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§1. Introduction.

In this note we will consider some problems on the non-linear
representation of strictly stationary processes. These problems
were treated by N. Wiener [1] and M. Rosenblatt [27], [3].

To begin with, we shall introduce some terminologies necessary
for our representation as a natural extension of those introduced
for the linear representation of Gaussian processes [4].

Let X={X(¢, &), —<{t<_ o] be a strictly stationary process
on a probability space Q(B, P). Let dB={dB(t, ), —oco< t< oo}
be a Wiener random measure (abbreviated hereafter as W. r. m).
On a probability space Q(B, P), which may or may not be identical
with Q(B, P).

Consider a system of functions £={f,, #=0.1,2, ---}, where
each f, is a symmetric L,~-function defined on the negative domain

(—o0,0]". We assume that 3'u!||f,|[* is finite, ||f,/| being the
L, norm of f,. In this paper such a system f is said to belong
to K. For re K, we define the process Y= {Y(¢, ), — co<” < o0}
as follows,

vit, o) = 33| o ' stti—t o t—00aBG, 0) B, @) (1)

no-0J =

where the 7-th term is the orthogonal #-th Multiple Wiener
Integral [1], [56]. It is clear that Y is M, continuous and strictly
stationary.
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Definition 1. If Y is a version of X, then we call the stochas-
tic process of the right side of (1) a (non-linear) representation of
X, and the system 7 the kernel of the representation.

We define the degree of representation by sup {n; || f,/|”>0}.
If [|f.ll=0 for all n, we define its degree by —1 for convenience.

Definition 2. The representation is called properly canonical
if and only if

L,dB, t) = LY, 1) for all ¢.

L,(dB, t) is the set of all random variables measurable with respect
to B,(dB), with zero mean and finite variance, B,(dB) being the
completion of Borel field generated by [ {B(x, ®)— B(v, ®), u, vt}
v {all null set in B}], and L,(Y, ¢) is the set of all random vari-
ables measurable with respect to B,(Y), with zero mean and finite
variance, B,(Y) being the completion of the Borel field generated
by [{Y(s, ®), s<#} v {all null set in B}]. In L,dB, t) as well as
in L(Y, ) we identify two elements which coincicide up to mea-

sure zero.

Definition 3. The representation is called canonical if and
only if
L,dB, t) | (L(Y)© LY, t) for all ¢. (2)

where L,(Y)=L,(Y, o).

Intuitively speaking, the condition (2) means that we do not need
the future information of the given stationary process Y to con-
struct the W.r.m. dB. It is obvious that any properly canonical
representation is canonical.

Two representations of a process with the same kernel are of
the same type, namely, if one is canonical (or properly canonical),
then it is so with the other. Thus we can also use the terminology
such as “the kernel is canonical (or properly canonical)”

Definition 4. X is called purely non-deterministic if and only
if
NL,(X, t) = {0} and L,(X)= {0}.
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Any process with a representation is purely non-deterministic
except a trivial case. Furthermore it can be proved that an ergodic
and strictly stationary Markovian process, provided that if P(¢, , E)

is the transition probability, then SP(z‘, a, db) f(b) is continuous in

a for an bounded continuous function f.» To prove this it is
enough to show that if &)e N\ L,(X, ?),

}ij}lo; E(¢(@)/B(X)) = E(§(@))
and we can assume that &(@) is of the form

g(w) = fl(X(tw w))fz(X(tzy w)) o fn(X(tn) w)) ’ (t1<t2< ot <tn)

f; being contnuous, since the linear combination of these functions
are dense in L,(X, o) ; in fact

E(E(w)/Bt(X)) = S"'Sfl(xl)fz(xz) "'fn(xn)P(tn_tu—n Xn-1> dxn) e
P(t,—t, X(t, »), dx,)
g S "'Sfx(xl)fz(xz)"'fn(xn)P(tn_tn—p Xn-1» dxn)'"P(tz_tn X dxz)(p(dxl)
= E(&(w))

where @ is the invariant distribution which is equal to the limit
distribution of P(¢, a, E) as ¢t —oo by the ergodicity of our process.

