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0. Introduction. Consider a Markov process on a regular

domain D in R® whose generator is given as an elliptic differential
operator

Au(x, y)= A, (x, y) u(x Y +2A,,(x, y) a u(x, )
(0.1)

+ A, )2 u(x, 3)+ Bi(x, 9)2—u(x, )+ Bi(x, )2z, 3) ,
oy ox oy

for u(x,y)eC?,
in D associated with the boundary condition

8(x,y) lim Awu(x, y)=

(GRS

u(x, y)+ M(%, 3) —zr— a u(x, y)+ V(x, )

(x » (x.

u(x, )+ SBD {u(x+ &, y+y)—ulx, y) —5?— u(x, y)

(x,¥)

82
1
ai:(x » a> (x, )

XElu (s )| e X ), for ulx, 5)€CY (3, 3) €D,

where 8(x, y)=0 or 1, V(x, ) is non-negative and v, ,,(+) is a mea-
sure on 9D satisfying v, ,,(@D— U, ,,)<+ o and S &L (2, YD)
9D

v (@5’ dy )<+ oo for any neighbourhood U, ,, of (x,3).
{El. (%', ¥), i=1,2} is a C*function on D and is a local coor-
dinate in U, ,, satisfying : &, ,,(x’ »)=0 if and only if («/, y’)€3D.
for (&', ¥) € Ucr.yss &t (', )+ (El (2, 9))° >0 if and only if
(o', ¥)=(x, y). It is easily seen from A.D. Wentzell’s results [24]
that this boundary condition is of the most general type provided
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that the process does not jump from the boundary of D into its
interior.

The main purpose of this paper is to construct the path
functions of such Markov processes by means of the method of
stochastic integral equations initiated by K. Ito [12]. It should
be noted that we used not only the ordinal time but also the local
time at the boundary in formulation our stochastic integral equa-
tion, to meet the difficulty arising from the boundary condition
which did not appear in Ito’s case.

It suffices for this purpose to discuss the case in which D is
a unit disk and A and the boundary condition are given in the
polar coordinate as

1 9
ort r or

0.3) Aur, a)__{ 6)_} u(r, 9),

(r, ) €D,
56) lim Aulr, 0) =iu<1, 9) +M(0)—§—0u(1, 0)

. 4) +(1/2)V(e) u(l a)+g (@(1, 0+5—u(l, 0)

2 u(1, O)n(dE ;0),

where 8(8)=0 or 1, V(0)—b*(1, 6)8(0) is non-negative and (- ;0) is
a measure on oD satisfying #(0D— Uy,,)<+ oo, SaDEZn(dZ- ; 0)< 4 o0
for any neighbourhood Uy, of (1, #) and some regularity conditions,
for the general case can be reduced to this special one under the
some regularity conditions.

Consider two Brownian motions B({, ») and g(¢,»), Poisson
measure p(dsdu, ») and the Bessel process 7(f, ) with the sticky
barrier at 1 which are all independent of each other, and denote
with o, (®) and i(s, ©) the first passage time and the local time
at 1 for 7(s, o) respectively. As is seen in Section 2 the 7(¢, )
proess together with the solution of the stochastic integral equation

St/\ rolw)

oty @)= ar(s, @), ofs, ds+ [ bir(s, @), w0 dBGs, @)
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tEAorglwd @

m(7(t™(s, @), w))dS+S a(n(t7(s, @), ©))dg(s, )

Stct/\oro(m. )
0

0

(0.5)
St(t/\o‘ro(w)- )

BE, n(t7(s, @), @) p(dsd, ©)

0 S1$1u|<+w

4 SA‘ " B (s, ©), @)g(dsdE, o),

0

will give the polar coordinates of the Markov process on D, with
the generator described in (0.3) and (0.4) (8(6)=1) where D,,
= {(r, 0); 0<r, <r<1}, q(B, 0)=p(B, o)~ E(p(B, v)), m(0)=M(0)—
a(l, §), *(0)=V(0)—b*Q1, 6), B, 6) is a non-decreasing and right
continuous function in § —oo<(§< 4 oo, with some regularity
conditions satisfying : B(u, #)=08(u, — ), B(+ oo, 8)= —m, B(+ oo, 0)

—7, jl B 0 dE[E<+oo and

inf {a;n((a, n];e)<i}, for £30,
B, 0)= :
sup {a;n([—ﬂ, a);0)<%1}, for £<0.

We shall need slight modifications to discuss the case
“8(6)=0" as is seen in Section 4.

Our paper consist of two parts.

Part 1 is for the construction of the path functions of our
Markov processes. In Section 1, we shall introduce preliminary
notions and assumptions which will be used later. Sections 2 and
3 are devoted to the construction of the path functions. Further
in these section we shall prove some theorems concerning the
strongly Markovian property of the diffusion on a unit disk D
determined by the stochastic integral equation mentioned above.
In Section 4 we shall define a Markov process on the boundary
concerning the diffusion on D constructed in Section 2 (or Section
3) and prove two theorems (Theorem 4.1 and 4. 2) which will play
important roles later. In Section 5 we shall give the description
of the boundary condition corresponding to the diffusion process
on D constructed above. We can construct the rotation invariant
diffusion without appealing to the stochastic integral equation, as
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is shown in Section 6. In Section 7 we shall give a transform of
scale to reduce the general elliptic differential operator to the
special one discussed in Sections 3 and 4.

In Part 2 we shall discuss the boundary value problem by
using the special case of the process constructed above. Although
it is well known that J.L. Doob constructed the solution of the
first boundary value problem (Dirichlet problem) probabilistically
using the Brownian motion, no analogous method has not yet
been known for the second boundary value problem (Neumann
problem). We shall give a probabilistic method in Sections 8 and
9 to solve the boundary value problem which is even more general
than the second boundary value problem using the Brownian
motion with some appropriate boundary condition. Our method
will suggest that the second boundary value problem can be dis-
cussed probabilistically in the case of the general elliptic differential
operator constructed in Part 1 just as the first boundary value
problem was extended by several authors such as J. L. Doob [7],
and K. Ito [13].

The author is heavily indebted to Professors K. Ito and H.P.
McKean for generous help during the work on this problem.
Messrs. T. Ueno, H. Tanaka and K. Sato took much interest in the
reserach and joined in discussions orally or by communication.
The author expresses his thanks to these friends. Thanks are
due to Professor T. Hida for his kind and useful opinions on the
manuscript.

Part 1. Construction of path functions.

1. Notations and Assumptions®. Let S be a subset of the
N-dimensional Euclidean space RM. For convenience we add an
extra point {} to S as an isolated one and get a topological

space S*=S\J{~}. For a measurable function w from [0, + o]
to S*, we define

1) This general set up, except the special assumptions, are due to the lectures
given by Prof. K. Ito and Prof. H. P. McKean at Kyoto in 1957-8.
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(inf {#; w(?)={}, 120}, if such ¢ exists,
o )W) = | . .
+ o0 , if otherwise.

Let W be the set of all w’s satisfying
(W.1) w(t)=oo , for t>o0w)(w),

(W.2) w(t) is right cotinuous and has left limit at for every
t: O£t<o-(°°)(w) ’

(W.3) w(+00)=oo.

We call W the space of path functions. The value of w at
time ¢ is denoted by w(¢), x(¢, w), 5(¢, w), I(t, w) and so on (or
simply w;, %;, 7:, {; and so on). Let KS) be the family of all
Borel susets of S, B the Borel field generated by the w-sets of
the form {w;w(s)€ B}, s=>0, B€<S), and B, the Borel field
generated by the w-sets of the form {w;w(s)e B}, 0<s<¢,
Be€ (S). Given o(w) a non-negative function measurable (), we
shall define the stopped (shifted) path ws (w?):

/w,, t<0',
(wo_')f: Wy, a£t<—|—oo, (w;)t=wt+o',
Oo, t:+oo’

and the associated Borel fields :

B,=the Borel field generated by the w-sets of the form
{w;w;€B}, BeSR,

By = [2\1 Bosajn -

We assume that a family of probability measure P.(-), x€ S,
over P is given and satisfies the following conditions :
(P.1) For any fixed B€ B, P,(B) is Borel measurable in x.
P.2) P (x(0, w)=2x)=1, x€S.
-(P.3) (Markov property)

P.{P.(w! €B/3B;)=P,(weB)}=1, Be 3.
M=A{W, x(¢, w), B, P,, x€S} is called a Markov process on
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S with right continuous paths, and it is often denoted simply by
{z(¢, w), t>0}.

We shall introduce function spaces B(K), ((K) and C*K).
B(K) is the space of all bounded measurable functions defined on
K* taking the value 0 at {}. ((K) is the space of all bounded
functions defined on K*, continuous with respect to the relative
topology and taking the value 0 at {=~}. C*(K) is the space of
all #n-times continuously differentiable functions on K and vanishing
at {w}. The norm in H(K) as well as in ((K) is given by
1£1l=sup [ f(x)].

As is usual theory of Markov processes we shall define the
transition probabilities, the semi-group and Green operators as-
sociated with our processes. We write

P(t, x, E)=P.(x(t, w) €E), for E € K\S), (transition probability),
T, f(x)=E{f(x(t, w))}, f€B(S), (semi-group),
G, f(x)=Ex{S: oo F(x(t, w))dt}, Fe B(S), a>0,

(Green operator).

The hitting time o for a set E€ H(S) is defined by

inf {¢; x2(¢, w)€E, t>0}, if such ¢ exists,
op(w)= { . .
+ oo , if otherwise.
A random time o(w) is called a Markov time, if
{w;oc(w)<t} € B,, for 0<t<+oo.

A Markov process M on S with right continuous paths is
called a strong Markov process, if for any Markov time o(w),

P,,{P(w:EB/.‘B¢+)=P,(U<w>_w>(w€B)}=1 , x€S and B 3.

A strong Markov process I on S with right continuous paths
is called a diffusion process, if any path is continuous as far as
it runs in the interior of S?.

2) This definition is somewhat different from ordinary one (Cf. K. Ito and H. P.
McKean [14] and E. B. Dynkin [6]).
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Let D be a unit circular disk with closure D and the boundary
oD, that is, D= {x;x=(r, 0) € R?, 0<r<1}. We use the abbre-
viation of f(¢) instead of f(1, 8) € ((oD).

Throught this paper, we shall denote with A

192 2
A = , ) =— b ,49
u(x)=Au(r, 0) 5 157 + p_—— + (7

e)_} u(r, 0),

where a(r, ) and b(r, 0) satisfy some regularity conditions, for
example, a(r, 8), b(r, )€ C*(S), and the domain 9(A) of A is a
certain subset of C*S).

The reflecting barrier Bessel process is defined as a diffusion
process M= {W, r(¢, w), B, P,, r€[0, 1]} with Feller’s invariants

m(dr)=2rdr and s(dr)=r—dr,

and the boundary condition
d_
—u(l)=0%,
o u(1)

and the sticky barrier Bessel process is defined by replacing the
boundary condition above with

lim iiu( )——u(l)
't dm d
The infinitely divisible law of probability whose logarithmic

characteristic function (l.c.f.) is
\po(z)=iz—zz/2+sl |\l(e""‘—l)du/uz—l—S[ ISl(e"“z—l—izu)a’u/uz,

will be called the fundamental infinitely divisible law (i.d.l) in
this paper. A Markov process with S=(—oo, +00) is said to be
differential if its probability law is translation invariant. A differ-
ential Markov process M= {W, (¢, w), B, P,, r€eR'} on R' is
called a fundamental Lévy process, if the probability law of (s, w)—
I(t, w) has the L.c.f. (s—¢) {(2), where V(2) is the l.c.f. of the
fundamental i.d.l.. Any jump of /({, w) is expressed by a point

3) %u means the left derivative of .
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(t, )€[0, + <)X R', t being its position and # being its hight:
I(t, w)—I(t—0, w). The number p(E, w) of the jumps in E, E€
F([0, + =)x R"), can be considered a real random variable, which
proves to be governed by the Poisson distribution with the mean

#(E)= SEd'rdu/uz .

P(E, w) is evidently a function of /(¢, w). (¢, w), 0< <+ oo,
can be expressed as

Kt w)— 10, w)=t+ g, w)+S:SI t

up(drdu, w)+s S ug(drdu, w),
1>1 lul<l|

u 0

for any ¢, 0<<¢<+ oo, for almost all w, where ¢(E, w)=p(E, w)—
7z(E) and {g(¢, w), 0<¢t< + o} is a Brownian motion, which is also
a function of {/(¢, w), 0<t< + 0}, (Cf. P. Lévy [17] or K. Ito
[10]).

2. Construction of path functions (1). In this section, we
shall construct the diffusion in the unit disk whose generator and
boundary condition are given by (0.3) and (0.4) with “8(6)=1".
To do this, we use the stochastic integral equation.

