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Deformation theory of rigid-analytic spaces

By

Isamu Iwanari

Introduction

The purpose of this paper is to prove several basic results concerning a
deformation theory of rigid analytic spaces. We shall give a cohomological
description of infinitesimal deformations, and prove an existence of a formal
versal family for a proper rigid analytic space. Moreover we shall comment
on the meaning of deformation theory of rigid analytic spaces, to the moduli
problems of schemes, though the presented result is still far from the expected
applications to such problems.

The original idea of deformations goes back to Kodaira and Spencer. They
developed the theory of deformations of complex manifolds. Their deformation
theory of complex manifolds is of great importance and becomes a standard
tool for the study of complex analytic spaces. Our study of deformations of
rigid analytic spaces is motivated by analogy to the case of complex analytic
spaces. More precisely, our interest in the development of such a theory comes
from two sources. First, we want to construct an analytic moduli theory via
rigid analytic stacks by generalizing the classical deformation theory due to
Kodaira-Spencer, Kuranishi and Grauert to the non-Archimedean theory. This
viewpoint will be discussed in Section 5. Secondly, we may hope that our theory
is useful in arithmetic geometry no less than the complex-analytic deformation
theory is very useful in the study of complex-analytic spaces. Actually, our
deformation theory will be one of the key ingredients of the generalization of
the theory of p-adic period mappings due to Rapoport-Zink (cf. [21]).

Now we discuss the contents of this paper.
In Section 1, we first recall the definition of deformations of rigid analytic

spaces and the different aspect of deformations of them, to that of schemes,
already pointed out in [14, 7.3]. We also study the stability of Grothendieck
topology for deformations of rigid analytic spaces.

In Section 2, we shall construct cotangent complexes which fits in with
deformations of rigid analytic spaces. We should remark that cotangent com-
plexes for rigid analytic spaces were constructed in the framework of Huber’s
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theory (cf. [14]). However it seems more natural to develop such theory in the
framework of Raynaud’s viewpoint [5]–[7], where one can use the machinery of
formal-algebraic geometry in more direct way. Therefore we adopt a slightly
different formulation. In fact, in virtue of formal geometry, the proofs of some
results on cotangent complexes presented here are more direct (and slightly
clearer) than the proofs in [14].

In Section 3, we shall give a cohomological description of infinitesimal
deformations.

In Section 4, we shall prove an existence of a formal versal family for a
proper rigid analytic space.

In Section 5, we shall pose a conjecture that states a rigid analogue of Ku-
ranishi’s existence theorem for versal deformations of complex analytic spaces,
which was our primary interest. After posing it, we explain why this is impor-
tant and meaningful.

Finally, in the appendix, we give a convenient criterion for an existence of
square-zero deformations of a ringed topos. This criterion may be quite useful
also in the other situations.

Notations And Conventions

(1) Unless otherwise stated, K will be a complete non-Archimedean valued
field. We denote by K〈X1, . . . , Xn〉 the Tate algebra in n indeterminates.

(2) For the basic facts and definitions concerning rigid analytic spaces we
refer to [3], [5]–[7].

(3) For an affinoid algebra A, we denote by Sp(A) the associated affinoid
space (cf. [3, Chapter 7, 8, 9]).

(4) All rigid analytic spaces in this paper will be quasi-compact and quasi-
separated rigid analytic spaces. Quasi-separatedness means that the diagonal
morphism X → X ×X is quasi-compact.

(5) Properness means Kiehl’s properness (cf. [3]).
(6) The very weak topology on an affinoid space means Grothendieck topol-

ogy such that it has rational subdomains as the admissible open sets, and its
admissible coverings are unions of finitely many rational subdomains. However,
unless otherwise stated, we always equip rigid spaces with the strong topology
in the sense of [3].

(7) By | • |sp we mean the spectral norm (cf. [3, 3.2]).
(8) Let A be an admissible formal scheme (resp. an OX -module on the

admissible formal scheme X ,..etc.) in the sense of [5]. Then we denote by Arig

the rigid analytic space (resp. the OX rig -module on the rigid analytic space
X rig,..etc) associated to A, which is defined in [5, Section 4, 5]. We say that A
is a formal model of Arig. Note that, in Section 2, we will extend the definition
of Arig for OX -modules A which are not necessarily coherent.

(9) Let A be a ring and B an A-algebra. Let M be a B-module. A short
exact sequence 0 → M

i→ E
π→ B → 0 where E is an A-algebra and π is a

surjective homomorphism of A-algebras with i(M)2 = 0 in E is said to be a
square-zero extension of B by M over A.
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1. First properties of local deformations

In this section, we will define and prove first properties of local deforma-
tions.

Definition 1.1. Let f : X → S be a flat morphism (i.e., a flat mor-
phism of the ringed sites) of rigid analytic spaces and S → S′ be a closed immer-
sion of rigid analytic spaces with the nilpotent kernel I := Ker(OS′ → OS).
We say that a pair (f ′ : X ′ → S′, φ : X ′ ×S′ S

∼−→ X) is a deformation of
f : X → S to S′ if the following properties are satisfied,

1. f ′ is a flat morphism of rigid analytic spaces,

2. φ is an isomorphism of rigid analytic spaces.
A morphism from (f ′ : X ′ → S′, φ : X ′ ×S′ S

∼−→ X) to (f ′′ : X ′′ → S′, ψ :
X ′′ ×S′ S

∼−→ X) is a S′-morphism α : X ′ → X ′′ of rigid analytic spaces such
that ψ ◦ α|S ◦ φ−1 = idX .

Example 1.2. (1) Let S → S′ be a closed immersion of schemes locally
of finite type over K with the nilpotent kernel I := Ker(OS′ → OS). Let
f : X → S be a flat morphism of K-schemes and suppose that X is of finite
type over K. Let the pair (X ′/S′, X ′ ×S′ S ∼= X) be a flat deformation of X
to S′. Then the analytification (X

′ an/S
′ an, X

′ an ×S′ an S
an ∼−→ Xan) is a flat

deformation of Xan to S
′ an . Here for any scheme W locally of finite type

over K, we denote by W an the associated rigid analytic space (See [2] for the
analytifications).

(2) Let T be a split K-torus and M a split lattice of rank dim(T ) in the
sense of [4]. Note that we can regard M as group K-scheme. If the closed
immersion i : M → T defines a lattice of full rank in T , the quotient A := T/M
is the rigid analytic group (See [4, p.661]). Let B be an Artin local K-algebra.
As we see later (Lemma 4.1), B is an affinoid K-algebra. Let ĩ : M ×K B →
T ×K B be a closed immersion which extends the morphism i. Then the rigid
analytic group (T ×K B)/(M ×K B) over Sp(B) defines a deformation of A/K
to B.

Remark 1.3 (cf. [14] 7.3.28-38). It may happen that a square-zero ex-
tension of an affinoid algebra is not an affinoid algebra. Let 0 → M → E →
A→ 0 be a square-zero extension of an affinoid algebra A over K, where M is
a finitely generated A-module. By the fundamental theorem due to L. Illusie
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(cf. [18, Chapter 3, 1.2.3]), the set of isomorphism classes of square-zero ex-
tensions of A by M is classified by the group Ext1A(LA/K ,M) where LA/K is
the cotangent complex defined in [18, Chapter 2]. If E is an affinoid algebra
and A is a Tate algebra K〈T1, . . . Tr〉, then there exists a splitting A → E of
E → A and hence, the extension class of this extension in Ext1A(LA/K ,M) is
zero. On the other hand, by Theorem A.1, there exists a canonical injective
map Ext1A(Ω1

A/K ,M) → Ext1A(LA/K ,M) where Ω1
A/K is the usual Kählar dif-

ferential module. Therefore, in order to see the existence of such an extension
with E not being an affinoid algebra, it suffices to show the following statement.

Proposition 1.4. Let A = Qp〈T 〉 be a Tate algebra over Qp. Then
there exists a finitely generated A-module M such that Ext1A(Ω1

A/Qp
,M) is non-

zero.

Proof. First we claim that, for any A-moduleM , we have Ext1A(Ω1
A/Qp

,M)
= Ext1A(Ker(π),M), where Ker(π) is the kernel of the homomorphism

0 → Ker(π) → Ω1
A/Qp

π→ Ωrig
A/Qp

→ 0.