The main purpose of this note is the determination of all
canonical representations of a stationary process which has a
properly canonical one. We shall discuss this in §2.

In §3 we shall clarify the relation between our (non-linear)
representation and the ordinary linear representations in case the
processes in question are Gaussian. An interesting result from
this relation is that the degree of the canonical representation of
Gaussian processes is either 1 (linear representation) or infinite.

In §4 we shall mention two examples of stationary processes
in connection with the representation. The first one is as follows.
Let {P(#, &), —oo< t< oo} be Poisson process with parameter A.
Then Y(¢, 3)=P(t, 3)—P(t—1, &) —\ is a strictry stationary and

1) This was given by K. Ito.
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purely non-deterministic, but has no canonical representation.
The second example is a Markov process which has a properly
canonical representation.

In conclusion the author wishes to express her sincere thanks
to Professor K. Ito for his kind guidance and valuable suggestions.

8§ 2. Canonical Representation.

Firstly we shall give a method to transform a W.r.m. into
a new one by a random change of the sign of increments.

Let W(r, ) be a (v, »)-measurable function whose values are
either 1 or —1, and assume that it is measurable with respect
to B.(dB) (=8[B(u, ®)—B(v, ®), u, v<7]) for each . Putting
B(t, ®)— B(s, ©) = St\lf(q-, ®)dB(7, w) (stochastic integral [6]), we
have

Lemma 1. dB={dB(t, ®), —co< t< oo} is a W.r. m.
Proof. Consider first the simple case in which W(r, ®) is of
the following form :

Y(r, w) = q;(®) for T, <v<7;,, 1=1,2 - ,n.
For s, tel7;, Ti+),

P(B(t, ®)— B(s, ®) <_ ¢/ B,(dB)) ‘
= P(a;(») =1 and  B(t, ®)— B(s, ®) < ¢/ B,(dB))
+ P(a(0) = —1 and B(¢, ©)— B(s, ®) >c¢/B,/dB))
= P(as(») = 1/B,(dB)) P(B(, ®) — B(s, ®) <_¢)
+ P(a@) = —1/B.(dB))P(B(t, ©) — B(s, ®) > —¢)

¢ 1 s

= S_mme / dx .

Hence, it is clear that dB is a W.r.m., since B(¢, w)— B(s, ©) is
measurable with respect to B,(dB).

Given a general W(r, ), there exists a sequence of functions
v, (r, »), n=1,2, .-, of the form mentioned above such that
SnnE(\lf(T, ®)— W, (T, (u))2d7<~—:7. Using this fact we can easily see
that dB is the limit of a sequence of W.r.m.s. Therefore dB
is a W.r.m, as we wished.
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Thoughout this section we assume that X= {X(¢, &), — o<t
< oo} is a strictly stationary process with zero mean and has a
properly canonical representation with the kernel g=(g,, &, -**),
namely X has a version Z such that

"St gn(tl_tv tty tn_t)dB(tn w) te dB(tm (") ( 1)

2t -F
L(dB,t) = L(Z, t). (2)
We shall note that if T is a shift operator on L,(dB) defined by
T.(B(t, ®)— B(s, ®)) = B(t+7, ®) —B(s+7, ®)
and if T, is on L,(Z) defined by
TAZ(s, ®) = (s+7, )

then (1) and (2) will imply 7.=7,, while the relation (1) implies
T.>T, only.

Lemma 2. If a process Y is a version of X, then we can
construct a W.r. m. dB* from Y such that

Y(t, o¥) = i St_,omgt_wg"(t‘_t’ o, b —8)dBX(t,, o¥) -+ dBX(t,, 0*)

n=1

and LY, t)=L,(dB*, t) for all .

Proof. By the relation (2), we can construct dB from Z as
B(t, ®)— B(s, ®)=f, (Z(7, »), T<t). Hence it follows that {f; (Z(,
w¥), 7<t), —oo< s<_t< oo} is also a W.r. m. since Y is a version
of Z. Denoting this W.r.m. with dB*, we obtain Lemma 2 at
once.

For any set E ¢ B,(dB), we define Xg(w) by

Xgw)=1 on E, = —1 on E°.