Let a(r, 6) and b(r, 6) be the real valued functions ®, defined
on D satisfying the following conditions :

(A.1) a(r, 0), b(r, 0) e (D—0).
(A.2) For any (7, 0), (v, 0)€D,,

|a(r, O)—a(r’, )| <A{160—0' |+ |r—7'},
and
|b(r, 0)—b(r', ) |<B{|6—6| +|r—7|},

where 7, is any fixed positive number <{1 and D,, is the annulus
{x=(, 0):7,<r<1}, and A=A,, and B=B,, are independent of »
and 6, but may depend on 7, in general.

(A.3) For any x=(7, §)€D,
b(r, 6)>0.

4) It is automatic from this that a(r, 6) and b(7, 6) are periodic in ¢ with the
period 2z, and this remark is available to all functions defined on D.
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Let m(1, 8) (=m(0)) and o(1, 6) (=0(f)) be the real valued
functions, defined on 9D, satisfying the following conditions :
(B.1) m(0), o(8) € C(aD).
(B.2) For any (1, 6), (1, &)€aD,
|m(0)—m(8)|<M|0—0'| and |o(6)—o(@)|<S|0—0].
(B.3) For any (1, §)€ oD,
a(0)=0.
Let B(u, 0) be the real valued function, defined on (— oo, + o)
X (— o0, + o) satisfying the following conditions ;
(C.1) For any u€(—oo, + o)
B(u, 0)=pB(u, 0+2n=), n=0, £1, £2, ---,
and for any € (—oo, +00) B(u, 0) is non-decreasing in # and
B(—o0,0)=—m and B(+oo, 0)=m,
(C.2) For any 6, ¢ € (— oo, + ),

8, 0)—Baoli=1{[ 1860~ Bw,0)idujw)"<Flo-0',

where F is independent of 6 and &'.

(C.3) For any € (—oo, +o0), B(u, §) is a right continuous func-
tion in # and

Si l<+ B(u, 0)du|u*< + oo .

Let {WD, r(t, w®), B, PP, »€[0,1]} be a sticky barrier
Bessel process, {W®, B(t, w®), B®, P®, r€ R’} a one-dimensional
Brownian motion and {W<®, (¢, w®), B°, P®, r€¢ R'} a funda-
mental Lévy process. Denote an arbitrarily fixed random variable
on a probability space (Q, B®, P®) by C(eo) where $H* is a
Borel field generated by subsets of Q.

Now we can form a product probability space {Q, &, P,,
r€[0,1]}, where Q=WOX WAX WOXxQ®, B= PO x B?x ™
X B and P,=PPxPPXPPXP™® in the usual way.
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We define a random variable t(¢, w'®) by
i(¢, w“’):Stxm(r(s, w))ds .

Following K. Ito and H.P. McKean [14], we can prove that
PP {i(¢t, w) >0} =1, for any ¢ >0.
Let t7'(¢, w™) be the inverse function of t(¢, w*™), i.e., for any
t=0
(¢, w) = inf {s; (s, W) >t} .
We shall consider a stochastic integral equation, for any =>0,

l/\U')'o(w(l))

at, )=Ca)+ |77 ar(s, w), (s, @)ds

t/\a-ro(w(l))
+ S

7/\0',»0(10(’

o 0 (s, w®), 7(s, ))dB(s, w)
TN oyolw )

10 ATrow 1Dy, wll)y
[ m(n(t (s, ), @)ds

t(r Ay, w1
S tCt Aorow(D), wlldy

(2.1)
a(n(t™'(s, w), ©)) dg(s, w®)

tCrAayoCw ), w1
St(t/\cro(wm). w1y

B(u, n(t7'(s, w®), o)) p(dsdu, w™)

trAapolw ), w™) SIS!uI <+oo

€t AarowC, w1
| [ B (s, ), ) a(dsdu, o),
t(t/\a'ro(w(l)).w(‘)) lul<I|

where 1 >7,>0.

First using the methods similar to those in K. Ito [12], we
shall prove the following.

‘LEMMA 2.1. Let r, be an any positive number such that
0<7,<1. Then, for any fixed w™ (up to P-measure 0), there
exists one and only one (up to P-measure O) stochastic process (t, ®)
satisfying the stochastic integral equation (2.1) for any t, <¢< + oo,
and fulfilling the following property :

(m: 9t ®), s<t<+oo, is a Borel measurable function of

5) xp(*) means the indicator function of a set E.
6) anb means the smaller of ¢ and b.
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77(3) w)) r(t/> w§1)+); l(t(t/) w§1)+); wi?;fw(l)))_l(oy wi?;:kwcn)) and B(t,’ w§2)+)
—B(0, w®*), 0<t<t-—s.

Proor. We note that the P -measure of the w-set
W= {w?®; o, (w)<+ o}

is 1, for any r, r,<r<1.

It is therefore enought to prove that Lemma 2.1 holds for
any w® € Wib.

We introduce a probability space {Q, B, P}, where =W®x
WO XQ®, B= PP x BFOx B and P=PP x PP x P®,

Firstly we shall prove the existence and uniqueness of the
stochastic integral equation (2.1) in the case |C(o)|<N, i.e.,
Cn(0®) =2y, pi(C(0?)) C(0®).

In order to find a solution we make use of the method of
successive approximations; we define 7,(f, »), =0, 1, 2, ---, recur-
sively by

7f, ®)=Cpn(0?),
and
tAOy

malt, @) =Cot (" alr(s), 7o s, @)ds

#7780, s DB+ (475, @) ds
@2+ o, (7S), @) dg(s)
B, 7, (£7(9), @) pldsdu)

+ St(tAo-rO)Slulq 'B(u, ”n—l(t_l(s)’ w)) q(deu) :

t(rAoygd

Oy

St(t/\crnp

t(.—/\o'ro)S|S|ul<+eo

By (2.2), n=1, we have, for any ¢, 7<t<o,,,
E{[2(, o)1}
<7 [E (CoY+E {( S:a(r(s), Cy) ds)z}
+E {( [ o0s), CN)dB(s)>2} +E {( S“”m(cN) ds)z}

+E {(g'“’a(cN)dg(s))z} +E {(g“” T B, CN)duds/u2>2}

tm t(T)S|S|u|<+w

(of..o0 emasao)}],

+
&
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and write this as

TE{L, )} +E{(1L.)} + E{(I.)} + E{(L..}
+E{(L)} +E{(L )} +E{(1.)7 ]

It is easily seen that for any ¢, 7<t<o,,,
E(LAEN, B Aoy,
E{(1.0} = | E@r(s), Coyt ds< (B, Yo,
E{L A <oy, E{LFI<E oy,
B} <20, B8, CII} ds< 20w, P,

B < EIBw, ClIY ds<ov, F7,

where A, = max |a(r, 0)|, B,,= max b(r,0), M= max |m(0)],
(r, 8>€Dr, (r,8>€Dr, (1, §>€0D

S= max o(f), and F= max |||B(x, 6)|]|]. In the estimation above,
(1, 0)€E9D (1,8)€9D

we used the fact t(¢, w®)<t¢, for any £, 0<#<+ oo.

Thus E{(n,(t, ®))3}, 7<<t<+ oo, is bounded and also E{|7,(¢, »)
— g, ©)|2}, 7<<t< + oo, is bounded. Furthermore 7,(¢, ») belongs
to d,-class with P-measure 1 and so measurable in (¢, ») ». Besides,
for any fixed w™® € W, {n(t, @), I{t(s, wP"), witr ww,)— 10, wil ww,),
B(s, w®*)— B0, w®*), 0<s<t—7}, is independent of
{{4(s, w*), wBh,w)—10, wdi,w,), B(s, w®*)— B0, w®*), t<s
<o, (w®)—t, for any r<t<o, (w?®), as is easily verified.

Thus we can define 7,(¢, ) by (2.2) and so 72,({, »), n=1, 2, --+,
recursively and we have for any ¢, 7<t<o,,,

77n+1(t) w)—ﬂ"(t, ©)
=["{ar(®), (s, @)= alr(s), m-ls, N} ds

@23)  +{ 0) s, N =b(S), nei(s, @)} dB(S)

+ S Z: {m(n,(t7(s), @) —m(n,-.(t7(s), @)} ds

7) We say that f(#) belongs to d;-class if f(#) is continuous in ¢ except for dis-
continuities of the first kind.
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[ o), ) —otn, (), )} dg(s)

+ St(t) SISIuI<+m {B(u; "In(t_l(S), OJ))_B(u: ']n-l(t_l(s)’ w))} duds/uz

t(7)

n S“” SMW {B(u, 7, (t7(5), ©))— Bty n,-,(7(s), ©))} g(dsdu, o),

NS
and write this as
L+L,+ L+ L+ L+ 1.
Using (A.2), (B.2) and (C.2) we have for any ¢, v<t<o,,,

E(L)}Y < 40, [ Bl s, @)=, (s, )} ds,

E(LY< B [ Bllny(s, 0)=n,-(s @)} ds,

~

E{(L 7} <M B{ [ n,(t7(5), @)= 7, (47(5), 0) s}

<o, B{ [ 19,65, )= (s, ©)1°(d)]
<Mo,, | E{lns, @)= m,i(s, @)} s,

@4 B{LAS | E{Im o), o) = 7,-(7(s), )} ds
<[ B{ s, @)= 7,5, @)} ds,

~

By <2F 0, B [ 19,479), 0) = 9t 0)1ds)

<oFa, | B{l (s, )=, (s, )|} ds,
B <FE[[ 1,765), )=, (t749), @) 7ds]
<F [ Bllnds, @)= n,-(s, @)} ds.

Combining (2.3) and (2.4) we have for any ¢, <t<+ oo,

E{ l "7n+1(t7 w) - ’7,.(1«‘» )| 2}

SKISMWO .

2.5
@9 o Elmals, @)= 7l )|’} ds,

A

where K,=6[A} o,,+B; +M?c, +S*+2F¢, +F*].
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But E {|5.(f, ®©)—nt, ©)|?}, 7<<t<+oo, has a finite upper
bound G, as is proved above. We obtain recursively for any
t, Téiéam,

E{|n,u(t, @) =7,(t, )|} <K' Gt" ' !,
~(C(t 2
B{[ ['@rs), mits, @)-atr(s), (5, oas]]
<KGAo, "0l
- 2
[[@(s), 005, N =809), 9,05 @M aBs) | ]
<KIGBL"/n!,

E

———

~

@.6) E{[ [ nn,(t7), @)~ min, (t7(5), o) as| ]
<K} GMe, 1" /n!,

E{[ [ ot o —om, (176, @M dgs)] ]
< K7 'GS*#"/n!,

E([(7] (8 ), o)

t(r)
— B, 7, (t(s), @) duds/zf]"}
< 2K GFlo, t"[n!,

B{LJ,.. ot
— Bl 7, (7(9), @))adsdw) [

<KUGF*t*[n!.

Now putting ¢=o, (w™) in (2.6) and using Tschebycheff’s
inequality, we obtain for any fixed w™e W,

P{ sup [['Tatr() mts, @)~ atr(s), m,-ils, o) 1ds| 22,7}

7<t<or,
<P{[71ar(s), n,ls, @) —alr(s), m, (s, @)lds >, ]
SX”I/Z ,

N . +oo +oo
where \,=K}'GA} (s,,)""/n!. Since ;X,,"", ;7\"‘/2<+oo, for
any fixed we€ W,
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@7 5 Tatrts, w), n,(s, o) =alr(s, ™), 24(s, @)1ds,
r<t<o, ),

is uniformly convergent in ¢, 7<<t<lo, (w™), with P-measure 1
by Borel-Cantelli’s lemma. Since, for A,=K{7'GB; (o,.)"/n!,

P{ Sup. gi[b(r(s), 7(8, @)= b(r(s), 7,-(s, w))]dB(s))zx,,w}
<O E{[ |00, nils, ) =006, 1,5 ) aBO)| |
<A", ,

we can prove, in the same way as before that, for any fixed
w(l) c W(l)
TO b

(2.8) +le St[b(r(s, w®), n,(s, @) —=b(r(s, w®), n,_.(s, ®))1dB(s, w®),
<t <o, (W),
is uniformly convergent in ¢, +<<t<o, (W), with P-measure 1.
Similarily for any fixed w>e€ W,

oot w1 ., . »
[ o D7, 1), @)= mln, (s, w™), 0))ds,

+oo pct, W)
S o, L8, ), @)= ooy, (£, W), @) ]dgls, w),
tGrw

(2.9) Tt<o,, (W),
oo (tcs,w)y
g L8, 7,175, w), ©))
=B, 7,,(t7(s, w?®), 0))1dsdu/u’,
tce, w1y
[ 8 s, w), @)
tCr w1 Jlul < +oo
— B, 7,,(t7(s, wP), ®))]g(ds du, w®),
are uniformly convergent in ¢, 7<t<lo, (w®), with P-measure 1.
Consequently combining (2.9) with (2.7) and (2.8) we see
that, for any fixed w®e W, 7, o), 7<t<+ oo, is also uni-

formly convergent in ¢, T<{#< + oo, with P-measure 1. We denote
this limit by #5(¢, ).

