. W e assume th a t 1(t, w 3 ))=- =-0 , that is,

0(t, 0, BO(t-'(t, w" )), w")), w( 2)) + O .

On the other hand { ( t - 1 (t, w" ) ), w" ) ), 0<  t<+  co, is a
version of stable process o f  order 1/2 since {log r((t, wm ), w")),
0 < t< +  co , P ill is  a version of sticky barrier Brownian mition
an [0, 1] according to K. Ito and H. P. McKean [1 4 ]. Hence using
th e  theory of subordination w e  ca n  p ro ve  th a t {0(t, 0, co),
0 < t < +  , x P 2 >} is  a version of strong Markov process with
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Poisson kernel. (Cf. S. Bochner [3] and J. L. Doob
Therefore we have

1  e - 2 tEY -) x {g(0(t, 0, c)))} —  1 g ( )
27-/-1  +  c" — 2e - t cos (0 — )

c k  ,

and for any g(0) E  (a)
g(0) = lim [(h° g(1—E, 0)— g(0))I 8] a  11° g(1, O).e4.0 an

Hence applying Theorem 8. 1 to this case, we can prove that
for any f (0) E c(a15), the function u(r, 0) defined by

u(r, 0)=G 0 _ f (r, 0)

is  the unique (up to additive constant) solution of the Neumann
problem.

9. Remarks for the condition (8. 5). The conditition

f(0) do-(0) 0
al)

is indipensible for us to be able to define u(r, 0) =G 0 ,f (r, 0 )  in
the proof of Theorem 8. 1, because, i f  it were not for this condi-
tion, G„_f(r, 0) would become indefinite by virtue of the recurrence
of our process TA.

However, in case sin is non-recurrent, we can do without this
condition as is seen in the following

EXAMPLE 9. 1. In  this example, let S  be a  solid ball with
radius 1 in RN, (N>2) and G = (S)c. Let {W ('', r(t, w")),
r E [1, + 00)} be a version of one-dimensional diffusion with Feller's
invariants

m (dr)=2rN ' d r ,  an d  s(d r)=r' --
 N  dr

and the boundary condition
d+0= u(1):
dr

let B(N)(t7 02)) ,  g c  2) , a E as} b e  the Brownian motion
on as. Now we define a path function 0(t, 0)) by



where
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0(t, (0) = B(N ) ((t , wm), w")) , 0< t<  00

w)= t  {r(s, w(")} - 2  ds , 0 < t co ;

and let
A A

X (t, (D ) (r(t - 1 (t , w"))), 9(t - '(t , w 1 ))),,  w " ) ) =  t  + t ( t ,  w ° ) ,

and t(t, wm) be the local time at 111 of r(t, wm).
Then {x(t, (0), 0< t< +  co, 13 ;." x P T }  is a version of the diffu-

sion process M = {W , x (t, w ), 0 , Pr„} attached to 1/2 A  on G.
First we treat the case N > 3 .  Then according to G. Maruyama

and H. Tanaka [19], {Wm, r(t, wm), 0"), P ,  r G [1, + c o )}  is non-
recurrent since

-100
s(+ 0.0)= s(dr) d  r - N "d r< +  (pc .

Hence TZ is also non-recurrent and

co(9 .1 ) ( ( r ,  a ) ( < wo))} r E  [1 ,  +  )  ,

where f (a ) is continuous function defined on as and

(r, a) E as ,

(r, a)—  f ( a )

I 0 , otherwise.

Hence G j(r ,  a) converges to a  function Go+  f(r, a) ._u(r, a) as
a  tends to O. Furthermore u(r, a)  is continuous in  x= (r , a) E -G,
since

a )  G (, a ) 1 H f I l E d . ç o i  (1— e - "') t(d t, w )}

Now we can prove in  th e  same way a s  example 8. 1 that
u(r, a) is harmonic in  G  and satisfies the boundary condition

9   u(1, a) =  f ( a) , (1, a) E as .

Sn

Hence it follows that the Neumann problem is solvable for
the infinite region G  in  RN, N 3 ,  f o r  any continuous values of
the normal derivative on the boundary. This fact is well known
in the potential theory.
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Next we shall treat our problem in the case N = 2 .  In  this
case the outer second boundary value problem can be reduced to
the inner second boundary value problem. This fact correspond
to the property that [{r(t, wm)} 0 <  t<+ 00, P,., r E [1, + c o n  is
a version of the reflecting barrier Bessel process on [0 .1 ]. Hence in
the case N =2  it is easily seen that WI is recurrent and the Neu-
mann problem is only solvable for the infinite region G  in  RN

under the condition of type (8. 5).
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