This random variable X (») can be expanded by Multiple Wiener
Integrals [5. Th. 4.27] as

Xe) = 33 | o[ et L £)ABGL, ©) - dBE, ©)

where @, is a symmetric function.
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Let 3 denote the set {¢,=(Pr,, Pr., +); E€ By(dB)}. @ does
not depend on the W.r.m. dB by the definition and if ¢ belongs
to 3, then —¢=(—p,, —p,, --+) does also.

For any ¢ € & and for any a, b€ K, we shall define the relation
a=bop as follows. Take a W.r.m. dB and define dB by

B(t’ (D)—E(S, w) = i StdB(T’ (D)[S‘r ST 7)n(t1_‘r’ tn_q-)

dB(t,, ) -+ dB(t,, )|

dB proves to be a W.r.m. by Lemma 1. If it holds that

io Si SO, a,(t,, -, t,)dB(t,, ©)--- dB(t,, »)
- i{) SO o S(i b”(tl’ ) t”)dé(tl) (0) o0 dE(tn’ (0) )

then we say that a=bop. This definition is independent of the
special choice of the W.r. m. dB.
Thus our main Theorem reads as follows.

Theorem 1. A necessary ane sufficient condition for fe K.
to be the kernel of canonical representation of the process X
mentioned above is that there exists ¢ in & such that F=goe.

Proof. Let £ be the kernel of a canonical represention of X.

vit, o =5 " " st t—ndB,, 0) - dB(, @) (3)

is a canonical representation of X, so that
L,dB, t) | (L(Y) © Ly,(Y, ).

Using Lemma 2, we can construct dB* such that

N St gn(tl—ty Ty tn_t)dB*(tu (0) dB*(tny (0)

Y2, 0) — S'm

and that
LY, t) = L,(dB*, t).
Thus we have
L,dB, t) | (L(dB*) & L(dB*, t)) (4)
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Expand dB* by Multiple Wiene Integral as

B*(tv (U)—B*(S, (0) = i St '_.St at,s,n(tu ttty tn)dB(tly (O) A dB(tn) (D)

~ [ A, 0)aB(r, @) (5)

tyoy

where A, (r, 0)= 2, n! ST_ S

0 o —0

”Stz al.s,n(tlr tt tn-ly T)dB(tl, (0)
<+ dB(t,-,, ®) .
On the other hand we have, by (4)

[ Auur 0)dBir, 0) = E(B¥(t, 0)~ BX(s, o)/ B,@B) = 0. (6)

and for s<u<v<t

E(B*(t, @) — B*(s, ©)/ B,(dB)) — E(B*(¢, ®) — B*(s, »)/ B,(dB))
= B*(v, ®) — B*(u, o) (7)

Thus we obtain
B(t, 0)~ B¥(s, ) = | A,(r, @)dB(r, o) (8)
by (5) and (6), and
[ 4.0, 0)aB, ) = [ Au(r, 0)dBEr, @) (9)
by (5) and (7). This implies
A; (7, 0) = A, (7, ©) 10)

for almost all (7, @) in [u, v) xQ. Therefore we can extend A,
to a (r, ®)-measurable function &(r, ®), defined on R'XQ such
that for any s<{¢

B¥(t, @)~ BX(s, ©) = | &(r, 0)dB(r, ). (11)

It is obvious that ®(r, ®) is measurable with respect to B.(dB)
for any fixed .

Next we will show that &7, 0)=1.

First we have

[ B, 0)/B.(@BYdr = t—s (12)
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comparing both side with E{(B*(r, )— B*(s, »))’/B,(dB)} by (11)
and (4). Furthermore, E(d*7, »)/B,(dB)) is a measurable function
of (s, 7, ®), because it is measurable in (7, ®) for any fixed s and
it is continuous in s for any fixed (v, ). Fixing s arbitrary, we
obtain, from (12),

E(db*(r, )/ B,(dB)) = 1 (13)

for almost all @ and for almost all Té€[s, ). Appealing to
Fubini’s theorem, we have

“E(d*(s+7T, ©)/B,(dB)) =1
for almost all s and for almost all ©” . (14)

for almost all 7€[0, o). It is clear that, for almost all ©, ®*(r, ®)
is locally integrable in T and hence

b
S | D*(7, ®) — (7 +v, ©)|dT — 0 as v—0.