Thus #(f, ®) belongs to d,-class with P-measure 1, and so
measurable in (f, ©), since it is so the case with 7,(f, w), as is

t(r.w(‘))S|£|ul<+oo

+oo

=1
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recursively proved. By letting #—+ o in (2.2), we can easily see
that #(f, ®) is a solution of the stochastic integral equation (2.1)
in the case C(0™®)=C y(o™).

Thus the existence of the solution of our stochastic integral
equation under the restriction |C(0®)|<N was completely proved.
Once this is done, we can prove our lemma exactly in the same
way as in K. Ito’s [12] paper and we shall omit the rest of the
proof.

It is to be noted here that {5(f, ), s<t< + o}, is a Borel
measurable function of {x(s, @), 7(#/, w®*), I, wP*), w,w,)—
10, w®*,w,) and B(Y, w®*)—B(0, wP®*), 0<¢t'<t—s} ; this follow
from
£ ATy

ot ) =nis, )+ alr(t, ), o, @)t

S t Aorgw(1d)

O, w®), ot ) dB(t" w®)

tet /\U'ra(“’(l))- w(1)y
[ min((, ), @)’
tCs Ao pow.01)

tct Aoy, wlidy
[ olalt™ (¥ ), @) dg(¥, w®)
tCs Aapglw w1

S tCt ATrw(1)), w1y

sAGpCw

s/\o‘,o(w(l)

(2.10)

Blu, n(t (¥, w), @) p(dt’ du, w™)

tCs AapoCw P, w1 S 1< Ul <+eo

tCf ATrow(1)),w(1)y
{ oo | Bl (7, w), 0))g(@t du, w)
tCs Aoy, w5 J lul<|

In the following discussion, let %(Z, (7, 6), @) be a solution of
the equation (2.1) satisfying the following conditions: (1) =0,
(2) C(0*)=0 and (3) P,{r(t, w)=r}=1. (For convenience we shall
write 7(f, ») sometimes instead of #5(¢, (7, 6), ®)). Here without
loss of generality we may assum that (¢, (7, 8),0), 0<t< + oo, is
right continuous in ¢ for fixed (7, §) and o. ‘

Let {W, r(t, a), B, PP, re R’} be a Bessel process and
W, Bt, #®), $?, P®, r€R'} a Brownian motion on R’, and
consider the probability space {Q, .@, P,, re[r,, 17}, where
Q= QOXWOKWD, B— Bx FOx F? and P,=P,x PO x PP .

Using the method of successive approximations as above we
can obtain the solution 5(%, (7, ), ) of the following equations :
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7(t, (r, 6),5)=0+ S:M‘“’”‘”m’a(r(s, ), 5(s, (r, 0), 5))ds
b(r(s, @), (s, (r, s), 3))dB(s, w™®),

for 0<t< 400, and SEQ=WOXW®,
where P& {r(t, @)=r}=1.

Without loss of generality we can also assume that (¢, (7, 6), &)
is continuous in #, 0<¢< + oo, for any fixed (7, 0) and &= (@, &®).

Our diffusion desired will be now constructed as follows.
Starting from the interior of the annulus, it will perform the motion
given in the polar coordinate by the pair of 7(f, @) and the
solution 7(¢, ) of (2.11) before oy, 13(@0"), and then it will stop
for ever or perform the motion given by the pair of »(¢, w*’) and
the solution of (2.1) according as it is on 2D;Y={(r, 0); =7} or
on 2D at time o1 (@W™Y).

We shall express this procedure precisely in formulas. Con-
sider a stochastic process {x(¢, (r, 0), &) (=, 7, &), »(¢, (r, 0), &))),
0<{t<+ =} over a probability space {ﬂ, .@, p,, r€lr,, 1]} (for
simplicity it is sometimes written as {x(¢, ) (=, &), (¢, &))),
0<{t<+ oo}) defined as follows

@) if o (@) >o, (@),

2.12) (r(t, 7, &), n(¢, (r, 0), &)= Ao, (WD), @), 2, (7, 0), 3)),
0<t<+ o0,

(2 11) + St/\u'(,o‘l)(i;(l))

0

@) if oy(@P) <o, (@),
(r(t, 7, &), 2, (7, 0), 8))=(r{t, ¥), 5(t, (r, 0), 3)),

0<t <o (@™),
(2.13) = ((t— @) Aoy (™), 0®), n((t— o, (@) Aoy @),
L 2o @), (7, 0), D). o)),
o (@)Lt 400,

where (7, 0)€D,,.
Let W be the space of path functions taking values in D
and define a system of measures P ,(*) over B by

709

Po,.o(B)=P,{&; %(, (r, 0), 5) €B}, for any BE 3.
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Then
(2' 14) wz: {W, x(t,ZI)), Qy P(r.ﬂ)a (7’, 0) € Dro}

is the diffusion satisfying the boundary condition (0.4). Though
we shall prove this fact in §5, we shall here prove the following
theorem by means the methods similar to those in K. Ito [13].

THEOREM 2.1. M is a Markov process satisfying the following
properties :

1) the semi-group {T,, t=>0} is strongly continuous,
and

2) T,f(r,0) is continuous on D, , if f is in C(D,,).

ProoF. Let us observe first that 9% is a Markov process.
(2.10) and (2.11) show that

a) if s<t<o,(@"), n(t, &)—n(s, &) is a Borel measurable of
7', wP*) and B(t', ) — B0, w¥*), 0<t'<t—s,

b) if s<o,(@)<t, n(t, &)—n(s, &) is a Borel measurable
function of 7’ Ao (W), W), Bt Ao (W), 0P+)— B(0, @),
r( — o, (@) v O, w?®), Bt —o,@¥*)v0, w®) —BO, w®) and
It — (@) v 0, w?), w®)—1(0, w®), 0O<t'<t—s,
and

c) if o (@)<s<t n(t, d)—n(s, d) is a Borel measurable
function of »(#, w®*), B(t’, w®*)— B0, w®*) and I(t{F, w?),
whw)) 10, whtw,), 0<<t'<t—s. Now noting that a(r,0),
b(r, 6), m(0), o(d) and B(u, 0) are periodic in ¢ with the period 27,
we can prove that for any B€ 4,

EAf(x(@, (r,6), 4)); B}
=EAB; s<o(@); Eyep oo {f(x(t—s, (r(s, 7, &),
9(s, (7, 0), &), &) 1t — s o, (@)}}
(2.15) +EAB; s<o @) ; Eveer i { flalt—s, (r(s, 7, &),
7(s, (7, 0), 6)),8)) ; o, (@) < t—s}}
+EAB; 0@ <s; Evis o { f(x(E—5, (25, 7, &),
7(s, (r, 0), &), &))}}
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—EAB; s<o (@) ; Epeep iy f(x(E =5, (#(s, 7, &),
7(s, (7, 0), &)), &)} }
+EAB; (@) <55 Breo rin A f(3(E—s, ((s, 7, &),
(s, (r, 0), &)), &)}}
=E{B; E,{f(x(t—s, (r(s, 7, &), s, (7, 0), &), &)}},

which shows that 0t is a Markov process.
Next we shall construct a suitable version of {W®, r(¢, @),

FP, PP reR'}. Given a Brownian motion W, B(t, ™),
B, PY ye€R'} on R', we can define a increasing function
a(t, r, ) by

8(¢, 7, W)= S'exp [2(B(r, &) +s(r))]d .

Let
r(l‘, 7, Z’(")(l)/)—__rexp [B(g—l(t, 7, w(l)/), ZT)O)/)] )

Then it follow that {r(¢, 7, ™, 0<{t<+ oo, PE}"} is a
version of {W®, (¢, ™), GO, P, r € R'}. Hereafter in this proof
we shall always use this version. Now we consider a probability
space {&, .@/, P}, where Y=0xWY'xW®, &= Px V' x F®
and P’'=P,xP{ x P®. Throughout this section {rt, r, o™,
0<t< +0co, PV} is denoted simply by {r(t, 7, @), 0<t< + oo,
P} and {&, &, P} by {O, B, P}

Let
, inf {¢;7¢ r, ®)=1,t=0} , if such t exists,
o{d, r) = { . .
+ oo , if otherwise,
inf {¢;7(t, 7, &)=r,, t =0}, if such t exists,
O_ro((/'-\)) 7): { . .
4+ oo , if otherwise,

0'(70,1)((6, r)=o,(d, ¥) A O',o((f), 7).

Since o,(, 7) and o(,,1(®, ) are independent of o and @®,
we shall sometimes write o,(@°, 7) and o, (@, ) instead of
o(b, ) and o,,1)(6, 7) respectively for the convenience of notation.
Similarily o, (&, 7) is independent of (&, @#®). Hence we shall
sometimes write o, ((w”, @), r) instead of o, (®, 7). Here without
loss of generality we may assume
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o (W, r)< 400 and o, (WP, ¥)< + oo .

Next let
inf {t; B(¢, @) +s(r)=s(r,) or s(1), t=>>0},
Toron( @, 7)= if such t exists,
\ + oo , if otherwise,
and

inf {t; B(t, @) +s(r)=s(1), t>>0} , if such t exists,
+ oo R if otherwise.

Tl(w(l),) r) = {

Then it is easily seen that o,(6, #)=8(r@", ), r, #") and
ooy @, 7)=8(Tprony(@, 7), 7, @). Hence if 7,—7, then (a)
r(t, 7, &)—r(t, r, d), (b) o(d, r,)—o(d r) and (c) cpeiy(d, 7,)—
O 1ro, 130, 7).

Now shall consider the direct probuct probability space
{O*, B*, P*} of {0, B, P} and {W®, 3> P®}, By (2.11), if
t< oo (@, 7), then, for any sufficient large #,

Ex{|n(t, (r, 6), &)—n(2, (r,,, 6,), &)|%}
£3[(0_Hn)2+Al2'oo-(’0»1)(w(l)’ T)SIE*{Ir(S, v, ('2))—7(8, Vs (/l\’)lz
0

(2.16) , +1n(s, (7, 0), &)=n(s, (7, 0,), )|} ds
+ B[ Br{in(s, 7, 0) (s, 7, &)1?
+1n(s, (7,0, &)= (s, (7, 0, &)1} ds ]
+E{Ln, (0, 0), (7, 0,050},

where Iim L(#, (7, 6), (7,, 0,);&)=0 for almost all &.
nyt o0

Using (2.16) and Fatou’s lemma, we have

im  E*{|9(t, (r, 0), &)—n(t, (r,, 0,), &)|%}

Ty, 0,0>(7,0)
¢ — ~
<3[B2,+ A on@®, 1| Tm B {lns, (7, 0), o)

0n, 0n)>(7, 0

—77(8’ (7’”, 6,:): cl'\))lz} ds ’ for t<0'(r0,1)(w0), 7’) )
which implies and the left side is identically zero for almost all
(13(01)'), wo)’.

Next, if o,,(6, 7,) >t >0,(&, ), then there exists an integer N
such that
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2.17) o, (&, 7,) >t >0o,(b, 7,), for every n>N.

By (A.2), (B.2), (C.2), (2.1) and (2.17), we can prove that if
o, (W, @), r) >t >o,(W™, 7), then, for any n>N,

E—*{|77(t_o-1(é>’ r), (1; 7(oy(d, 7), (, 0)’ é’))> &)
—ﬂ(t—(fl((/z\), rn)’ (]-) 7](0'1(('\” ?’”), (rn) Hn)’ ‘ﬁ))» ‘1\’) | 2}
<12[E*{| n(ay(s, 7), (7, 9), w) (0@, 7,), (74, 0,), &)}
A% (@, @), 0 |7 T E (s, (U w7, 0, 0), 00, 0)
~ _7](3 (1’ 77(0-1((6’ 7’,,), (r,,, gn)» d’))’ é’) | 2} ds
+85 7 B Ints, (@ oo, 1, (7, 0), ), 6)
—77(3 {1, 7](9-1((/1\)’ v ) (rn) 9;1)» é’))’ &))[2} ds

, tCt-o (w(l) rywly
+ Mo (@, @), 7| B {lnlt™(s, w™), 1, wlr(6, 7), 7, 0), ), 0

(2° 18) —W(t—l(& w(l))’ (11 7](0-1((0> 77:)’ (7’,,, en)’ é’))’ (/l\))lz} ds
t(t-o (w(l) 7y,w(dy
+5° SO Ex{] 5(t7(s, w™), (L,n(0,(&, 7), (7, 6), &)), &)
—(t7(s, w), (1, noy(, 7,), (7 0,), &)), &)} ds

) t(t-o (w(l) rywly
+2(a, (™, @), r)F)zg Ex{|5(tY(s, w™), (1, o, 7), (7, 6), &), &)

— (s, w®), (1, 7o, ,,>, (7., 6,), ®)), &)} ds

E*{|77(t—](s) w(l))v 1, 77(0'1(6)’ r), (r, 9)’ (b))) &’)
_77(1:_1(3» w®), (1» 77(0'1((1\” 7’”), (rn’ Bn)) (ﬁ))’ ‘2’)|2} ds
+EX{I((r, 0), (r,, 0,); )} ].