Here Ωrig
A/Qp

is the differential module defined in [6, Section 1]. To prove our
claim, we look at the associated long exact sequence to the short exact sequence

Ext1A(Ωrig
A/Qp

,M) → Ext1A(Ω1
A/Qp

,M) → Ext1A(Ker(π),M) → Ext2A(Ωrig
A/Qp

,M).

Then the claim follows easily from the fact that Ωrig
A/Qp

is a free A-module.
Thus, what to prove is the existence of a finitely generated A-module M

such that Ext1A(Ker(π),M) is non-zero. Suppose we have such an M , which is
not necessarily finitely generated, then we can actually find a finitely generated
A-module M having the same property. Indeed, Since A is a principal ideal
domain, we have an A-injective resolution, 0 → A → I → I ′ → 0. From the
long exact sequence arising from this resolution, we see that Ext2A(Ω1

A/Qp
, A) =

0. We have also an A-free resolution 0 → F ′ → F → N → 0 because every
A-submodule of a free A-module is free. Then we derive Ext1A(Ω1

A/Qp
, A) �= 0

from the long exact sequence,

Ext1A(Ω1
A/Qp

, F ′) → Ext1A(Ω1
A/Qp

, F ) → Ext1A(Ω1
A/Qp

, N) → Ext2A(Ω1
A/Qp

, F ′)

and Ext2A(Ω1
A/Qp

, F ′) = 0.

The existence of a module M with Ext1A(Ker(π),M) �= 0 (not necessarily
finitely generated) follows from the following lemma.

Lemma 1.5. Ker(π) is a non-zero injective A-module. In particular
Ker(π) is not A-projective.

Proof. First, we will show Ker(π) is A-injective. To this aim, since A is a
principal ideal domain, it suffices to prove that Ker(π) is a divisible A-module.
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Let m and a be elements in Ker(π) and A respectively, and suppose that a �= 0.
We want to find an element n of Ker(π) such that m = an. By induction, we
may assume that a is irreducible. However there exists the exact sequence

0 → Hom(Ωrig
A/Qp

, A/(a))
ξ→ Hom(Ω1

A/Qp
, A/(a)) → Hom(Ker(π), A/(a)) → 0

where ξ is an isomorphism by

Hom(Ωrig
A/Qp

, A/(a)) ∼= DerQp
(A,A/(a)) ∼= Hom(Ω1

A/K , A/(a)).

Thus Ker(π)⊗AA/(a) = 0. Finally d(exp(pT )) lies in Ker(π) because exp(pT )
= Σ∞

n=0(pT )n/n! is transcendental over Qp(T ).

Next we investigate the stability of the Grothendieck topology of a rigid
analytic space under deformations. First of all, we will consider a class of mor-
phisms of rigid analytic spaces defined as follows. A morphism f : X → Y is
said to be of affinoid type if f is the composite mapX

g→ Y×KSp(K〈T1, . . . , Tr〉)
pr1→ Y for some positive integer r and some closed immersion g.

Proposition 1.6. Let u : S → S′ be a closed immersion of rigid ana-
lytic spaces with nilpotent kernel Ker(u∗ : OS′ → OS) and X a rigid analytic
space. Suppose f : X → S be a morphism of affinoid type and f ′ : X̃ → S′ is a
(possibly non-flat) deformation of f . Then, f ′ is a morphism of affinoid type.

Proof. First we prove the case when S := Sp(A), S′ := Sp(A′) and I :=
Ker(u∗ : A′ → A). Suppose that In = 0. By induction on n, it suffices to
consider the case where I2 = 0. Now we have an exact sequence

0 −−−−→ IOX̃ −−−−→ OX̃ −−−−→ OX −−−−→ 0.

Since I2 = 0, IOX̃ = IOX . Thus by Tate’s acyclicity theorem ([3, 8.2]), we
have

Ȟ1(Ũ , IOX̃) = Ȟ1(U , IOX) = (0)

where Ũ = {Ũi}r
i=0 is a finite affinoid cover on X̃ and U = {Ui}r

i=0 is the
reduction of Ũ to X. By Ȟ(Ũ , •), we mean the Čech cohomology with respect
to Ũ = {Ũi} . By considering the long exact sequence of the Čech cohomology
with respect to the very weak topology on X̃, we have an exact sequence

0 −−−−→ H0(X, I) −−−−→ H0(X̃,OX̃) −−−−→ H0(X,OX) −−−−→ 0.

We put H0(X,OX) = A〈X1, . . . , Xn〉/J . Let us construct a surjective
map from A′〈T1, . . . Tr〉 to H0(X̃,OX̃) which extends a natural surjective map
A〈X1, . . . , Xn〉 → H0(X,OX). Let ξ1, . . . , ξn be elements of H0(X̃,OX̃) which
are liftings of X1, . . . , Xn, respectively. Then, we have the following diagram

A′[X1, . . . , Xn] −−−−→ A〈X1, . . .Xn〉�π

�
H0(X̃,OX̃) −−−−→ H0(X,OX),
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where π is defined byXi → ξi. The right vertical arrow and the lower horizontal
arrow are surjective. We want to see that π is continuous when we equip
K[X1, . . . , Xn] with the Gaussian norm. If necessary, we can choose ξ1, . . . , ξn
such that max1≤k≤r | resŨk

(ξi)|sp ≤ 1 for 1 ≤ i ≤ n where resŨk
(ξi) is the

restriction of ξi to H0(Ũk,OX̃). Indeed, by [3, 3.8.2.2], |Xi|sp ≤ |Xi| ≤ 1 on
A〈X1, . . . , Xn〉/J and thus we have the same inequality on Ui for 1 ≤ i ≤ r
by [3, 3.8.1.4]. Hence, we have | resŨk

(ξi)|sp ≤ 1 for any i, k. This implies the
composite map

A′[X1, . . . , Xn] π−→ H0(X̃,OX̃) → ⊕r
i=0H

0(Ũi,OŨi
)

is a continuous map. Now by Tate’s acyclicity theorem we have

H0(X̃,OX̃) = Ker(
⊕r

i=0H
0(Ũi,OŨi

) ⇒
⊕

i<j H
0(Ũi ∩ Ũj ,OŨi∩Ũj

)).

Note that the topology of
⊕r

i=0H
0(Ũi,OŨi

) (i.e. direct sum of the topologies
on affinoid algebras H0(Ũi,OŨi

)) induces the topology on H0(X̃,OX̃) which is
complete. Thus we see π is also continuous. From this, there exists a unique
homomorphism

Π : A′〈X1, . . . , Xn〉 −→ H0(X̃,OX̃)

which extends the homomorphism π. We claim that Π is surjective. Indeed,
the kernel of the surjection H0(X̃,OX̃) → H0(X,OX) is IH0(X̃,OX̃). On the
other hand, it is clear that the image of π contains IH0(X̃,OX̃). Hence, we
see that Π is a surjection. Therefore, there exists the commutative diagram of
rigid analytic spaces

X −−−−→
i

X̃

α

� �β

Dn
A −−−−→

j
Dn

A′

where Dn
A and Dn

A′ are Sp(A〈X1, . . . , Xn〉) and Sp(A′〈X1, . . . , Xn〉) respectively.
i and j are maps which induce bijective maps of underlying sets. The morphism
j ◦ α induce an injective map of underlying sets. Hence β is bijective onto
the image of j ◦ α as sets. To prove the proposition, it suffices to show that

homomorphism ODn
A′ ,β(x)

β∗−→ OX̃,x is surjection for any point x of X̃. Let a be
an element of OX̃,x. There is an element b in ODn

A,β(x) such that α∗(b) = i∗(a).
Moreover there is an element c in ODn

A′ ,β(x) such that j∗(c) = b. Then, β∗(c)−a
is in Ker(i∗) = IOX̃,x. Since I2 = 0, we have I Image(β∗) = IOX̃,x. Thus we
have an element d in ODn

A′ ,β(x) such that β∗(d+ c) = a, since I is contained by
Image(β∗).

Finally the assertion for the general case follows from the proof of the local
case.