On the other hand, we have

b

Sb | D, @) — DT+ v, ®)|dr <2 S

" dX (T, w)dT
for v small, and noting that the random variable of the right side
belongs to L,(Q) and using the Lebesgue bounded convergence

theorem, we have
b
ES [T, @) — (40, @) |dr — 0, as »—0  (15)

Let {r,,n=1,2, .-} be a seqvence of those values of 7 which
satisfy (14) such that 7,—0. Now it follows that

b
S E|1—d#(s, o) |ds

" EIE@(s+,, ©)/B.(dB))— s, o)|ds

= (" E|E@(s+7,, 0)— s, )/ B,(dB))|ds

a
b

<\ E{E(|®P*(s+T,, ©)—d*s, ©)|/B,(dB))}ds

= B([ 19+, 0) @5, 0) s - 0

a
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by (15), which implies
O*(u, ®) = 1 for almost all © (16)

for almost all .

Expanding (s, ®) by Multiple Wiener Integrals and noting
that &(s, ®) is measurable with respect to B,dB), (11) can be
written as

Bt o) B(s, @) = 33 [ aB o[ [ (" putt, 1 waB
(t,, @) Bty )| QD)

where @, is symmetric on (¢,, -+, ,-,). Operating 7. on the both
side of (17), we have

BX(t+, (o)—B*(S'i—‘Ty ®)
B i StTdB(u, (0) S’ cee S" r/')n(t]—rr’ Tty tnf'r’ u_T)dB(t” (D)
v dB(t,-,, ®)

Replacing ¢+7 and s+7 with ¢ and s respectively in this expres-
sion and comparing it with (17), we obtain

(/)n(_tl) tty tn—;a u) == (Pn(tn_‘ry AR t”_]—'['y u_T)
for almost all (¢,, -+, ¢,_,, #). Therefore we have

“(/)n<t1) ttty tn—l) u) = (/)n(tl_q-» Sty t”_l—‘T, M—T)
for almost all = and for almost all (¢,, -+, £,_,)" (18)

for almost all . Taking a value u, of # which satisfies (18) and
(16), and defining r, by

\Irn(tl_uov Tty tn_u()) = (pnfl(tn ) tn‘ uo)
we have

‘Il\n(tl_uo-rry tt, tn_uo_q-) = (/)1111(t|) R tn) u(,‘}"T) (19)
for almost all = and for almost all (¢,, --+, ¢,), and therefore

(l)(u(,—F'T, (’)) = i ST "'ST \[’/‘,,(tl_u(,-'T, Tty tn—uo_T)dB(t“ w)
e dB(,, ®) . (20)
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for almost all = and for almost all o.
Defining W(r, ) as a measurable version of

oo

E ST '“ST \[/‘n<t1—7', tt tn_T)dB(tU w) o dB(tn’ m)) we get

W(r, ®) = d(t, ©)  for almost all . (21)

for almost all =, and since W(r, ®) is a strictly stionary process
by the definition

PW(r, ) =1 or —1)=PW(u,,®) =1 or —1)=1. (22)
Hence the system ¢=(y,, i, -+*) belongs to the class & introduced
before, and we have f=go¢.

Assume tonversely that f=go¢ and put
Yt ) =3 S’ S' 1, - b, —1)dB(t,, ©) - dB(t,, ®) (23)

n=

and

B(t, )~ B(s, 0) = 31 aBe, o) " (" =, t,—m)dBlr,, 0)

ves dB(tn’ (,_)) )
we shall get

Y, 0) = 3 S'm

W=l

_.Si g(tl_t» R tn_t)dé(tlr O‘)) o dé(tn» ("’)

by the definition of go¢, and this proved to be a properly canonical
representation of X, and it implies that (23) is a representation
of X. It is therefore enough to prove

L,dB, t) | (L(dB) & L,(dB, t))

in order to complete the proof of our theorem.
Take any element Z in L,dB)® L,dB,t). Then Z can be
written as