Then since lim t({—o (@, 7,), W) =t(t— o (@, 7), w™), we have

113400

lim I((r, 0), (r,, 6,);®)=0, for almost all (P), &

St(t c (w(l) )Wy

+F*

By (2.18) and Fatou’s lemma, we have

lim  Ex{|4(t, (r, 0), &)—n(t, (., 0,), &)[?}
0y 80>, 0) -
t-o w(D,r)

<K.| fim  B*{|(s, (L 7(e(6, 7), (7, 0), &), &)

0 Ty, 84>, 0)

— (s, (L, (@, 7,), (7,,, 0,),0)), &)|} ds,
for o, (W, @), r) >t >o (@, 7),

where K, = 12[ A2 o (W™, @), 1) + B2, + Mo, (w™, @), 1) + S*+
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2‘("?0((“’(1), @™®), 1)F)?*+F*]. On the other hand it is easily seen
that for almost all (w™, @),

lim E*{|"7(t_‘71(é)7 7), (1, n(oy(d, 7’,,), (7n? Hn)’ C/L\’))’ (s)

Ty, 02027, 0)
(2.19) ==&, 7,), A, nlo@, 7,), (7,, 0,), &), &)|} =0,
for o, (W™, @), r) >t >, (@, 7).

Hence combining (2. 18) with (2.19) we have
(2. 20) lim  E*{|{, (r, 9), @) —n{t, (r,, 0,), &)’} =0,

70, 8,0>(7, 0)
if o, (W, @), ) >t >o (@, r), for almost all (w™, .

And it is easily seen that if >0, (W™, @), 7), then (2. 20) also
holds.

Thus, (2.20) is true for any value of ¢ and it follows from
this that if (r,, 0,)—(», ), there exists a subsequence (7,,, 0,,)
such that

2.21) 9, Ty On), &)=, (7, 0), &),

for almost all (15), &. Therefore using Lebesque’s bounded conver-
gence theorem we can prove that if (»,, 8,)—(r, ¢), then there
exists a subsequece (7., ¢,,) such that

th("nk’ Hﬂk)-> T, f(r,0), for f(r,0)€ C(D,o) .
Since this is true for every sequence (r,, 0,)— (r, 0), we see that

o ‘}/i)gl(r ” T.f(', 0)=T,f(r,0), for f(r, 0)€C(D,,).

The right continuity of x(¢ (r, 6), &) in ¢ implies that 7,,
t>>0, is strongly continuous and Theorem 2.1 is therefore com-
pletely proved.

According to E. B. Dynkin and A. A. Yushkebich [8], Theorem
2.1 implies the following

ProprosiTION 2.1. I has the strong Markov property.

3. Construction of path functions (2). In this section we
shall construct the path functions of the diffusion in the unit disk
whose generator and boundary condition are given by (0.3) and
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(0.4) with “8(0)=0”. We shall use the same notations and de-
finitions introduced in the previous section, except {W®, #(¢, w),
BD, PP re[0,1]} and t(¢, w) which will denote here a reflecting
barrier Bessel process and its local time at point {1}.
Now we consider a stochastic integral equation of the same
type as (2.1);
EAGp )

7, ©)=C(@®) + S a(r(s, w®), 7(s, ®))ds

7 Aopolw1D)

t/\o'ro(w(l)) ‘

+g b(?’(s, w(l)) 7](8, w))dB(S, w(z))
7Ny (w1

St(t/\u'ro(w(l)),w(l))

m(n(t~(s. w™®), w))ds
tCr Aoyl w1 (n(t'(s, ), ®))

j“”\”’o(ww)'w(l))

3.1) .
] a(n(t™'(s, w™), ®))dg(s, w™)
tCr Aapolw, 01

+
+

t(t/\o',o(“’(l)),w“))
+S

Blu, n(t™'(s, w™), @) p(ds du, w™)

tCr Ao yoCw 2, w ) Sl < lul< +oo

t(t/\o-rg(W(Sl))'w(l)) .
[ [ B s, ), o) g(dsdu, w®),
lul<1

t('r/\d,»o(w(l)).w(l))

for any *>0 and 0< #,<1. Corresponding to Lemma 2.1 we
have

LemMma 3.1. Lemma 2.1 is also true in this case of 8(0)=0.

Proor. First we note that there exists W such that

W= {w®; w® e W, o, (W) <+ o0, t(o,(w?), w?)<+ o0},
and
PP(Wi)=1, for any 7,<r<1.

Hence it is enough to prove that Lemma 3.1 hods for any
w® e WL,

In order to find a solution of (3.1) we make use of the
method of successive approximations; we define 7,(f, ),
n=0,1,2, -+, exactly in the same way as in the case 6(0)=1.

Now using the same methods as those in the proof of Lemma
2.1, we can prove the both of E{(»,(f, »)} and E{|y(t, ©)—
o, ®)|%}, 7<<t<+ oo, are bounded and #(f, w), T<i< + oo, is
measurable in (¢, ®). Furthermore for any fixed w™ € W, {5,(¢, »),
U(tls, wP*), withuw,) =10, widl,o,), Bls, w?*)— B0, w®*), 0<s<t—}
is independent of {/(t(s, w{*), wid)!,m,)— (0, wit,m,), B(s, wi®*)—
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BO, w*), 0<s<o, (w?)—t, for any 7</<o, (w"). Thus we
can define 7,(f, ®) and so recursively 7, ®), n=3,4,---. Now it
follows for any ¢, r<t<o, (W),

E{[ [ @), n.ts, o) —atr(s), mysls, @)as ] |
< A0, | Blin(s, ©) = n, (5 0) 1} ds,

E

——

[ 0s), 2.5, ) —br(8), mis, ) dBS) | }
< B[ E{lns, ©)—n,1(5, )} ds,

[ 0ntanntt(5), @)=, (t76), @)as [
<Mt(o,) | E{lmals, @)= maals, @)} ),
E{[[7 ctnt), ) — o, o(t7(5), @) de(s) [}
<8 [ Blinls, )7, (s o)1} 1ds)

£ M S (B, 7, (47(S), @)= Bl 7,,(t7(6), ©)) duds/uz]z}

() J lul

~

E

——
r

2P (o, | ElIn,(s, @)= 7,05, )} 4ds),
and

E {[S ms.,‘.w(f’(w 776, @)= B, 7, (t(5), @))a(dsdw) ||

t(mn

<F [ E{In,(s, 0) =, s @) 3 1@9)

Hence we have that for any ¢, 7<t<+ oo,
E{ I 77n+1(t) w) - ﬂn(t) CD) I 2}
t/\u-ro(w(n) - A
<K | E{In,(s, w)=n,-(s, @) }H(ds, w™),

ARG o)

where K;=7[ A} o,,(w™)+ B} +Mt(a, (W), w™)+S°+2F*t(a, (w™®),
w®)+F*], and @(t, w®)=t+1(, w®), T<t< + oo,
Since

3.2) Stggt(ds w®)--A(ds,, w“))=<gi€(ds, w<'>)>"/n!<+oo,
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we can complete tne proof, repeating the same arguments as
those in the proof of Lemma 2.1.

Now we define a combination W= {W, x(¢, w), B, P, (v, 0) €
D,O} using the same procedures as those in Section 2.

Then corresponding to Theorem 2.1 and Proposition 2.1, we
have

THEOREM 3.1. Theorem 2.1 is also true in this case of
((8(0)50”.

Now we have, as an immediate result from this,
PropoOSITION 3.1. W has the strong Markov property.

Repeating the same arguments as those in the proof of
Theorem 2.1 and noting (3.2) we can prove Theorem 3.1. The
proof of Proposition 3.1 is clear.

4. The Markov process on the boundary concerning the

diffusion on D,,. In this section we shall derive a system
{», @ >0} of Markov process on 9D from the diffusion 9 on
D,o constructed in Sections 2 and 3, and use it to discuss the
Green operator of It

Let {W<, B(t, @), B, P&’} be a Brownian motion on R!

introudced in Section 2. Now we define #(¢,r, @) by

t
4.1) 7,7, w‘”’)zﬂrés (#(s, r, @) ds+ B(t, 0,
0<t<+o0 and 0<r<1.

The {7(¢, 7, 7), 0<t<o(on@, 7), PP} is a version of

{r(t, @), 0<t<0o(ro,1)(W, 7), PV}, where
, inf {s; #(s, v, w")=1 or »,}, if such ¢ exists,
0(,0,1)(11)“) ’ 7')2 { . .
+ oo , if otherwise.

Noting that the infinitesimal generator & of minimal diffusion
corresponding to M constructed in Sections 2 and 3 is a local
operator in D, , viewing (4.1) and (2.11) as the stochastic integral
equation for a two dimensional diffusion (r(¢, &), 7(¢, ®)) and using
Theorem 3.2 in K. Ito [11] we have the following
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ProposITION 4.1. We assume that a(r, 0) and b(r, 0) belong to
C'(D,,). If u(r, 0) belongs to C*(D,,), then

ltlgl LT,u(r, 0)—u(r, 6)]/¢

1<82 1 © o° 8)
== +=—+0b(r, 0) —+2a(r, 0)— , 0),
2 \or* r ar+ r )892+ alr )80 ur, 0)

for (r,0)€D,

0?

where T, is the semi-group of M constructed in Section 2 or Section 3.
The proof is easy and so is omitted.
From now on we shall always impose the following :

ASSUMPUTION A: a(r, 0) and b(r, 0) belong to C¥(D,,).

Throughout Sections 4 and 5, though some statements in the
sequel will be also true without Assumption A.

Here, we cite some known results in the theory of differential
equations for late use.

LemMma 4.1 1) For any a>0, the equation
4.2) (@—A)u(r, )=0, on D,,,
with the boundary condition
4. 3) u(r, 0)=f(r, 0), on 9D, , fe€C(@D,),
has a unique solution u(r, 0) € C(D,,), which is expressible in the form
(4.4) u(r, O)=hf(r 0)=hifQr, O)+h3f(r, 0),
where
hyf(r, 0)= SaD (@, 0);dr'do") f(r', 0,
nsfer, 0=, P, 0) 5 dr'd0) £, ),

and hi((r, 0);dr' d0"), i=1,2, are the positive measure on 9D and
oDy respectively such that hi((r, 0):0D)+h5((r, 0);0D:)<1.
2) If fe€C*aD,,), then h*f€CXD,,).

8) Cf. S. Ito [15] and T. Ueno [21].
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LEMMA 4.2.° There is a system of linear operators {Gi} on
the space C(D,,). satisfying

(4.5) IGEFIS Sl FeD,y,

(4. 6) GLf—Gyf+(a—RB)GIGyf=0, feaD,,),
4.7 (@—A)GLf(r, )=f(r,0), (r,0)€D,, fecuD,,),
4.8) GifelD,), felD,,),

where

aD,)={feCD,,); f(r,0)=0 on oD, },

(4.9) GyfeCD,), for feCD,),
(4.10) lim @G f—fl1=0,  for fE€UD,,),

(4.11) Jim aGif(x)=f(x), for x€D,,, f€CD,,) .

Making use of Propositions 2.1, 3.1 and 4.1 and Lemmas 4.1
and 4.2, we have

PROPOSITION 4.2. Let M be a diffusion process constructed in
Section 2 or 3. Then

Guf(r, =G f(r, O)+I3(Gaf)(r, 0), FECD,,),

where G, is the Green operator corresponding to the diffusion I,
and GLf=GSf+hyf.

Using the strong Markov property of 0, the proof is easy
and so is omited.

We shall discuss only the diffusion W= {W, x(¢, w), B, P,
(r, 0) EB,O} constructed in Section 3, while we shall only state the
final result as Theorem 4.2 for the diffusion constrncted in
Section 2.

We shall first derive the Markov process 9 on the boundary
2D from the dffusion 9t on 13,‘0. Let W° be the space of path
functions with values in 9D. And we define a system of proba-
bility measures Pg(+), (1, ) €9D, by

9) Cf. S. Ito [15] and T. Ueno [21].
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Py’ € B)=P,(0(t'(t, w), w)€B), BeR,
where t7'(¢, w)=inf {s;1i(s, w)>¢}. Then we have

ProposITION 4.3. M@={W°, z(¢, w°), B, Py, (1,0)€dD} is a
strong Markov process satisfying

1) T7? is strongly continuous,
and

2) (C(9D) is invariant under T?,
where T, t=>0, is the semi-group corresponding to M.

This fact was established by many authors even for more
general Markov processes'”. We shall here sketch a proof which
is due to K. Ito and H.P. McKean [14].