Proposition 1.7. Let u : A′ → A be a surjective homomorphism of
affinoid K-algebras with the nilpotent kernel and X be a K-affinoid space over
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Sp(A). Let U be a rational subdomain of X. Suppose X̃ → Sp(A′) is a (possibly
non-flat) deformation of X and X̃ is an affinoid spaces. Then, the lifting Ũ of
U in X̃ is a rational subdomain of X̃.

Proof. We put

U = X(f0, . . . , fr)
= {x ∈ X||f1(x)| ≤ |f0(x)|, . . . , |fr(x)| ≤ |f0(x)|}
= Sp(H0(X,OX)〈T1, . . . , Tr〉/(f1 − T1f0, . . . , fr − Trf0))

where f0, . . . , fr generates the unit ideal. We choose elements f̃0, . . . , f̃r ∈
H0(X̃,OX̃) which are the liftings of f0, . . . , fr respectively. Since X → X̃ is a
nilpotent thickening, we have

Ũ = X̃(f̃0, . . . , f̃r)

= {x ∈ X̃||f̃1(x)| ≤ |f̃0(x)|, . . . , |f̃r(x)| ≤ |f̃0(x)|}
= Sp(H0(X̃,OX̃)〈T1, . . . , Tr〉/(f̃1 − T1f̃0, . . . , f̃r − Tr f̃0)).

This implies the proposition.

Theorem 1.8. Let u : S → S′ be a closed immersion of rigid analytic
spaces with nilpotent kernel Ker(u∗ : OS′ → OS) and f : X → S a morphism
of rigid analytic spaces. Let f ′ : X̃ → S′ be a (possibly non-flat) deformation of
f . Suppose U is an admissible open set with respect to the strong topology on
X. Then, the lifting Ũ of U in X̃ is the admissible open set of X̃. Similarly,
an admissible covering of X lifts to admissible covering of X̃. In particular
the Grothendieck topology of a rigid analytic space is stable under nilpotent
deformations.

Proof. By Proposition 1.6 and [3, 9.1.3.2] , we may assume that X, X̃, S
and S′ are affinoid spaces. Next, we note that the strongest topology among the
topologies which are slightly finer (See for the definition [3, 9.1.2.1]) than very
weak topology coincides with the strong topology by the theorem of Gerritzen-
Grauert [3, 7.3.5.3].

Thus to prove the assertion, it suffices to check that (cf. [3, 9.1.4.2]):

1. The set Ũ admits a covering {Ũi}i by affinoid subdomains Ũi ⊂ X̃
such that, for any affinoid morphism φ : Y → X̃ with φ(Y ) ⊂ Ũ , the covering
{φ−1(Ũi)}i of Y has a finite rational subdomain covering which refines it.

2. Let {Ṽj}j be a covering which are the liftings of an admissible covering
of the admissible open set V ⊂ X. Note that if the first half of our claim
is verified, Ṽi are admissible. Let Ṽ ⊂ X̃ be the lifting of V . Then, for any
affinoid morphism φ : Y → X̃ with φ(Y ) ⊂ Ṽ , the covering {φ−1(Ṽi)}i of Y
has a finite rational subdomain covering which refines it.

Since |X| = |X̃|, we can easily check these conditions by using Proposi-
tion 1.7.
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2. Rigid cotangent complex

In this section, we construct cotangent complexes for deformations of rigid
analytic spaces, and prove some basic results in the framework of [5]–[7].

2.1. Analytic cotangent complex of formal schemes
First of all, following [14], we will recall the analytic cotangent complexes

for formal schemes locally of topologically finite presentation over Spf R, where
R is the ring of integer of K. Let π be an element in the maximal ideal of R
and A a complete R-algebra topologically of finite presentation. Consider the
π-adic completion functor

(A -Mod) −→ (A -Mod)
L �→ L∧.

This functor induces the derived functor

D−(A -Mod) −→ D−(A -Mod).

Indeed, for any quasi-isomorphism of complexes of flat A-modules K• → L•,
the induced homomorphism (K•)∧ → (L•)∧ ((complex)∧ denotes the termwise
completion) is a quasi-isomorphism (cf. [14, 7.1.11]). Moreover, the derived cat-
egory D−(R -Mod) is naturally identified with the localization of the homotopy
category K−(A -flat Mod) up to quasi-isomorphisms. Thus π-adic completion
functor induces the derived functor.

Let φ : A → B be a homomorphism of complete R-algebras of topologi-
cally finite presentation. The B-module of analytic differentials relative to φ is
defined as Ωan

B/A := Ω1∧
B/A. The analytic cotangent complex of φ is the complex

Lan
B/A := L∧

B/A. Here LB/A is the usual cotangent complex of φ (cf. [18]). There
exists a natural map Lan

B/A → Ωan
B/A and an isomorphism H0(Lan

B/A) ∼= Ωan
B/A. If

φ is smooth, then there is a natural quasi-isomorphism Lan
B/A

∼= Ωan
B/A[0].

Next we define the analytic cotangent complex for formal schemes locally
of topologically finite presentation over Spf R by gluing the complexes con-
structed as above. Let f : X → Y be a morphism of formal schemes locally
of topologically finite presentation over Spf R (cf. [5]). We suppose that Y is
affine for a while. For an affine open set U in X , the small category FU of all
affine open sets V in Y with f(U) ⊂ V is a cofiltered family under inclusion.
For every V ∈ FU , OY(V) is a complete R-algebra of topologically finite pre-
sentation. The cofiltered family of maps OY(V) → OX (U) gives rise to the
correspondence

U −→ L(U/Y) := colim
V∈FU

Lan
OX (U)/OY(V).

Now note that every usual cotangent complex is constructed as a complex of
free modules in a functorial fashion. Hence for any homomorphism A → B,
we can construct the analytic cotangent complex of A → B as a complex of
flat B-modules in a functorial fashion. (The flatness follows from the fact that
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for any B-flat module F , the completion F∧ is also B-flat (cf. for example
[14, 7.1.6 (1)])). Therefore, by [10, Chapter 0, 3.2.1], we can extend the above
correspondence to the complex of presheaves on X . The analytic cotangent
complex is defined as the complex of termwise the associated sheaves. Finally
for a general formal scheme Y , we can construct the complex by gluing the
complex constructed locally on Y .

Proposition 2.1. Let f : X → Y and g : Z → Y be morphisms of
formal schemes locally of topologically finite presentation over Spf R. Let X ×Y
Z be the fibre product of X and Z over Y in the category of formal R-schemes.
Then there exists a natural quasi-isomorphism

L pr∗1 Lan
X/Y

∼→ Lan
X×YZ/Z

where pr1 : X ×Y Z → X is the first projection.

Proof. Since our assertion is a local issue, we may suppose that X , Y
and Z are affine. Set X = Spf B, Y = Spf A and Z = Spf C. First we shall
show that there exists a natural quasi-isomorphism φ : (B⊗̂AC) ⊗B L∧

B/A →
L∧

(B⊗̂AC)/C
. We remark that Spf B⊗̂AC is the fibre product of Spf B and Spf C

over Spf A in the category of formal R-schemes. In this proof, unless other-
wise stated, we view complexes as just complexes (not objects in the derived

category) and we denote by
qis→ a quasi-isomorphism of complexes. Actually,

usual cotangent complexes are constructed as complexes of flat modules via
standard resolutions and their completions are also flat. There exist natural
quasi-isomorphisms ((B⊗̂AC) ⊗(B⊗AC) (B ⊗A C) ⊗B LB/A)∧ ∼→ ((B⊗̂AC) ⊗B

LB/A)∧
qis→ ((B⊗̂AC) ⊗B L∧

B/A)∧. The second quasi-isomorphism follows from
[14, Lemma 7.1.25]. On the other hand, by the base change theorem of usual
cotangent complexes [18, Chapter 2, 2.2], we have a natural quasi-isomorphism

((B⊗̂AC) ⊗(B⊗AC) (B ⊗A C) ⊗B LB/A)∧
qis→ ((B⊗̂AC) ⊗(B⊗AC) L(B⊗AC)/C)∧.

The next claim implies a quasi-isomorphism (B⊗̂AC)⊗B L∧
B/A

qis→ ((B⊗̂AC)⊗B

L∧
B/A)∧ and thus we have a natural quasi-isomorphism (B⊗̂AC) ⊗B L∧

B/A

∼→
((B⊗̂AC) ⊗(B⊗AC) L(B⊗AC)/C)∧ in the derived category.