Z = SN (T, ®)dB(T, o)

where 7(r, ®) is measurable with respect to B.(dB), since Z € L,(dB).
Since Z_| L,(dB, t) and

Z = S n(r, ©)dB(r, @) € L(dB, 1),

we have, by the property of stochastic integral,
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0=EZ-2) = _E6r, o)ar
namely 7(r, ®)=0 for almost all (r, ) e[ — oo, t]x Q, so that
Z = ntr, 0)dBr, 0) = | (r, o) ¥(r, 0)dB(r, @)

where V(r, ») is measurable with respect to B.(dB). Since 7(r, ®)
is measurable with respect to B.(dB), it is also measurable with
respect to B.(dB). Therefore Z is orthogonal to any elemnt Z”
of the form

2" =" tr, 0)aB(r, o)

by the property of stochastic integral, where &(, ®) is measurable
with respect to B.(dB). Since Z” is a general etement of L,(dB, t),
the proof is now completed.

In connection with this theorem there arises an open question
whether or not L,(dB, t) is strictly larger than L,dB, t).

83. The Representation of Gaussian Processes.

In this section we will discuss the non-linear representation
of Gaussian processes. Let X be a stationary Gaussian process,
continuous in the mean square sense with zero mean and finite
variance. Let (X, ¢) denote the closed linear manifold spanned
by {X(r, ®), Tt} and put M(X)=M(X, ). Replacing L,(X, t)
and L,(X) with M(X, t) and M(X) respectively in Definition 4 in
81, we shall introduce the concept “purely non-deterministic in
linear sense”. It is well known that X has a moving average
representation (representation of degree 1)

vt o) = " glt—s)aBGs, o) (1)

if X is purely non-deterministic. Replacing L,(X, t), LX), L,(dB, t)
and L,(dB) with M(X, t) M(X), M(dB, t) and M(dB) respectively
in Definitions 2 and 3 in §1, we shall introduce the concepts
“properly canonical in linear sense” and “‘canonical in linear sense’.”

2) This definition of canonical representation is equivalent to Levy’s one that is
EY(H)/M(Y, 5)) = S'g(f—u)dB(u, @) for s< t.
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It should be noted that the proviso “in linear sense” is omit-
ted in the ordinary theory of linear representation of Gaussian
processes.

Now we shall state some relations between two kinds of
concepts mensioned above.

(A) X is purely non-deterministic if and only if X is purely non-
deterministic in linear sense.

(B) In the representation of degree 1, four conditions, (a) properly
canonical in linear sense, (b) properly canonical, (c) canonical and
(d) canomical in linear sense are equivalent to each other.

The proof of (A) is easy. We can prove (B) by showing the
implications

(@) — (b) = (¢) > (d) —> (a).

We shall now prove the implication (d) — (a) only, because other
implications can be proved at once. Let Y(¢, w)zgtg(u—t)dB(u, )
be a properly canonical representation in linear sense and let
Z(t, w):St f(u—t)dB(u, ®) be a canonical representation in linear

sense. Since both are versions of X,

E{E[Y(t, o)/ M(Y)]E[Y (s, ©)/ HLY)]}
= E{E[Z(t, »)| HAZ)E[Z(s, @) HZ)T} (=<1, )

Because of canonicality we deduce from this
g gu—1) glu—s)du = S Fu—1) flu—s)du,

namely, gu—1t)g(u—s)=f(u—1t)f(u—s) for almost all «<"min. (¢, s).
Taking EX?*0, ) >0 into account, we obtain f(¢)=06g(¢#) for almost
all # with a censtant 8 equal to +1, which completes the proof
of (d) — (a).

It follows at once from (B) that if (1)‘is not properly canonical
in linear sense, as in Y(¢, ®)=B(f, ») —B(t—1, »), then LY, )&
L,(dB, t).