Proor. First we note that
1+ s, w)=t7't, wi_1c.00) +17'(s, w) .
Given >0,
{w;t7' (s, w) =t ={w; s>t w) N {w ;17 (+ o0, w)} € B,.
Hence we have, for Borel measurable g and f,
E§(f(ws™) g(z(t+s, w))
=Ea.o{f(0U7(c, Wi-16,), Wi16,0)) 8O (2, Wi-165,10), WT-1c6.00))}

=Eqo {07 (¢, Wi-16.0) Wi-16.09) Eaoct= 15,0005 18008, w), w))}}
:Eg{f(wg_)Eg(s.wo){g(z(t, wO))}} ’ t: 320 .

Hence MM has the Markov property.

On the other hand, using the same procedure as those of
Section 2, it is easily seen that there exists a version {y(t7'(s, w™),
1, 0), &), 0<s<+co} of M satisfying

lim E{f(nt"'(s, w?®), (1, 0), ®))}

(1, 8")>(1,0>

=E{f(»t"(s, w"), 1, 0), ®))} ,  for fE€L(AD).

Hence using the same method as those in Sections 2 and 3 we can
prove 1) and 2). According to E. B. Dynkin and A. A. Yushkebich

10) Cf. K. Ito and H. P. McKean [14] and G. Maruyama [18].
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[8], 1) and 2) imply the strong Markov property.

Next we shall define a new Markov process following M. Kac
[16]. Attach a distingished coordinate on killing time o€
[0, +] to w; and extend P}, (1, 6)€0D, to B X FK[0, +c])
so that

PR oo >t/ B)=e 7', t>0:
let
o 1007'(¢, w), w)=o0 ;120 =P y{ow.)=0/B}=1;

let
2(t, w¥)=

{ Z(t, w) ’ t<0(m) ’
S ’ tz(}'(m) ’

where z(¢, w)=0(1""(¢, w), w).
Then we have

ProposITION 4. 4. {z(¢, w*), t>0, BXFH[0, +o]), P¥®, x€
oDV {co}} is a version of strong Markov process M= {W*=, z(t,w®),
B, P, (1, ) € oD} satisfying the following properties:

1) T is strongly continuous,
and

2) C(3D) is invariant under T,
where T is the semi-group corresponding to M,

Proor. To show that {z(f, w*), t=>0, Bx F[O0, +]), P,
x€9Dv {=}} is Markov, it is enough to show that

EQ o {fwi)g(z, w*))}
= Eg.)e) {f(w:kg) Egtlt.)z(s.w*)) {g(Z(t— S, w*))}} ’ t) 320 ’
holds for any Borel measurable g and f.

This equation is evident when g is constant and therefore
substituting g—g(eo) for g, we can suppose that g(e)=0; also if

4.12)

O ’ if U(N)St ’
Bw) , if otherwise,

(4.13) Blw*)— {

then

T (Bw*)=Eq. 0 {Bw), o, >t} =Eq.0,{Bw) exp [ —at™'(¢, w)l},
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and, since g(oo)=0, B(w*)=g(z(¢, w*)) f(w*") satisfies (4. 13).
Finally we have

Qo {f(wi7) gz, w) =ESp» {f(wk) g(2(t, w)) exp | —at (¢, w)]}
=Eq.o{f(O0E7(c, wi-1u0)s Wi -15,00)) €% %
(4.14) X O ({5, Wi -10.05))s Wi-1eun) €XP [ — QL (E—5, W 1¢5.05) ]}
=Eqo{f0C(+, wi-16.m0), Wi-165.0)) €Xp [ —t™(s, w)]x
X Eci0ct-165,0,00 (8O (£, w), w)) exp [ —at™'(t—s, w)]}}
=Eco {fO007'(¢, Wi-16.00)s Wi-1.u5)) €XD [ —at™'(s, w) ] x
XESoct 165,000 1(8(2(E—s, w¥))}} .

But Bw*)= f(w* YE®D ....n(g(2(t—s, w*))) also satisfies (4.13),
thus (4.14) implies (4.12).

In the similar way to that in the proof of Proposition 4.3 we
can prove 1) and 2).

To avoid repeations we introduce

DEFINITION. A strong Markov process 9 will be called the
boundary process of order «>>0. In particular W is called simply

the boundary process.
In the sequel we may consistently use the following

NotaTtions. T, t2>0, and K{”, >0, denote the semi-group
and the Green operator corresponding to the boundary process of

order « respectively, that is

(4.15) T fO)=E{f(z(t, w™)}, t=0,
and

(4.16) K £(0)— S:wefw T, F(0) dt <EE2,”” {S:meﬂf fa, w““))dt}) _

Denoting the infinitiesimal generator of the semi-group 7.* in
Hille-Yofida’s sense by A and its domain by DAI®).

We are now going to prove the following theorem which gives
us the relation between 9t and M* which will be useful to prove
that our diffusion satisfies the boundary condition (0.4) (8{0)=0).
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THEOREM 4.1.°. 1) A function u=G,f in the common range
R of G,, >0, can be expressed in the form

5]
on

@.17)  «(Q, 6’):K§,"1’< Ggf>(0), for any (1, 0)€3D .

2) For any a, 3°>0
(4.18) K®g(0)—KP g(0)+ (@ —B) GE (iK™ g)(0)=0, g€ (@D),
and
(4.19) ?I‘f’)u=9l(“)u+(d~/3)—% Golru()

where

+

G5 g()=Ea\ |

Jo

T et oM gl (s, w), O, w))ds} . gelD,,).

We shall begin with several preliminary lemmas.

Lemma 4.3. For any f(r, 0)€(C(D,,),
2Guftr, ) €D, vOD), a0,
/4

Proor. If f(r, 0)€(C(D,), then there exists, for any given
&>>0, a function f(r, 0) such that

fr,0)eC(D,,) and |f(r, 0)—f(r, 0)|<_&.

Then
|Gafr. 0)—Gafr, 0)|<ep(r),
where
Y lro 1y 1 sy -as, oty . ay e}
pir)=E" e “'dit +—“E,. {e="rq s 0y (W) <o (W)}

On the other hand using Lemmas 4.1 and 4.2 we have
Gaftr, 0)eC*(D,,),

and by the definition, the left derivative gi;p(l) of p(») at 1
v

exists and is finite.

11) See. T. Ueno [20] and [21].
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5]
on

Therefore there exists Gif@, ) and ai(;.‘,’f(l, 0) € C(3D).
n
Since %G;’ f(r, 0)€C(D,)) and %h;‘ f(r, 0) €C(D,,uaD), we can
prove in the usual way that 8152 f(r, 6) € C(D,,\v3D).
r

LEMMA 4.4. For any integer n>1,

(4. 20) E"{(o,-o(w™®))"}=0("), as €0,
and
(4.21) EP{(t(or-o(w), w)} =0("), as €|0.

Proor. It is easily seen that

EP{G @)} =nt| [ e nar, r)

&7 -1y 7,)Am(r,) dm(r,)---dm(r,),
where
s(ry—s1—¢&), for r<r,

g(r, r')= { s(r)y—s(r—¢&) , for r'>r.

Hence
E@ (G ) <n! (1 g0 ndmn) =06,
In the similar way we have

EP (o), w)} <n!([ a1, nani)) =06,

where M(dr) =m(dr)+8u(dr). q.e.d.

LemMa 4.5. For any t, 0<t<o, (W),
4.22) E{|n(t, 1, 0), 6)— 0|} < K {(t++1(t, w™®)+({(E, w™))},
where K, is independent of t and w.

Using the similar methods to those in the proof of Lemma
2.1 the proof is easy and so is omitted.

Proor of THEOREM 4.1. First we define two sequences of
Markov times {ri(w, &), n=1,2,---} and {=i(w, &), n=0,1, -}
respectively by
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inf {¢; 7, w)=1—¢, tZ>0} , if such ¢ exists,
w, = . .

+ oo , if otherwise,

inf {£;7(f, whi,.e)=1, =0}, if such ¢ exists,
Tz(w! 6): { . .

4+ o0 , if otherwise,

To(w, =0, Ti(w, &=7'(w, &),
'rvlu(wy 8) = rrl(l'vit:rﬁ,l(w,lr) ’ 8) + 'T;zs—l(w78) , h= 1) 21 o
'Tvz»(w» 8) = ‘Tz(wt},(w.z) ’ 8) + rrvla(w’ E) ’
By the strong Markov property of 9, we have
G,f(1,9)
TI(W, 8)

— —wT?_ (w8
=2 Eu,o»{e n Ea o2 cwerwn
0

n=1

e " f(r(t, w), 0(t, w))> dt}

+ 3 B {e O G f(L -, 0(riw, &), )}, for any €30,

Since for any (1, 0) €9D

(4.23)

Boof [ f00), 00)dt}| <21 A1EL (o 3 =066,

Zj Eﬂv9.'{8_“15"E<1.9<.—%A,)>< Se' Fr (@), 00)) dt)} I
<o(D)Eq, 051 :Z:jl e *i-1E} =0(1) .

We have by Lemma 4.3

53 Bl GA(L—&, 0}
(4.24) .

= X Banle ™ 2 GLAL 0(r)} £+ 0(1)

On the other hand we obtain, for any g(6) € C(aD),
+ oo L o0

5 Eaole ™t g0} e Eapl | e g00)t(dt, w))
4.25) . ’

= S Eufe t Eang (e mgoe~ [ e goupian))
and
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Eo.ofe g0 e[ e g00) tary)
=Eaple (g0~ g(0)} &
+Eanl || e *(e0) ~ gt t(an)

+EP{e= [ eean) g0) + Bt 1) g0

Since lim <E§1>{S"“Ee-wt(dt)}/e>:1, and lim EQ{e-%i-e} =1,
0 g0

€40

we can see that for any (1, 6) €D,

Boo e (@)~ | e g0 (an)
= B {7(g(0) ~ g(0))} 6
+Eaf || o *e(0)- g0t (an)
F8D(E)E,

(4. 26)

where 8(€) tends to zero uniformly in 6 as & 0.
By the defnition of 9t we have

Ji(0; E)=Eq, o {e™*" (g(0(7")) — £(6))}
=EP[e -2 E{g(y(0,-.,(1, 0),6))— g(0) ;
(4. 27) I9(o1-e, 1, 0), &) —0[<E'}]
+EPLe -2 E{g(n(oy-., (1, 0), ) —£(0) ;
[7(0y-e, (1, 0), &) — 0| =€} ]
Let M;= max max |g(¢0")—g(0)|, where U,(0)=1{0"; |0—0'|<

(1,0)€dD 7€V (8
&7}, Since g(0) is uniformly continuous in 9D, we have

E{lg(n(o,-e, (1, 0), &))—2O)]; I9(o1-e, (1, 0), &) — 0| < &%}

4.28
( ) <M;—0, as E-0.

Using Tchebycheff’s inequality, Lemmas 4.4 and 4.5, we have

B Lo E{|g(o, o, (1, 0), )~ (0)]
[7(1men (L, 0), )01 ="3]
2K gl EP oo+ (01 + o)+ (t(or- )} /€7
=),

(4.29)
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where 6®(€) tends to zero uniformly in 6 as €| 0.

Thus combining (4.28) with (4.29) we see that J,(¢, &) tends
to zero uniformly in 6 as & 0.

Now we shall estimate the second term of the right hand side
of equation (4.26). By the definition of Y&, we have

e100: 9=F.p| | ea(0)-go)1(an)

—E¢| [ e Ble0) - gtutt, (1, 0), )
(4.30 H10=n(t, (1, 0), &) <&} (@) |
LB (" e Blg0)~gtnte, 1, 0), 60
10—n(t, (1, 0), 6)|>E7 t(dt)], for (1,0)€aD.

Now Lemmas 4.4 and 4.5 combined with the Tchbycheff’s
inequality, will imply

B[ e Ble@) g0t (1, 0, 40
(4.31) 10—5(t, (1, 0), &)| >} t(dt)]\

£2| Ig” E(ll) {O-I—Et(o-l—e) + (0-1—3)2t(0-1—8) + (t(o.l—s))z"'_ (t(o_l—s))a}e_llz
_5(8)e,

where 6°(€) tends to zero uniformly in 0 as €} 0. It is easily
seen that

B[ [ e Eg0) g0, 0,0, 6 ;

0= (t, (1, 0), )| <"} t(a) |
<MD ) =5,

(4.32)

where 8“(€) tends to zero uniformly in ¢ as &| 0. By (4.30),
(4.31) and (4.32), we can see that J,(0;¢&) tends to zero uniformly
in 6 as €] 0.

Therefore

(4.33)  |Eq.pfe " g0("))e— S:e‘“’g(ﬁ(t))t(dt)} | < &8%(8) ,

where 6°(€) tends to zero uniformly in 6 as & | 0.



402 Nobuyuki Ikeda

Combining (4.25) with (4.33) we can see that

:Z;Ea,m{e"”*('"'”g(‘?('rk(w, e)e, for (1, 0)€aD

o

tends to E(,,e){g+ o~ g(0(t, w)H(dt, w)} as € 0.
Applying this to (4.24) we have, by (4.22) and (4.23),

o0

G.f(, 6’)=E<,,o>{g e‘““"w’;—nég FOEE, w), w))dt} (1,0 eaD.