Claim 2.1.1. Let A → B → C be homomorphisms of admissible R-
algebras and K• := Lan

B/A the analytic cotangent complex. Then there is a
natural quasi-isomorphism

K• L⊗B C
∼→ (K• L⊗B C)∧

in the derived category D−(C -Mod).

Proof. It suffices to show that for any positive integer n, the truncation

τ[−n(K• L⊗B C) ∼→ τ[−n(K• L⊗B C)∧
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is a quasi-isomorphism. Due to [14, 7.1.15, 7.1.33 (1)] and the fact that C is
coherent, we can assume that τ[−nK

• is a complex of free B-modules of finite
type. Therefore it suffices to show that for a free B-module of finite type F ,
the natural homomorphism F ⊗B C → (F ⊗AB)∧ is an isomorphism. However
it is clear.

Therefore, to see that φ is a quasi-isomorphism, it suffices to show that the
natural morphism ψ : ((B⊗̂AC)⊗B⊗AC L(B⊗AC)/C)∧ → L∧

(B⊗̂AC)/C
is a quasi-

isomorphism. Note that, by the base-change theorem of usual cotangent com-
plexes [18, Chapter 2, 2.2], ((B⊗̂AC)⊗B⊗AC L(B⊗AC)/C)∧n := ((B⊗̂AC)⊗B⊗AC

L(B⊗AC)/C)∧ ⊗R (R/πnR)
qis→ L(Bn⊗AnCn)/Cn

, (L∧
(B⊗̂AC)/C

)n := L∧
(B⊗̂AC)/C

⊗R

(R/πnR)
qis→ L(Bn⊗An Cn)/Cn

where Bn = B ⊗R (R/πnR), An = A⊗R (R/πnR)
and Cn = C ⊗R (R/πnR). Thus the reduction ψ ⊗R (R/πnR) is a quasi-
isomorphism. Now consider the right derived functor

R lim : D((R -Mod)N)) → D(R -Mod)

where (R -Mod)N is the projective system of R-modules and lim : (R -Mod)N →
R -Mod, {Mi, di : Mi → Mi−1}i≥1 �→ proj. limiMi is the inverse limit functor.
The projective systems of complexes ((B⊗̂AC) ⊗B⊗AC L(B⊗AC)/C)∧n)n≥1 and
((L∧

(B⊗̂AC)/C
)n)n≥1 are acyclic for the functor lim because they are consisting

of surjections. Thus we have that

R lim((B⊗̂AC) ⊗B⊗AC L(B⊗AC)/C)∧n)n≥1 = ((B⊗̂AC) ⊗B⊗AC L(B⊗AC)/C)∧

and

R lim((L∧
(B⊗̂AC)/C

)n)n≥1 = L∧
(B⊗̂AC)/C

.

Since there exists a quasi-isomorphism

R lim((B⊗̂AC) ⊗B⊗AC L(B⊗AC)/C)∧n)n≥1
qis→ R lim((L∧

(B⊗̂AC)/C
)n)n≥1,

we see that ψ is a quasi-isomorphism and thus φ is a quasi-isomorphism. Fur-

thermore, a natural homomorphism (B⊗̂AC)
L⊗B L∧

B/A → L∧
(B⊗̂AC)/C

is a
quasi-isomorphism (in the derived category) because L∧

B/A consists of flat B-
modules.

Next note that (B⊗̂AC)
L⊗B L∧

B/A and L∧
(B⊗̂AC)/C

are pseudo-coherent *1.

Let L∆
i (resp. M∆

i ) be the sheaf of the coherent OSpf(B⊗̂AC)-module associated

to the coherent B⊗̂AC-module Li := Hi((B⊗̂AC)
L⊗B L∧

B/A) (resp. Mi :=
Hi(L∧

(B⊗̂AC)/C
)). To complete the proof of the proposition, it suffices to show

that following claim.
*1Let n be a integer. We say that a complex of R-module K• is n-pseudo-coherent if

there exists a quasi isomorphism C• → K• where C• is a complex bounded above and Ck

is a finitely generated free R-module for every k ≥ n. We say that K• is pseudo-coherent
if K• is n-pseudo-coherent for every integer n. n-pseudo-coherence is stable under quasi-
isomorphisms.
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Claim 2.1.2. Under the same assumption as above, there exists natural
isomorphisms

L∆
i
∼= Hi(L pr1∗ Lan

Spf B/ Spf A)

and

M∆
i

∼= Hi(Lan
(Spf B⊗̂AC)/ Spf C

).

Proof. The second assertion can be shown by the same way of the proof
of the first assertion. Hence we will prove the first quasi-isomorphism. What
to prove is that the natural isomorphism ξ : L∆

i → Hi(L pr1∗ Lan
Spf B/ Spf A)

induces an isomorphism on each stalk. Let U := Spf R(U), V := Spf R(V ), and
W := Spf R(W ) be affine open sets of Spf B⊗̂AC, Spf B, and Spf A respectively
and suppose that pr1(U) ⊂ V and f(V ) ⊂ W . By the transitivity of analytic
cotangent complexes [14, 7.1.33 (2)], we easily see that there exists a natural
isomorphism Hi(R(U)⊗R(V ) L

∧
R(V )/R(W )) ∼= Hi((R(U)⊗B L∧

B/A). Therefore we
have natural isomorphisms

Hi(L pr1∗ Lan
Spf B/ Spf A)x

∼= colim
x∈U

affine open

colim
pr1(U)⊂V
affine open

colim
f(V )⊂W

affine open

Hi(R(U) ⊗R(V ) L∧
R(V )/R(W ))

∼= colim
x∈U

affine open

Hi(R(U) ⊗B L∧
B/A)

∼= colim
x∈D(c)

c∈B⊗̂AC

Hi(R(D(c)) ⊗B L∧
B/A)

∼= Li ⊗(B⊗̂AC) OSpf(B⊗̂AC),x

whereD(c) = {x ∈ Spf(B⊗̂AC), c /∈ mx} andR(D(c)) := H0(D(c),OSpf(B⊗̂AC)).
The final isomorphism follows from the next lemma.

Lemma 2.2. Let A be a complete R-algebra of topologically finite pre-
sentation. For any c ∈ A, let D(c) := {x ∈ Spf A; c /∈ mx}. Then the natural
map A→ H0(D(c),OSpf A) is flat.

Proof. Note that H0(D(c),OSpf A) is the π-adic completion of Ac. Then
our claim follows from the fact that the π-adic completion of a flat A-module
is also A-flat.

In the rest of this section we often use the terminologies in [5]–[7]. For the
definition of admissible formal schemes, admissible blow-up, smoothness, etc.,
we refer to [5]–[7]. Let X be an admissible formal scheme over R, and let X be
the associated rigid analytic space. We define a functor

Rig : D−(OX -Mod) → D−(OX -Mod)

as follows. Consider the projective limit of local ringed spaces 〈X 〉 := lim←
X′→X

X ′,

where the projective limit here is taken over all admissible blow-ups X ′ → X
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of X along admissible ideals as in [13, 4.1.3]. The projective limit exists in the
category of local ringed spaces. We have the natural morphism of local ringed
spaces

π : 〈X 〉 → X .
Then there exists the natural composite of functors

(OX − modules) π∗→ (O〈X〉 − modules) ⊗K→ (OX − modules),

which is right exact (the topology on 〈X 〉 induces the Grothendieck topology
on X). For coherent OX -modules, the functor Rig defined here coincides with
the functor Rig defined in [5, p.315]. This functor induces a derived functor
Rig : D−(OX -Mod) → D−(OX -Mod).

Lemma 2.3.
(1) Let X

f→ Y
g→ Z be a sequence of morphisms of rigid analytic spaces.

Then there is a natural quasi-isomorphism

L(g ◦ f)∗ ∼→ Lf∗ ◦ Lg∗.

(2) Let X f̃→ Y g̃→ Z be a sequence of admissible formal R-schemes which

is a formal model of X
f→ Y

g→ Z (Actually we can choose such a sequence of
formal schemes for any sequence of rigid analytic spaces by [5, Theorem 4.1]).
Then there is a natural quasi-isomorphism

(Lf̃∗(Lan
Y/Z))rig ∼→ Lf∗(Lan

Y/Z)rig.