As a result of Theorem 1 in §2 we can determine all the
canonical representations of a Gaussian process X which is purely



Remark on the canonical representation 141

non-deterministic. Let (1) be the properly canonical representation
of X in linear sense. Then we have

Theorem 2. £ is the kernel of a canonical representation of
X if and only if there exists ¢ in & such that
fn(tu Tty tn)

”

1
= ggg(ti)x(—w,t;]"_l(tl’ oy b Ly, )tn)q)n-*l(tl_ti)
“»ti—l—ti»fﬁl_tn '”’tn_ti) . (2)
for almost everywhere in (—oo, 0]", where X ,(-) is the indicator
function of the set A.

Using this, we will determine the degree of canonical re-
presentation of Gaussian processes.

Theorem 3. The degree of canonical representation of Gaus-
sian process is either 1 or oo.

Proof. Because of

[ I?

1 2 2
o1& Pl (3)

it is enough to show that if ¢.=(pg,, Pg, =, Pen, 0, 0-) for
finite N, then N=0.
Let {0,, n=1,2, --:} be the complete orthonormal system of

0
L(—o0,0]. Then {f,,(m)zs 0,()dB(t, ), n=1,2, ---} are NO, 1)-
distributed and mutually independent random variables. By the
definition of ¢z=(Pg,, =, Pen, 0, 0:--), we have.

%E(w) = EN: So_w"' S()_N(/)E,n(tu B tn)dB(tn w) ot dB(tn’ (D) .

n=0
More precisely ahd expressing this by &,(®), n=1,2, --- we get,

o) =B S S a1V H (S oh@)  (4)

P=0 TH pHE by =D @y \/2

We shall expand 9_CE(w) as a power series of & (w):

Xp@) = 3 CuE@), £(0), ) El©) (5)

Hence for fixed (§,(®), &(®), +--) it becomes a polynominal of & ()
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of degree N at most. Since the value of the left side of (5) is
either 1 or —1, the degree of this polynomial must be 0. Thus

Xp(@) = Cy£(), E(@) , +) (6)

Using (4), C, can be expanded as a power series of &,(») again,
say,

Xpo) = 33 COEW), £(0), ) i) (7)
By the same argument we conclude
Xp(@) = CPE(), £(), ). (8)

Repeating this method, we obtain that X () is the function
of &,(»), &,.,(®), .-+ for any large », and therefore >_6E(co) is a con-
stant by the O0—1 low. This implies that N=0 as we wanted.

§4. Examples

Example 1. Let P={P(¢, @), —oo<_t< oo} be a Poisson pro-
cess with parameter A and put

Y(t, @) = P(t, &) —P(t—1, &) —\ .

We shall show that Y has no canonical representation. Firstly
we shall note that B.(Y)=B.(dP). Almost all sample paths of ¥
are step functions whose jumps are either 1 or —1. Denote with
D,, the set of
{&:m >3t ">—m, P(t, 3)—P(t—0,a) = P(t—1, 3)—P(t—1-0, &) = 1}

Then we have

- P k -1 .
DacAfasm="2>m p(* a)-p(*"1 5)-10,

p(b=n 5)-pk=r=l 5).po). (1)

n

By the independence of Poisson processes we have for »n (C>2).
ﬁ{P(ﬁ,a)—ffﬁil,a>l 0, P<@-”,a> phk-u= ]'a>4-0}
n n n n

= (L—e™¥™)". (2)
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Therefore the probability of the #-th set of the right side of (1) is
less than 2(m+ 1) n(1—e ). Hence P(D,,)=0, so that P(\JD,,)=0.

This implies that for almost all sample paths there is no value
of ¢ such that

P, &)—P(t—0,3)=P(t—1,&)—Pt—-1-0,a) =1.
For any fixed s and ¢, consider
Z@) =3 [{Y(r;, &)~ Y(r,.,, &)} vO]
«r,.EerA‘ﬁw . (3)

It is clear that Z,(®) increases to P(t, ®)— P(s, ®) for almost all
» as n— . Hence P(t, ®)— P(s, ®) is a measurable function with

respect to B,(Y), namely L,dP, t)C LY, t). The inverse inclusion
relation is obvious.
It follows from this fact that