0

Thus we have completed the proof of 1).
Now we shall prove 2) and 3). By the definition of K{”, we
can see that for any g(¢) € C(aD),

K g(0)—KP g(6)
=E<,,o>{S"'me'w'"”e-“'S'e-fﬁ-wfdsg(a(t, W) t(dt, w)} (8—a)

oo

=E(,‘9){ S F”e_ﬁse—-ms_w)dsg*r e_a,te—yt(t_w;")g(g(t’ u;;"))t(dt, w;)} (B—“)

ool | e P e e U K)o, w), 065, w) dsl(8—a), @, £0.

Hence using 1) in theorem we have, for any «, 8>0,
(4.34) K{g0)— K g0)+ (@—B)GF(h1 K52 g)(0)=0.

By (4.34) and Lemma 4.3 we can prove that the range space
of K§{ coincids with that of K{. Since K{”, 0<y<+ o, are
the Green operators for MM, the range space of K{” is inde-
pendent of y. Therefore by Hille-Yosida’s theory we can prove
that 9(UA“) is independent of «, ¢ >0.

Hence using (4. 34) we have

4.35)  @AP_AD)YK® g(9)=(“—5’)%5?3h"f @ g(0) .

(4.34) and (4.35) imply 3) of Theorem 4.1. Finally we completed
the proof of Theorem 4. 1.

Feller’s results on the boundary condition for the one-
dimensional diffusion will be interpreted in the terminology used
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above, and T. Ueno [20] and [21] has recently proved (4.17) in
the our case using the analytical methods.

For the diffusion constructed in Section 2 we have correspond-
ing to Theorem 4.1,

THEOREM 4.2. 1) A function u=G,f in the range R of G,,
a >0, can be expressed in the form

u(l, 6)— K<“’(f+§n—62f)(9), for any (1, 0)€aD.

2) D) is independent of the choice of a>0.
3) For any «, B3>0,

K g(0)— K g(0)+(a—B) KK g v G (K52 g)))(0)=0,

gel(aD),
and

AP 4 = WAy + (X — B) (H%G‘é’f‘f“)
” .

This theorem is proved by using the same procedure as those
in the proof of Theorem 4.1 and therefore the proof is omitted.

5. The infinitesimal generator of the boundary process and
the boundary conditions. In this section we shall seek the
boundary conditions corresponding to the diffusion process 9t con-
structed in Section 2 or Section 3.

We shall first discuss the diffusion process 9t constructed in
Section 3 whose boundary condition will be given by the following
Theorems 5.1 and 5. 2.

THEOREM 5. 1. Let & be the infinitesimal generator corvesponding
to M and D(S) be its domain. Suppose that u(r, 0) belongs to ID(S).
Then

G.1) ai[u—hfu]a, 0)+ AU, 0)=0, for amy a>>0.
n

And the equation
(5.2) (a—Au(r,)=f(r,0), (r,0€D,, f(r,0)eCD,,,
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has one and only one solution satisfying the following conditions
(5.3) lim Au(r, 8)=0, (r,, 0) €ODY,
r{,ro

and for any given B3>0,
5. 4) ai[u— R8ul(, 6)+ AP u(1, 0)=0.

n

Proor. Since u(r, 8) € D(G), for any given « >0, there exists

a function f(r, 0) € C(D,,) satisfying

u(ri 9):Gaf(r, 6) ’ (7: 9) eﬁro .

According to Theorem 4.1, u(1, 6) € DA). By (4.17) we
have

(5.5)  ADG,f(, )= _aiégfa, 0, (,6eaD.
n
Since G f(r, 0)=u(r, 0)—htu(r, 6), (5.5) implies (5. 1).

Let u,(», 0) and u,(r, 8) be two any solution of (5. 2) satisfying
(5.3) and (5.4). Putting

1)(7’, 9)‘:”1(7) 9)_142(7» '9) s
we can prove that
(a—A)ov(r, 8)=0,

and that o(r, 0) satisfies the conditions (5.3) and (5. 4).
Theoefore

o(r, 0)=h3v(r, O)+h3v(r, 0) .
Using (5.3) we have

0= lim (ASv(r, 0)+ huv(r, 0)),
Ty

that is
0= lim h30(r, 0)=0v(r,, 0).
r J,ro
Therefore
(5.6) v(r, 0)=hiv(r, 0).

On the other hand by (4.17) and (5.4) we obtain that
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5.7) o(1, 6) :K;“;[ aan [o— is v]] ©).

Combing (5.6) with (5.7) we have
v(1, 6)=0, 1, 0)€aD.

Hence o(r, 0)=0, (r, 0) €D,,, that is u,(r, O)=u,(r, 0).
Next in fact using Lemmas 4.1 and 4.2 and Theorem 4.1
we can prove that

utr, 0)=Cer(r, 0+ mx(K( 2625 ) ), 0),

is a solution of (5.2) satisfying (5.3) and (5. 4).
Hence we have finally completed the proof of Theorem 5.1.
We are going to seek a certain representation of A, If we
impose some appropriate regularity conditions to the function
u(r, 0), A can be written in a concrete form as will be soon
proved in Theorem 5.2. First we prepare several lemmas

LEMMA 5.1. Suppose v.(w) is a random time such that
Teo(W) =01 (W) + 0, (W3, _ ) -
Then we have
(5.8) AL u(0)= lim Eq, o, {(e”*"=u(0(me(w), w)) —u(9))/¢},
for u(0) € PA) .

Proor. The condition #(6) € D) implies that for any B >0
there exists function f(¢) € ((aD) satisfying

w®) =K £(6), (1,0)€aD.

Hence using the strong Markov property of 9, we have

t(To(w), 5> s w .
w@=Eopf | et s 10670, w), w), w)
+ B {e P KD f(0(r (a0), 1)

Since E, g, {t(T:(w), w)} <+ o0, we have
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£CT (W), W)

5.9) 0= —Ecx,s){ S e A (O(H (¢, w), w))dt}
+ E¢;, 0 {((0(7o(w), w))e *7=*} , for any (1, )€ aD.

On the other hand by the definition of M and M we have

Baof |7 e o 0D w0 0)) dt) — B )} 2eu)

0

<R

E(1.0){ Stw‘*e)(e—arlm_ 1 )dt} }

+ B [T BN u0) -2 a0, 1, 0), o)
G-10) ), (1, 0), )— 0] >ev}t
+ E[ g:“"“)E{|wm(e)-%wu(n(t-l(n, 1, 6), ®)| ;

19t (®), (L, 0), w)—0]<L &7 dt]
=1, 1(8) + Ia.z(e) + [3,3(8), say.

Using Lemma 4.4 and 4.5 and some properties of reflecting
barrier Bessel process we have, by lim E, ,, {t(7.(w), w)} /=1,
€40

|1,,.(6)| =0(€),
6.1y (L@I=2n B [P0, 1, 0, 0) -0
g dt].
| 1,,3(8) | << M §yar,, ESV {t(, o)} = 0(€) .
Using (5.10) and (5.11) we have

t(o _ (W), W)

(.12) lim EM){ S o~ H RN O£, ), w))dt} /e

=ADy(0), 1, 0)eaD.
Hence using (5.12) it is easily seen that (5.9) implies (5. 8).
LemMa 5.2. We define two random variable X (&) and Y (&) by
Xo(b)=
(56.13) m(O)t(o, (™), w)+ Blu, 0) p([1, + oo X [0, to,_ (™), w™)), w™)
+B(u, 0)g([0, 1) X [0, to,_¢(w™), w)), w®)
+a(0)g(t(o,_ (™), w™)), w®),
and Y (@)=7(o,(w™), (1, 0), &) — X(d) .
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Then we have
1)

[El {ei=Xew} ][1/81

G0 ko [im(®)z—o%(0)z/2+ S

" (ei*t —1—iz&)n(dE ; 0) ,

T

as €0, where n(d€;0) is the Lévy measure of i.d.l. satisfying
(0. 6).
2)
|EAY (@)} | =0@) and E{Y¥ &)} =0().
Proor. By (5.13)
El {g‘zXétQ)} =E P {gm @1 wpn
where (2)= —im(6)z+o*(0)2°/2+ r
Using Lemma 4.4, we have

(et —1—izE)n(dE ; 0).

T

B {exp [ — o, o), ), wN(a) T} =1—(2)+0(E)

Hence R
lei{n (El {eizXE(w)} )[1/5] = exp ( — f\l/«(z)) .

2) is proved by the same methods as those in the proofs of
Lemma 2.1 and Theorem 4. 1, using Lemma 4.3 and 4. 4, Assump-
tions (A.2), (B.2) and (C.2). Hence the proof of 2) is omitted.

Using Lemmas 5.1 and 5.2, we have

THEOREM 5. 2. If u(9)€ C*(aD), then we have
1) w(®@)e D), for cvery a¢=0.

)

5
(0
200 19

2) A y(G)= %h"{u(l, 0) -+ m(0) %u(()) +%,ﬁ(a)
(5. 15) °
|7 @O rH—u@ - 2 u@)nd ;o).

Proor. Using Lemma 5.1, we have

(5.16) AL »(8) = 181{101 [Eq.ote e u(0(r.(w), w))} —u(6)]/&, u € DA).

On the other hand we have, by the strong Markov property of I,
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Eq.p{e "« u(0(re(w), w))}
=Eq.ple -2 hu(l—¢&, 0(o,_(w), w))}
=Eq.0{hiu(1—¢, 0(o,_(w), w))} +0(é)

since lslr? [Eq.q {e~* -} —17]/6=0.
Usi*ng Lemma 4.1 we have
Tu(r, 9) €C'(D,,), u€C3D).

Hence we can apply K. Ito’s [12] Fundamental lemma (pp. 48 50)
and Lemma 11 (pp. 40-41) to equation (5.16). Then using
Lemma 5.2 it is easily seen that (5.15) follows from (5.16). By
Hille-Yosida theory we obtain

u(6) € PA),

since the right hand of (5.15) is continuous in 6.
In the sequel we assume that 9 is the diffusion process con-
structed in Section 2. Corresponding to Theorem 5.1, we have

THEOREM 5.3. Let & be the infinitesimal generator correspond-
ing to WM and D(S) be its domain. Suppose that u(r, 0) belongs to
D(S).

Then

ai[“—h"{u]a, )+ A y(1, 6)= lim Gu(r, 0), for any a>0.
n ra1

And the equation
(a—A)u(r, O)=f(r,0), (r,0)€D,, flr,0)eCD,,)
las one and only one solution satisfying the following conditions :

lim Au(r, 0)=0,  (r,, 9)€2D;),

’;’0
and

;[u—lz?u](l, 0) 4+ AP (1, 0)=li£n Au(r, 0), for any given 3>0.
n 41

The proof can be carried out by the same methods as those
in the proof of Theorem 5. 1.
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Corresponding to Theorem 5.2, we have
THEOREM 5.4. If u(0) € C*(aD), then we have
1) wu(0)e DA®), for any a=0.
2) 91<w>u(0)=%1ﬁu(1, 0)-+(m(0)+a(l, H))%u(())

1 2 2 82
5 (7 (O)+ (L, 0) - u(®)

[ o+ —uo) -5 Zuopna;0), (1 0eoD.

6. The rotation invariant diffusion process. A.D.
Wentzell’s rotation invariant diffusion with the generator (0.3)
and the boundary condition (0.4) is only a special case of the
diffusions constructed in Sections 2 and 3. However, we shall
propose another method to construct this process, making effective
use of the rotation invariant property; this method is the same
as the skew product method due to K. Ito and H.P. McKean [14]
except some modification which will become necessary because of
the boundary conditions being involved.

Let {W®, 7(t, w™®), B, PP, r€[0,1]} be a reflecting barrier
Bessel process and t(¢, w”) be the local time of »(¢, w™) at {1}.
Denote a Brownian motion on R' by {W®, B(t, w™®), B>, P{*}.
{W® Et, w™), B, PP} is a Lévy process whose 1. c.f. is

6.1) - {izm—fzfz+ Sl(e"25~1—z’§z)n(d§)£ .

Now we can form a product probability space {Q, B, P,,r¢€
[7,, 1]} in the usual way, where Q=W®O X WP X W®, B= BV x
BPx B and P,=PLP x P®x PP, Let {QW, r(¢, v, ), F°, PO}
be a version of Bessel process on [0, + ), satisfying P® {r(¢, r, @)
=7}=1. Then we can form a probability space {ﬂ, é, 13}, where
Q=0 xa®, B=BxB® and P=PPx P, If we write

r(t, r, @), 0< i< a(@®, 7),

r¥(t, v, & ={ . .
( o) r(t—o (WP, 7), w?®), if otherwise,

where
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inf {¢;7(¢, r, #°)=1, t =0}, if such ¢ exists,
+ oo , if otherwise,

(W, r)= {

then {r*(t, r, &), 0<t<+ oo, P} is a version of reflecting barrier
Bessel process. We define {r(¢ 7, &), 0<t<+ o} by

(6.2) r(t, v, &),=r*({t Ao, (o, 7), 7, &), 0<t<+ o0,
where

{inf {t;r*(t,r, &)=r,, t=>0}, if such ¢ exists,

o, (0, 7)= . .
o6 7) , if otherwise.