Proof. (1) Our claim follows from Grothendieck spectral sequence (cf.
[19, 1.8.7]).

(2) First, note that the assertion is local on X . Thus we suppose that
X and Y are affine. Put A = H0(X ,OX ) and B = H0(Y ,OY). Moreover,
we may replace Lan

Y/Z by L(n) := τ[−nLan
Y/Z and prove our assertion for the

latter complexes for every integer n. Take a complex of finite presented B-flat
modules L•

0 which represents the complex L(n). Then we have (Lf̃∗(L(n))rig =
(L•

0⊗BA⊗RK)∼ (By (•)∼ we denote the associated sheaf). On the other hand,
L•

0⊗RK is a complex of finitely presented B⊗RK-flat module which represents
L(n)rig. Thus we have a quasi-isomorphism Lf∗(L(n)rig) ∼= ((L•

0 ⊗RK)⊗(B⊗K)

(A⊗K))∼. Therefore, we have a natural quasi-isomorphism (L(n)
L⊗B A)rig ∼→

L(n)rig
L⊗(B⊗RK) (A⊗R K).

Let f : X → Y be a morphism of rigid analytic spaces over K. There
exists a morphism of admissible formal R-schemes

f̃ : X −→ Y

which is a formal model of f (cf. [5, Theorem 4.1]).
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Proposition 2.4. The complex (Lan
X/Y)rig is independent of the choice

of the formal model f̃ : X → Y of f : X → Y , i.e., depends only on the mor-
phism f : X → Y .

Proof. Let f̃ ′ : X ′ → Y ′ be another formal model of f : X → Y . By an
easy application of the theorem of Raynaud [5, Theorem 4.1], we can find the
following commutative diagram

X
f̃

��

X ′′α�� s ��

f̃ ′′

��

X ′

f̃ ′

��
Y Y ′′β�� t �� Y

such that f̃ , f̃ ′, f̃ ′′ are formal models of f : X → Y and α, β, s, t are admissible
blowing ups. It suffices to show that there are natural isomorphisms (Lan

X/Y)rig ∼=
(Lan

X ′′/Y′′)
rig ∼= (Lan

X ′/Y′)
rig. We will show an existence of the first isomorphism.

The second one follows from the proof of the first one. By the transitivity
to the sequences X ′′ → X → Y and X ′′ → Y ′′ → Y ([14, 7.2.13]), we have
distinguished triangles

Lα∗Lan
X/Y → Lan

X ′′/Y → Lan
X ′′/X → Lα∗Lan

X/Y [1]

and

Lf̃
′′∗Lan

Y′′/Y → Lan
X ′′/Y → Lan

X ′′/Y′′ → Lf̃
′′∗Lan

Y′′/Y [1].

According to [14, 7.2.42 (i)], after applying the derived functor

Rig : D−(OX ′′ -Mod) → D−(OX -Mod)

to Lf̃
′′∗Lan

Y′′/Y and Lan
X ′′/X , we have quasi-isomorphisms (Lf̃

′′∗Lan
Y′′/Y)rig ∼= 0

and (Lan
X ′′/X )rig ∼= 0. Therefore, by the above two triangles and Lemma 2.3 (2),

we have a quasi-isomorphism (Lan
X/Y)rig ∼= (Lan

X ′′/Y)rig ∼= (Lan
X ′′/Y′′)

rig.

We define a cotangent complex Lrig
X/Y in D−(OX -Mod) of f : X → Y by

(Lan
X/Y)rig for some formal model X → Y . We shall refer to this complex as the

rigid cotangent complex.
For every morphism f̃ : X → Y of admissible formal schemes, there is a

natural morphism: Lan
X/Y → Ωan

X/Y which induces an isomorphism H0(Lan
X/Y) ∼=

Ωan
X/Y (cf. [14, 7.2.8]). Thus we have a natural morphism

Lrig
X/Y → Ωrig

X/Y

which induces an isomorphism

H0(L
rig
X/Y ) ∼→ Ωrig

X/Y

where X := X rig and Y := Yrig and Ωrig
X/Y is the differential module defined in

[7, Section 1].
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Remark 2.5. Our construction also works in the case of relative rigid
spaces introduced and studied by Bosch, Lütkebohmert and Raynaud (cf. [5]–
[8]). However, in present paper, we concentrate our attentions on the classical
case.

In virtue of the theorem of Raynaud [5, 4.1] and formal flattening theorem
(See [6, 5.2]), as we will see below, the study of analytic cotangent complexes
of rigid analytic spaces is reduced to the study of the formal case. Thus Propo-
sition 2.4 is important.

Proposition 2.6. Let f : X → Y and g : Z → Y be morphisms of rigid
analytic spaces. Then there is a natural quasi-isomorphism

Lpr∗1Lrig
X/Y

∼→ Lrig
X×Y Z/Z

where pr1 is the first projection X ×Y Z → X.

Proof. Take formal models f̃ : X → Y and g̃ : Z → Y of f and g
respectively. Note that the fibre product X ×Y Z in the category of formal
R-schemes is the formal model of X×Y Z by [5, 4.6]. Now our assertion follows
from Proposition 2.1.

Proposition 2.7 (cf. [14] 7.2.42 (ii)). If f : X → Y is a smooth mor-
phism, there is a natural quasi-isomorphism

Lrig
X/Y

∼→ Ωrig
X/Y [0].

Proof. Take a formal model f̃ : X → Y of f : X → Y . Then, we derive
our assertion by applying [14, 7.2.42 (i)] to f̃ : X → Y .

Proposition 2.8 (cf. [14] 7.2.39). Let X
f→ Y → Z be a sequence of

morphisms of rigid analytic spaces. Then, there is a natural distinguished tri-
angle in D−(OX -Mod)

Lf∗Lrig
Y/Z → Lrig

X/Z → Lrig
X/Y → Lf∗Lrig

Y/Z [1].

Proof. By the theorem of Raynaud [5, 4.1], there is a formal model of
X → Y → Z

X f̃−→ Y −→ Z.
From the transitivity of this sequence [14, 7.2.13], we have

Lf̃∗Lan
Y/Z → Lan

X/Z → Lan
X/Y → Lf̃∗Lan

Y/Z [1].

By applying the functor of derived categories

Rig : D−(OX -Mod) → D−(OX -Mod),

we obtain the triangle

(Lf̃∗Lan
Y/Z)rig → (Lan

X/Z)rig → (Lan
X/Y)rig → (Lf̃∗Lan

Y/Z [1])rig.

Thus we have the required triangle by Lemma 2.3 (2).
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Theorem 2.9 (cf. [14] 7.2.46).
(1) Let i : Y → X is a closed immersion of rigid analytic spaces. Then the

natural morphism

LY/X −→ Lrig
Y/X

is a quasi-isomorphism. Here LY/X is the usual cotangent complex associated
to the morphism of ringed topoi i : Y → X.

(2) Let f : X → Y be a morphism of rigid analytic spaces. Then Lrig
X/Y is

a pseudo-coherent complex of OX- modules.

Proof. (1) First of all, take a formal model ĩ : Y → X of i : Y → X. Note
that there is a natural isomorphism LY/X

∼= (LY/X )rig by [18, 2.2.3]. Thanks
to the formal flattening theorem [6, 5.4 (b)], we can modify ĩ : Y → X to be a
closed immersion. Then the claim is reduced to [14, 7.2.10 (2)].

(2) Let f̃ : X → Y be a formal model of f : X → Y . Then the claim is
reduced to the claim for f̃ : X → Y [14, 7.2.10 (1)].

Proposition 2.10 (cf. [14] 7.2.48). Let f : X → Y be a closed im-
mersion of rigid analytic spaces and g : Y → Z a smooth morphism of rigid
analytic spaces. Let I be a coherent ideal of OY which defines X. Then there
is a quasi-isomorphism

τ[−1L
rig
X/Y

∼→ [0 → f∗(I/I2) d→ f∗Ωrig
Y/Z → 0].