E(Y(t, &)/B,(Y)) = P(s, ®)—P(t—1, &) —Ms—t+1) (4)
E[{E(Y(t, ®)/B,(Y))—E(Y(¢, ®)/ B/Y))}*/B/(Y)]
= Ms—¢') (5)

for t>s>s'>>t—1. Now suppose that Y had a canonical re-
presentation, say

Z(t, o) = 2 Stm St_mf,,(t,—t, e, t,—t)dB(t,, ®) -+ dB(,, ®)

~

— S— F(t, u, o)dB(u, o)

Since Z is a version of Y, we should have

e (A for t>2u—>t—1
) = |
) =0 for u<t—1

using (5). Hence the value of F is either \/A or —+/)\ and
Z(t, o) = S’ F(t, u, ©)dB(u, ») .
t-1
Using the same argument as we used in Lemma 1, the probability
law of Z(¢, ) would be N(0, \), which is absurd.
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Example 2. Consider the Markov process with generator

dZ

G = A(x—B)24%.
n (x )a’xz

+(Dx+5)£—c (x>B).

It is known that under the condition
A>0, DB+E >0, D<A (6)
there exists one and only one invariant measure, which has density

function p, [7].

po) = const. (- Byrtexp (- PEEE L) G>m) (1)

Then there exists a stationary Markov process X= {X(f, ®), — co<¢
< oo} with generator ¢. X has finite second momet, provided

D<0, —D>A>0. (8)

Hereafter we will assume the condition (8). From X we can
construct a W.r. m. dB [ 8] such that

X(t, ©) = X(s, m)+g' (DX(r, @)+ E)dr + | a(X(r, 0)— B)dB(r, )

' ' (9)
where a«=+/2A4. This implies that X(¢, ) is measurable with
respect to the Boreld field generated by {B(u, ®)— B(v, ®), s<v<
u<t} and B,(X). According to [2. Th. 3] we shall show that
X(¢, ®) is measurable with respect to B,(dB). Consider two pro-
cesses X, and X, starting « and b at time 0, (¢ _>b">B), which
satisfy stochastic integral equation.

Xi(t, ) = i+ | (DX,(r, o)+ Bydr+ | a(X(r, @)~ B)dB(r, o)

’ i=a b (10)
respectively, putting Y(¢, ) = X, (¢, ) —X,(¢, ), Y satisfies the
following equation, for >0

Y+, 0) = Yt o)+ S“ TDY(s, ®) ds+S”TY(s, ®)dB(s, ®). (11)
t t
Solving (11), we have
Y(t, @) = (a—b) exp [(D— A)t+a(B(t, @) —B(0, ®))]. (12)
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Hence
E|X,(t, o)~ X,(t, ®)| = |b—ale . (13)

On the other hand, solving the stochastic integral equation

2t &) = 7(0, (5)+S:(DT,(¢, 5)+E)d'r+S:a(n(v-, &)—B)dB(r, ).
(14)

where 7(0, &) is independent to {B(u, &)— B(u, »), 0<v<"u}, we
get a Markov process {7(f, @), >0} and it is seen that 7 is a
version of {X(¢, »), £Z>0}. This implies that X(0, ») is also
independent of {B(x, ®)— B(v, ®), 0<v<_u}. Using (13),

lim E|X(Z, )= X,(#, )| = lim E[(| X(t, ») - X,(¢, ®)| / X(0, ®)) ] = 0.
(15)

Denoting with B, ,(dB) the Borel field generated {B(x, ©)— B(v, ®),
0<v<u<t}, we get

E|E(X(#, ®)/ B¢, 1,(dB))— X, (¢, ©)| < ELE(| X(Z, @) — X, (¢, )|/
B,»(dB))] = E|X(, ®)— X, (¢, @)| 0. (16)

Combining (15) with (16) concludes that E|E(X(¢, ©)/B »(dB))
— X(¢, )| tends to O, which was to be proved.

Using equation (9), we obtain the expansion of X (properly
canonical representation),

— _E S ! " a"E ~D[Ct,~ONty= NNt~ )]
X(t’ w) - 6 ”Z_l S_m S_w a<7)~+3>e 1 2

dB(tw C')) o dB(tn’ w) .

Mathematics Department,
Kobe University
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