In this section we shall always treat this version, and assume that
a(r), b(r) € C((0, 1) and b(r) is strictly positive on [0.17]. It sholuld
be noted that the function b(») may be discontinuous at 0.

We define two random variables $°(Z, 7, ») and 8®(¢, r, ®) by

8¢, 7, &)= Sta(r(s, 7, &))ds and
(6.3) ’ ¢
821, 7, @):S B(r(s, 7, OY)ds, 0<t< +oo.

Now we proceed to the construction of the path function. Let

9¥(t, (r, 0), &)=0+ B(8(L, v, &), w®)+ 8¢, r, &)+
+EH((E— o (W, 7)) v 0, w®), w®),
and
7(t(7, 0), &)=n*( Ao, (b, 7), (7, 0), &),

where t(s, w”)=0, for s<<0. Then the r(¢, », &) process together
with the #(¢, (7, 8), &) process will give the polar coordinate of the
Markov process on D, .

Now we turn to the construction of the diffusion process. Let
W be the space of path functions taking values on D, , and define
a system of measure P, o(+) by

P(r.e)(B):p{w 2 x(e, (7, 0), (b)(E(T(', 7, &), 7/('» (r,s), é’))) € B}’ Be 3.

Let
‘Jﬂ: {W’ x(ty w)) Q; P(r.O): (7’, ()) ED,O} .

Define the boundary process 9*, « >0, using the same pro-
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cedure as those in Section 4.
Here we shall list the propositions which are easily proved
using the similar methods to those in Sections 2~5.
(A) M is a markov process satisfying the following pro-
perties :
1) the semi-group {7T,, {=>0} is strongly continuous,
2) T,f(r, 0) is continuous on D, , if £ is in C(D,,),
and
3) the semi-group {7,, >0} is invariant under the rotation.
(B) Let @ be the infinitesimal generator corresponding to IN.
Then if u(r, 0) € CX(D,,),

10
+ =% Ly
o v or ()86’2

S u(r, 9)2%( +20(7’)—> u(r, 9),

for (»,0)€D,, .

(C) M»={We, z(t, w), B*, P, (1,0)eoD}, «a=>0,
is a strong Markov process satisfying
1) the semi-group T{* corresponding to N¢* is strongly continuous,
and
2) ((@D) is invariant under T.
Furthermore M* is an Lévy process on 2D.
(D) Theorems 4.1, 5.1 and 5.2 remain true also in this case.
(E) If u() is in C*(2D), then

1 DI 9____1 1,0 *9 _za
) u() llu( )+m M( )+20802

| ot w0 -2 uopnas, 0o,

u(®)

and
2) u(0) € PA) .

Proor. Noting that for almost all fixed (w>, @?), {n(¢+s,
(7’, 0)7 (/'j’)*"](‘% (7’, 9)) (b)} is independent of {”(t,’ (7’, 0)’ (b)) Oétlés}
and that its distribution does not depend on the valnes of t(s, w)

ts
and 8(s, 7, &) but on the values of t(¢, w®*), S a(r(r, r, &))dr

t+s
and S b*(r(r, v, &))dr, we can prove that 0t has Markov property

S
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by the same arguments as those in Section 2. Next noting that
if (r,, 0,)—(r, 0), there exists a subsequence (r,,, 0,,) of (r,, 0,)
such that for almost all o

x(t, (7,5 0,), @)= 2(¢, (7, 0), @),

and x(¢, (7, 0), ©) belongs to d,—class, we can complete the proof
of (A).

The proof of (B) is similar to the proof of Proposition 4. 1.

The proof of (C) is easy and so is omitted.

The proofs of (D) and (E) are exactly the same as those of
Theorems 4.1, 5.1 and 5.2. Hence we shall mention only the
outline of the proof. It is easily seen that

1°) For any ¢ 0<¢<o, (w™), there exists a constant K
such that for almost all (P{®)w™®,

E@XEP {27 w®), (1, 0), ©)—0]%}
<K w®)+ (0 w)) 2}

where K, is independent of «‘® and ¢.
2°) Consider a random variable such that

To(W) = 01— o(W) + 0, (W, _ ) -
Then
A y(0)= lgrg [Eq.0{e = u(0(T (w), w))} —u(0)]/&
for u(6) € PRA) .
3°) Consider a random variable Y.(®) such that
Ye(o)=n(o,-(w®), (1, 0), &) —0—E(t(o- (), w®), w®).

Then
[E(Y (@) =°(&) and E {(Ye(®))}=0(¢).
4°) Let
Po(2)= E,{exp [iz&(t(o,_(w®), w®), w)]} .
Then
(Pe(2) V) —>expy(z), as €]0.
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Noting 1°)~4°) and repeating the same arguments as in
Theorems 4.1, 5.1 and 5.2 we can prove (D) and (E).

In the sequel we assume that {W®, r(¢, w™), B, PV, r€
[0,1]} is a sticky barrier Bessel process. Then following the
same procedures as above we can also define a diffusion I on
I_),0 and a boundary process M, a>0, on 2D. Now the propo-
sition (A)~(E) will hold if we replace Theorems 4.1, 5.1 and 5. 2,
and (E) by Theorems 4.2, 5.3 and 5.4, and the following (E’)
respectively :

(E)) If u(9) is in C*(2D), then

?I‘“)u((i):%h‘fu(l, 49)+(m+a(l))—a%—u((?)+%(ag+bg(1))a%;u(9)

+ S:t w0 +8&)—u(0)—& %u(b’)) n(dg) ,

and u(0) € PA),

7. Change of scale. To reduce a diffusion with the general
elliptic operator (0.1) as its generator to the special case discussed
above under the some rugularity assumptions we shall apply the
scale and time changes '".

Under the appropriate regularity conditions we shall prove
that there exists a mapping

(7.1) Vi R*DS—>D={(r, 0):0<r<1},

such that, in the new scale, the given elliptic differential operator
A* becomes

2

e,
o’

(7.2) Au(r, O)=m(r, 0)( o +%f§;+b2(7’, 0)

o
+ar,9—>ur,9,
5 ( )80 (r, 0)

(r,)€D,

where b%(r, 0) is positive on D.

Let S be a bounded simply connected domain R? and let its
boundary 9S be a twice continuously differentiable curve. Under
the appropriate conditions a linear elliptic differential operator

11) See. W. Feller [9].
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Aru(x, y)=An(x, )2 u(x, 3)+240,(%, ) ~2— u(x, y)
(7.3) ox ox oy
+ A, )2z, )+ Ax, 3)2-u(x, 3)+ A, 3)2—u(x, )
oy ox oy

can be reduced to the simple form

A (s, 9)= Mz, 3){Bu(x, 5)+ Alx, )2 uz, )
(7. 4)
9
+B(x) J’)—ayu(x, y)} .

From now on we consider only differential operator (7.4) with
M(x, y)=1 assuming that A(x, y) and B(x, y) are of class H'(S) '®.
Let 2S be a twice continuously differentiable curve. Let gz, 2)
be the Green function for the Laplace equation in the domain S
with singularity at z,, and let u(z) be the [«,, @, ]-pseudo-analytic

function similar to f(z)=—a—g0(zo, 2)—1 igo(zo, z) and such that
ox oy
lu/f|l=1 at z, and Im{u/f} =0, where
4a(z)=—A(2)—iB(2), z=(x,y)E€S.

Let 2z, be some point on @S. Then the function

(7.5) 2z, z):Re{S:lu(z’)dz’}

is the Green function for the operator (7.4) with M(x, y)=1 in
the domain S, with singularity at z,. Hence there exists a
constant K, such that

(%g(zo, 2) + (aiy gz, 2))

21{5{(%&(%, Z)>2}+(aa—ygﬂ(z°’ z)>2},

and K, >0. (See L. Bers [1], Theorem 3 and Lemma 3 or L.
Beas [2]).

12) A function u(x, »), (%, ¥) €S, will be called of class of H'(S), if its partial
derivative of order 1 satisfy a uniform Holder condition on every compact subset of S.
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Therefore
a 2 a 2 —_
. — — €eS—0.
@6 (2 g z>)+(ay gz, 2)) >0, 2€5-0

Let S, be the neveau curve in the scalar field with velocity
potential g(z,, 2): i.e. S,={z;g(2,, 2)=7}. Then S, is a closed
curve such that z, belongs to the domin enclosed by S,, for every
7, 0<<r<+ o0, and we can consider the strem function 6(x, y)
satisfying 960(z)/9s(z)=0g(z,, z)/on(z), for z€3S, where 00/0s
means the tangential derivative of the function 6(z2).

Let

r(x, y)=exp[—g(z,, 2)], z€S.
Then mapping S onto D by
(7.7 ¥:S3(x, 9)—>(r(x, 3), 0(x, y) €D,
and using the following equations
(or(2)/0x)(20(2) /0x) +(2r(2)[9y)(20(2) [99) =0, 2€S -2,

and

A*r(z)= [(% gz, z)>2+ <§_y 2z, z)>2] H2), z€S—2z,,

it is easy to see that the equation (7.4) with M(z)=1 can be
written in the form

A* _ 0 i ~1__a“ 2 o°
e u(@) =mr(@), 0@ Lo+ L2 b, 0a) 2

60r(2), ﬁ(z))%]d(r(z), 0z), z€S—z,,

where  a(r(2), 0(2))=u(2), m(r(z), 6’(2))=<r(z)[<%g(zo, z)>2+(-§;

2z, z)>2]>, bir(z), H(z))z[<%6’(z)>2+<-§;9(z)>2]/m(r(z), 8(z)) and

a(r(z), 0(z))= A*0(z)/m(r(z), 0(z)), which is the equation required.
Using (7.6) we can prove that the mapping v is a heomeo-
mophism of S onto the unit disk with center O.
To reduce the A* of (7.8) to the case of m=1, which is the
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reduction desired, we use the random time change due to P. Lévy .

Example 7.1. The assumptions in this section could be make
weaker for many purposes. For example, let A* be the Laplacian
A and S be a domain which is enclosed by the Jordan curve.
Then we can take a conformal mapping satisfying S=+r"'(D) as
the mapping +r.

Part 2. The boundary value problem.

8. The boundary value problem. Let us now consider the
equation

8.1) Au(x)=0, =x€D,

with the boundary condition
u
(8.2) E(x)-&-Lu(x): —f(x), x€9D,

where L is a certain linear operator acting on the subspace of
C(@D). In the case L=0 that is well known as the second boundary
value problem, while if L is the multiplication by a function A(x),
x €2D, we obtain the so-called third boundary value problem. The
boundary value problem attached to a general linear operator L
was treated from the view point of the theory of differential
equations by many authors such as M. 1. Visik and O. A. Ladyzen-
skaya [23] and M.I. Visik [22].

The probabilistic approach of the boundary value problem
was initiated by P. Lévy, S. Kakutani and J.L. Doob [5]. They
treated only the first boundary value problem using the N-
dimensional Brownian motion. We shall here give a probabilistic
method to solve the general boundary value problem, using the
Brownian motion in the unit disk associated with the general condi-
tion which is determined by L in a certain manner explained later.

As is well-known, the second boundary value problem for the
bounded domain is solvable only for the function f satisfying

13) Cf. K. Ito and H. P. McKean [14] and G. Maruyama [18].
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[, r@)doe)=0",

which we not need such an extra condition for the first boundary
value problem. From our approach of the general boundary value
problem, we can see that this extra condition is necessary or not
according as the Brownian motion in the unit disk refered to above
is recurrent or not, although we have not yet got its rigorous
proof.

Let {W®, r(¢, w™®), B, PP, r€[0,1]} be a reflecting barrier
Bessel process and let {W®, B¢, w®), B°, P®,r€R'} be a
Brownian motion on R'. Denote a Lévy process whose l.c.f. is

2 T
E® {e'=" ™} = exp {t[izm—%—f%—g (€™ —1—izu) n(du)]}
by {W® I(t, w®), B>, P®recR'}. We define a version of path
function 6(¢, 6, ») as follows. First we write

0(¢, 0, o)=BB{'(¢, w®), w™), w®)+I(t, w™)+0,

where t7'(¢, w”) is the function inverse to the local time t(¢, w)
of r(¢, w™) at {1} and

t
3(t, w“’)zg {r(s, w")} 2ds.
0
Now can define the following operator
oo
K g0)=E®P XE® x E§,3>{ S e Pt T g (02, 0, w))dt}

a, >0,
where g(0) € C(aD).