Proof. First, we remark that by [18, Chapter 3, 1.2.8.1] and Theorem 2.9
(1), there exists a natural quasi-isomorphisms, τ[−1L

rig
X/Y

∼= τ[−1LX/Y
∼=

f∗(I/I2)[1]. Then, we can prove our assertion in the same way as the proof of
[18, Chapter 3, 1.2.9.1] by using Propositions 2.7 and 2.8.

Let X → Y be a morphism of rigid analytic spaces and S a coherent OX -
module. Let us consider a triple (i : X → X ′,S, φ) where i is a closed immersion
of rigid analytic spaces over Y with the square-zero kernel I = Ker(OX′ →
OX) and an isomorphism of coherent OX -modules φ : i∗I → S. Then there
exists a natural quasi-isomorphism Ext1OX

(Lrig
X/X′ ,S) ∼= HomOX

(i∗I,S), since

we have a natural isomorphism τ[−1L
rig
X/X′

∼= i∗I[1] by Proposition 2.10. On
the other hand, the distinguished triangle (Proposition 2.8) associated to the
sequence X → X ′ → Y induces a homomorphism p : Ext1OX

(Lrig
X/X′ ,S) →

Ext1OX
(Lrig

X/Y ,S). Thus it gives rise to a map

e : EXY (X,S) −→ Ext1OX
(Lrig

X/Y ,S),

(i : X → X ′,S, φ) �→ p(φ),

where EXY (X,S) is the set of isomorphism classes of a triple (i : X → X ′,S, φ).
Note that the set EXY (X,S) is the subset of the set EXalY (X,S) of isomor-
phism classes of the extensions of X by S over K as locally ringed spaces.
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Indeed for elements α, β ∈ EXY (X,S) and an isomorphism φ : α ∼→ β as
locally ringed spaces over K which induces the identity on X, φ is actually
the isomorphism as rigid analytic spaces by Proposition 1.6 and [3, 6.1.3.1].
Hence, taking [18, Chapter 3, 1.2.3] into account, e is injective because the
composite map EXY (X,S) e→ Ext1OX

(Lrig
X/Y ,S) → Ext1OX

(LX/Y ,S) is equal to

the composite map EXY (X,S) → EXalY (X,S) ∼→ Ext1OX
(LX/Y ,S).

Theorem 2.11 (cf. [14] 7.3.22). The map e is a bijection.

Proof. What we need to show is that elements of the image Ext1(Lrig
X/Y ,S)

in Ext1(LX/Y ,S) ∼= EXalY (X,S) represent the sheaves of rigid analytic spaces
which are extensions of OX by S. Therefore the problem is local onX. SetX :=
Sp(B) and Y := Sp(A). We choose a closed immersion i : X ∼= Sp(C/I) →
Z := Sp(C) where C = A〈X1, . . . , Xr〉. By Proposition 2.10, we have

Ext1OX
(Lrig

X/Y ,S) ∼= Hom(I/I2,S)/ Image(d∗).

However a map φ : I/I2 → S and the canonical immersion j : I/I2 → C/I2

define an extension (C/I2 ⊕ S)/ Image((j, φ))∼ of OX by S which is a sheaf
arising from an affinoid algebra. It is easy to see that this extension corresponds
to the element φ in Ext1OX

(Lrig
X/Y ,S).

Remark 2.12. For readers who know Huber’s theory of adic spaces
and [14, Section 7], we shall give some comments on the relation of cotangent
complexes defined here with cotangent complexes defined [14, Section 7]. Let
f : X → Y be a morphism of rigid analytic spaces and let f̃ : X → Y be
a formal model of f . Then we obtain the following commutative diagram of
ringed spaces (moreover adic spaces):

〈X 〉 π−−−−→ X
〈f̃〉

� f̃

�
〈Y〉 −−−−→ Y .

We regard 〈X 〉 (resp. 〈Y〉) as an adic space (〈X 〉,O〈X〉 ⊗R K,O〈X〉) (resp.
(〈Y〉,O〈Y〉 ⊗R K,O〈Y〉), and denote by L+

〈X〉/〈Y〉 the complex constructed in
(cf. [14, 7.2.32]). By inspecting the constructions in [14, Section 7] (it is a
straightforword argument), we can see that there exists a natural morphism of
complexes

π∗Lan
X/Y → L+

〈X〉/〈Y〉

and furthermore after tensoring K the morphism

(*) π∗Lan
X/Y ⊗R K → Lan

〈X〉/〈Y〉 := L+
〈X〉/〈Y〉 ⊗R K

is a quasi-isomorphism if the next claim holds:
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Claim 2.12.1. Consider the commutative diagram of admissible formal
schemes:

Spf D −−−−→ Spf B� �
Spf C −−−−→ Spf A.

Assume that the associated morphisms of rigid analytic spaces

SpD ⊗R K → SpB ⊗R K

and

SpC ⊗R K → SpA⊗R K

are open immersions. Then the natural morphism

(**) Lan
B/A ⊗B D ⊗R K → Lan

D/B ⊗R K

is a quasi-isomorphism.

We remark that the morphism (∗∗) is an algebraic counterpart of (∗).

Proof of Claim. By the transitivity, we have two distinguished triangles

Lan
B/A ⊗B D ⊗R K → Lan

D/A ⊗R K → Lan
D/B ⊗R K → Lan

B/A ⊗B D ⊗R K[1]

and

Lan
C/A ⊗C D ⊗R K → Lan

D/A ⊗R K → Lan
D/B ⊗R K → Lan

C/A ⊗C D ⊗R K[1].

By our assumption and [14, 7.2.42 (i)], we obtain quasi-isomorphisms Lan
D/B ⊗R

K ∼= 0 and Lan
C/A ⊗C D ⊗R K ∼= 0. Therefore we have a quasi-isomorphism

Lan
B/A ⊗B D ⊗R K ∼= Lan

D/A ⊗R K ∼= Lan
D/B ⊗R K

and this completes the proof.

From the quasi-isomorphism (*), we see that, by the functor of restriction

D−(O〈X〉 ⊗R K -Mod) → D−(OX -Mod),

Lan
〈X〉/〈Y〉 is sent to our cotangent complex Lan

X/Y . Moreover, if we use the functor

D−(OX -Mod) → D−(O〈X〉 ⊗R K -Mod); M �→ π∗M⊗R K

instead of the functor Rig, we can prove Proposition 2.6–2.10 for Huber’s adic
spaces, which are already proved in [14].
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3. Cohomological descriptions of Local deformations

Now by applying the results in Section 2, we will prove the following the-
orem.

Theorem 3.1. Let u : S → S′ be a closed immersion of rigid analytic
spaces with the nilpotent kernel I of u∗ : OS′ → OS such that I2 = 0. Let
f : X → S be a flat morphism of rigid analytic spaces over K.

(1) The obstruction for the existence of the lifting of f to S′ lies in
Ext2OX

(Lrig
X/S , f

∗I). Here by the lifting we mean a flat morphism f ′ : X ′ → S′

such that X ′ ×S′ S ∼= X over S.
(2) If the obstruction o is zero, the set of isomorphism classes of the liftings

of f to S′ forms a torsor under Ext1OX
(Lrig

X/S , f
∗I).

(3) Let f̃ : X̃ → S′ be a flat deformation of X. Then, the automorphism
group of the lifting X̃ is canonically isomorphic to Ext0OX

(Lrig
X/S , f

∗I).

Proof. By applying Proposition 2.8 to the sequence X → S → S′, we
have a distinguished triangle

Lf∗Lrig
S/S′ → Lrig

X/S → Lrig
X/S′ → Lf∗Lrig

S/S′ [1].

On the other hand, by Proposition 2.10, we have τ[−1L
rig
S/S′

∼= u∗I[1]. Thus there

exists a natural isomorphism, Ext1OX
(Lf∗Lrig

S/S′ , IOX) ∼= HomOX
(IOX , IOX).

Since Ωrig
S/S′ = 0, we have Ext0OX

(Lf∗Lrig
S/S′ , IOX) ∼= HomOX

(f∗Ωrig
S/S′ , IOX)

= 0. Thus there is a long exact sequence

0 −−−−→ Ext1OX
(Lrig

X/S , IOX) −−−−→ Ext1OX
(Lrig

X/S′ , IOX)

−−−−→
ξ

HomOX
(IOX , IOX) −−−−→

δ
Ext2OX

(Lrig
X/S , IOX).

An element in EXS′(X, IOX) canonically induces an element which lies in
HomOX

(IOX , IOX). Thus we have a map

α : EXS′(X, IOX) → HomOX
(IOX , IOX).

There is a natural isomorphism EXS′(X, IOX) ∼→ Ext1(Lrig
X/S′ , IOX) by The-

orem 2.11 and this isomorphism identifies ξ with α. Let u be the element in
HomOX

(IOX , IOX) which is induced by f . The existence of a flat deformation
of X over S′ is equivalent to the existence of an element of Ext1OX

(Lrig
X/S′ , IOX)

which induces u by ξ, so (1) follows. Now it is clear that if δu = 0, the iso-
morphism classes of flat deformations is ξ−1(u) ∼= Ext1OX

(Lrig
X/S , IOX). This

shows (2). Finally the isomorphism H0(L
rig
X/Y ) ∼= Ωrig

X/Y implies that

Ext0OX
(Lrig

X/S , IOX) ∼= Hom(Ωrig
X/S , IOX). It is well-known that for every flat

deformation of X to S′, its automorphism group is isomorphic to the right-hand
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group. (We can show this by the completely same argument as the scheme-case
(cf. [15])).

4. Formal versal deformation

4.1. Preliminaries
In this section, we will consider the deformations of rigid analytic K-spaces

to the spectrums of local Artin K-algebras. Since every local Artin K-algebras
is a finite K-vector space, it is the topological ring whose topology are induced
by the topology of K. We call this topology the canonical topology.

Lemma 4.1. Let K be a complete non-Archimedean valued field. Then,
an Artin local K-algebra with the canonical topology is a K-affinoid algebra.

Proof. Since a local Artin K-algebra A is of finite type over K, we have
the representation of A by the quotient ring of a polynomial ring

A ∼= K[X1, . . . , Xn]/I.

If we equip A with canonical topology and K[X1, . . . , Xn]/I with Gauss norm,
this is an isomorphism of complete topological rings. The Tate algebra
K〈X1, . . . , Xn〉 is flat over K[X1, . . . , Xn]. Thus there exists a canonical iso-
morphism

K[X1, . . . , Xn]/I ∼= K〈X1, . . . , Xn〉/IK〈X1, . . . , Xn〉.
This completes the proof.

Remark 4.2. By the above lemma, we can attach an affinoid space
Sp(A) to any Artin local K-algebra A. Since every homomorphism of affinoid
algebras as K-algebras is automatically a continuous homomorphism, we can
view the category of Artin local K-algebras as the full subcategory of the
category of K-affinoid algebras.

Definition 4.3. For a rigid analytic space X over K, a local deforma-
tion functor DX of X is the functor defined as follows:

DX :
(

Artin local K-algebras with residue field K
)

−→
(

Sets
)

Let A be an Artin local K-algebra with the maximal ideal mA and the residue
field K. Then the set DX(A) is the isomorphism classes of pairs (f : X̃ →
Sp(A), α : X̃ ×A A/mA

∼−→ X) of a flat morphism f of rigid analytic spaces
over K and α is an isomorphism of rigid analytic spaces over K.

4.2. Schlessinger’s theory
Let X be a rigid analytic spaces over Sp(K).

Definition 4.4. Let O be a complete local noetherian K-algebra with
maximal ideal m with residue field K. Let {Xn}n≥0 be a family of deforma-
tions of X to Sp(O/mn+1) such that Xn is a flat deformation to Sp(O/mn+1)



710 Isamu Iwanari

and Xn ×Sp(O/mn+1) Sp(O/mm+1) ∼= Xm for m ≤ n. We say that a pair
(O, {Xn}n≥0) is a formal versal deformation of X if it satisfies the following
conditions.

(1) Suppose that A is an Artin local K-algebra with the maximal ideal mA

such that mn+1
A = 0. If X̃ is a deformation of X to Sp(A), there exists a local

homomorphism f : O/mn+1 → A such that X̃ is isomorphic to Xn×Sp(O/mn+1)

Sp(A).

(2) If A = K[ε]/(ε2), such f is unique.

The existence of a formal versal deformation of X is equivalent to the exis-
tence of a prorepresentable hull of the functor DX , in the sense of Schlessinger
(cf. [22]).

We have a convenient criterion for the existence of a prorepresentable hull.

Theorem 4.5 (Schlessinger [22]). Let A′ → A and A′′ → A be mor-
phisms of Artin local K-algebras. Consider the natural map

F : DX(A′ ×A A′′) → DX(A′) ×DX(A) DX(A′′).

The DX has a prorepresentable hull if and only if the following conditions are
satisfied:

(H1) If p : A′′ → A is a small surjection, F is surjective. Here we say that
A′′ → A is a small surjection if it is surjective and mA′′ · Ker(A′′ → A) = 0,
where mA′′ is the maximal ideal of A′′.

(H2) F is bijective when A = K, A′′ = K[ε]/(ε2).

(H3) dimK DX(K[ε]/(ε2) <∞.

4.3. Existence of a formal versal deformation
Theorem 4.6. Let X be a proper rigid analytic space over K. Then,

there exists a formal versal deformation of X.

First we will show (H1).

Claim 4.6.1. The functor DX satisfies (H1).

Proof. Let (ξ′, ξ′′) be an element of DX(A′) ×DX(A) DX(A′′). We put

ξ := (X̃/ Sp(A), φ : X̃ ×A K ∼= X),

ξ′ := (X̃ ′/ Sp(A′), φ′ : X̃ ′ ×A K ∼= X),

ξ′′ := (X̃ ′′/ Sp(A′′), φ : X̃ ′′ ×A K ∼= X),

such that α∗ξ′ = ξ and β∗ξ′′ = ξ where A′ α−→ A, A′′ β−→ A. Fix an affinoid
open set Sp(R) of X̃. Note that |X| = |X̃| = |X̃ ′| = |X̃ ′′| . Here | • | means
the underlying set. The subspace X̃ ′|Sp(R) (resp. X̃ ′′|Sp(R)) of X̃ ′ (resp. X̃ ′′)
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which is the lifting of Sp(R) is an affinoid space by Proposition 1.6. We set
Sp(R′) = X̃ ′|Sp(R), Sp(R′′) = X̃ ′′|Sp(R) and s : R′ → R, t : R′′ → R. To show
our claim, it suffices to prove that R′ ×R R′′ is an affinoid algebra. First we
define a norm on R′ × R′′ by the direct sum of the norms of R′ and R′′. This
norm induces the topology on R′ ×R R′′. This topology is complete. Indeed,
if {(an, bn)}n≤1 is a Cauchy sequence of R′ ×R R′′, {s(an) = t(bn)}n≤1 is also
a Cauchy sequence of R since |t(bn) − t(bm)| ≤ |bn − bm|. Now what to do is
to construct a continuous surjective map form an affinoid algebra to R′×RR

′′.
To this end, take a generator {ξ1, . . . , ξr} of Ker(t) such that |ξi|sp ≤ 1 for
1 ≤ i ≤ r. Next put R′ = K〈X1, . . . , Xn〉/I. We can choose elements η1, . . . , ηn

in R′′ such that s(Xi) = t(ηi) and |ηi|sp ≤ 1 for 1 ≤ i ≤ n. Indeed, since t is a
small surjection, |r|sp = |t(r)|sp for r ∈ R′′ and |s(Xi)|sp ≤ |Xi|sp ≤ |Xi| ≤ 1
for 1 ≤ i ≤ n. Therefore, we have the following homomorphism

K[S1, . . . , Sn, T1, . . . , Tr] → R′ ×R R′′

defined by Si → (Xi, ηi) and Tj → (0, ξj). Since |Xi|sp ≤ 1, |ηi|sp ≤ 1 and
|ξj |sp ≤ 1 for all i and j, this homomorphism is uniquely extended to the
continuous homomorphism (See [12, 3.4.7])

K〈S1, . . . , Sn, T1, · · · , Tr〉 → R′ ×R R′′.

Furthermore, from the construction, it is clear that this continuous homomor-
phism is surjective. Hence we see (H1).

Next we show (H2) and (H3).

Claim 4.6.2. The functor DX satisfies (H2).