It is well known that for any @>0, the equation
(a—1/2A)u(r, )=0, on D,
with the boundary condition
ul, 6)=£(9), on 92D, f(¥)e(l(D),

has a unique solution u(r, 0) € ((D), which is represented by

14) do(6) means the usual line element on 0D.
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w(x) = h® F(x) = S ez, dx)f(x), x€D,
and the equation
(a—1/2A)u(r, 6)=f(r, 6), (r,0)eD, feC'D),
with the boundary condition
u(1, 6)=0, (1,6)€aD,

has a unique solution #(x) € ((D), which is represented by
u(x)=Gifr)=| g ¥)fx)dx .

Let M= {W, x(¢, w), B, P,, x € D} be a diffusion process corre-
sponding to the Green operator satisfying the following equation

(8.3) G.f(r, O)=GLf(r, 6')+Iz"’[K{,‘?( f+-2Ge f>](r, 9), @ 6¢€D.
on

Using the same methods as in Part 1 we can prove that such
a diffusion process exists and K{” g(0) satisfies the following relation

(8.4) K{gl0)—KPgl0)+(a—B)GEV{h"Ky’ g} (0)=0, (1,0)€aD.
where

G 8O=Eun{ | ePermgl(s w), 065, wds|, g0)eCD),

and t(¢, w) is the sojorn time at {1} of »(¢, w).

In the same way as in Part 1 it is easily seen that {0(¢, 6, o),
0<t<+ o0, P’ PP x PP} is a version of the boundary process
M@ concerning the diffusion process Wi. Let A be the infini-
tesimal generator of . Then we have

THEOREM 8.1. 1) Let f(0) be a continuous function defined an
9D satisfying

(8.5) Sw £(6)de(6)=0.
Then the equation
(8.6) Au(r, 6)=0, (r,0)€aD,

with the boundary condition
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8.7 Nu(l, 6)=—1(9), 1, 6)eaD,

has a unique (up to an additive constant) solution u(r, 0) € C(D),
which is given by

(8.9) u(r, =G, f(r, 0),  (r,0€D,

where f(r, ) is the extension of f(0) onto the closed wunit disk
obtained by putting f(r, 0)=0 inside the disk.

2) Conversely if the equation (8.6) has a solution (up to addi-
tive constant) satisfying the boundary condition (8.7), then the func-
tion f(0) satisfies the condition (8.5).

Before proving this theorem, we shall prepare three lemmas.

LEmMMA 8.1. The transition probability P(t, x,E), x€D and
E € (D) corresponding to I satisfies the Doeblin condition.

Proor. Let I' be the circle:

{, 0 ;r=%} ’
and let C be the disk:
{(r, 0);0<r<1/4} .

It is easily seen that for every E € (D),
(8.9) P (x(t, w) € E)y<1—P,(x(t, w) E DNES, o(w)<t), x€D.

On ther hand we can prove that for any # >0,

P.(x(t, w) € DNEF, op(w)<?)
>E Aon(w) <t ; Paco (Xt —op(w), w) € CNE®)}

>Efor(@)+n<lt; | #—onw), xomw), w), iy} ,

cNpg

(8.10)

where p°(¢, x, y)dy is the transition probability measure of the
absorbing Brownian motion. Since p°%(¢, x, y) is continuous on
[%, t]xI'xC, (8.10) implies that there exists a positive constant
K(t, », I', C) satisfying

®8.11) E"{"F<w)+’7<’ ; SC o Pt ox(a0), K{on(a), w), y)dy}

=K(t, 7, T, O)Puloy()+9<8) | rdrdo.

anmg
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By (8.9), (8.10) and (8.11) we have
(812) Pu(x(t, w) €E)<1-K(t, 0, T, O) Pulo(@)+0<t) | rdrdo,
cnp
xeD.

Now we define a finite measure ®(drd6) over D by
p(dr d0)=rdrd0+doé.,(dr) .
By the definition of M we have

P (ow) +7<t) =P {o,,(0™) +o,pw®), w®) +9<t}, x=(r,0(€D.
Hence for fixed >0, we can choose #, such that
(8.13) P (or(w)+7<t)=1/2.
Combining (8.12) with (8.13) we have

P.(x(t,, w)€ E)<1—K(t,, »,I', C)p(CNE®)/2, x€D.

Here we take a positive constant

E==K(t,, », ', C)/C+K({,, n, 1, C))16.
Then we can prove that if @(E)<¢,
P.(x(t,, w) e E)<1—&, x€D.

Consequently we obtain that there is a (finite-valued) measure
@(+) defined on F(D) with @(D)>0, a positive £, >0 and a posi-
tive &, such that

P(t()’ X, E)él_g ’ if (P(E)_<_8'

This @(-) is just the measure required, (See J.L. Doob [4]).
Then we have proved Lemma 8. 1.
Using Lemma 8.1 we have

LemMA 8.2. The distribution m(drdo):
(8.14) m(dr d0)=(2rdr+38,(dr))d0/4m .
is stationary and for sufficicently large T,, if t>T,,
(8.15) |P(¢t, x, E)—m(E)|<<K,e™®, for any E€ FD) and x€D,
where K,”>0 and 6 >0 are independent of x and E.
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Proor. The Déeblin condition for the transition probability
proved in Lemma 8.1 implies that there is exactly one stationary
distribution m(drd0) satisfying (8.15). It is therefore sufficient to

show that the measure #(drd6) concides with the measure m(drdo)
defined in (8. 14).
Let R° be the rotation operator. Since

P(t, Rox, R°E)=P(t, x, E), x€D and E€FD),
we obtain
(8.16) M(E)=m(R°E), E€FD).
which implies

(8.17) M(E) = ZL”SS 40 1i(dr)
and for any f(6) € ([0, 1]), we get
Tim B {70t )} = 7y sar)

On the other hand we can prove, by the same way as in G.
Maruyama and H. Tanaka [19] (Theorem 4. 3), that the one dimen-
sional diffusion {r(¢, w), 0<{#<+ o} has the stationary distribution

%(27dr+3(1)(dr)). Therefore we have
(8.18) h(dr) :% ©2rdr +8uy(dr)) .
Combining (8.17) with (8.18) we have
m(dr do) = 11; {2rdr +80(dr)} db

=m(drd®b) .

LEMMA 8.3. Let g(x) be a bounded function defined on D
satisfying

(8.19) SE 2(x)m(dx)=0.

Then G,g(x) converges uniformly in x as «—0 and
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+oo _
(8. 20) G,,+g(x)=S T,g(x)dt<+oo, for any x€D.
Proor. We define a measure M(¢, x, dy)dy
M(t, x, dy)=P(¢, x,dy)+m(dy),

and let m(¢, x, y) be the density function of P(¢, x, dy)—m(dy) with
respect to M(¢, x, dy). Putting

D,={y;m(¢, x, ) >0} and D,={y;mf(t, x, y)<O0},
we have

(8.21)

T,8()— [ g®m(@n|<llgl {1 P¢, 5, D)—m(D)]
+ | P(t, x, D;)—m(D,)|} .
Applying Lemma 8.2 to (8.21) we obtain, for sufficiently large T,

’T,g(x)—Sﬁg(y)M(dy){£2llgllK7e‘“, for every t>T,.

Using the condition SBg( y)m(dy)=0, we get

Gog)— | Tog@at|<IIT gl 1e-—11dt-+2K gl e, x€D,

which implies the uniform convergence of G,g as @ —0 and (8. 20).

ProoF of THEOREM 8.1. Since G,f=h*Kf, G,f is
continuous on D. Using the condition

4 SB Fr, 0)m(drd6)— Sw £(0)ds(6)=0,

and Lemma 8.3 we can prove that G,, f= 1i1£. G,f is also con-
@

tinuous. Since K f=G,f on 9D, K f tends to K&’ f uniformly
as « | 0, so that K{&" f is continuous on 9D.
Hence it follows from G,f=h*(K§?f) that

(8.22) Gor f=H(KL f) .

Putting wu(r, 0)=G,, f(r, 6), (8.22) show that (r, 6) is harmonic
in D and
u(l, 0)=G,, f(1, O)=K+F(0),
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and using the resolvent equation for {K{°*’}, it results from this
that

u(l, O)=KP(f+y K& O € DR,  v>0,

which implies
Au(, 6)=—f(9), 1, 6)€aD.

Thus the first part of our theorem was proved.
Now we shall prove the second part of Theorem 8.1. Since

(v—Wu(l, O)=vu(l, 6)— f(0) €C(BD),

we get u(l, O)=K{ " g,(0), y>0, where g,(0)=vu(l, 6)—f(6). By
the relation (8.4) we have

(8.23) |G, f(1,0)| = 111101 | K63 £(0)1<3ull, (1,0)€aD.
On the other hand

G.11, 0= | @)/,

D

lim
a->»0

+oo
<]

0

(8.24)

T, 71, 6)— Sbf“(o)dm(e)\dt<+oo ., 0)€aD.
Combing (8.23) with (8.24) we have
tim[ {0 do@)a]<teo,

which implies Sw f(0)do(0)=0. This completes our proof.

The usual Neumann problem is a special case of Thorem 8.1
as is seen in the following

ExampLE 8.1. We assume that [(f, w®)=0, that is,
o(t, 6, )=B(8(t"'(¢, w™), w™), w®)+6.

On the other hand {8(t7'(¢, w™), w™), 0<¢< +oo, P{¥} is a
version of stable process of order 1/2 since {log r(8(f, w™), w™),
0<lt<(+o0, P{®} is a version of sticky barrier Brownian mition
an [0, 1] according to K. Ito and H.P. McKean [14]. Hence using
the theory of subordination we can prove that {6(¢, 6, »),
0<t<+ o0, P{"x P} is a version of strong Markov process with
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Poisson kernel. (Cf. S. Bochner [37] and J. L. Doob [5]).
Therefore we have

‘ 1 z 1—8_2t
EPXE® gt’ 9, = f d ’
PXEP 1O 0 N =L [ g et s

and for any g(0) € P)
Ag(0)= lim [( g(1—¢, 0)—g(6))/E]=2-1'g(1, 0).

Hence applying Theorem 8.1 to this case, we can prove that
for any f(0) € C(aD), the function u(», 6) defined by

u(r, 0)=G,, f(r, 0)

is the unique (up to additive constant) solution of the Neumann
problem.

9. Remarks for the condition (8.5). The conditition
S £(0)do(6)=0
oD

is indipensible for us to be able to define u(r, 0)=G,, f(r, 9) in
the proof of Theorem 8.1, because, if it were not for this condi-
tion, G,, f(r, 8) would become indefinite by virtue of the recurrence

of our process .
However, in case M is non-recurrent, we can do without this

condition as is seen in the following

ExampLE 9.1. In this example, let S be a solid ball with
radius 1 in RY, (N>>2) and G=(S)¢. Let {W", r(¢, w"), B, PP,
r €[1, + o)} be a version of one-dimensional diffusion with Feller’s

invariants
m(dr)=2r"""dr, and s(dr)=r'"Ndr
and the boundary condition
0=4"uq):
dr

let {W®, BNt w®), B°, PP, ac€dS} be the Brownian motion
on 9S. Now we define a path function (¢, ) by
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0(t, ©)=BM3(¢, w), w?®), 0400,
where
3(t, w)= St {r(s, w")} *ds, 0<t<+o0;
and let
x(t, ©)= (7, w™), 0E W), i, W)=t +1(t, w),
and t(#, w®) be the local time at {1} of (¢, w*™).
Then {x(f, w), 0<t<+ oo, PP X PP} is a version of the diffu-
sion process M= {W, x(t, w), B, P,.,,} attached to 1/2A on G.
First we treat the case N_>3. Then according to G. Maruyama
and H. Tanaka [19], {W®, »(¢, w®), B, PP, r€[1, + o)} is non-
recurrent since

S(+o0)= S:‘ms(dr)zs mr‘”“dr<+ o .

-4
1

Hence M is also non-recurrent and
O.1)  1Guftr, I <IAEN] [ tat 0] refl, +o0),

where f(a) is continuous function defined on 9S and

fl@, (r,a)€aS,
o , otherwise .

7o, o~

Hence G,f(r, @) converges to a function G,, f(r, a)=u(r, a) as
« tends to 0. Furthermore u(r, @) is continuous in x=(r, @) €G,
since

|G f(r, @) =G, (7, a)léllflIE;”{ gu' T1—e (s, u,)} .

Now we can prove in the same way as example 8.1 that
u(r, @) is harmonic in G and satisfies the boundary condition

9w, &)= —fla), (1,a)€aS.
on

Hence it follows that the Neumann problem is solvable for
the infinite region G in R, N=3, for any continuous values of
the normal derivative on the boundary. This fact is well known
in the potential theory.



426 Nobuyuki Ikeda

Next we shall treat our problem in the case N=2. In this
case the outer second boundary value problem can be reduced to
the inner second boundary value problem. This fact correspond
to the property that [ {r(¢, w™®)} ", 0<t<+ oo, P,, v€[1, +o0)] is
a version of the reflecting barrier Bessel process on [0.1]. Hence in
the case N=2 it is easily seen that 9 is recurrent and the Neu-
mann problem is only solvable for the infinite region G in RY
under the condition of type (8.5).
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