Proof. We can show this by the completely same argument as the scheme-
case (cf. [22]).

Claim 4.6.3. The functor DX satisfies (H3).

Proof. Let f : X → Sp(K) be a structure morphism. Then, the isomor-
phism of derived functors

Rf∗RHom(−,OX) ∼= RHom(−,OX)

induces the spectral sequence

Ep,q
2 = Rqf∗Extp(Lrig

X/K ,OX) ⇒ Extp+q(Lrig
X/K ,OX).

Then it suffices to show that Rqf∗Extp(Lrig
X/K ,OX) is coherent for all p

and q. Note that by Theorem 2.9 (2), Lrig
X/K is pseudo-coherent. Thus

RHom(Lrig
X/K ,OX) is pseudo-coherent by [11, Chapter 0, 12.3.3] and [17, Chap-

ter 1, 7.3]. By Kiehl’s finiteness theorem, Rqf∗Extp(Lrig
X/K ,OX) is a finite K-

vector space for all p and q.
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By the above three claims, we can complete the proof of Theorem 4.6 by
Schlessinger’s criterion.

5. Towards the global moduli theory via Rigid geometry

In Section 4, we proved the existence of a versal family in the formal
sense for deformations of rigid analytic spaces. However the analogy of rigid
geometry with complex analytic geometry gives us a deeper question. When
one compares the deformation theory of complex analytic spaces with one of
the algebraic categories, no one doubts that the most important advantage is
the existence of versal family of deformations proven by Kuranishi and Grauert
(cf. [16], [20]). Formal deformations of algebraic varieties are not necessarily
algebraic. Thus there is no algebraic analogue of the theorem of Kuranishi and
Grauert. As we know, there is no logical relation between complex geometry
and rigid geometry. However one can conjecture the following.

Conjecture. Let X be a proper rigid analytic spaces over K. Then
there exists a flat morphism of rigid analytic spaces F : X −→ S and a K-
rational point p of S such that the completion of F at p is isomorphic to the
formal versal deformation of X.

This assertion can be viewed as a fairly precise non-Archimedean analogue
of the existence theorem of versal families for deformations of complex analytic
spaces due to Kuranishi and Grauert. Let S be a rigid analytic torus, i.e., a
quotient space T an/Γ where T is a split K-torus and Γ is a torsion-free lattice of
rank dimT . Then, we can prove that the conjecture holds for S by using p-adic
uniformization theory due to Bosch-Lütkebohmert-Raynaud. Unfortunately, at
the time of writing this paper, the author do not have a proof of this conjecture
for general rigid analytic spaces. But the author expects that this conjecture
is true and propose it.

Let us give one sufficient condition which implies the conjecture. Let K be
a discrete valuation field and R its ring of integers with residue field k. Let X
be a proper rigid analytic K-space. To prove the conjecture for X, it suffices to
show the existence of a locally noetherian adic formal scheme over Spf R which
satisfies the followings (cf. [2] section 0.2).

1. Its reduction is a scheme locally of finite type over Spec k.
2. It is a formal model of the formal deformation family of the rigid ana-

lytic space X.
However it seems difficult to prove the conjecture in general.
Let us explain why this problem is important. Suppose that we want to

construct a moduli space of interesting geometric objects. From the stack the-
oretic viewpoint, versal spaces for deformations of them (here “versal space” is
not in formal sense but has a geometric structure such as a scheme (resp. com-
plex analytic or rigid analytic etc...)) are local components of the smooth cover
of an algebraic (resp. complex analytic, rigid analytic) stack (cf. [1]). Thus,
roughly speaking, this conjecture says that in rigid geometry, the existence of
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local deformation theory implies the global moduli stack which is represented
by a rigid analytic stack.

Furthermore this conjecture will be important to the geometry of algebraic
schemes over an arbitrary field. Let X be an algebraic scheme over an arbitrary
field k. By considering the constant deformation X̂ → Spf(k[[T ]]). one can
associate a rigid analytic space X̂rig → Spf(k[[T ]])rig. By this technique the
deformation of X to a family of algebraic schemes is contained in the rigid
analytic versal family if it exists. Therefore the above conjecture is of prime
importance not only in rigid geometry but also in algebraic geometry.

Appendix

In this appendix, we prove a convenient criterion of the existence of a
non-trivial square-zero extension of a ringed topos.

Let A be a ring and B an A-algebra. Let M be a B-module and LB/A the
cotangent complex of the structure homomorphism A→ B. By EXalA(B,M),
we denote the set of isomorphism classes of square-zero extension of B by M
over A. By the fundamental theorem due to L. Illusie ([18, Chapter 3, 1.2.3]),
there exists a natural bijection

φ : Ext1A(LB/A,M) ∼→ EXalA(B,M).

On the other hand, there exists a natural homomorphism

π : Ext1A(Ω1
B/A,M) → Ext1A(LB/A,M)

which is induced by LB/A → Ω1
B/A (cf. [18, Chapter 2, 1.2.4]).

Theorem A.1. The natural map π : Ext1A(Ω1
B/A,M) → Ext1A(LB/A,M)

is injective. In particular, if Ext1A(Ω1
B/A,M) �= 0, there exists a non-trivial

square-zero extension of B by M over A.

Proof. First, note that it suffices to show that the map ψ := φ ◦ π :
Ext1A(Ω1

B/A,M) → EXalA(B,M) is injective. Let us construct explicitly the
map ψ (cf. [18, Chapter 3, 1.1.8]). For an element ξ in Ext1A(Ω1

B/A,M), let

(0 → M
α→ N

β→ Ω1
B/A → 0) be the corresponding short exact sequence. We

define an A-algebra structure of B⊕N by (b, n)+ (b′, n′) := (b+ b′, n+n′) and
(b, n) · (b′, n′) := (b · b′, b · n′ + b′ · n). We also define an A-algebra structure of
B ⊕ Ω1

B/A by the same way. Consider the following diagram

0 �� M ��

Id

��

C
pr2 ��

pr1

��

B ��

(Id,dB/A)

��

0

0 �� M
(0,α)

�� B ⊕N
(Id,β)

�� B ⊕ Ω1
B/A

�� 0,
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where C is the fibre product (B ⊕ N) ×(B⊕Ω1
B/A

) B. Then we define ψ(ξ) by
(0 → M → C → B → 0). Since EXalA(B,M) has a group structure by φ, it
suffices to prove the following claim.

Claim A.1.1. Under the same assumption as above, if the exact sequence
(0 → M → C → B → 0) has a splitting a : B → C, the exact sequence
(0 →M → N → Ω1

B/A → 0) also has a splitting Ω1
B/A → N .

Proof. Let DerA(B,N) be the set of A-derivations of B to N . Then
note that we have a natural isomorphisms HomB(Ω1

B/A, N) ∼→ DerA(B,N)

and DerA(B,N) ∼→ HomA -alg/B(B,B ⊕ N) (cf. [18, Chapter 2, 1.1.1.4 and
1.1.2.6]). Let δ : Ω1

B/A → N be a homomorphism that corresponds to the
element pr1 ◦a in HomA -alg/B(B,B ⊕N) by the above isomorphisms. Then it
is easy to see that δ is a splitting of β : N → Ω1

B/A → 0.

Thus we completes the proof of the theorem.

Let f : X → Y be a morphism of ringed topoi. Let Ω1
X/Y be a Kählar

differential module of f−1(OY ) → OX , and LX/Y the cotangent complex (cf.
[18, chapter 2]). By EXalY (X,M), we denote the set of isomorphism classes
of square-zero extension of X by a OX -module M over Y . By the same pro-
cedure with the above, we have a natural bijection φ : Ext1Y (LX/Y ,M) ∼→
EXalY (X,M) and a homomorphism π : Ext1Y (Ω1

X/Y ,M) → Ext1Y (LX/Y ,M).

Corollary A.2. Let X → Y be a morphism of ringed topoi and M a
OX -module. The natural map π : Ext1Y (Ω1

X/Y ,M) → Ext1A(LX/Y ,M) is in-
jective. In particular, if Ext1Y (Ω1

X/Y ,M) �= 0, there exists a non-trivial square-
zero extension of X by M over Y .
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mann, 1961–1965.
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Publ. Math. IHES 4 (1960).
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