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Introduction.

The Schwarzschild space-time is a four-dimensional Riemannian
space with the line element

ds® = <1—?_”_’> dt— (1 —%m>_ldr2—r2(d02+sin2 dep?)
v

where m is a positive constant, and the domains of variables are

—oo < t< 4o, 2m<r<+oo, 0207, 0= 27.

This was obtained as a solution of the Einstein gravitational
equation and may satisfactorily describe the behaviour of the solar
system. The properties of this space-time have frequently been
studied so far both from the physical and the mathematical points
of view.

It is well known that the Schwarzschild space-time is of class
two in the sense of imbedding, that is, it can be imbedded in a
six-dimensional pseudo-Euclidean spase [1]*. The following are
the already established expressions for the imbedding, which were
derived by Kanser [3] and Fronsdal [2] in an intuitive way.

(1) Kasner imbedding -
ds® = dz}+dzi—dz5—dzi—dzi—dzk,
z,=1-2m/r)*cost, z,=(1—2m/r)*sint,

* This is a special case of the fact that a spherically symmetric space time is of
class two at most [4].
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2z, = f(r), where (df/dr)’ = Cmr’+m?)[r*(r —2m),
2z, =rsinfsinp, 2z,=rsinfcosp, z,=rcosb.

(2) Fronsdal imbedding :

ds* = d2t—dz—dzi—dzi—dzi —dzZ,

z, =2(1—1/r)”sinh (¢/2), 2z, =2(1—1/7)"*cosh (¢/2),
z, = g(r), where (dg/dr)’ = (r*+r+1)/r®,

2, =rsinfsinp, z,=rsinfcosp, 2,=rcosd.

(Note that in the paper [2] the unit is taken so that 2m=1.)

So far as we know, no further progress has been made in the
study of the subject under consideration. The purpose of our
work is to make a thorough investigation of the imbedding problem
of the Schwarzschild space-time. Particularly, in the end of this
paper, we shall determine all possible types of the imbedding func-
tion for a special case, which includes the above (1) and (2).

In writting this paper, we wish to express our sincere grati-
tude to Dr. Y. Akizuki and Dr. S. Sasaki for their continued
encouragements.

§1. Preliminaries.

1. First of all, for the sake of convenience to later references
we shall give a table of some quantities of the Schwarzschild space-
time If the coordinates ¢, 7, and ¢ are denoted by 2x° x', x*
and x® respectively, and if we put y=1—2m/7, then the quantities
are as follows. The fundamental tensor g;; is given by

2

8w =7 8u = -y, gp= —1t, gy = —¥'sin’é,

1.1) o

The Christoffel’s symboles 1'j, are given by

9 = 1% = mr~*y™', Lo = mry,

Mh=—mriy™?, I'yp=—ry, L= —rysin®é,
(1.2) M=1%=7r" Ih=1h=r",

1'%, = —sinfcos?, D'}y =1% =cotd,

other I'j, = 0;
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Let R;;,, be the components of .the curvature tenser. Then
R;*=g*g"R;;,, are given by

R, = R,” = —2mr,
(1.3) 1R, =R,”=R,*)=R,*=mr?,

R;;* =0, if at least three of indices are different.

2. The Schwarzschild space-time has, as immediately seen
from the above table, the following properties :
[ 1] There exists a coordinate system (x'), i=0, 1, 2, 3, with respect
to which the components of the fundamental tensor and the curvature
tensor are such that
g&;=0, ifisj;
R * =0, if at least three of indices are different.
[II] The Ricci tensor vanishes: R;;=g®R;,;,=0.
For a while, we shall not confine our consideration to the Schwarz-
schild space-time, but more generally deal with the four-dimensional
Riemannian spaces V* having those two properties only.
If we put
Rijij* = Sij’ i==7,
then it follows from the property [II] that
315, =0, i=01,23,
b=

and this is, as easily seen, equivalent to
801+Soz+soa =0, So1 = stv Soz = S1a ) Sos = S12°

Because of these identities, we can now classify those V* into the

following four classes.

[A] None of S,, S,, and S,, vanishes, and they are different one
another.

[B] None of S,,, S, and S, vanishes, and two of them, say S,
and S,;, are equal each other, while the rest S, differs from
the other two.

[C] One of S,,S,, and S, say S,,, vanishes and the other two
S,; and S,, differ from zero.

[D] All of S;; vanish.

* In this paper we do not use the summation convention.
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The Schwarzschild space-time belongs, by virtue of (1.3), to the
class [B]. The condition of [D] implies that the V* is flat, and
hereafter we exclude this class from the following consideration.

3. Suppose that a V*is imbedded in a six-dimensional pseudo-
Euclidean space E° of some signature. We denote the (indefinite)
inner product of the E° by the symbol <, >. Let (x) be a point
in V* and the vector z(x) its image in E® by the imbedding map.
The map being isometric, we have

dz(x), dz(x)> = 2] g;(x)dx'dx
or this is equivalent to

(1.4) {z;, z;> = &ij,

where z;=z;(x)=0z/0x’, and geometrically z,(x) are tangent vectors
in E° to z(V*) at z(x). Let n,x), c0=4,5 be two mutually ortho-
gonal unit normals in E° to z(V*) at z(x):

<n0"n0'>:eﬂ'(:ﬂ:1)7 0-:4)5)
ln,,nyy> =0,
<n,,z>=0, 1=01,2,3, 0=4,5.
As is well known, the expressions of the covariant derivatives

V;z; and V;n, in terms of 2, and n, are given by the so-called
Gauss and Weingarten formulas

(1' 5) V}'zi = E ea‘bfrijnrr >
(1_ 6) an,, = —Z g"kb,;jzk-i—z (2 (23
ik T
and the coefficients b,;;(=0,;;) and v (= —v, ;) in the expressions

(1.5) and (1.6) necessarily satisfy the following Gauss, Codazzi
and Ricci equations [1].

1.7 g ea(ba'ikbcrjl _ba-ilba-jk) =R,
(1' 8) kao'ij - ijaik = Z eT(b'rijuTo'k - bTikym'j) >
(1.9) Vivee;— NV jVegr = Zlgil(bTikbo-jl_ b.ijbori) -

These equations are essentially important because of the funda-
mental theorem of imbedding, stated as follows: a V* can be
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imbedded in an E°, if and only if there exist quantities b,;; (=b,;:).
v.,; (=—v,.;) and e,= x1, satisfying the above three equations.

4. Let n,, 0=4,5 be another set of normals and let ¢,, b,;;
and ©.,; be the corresponding quantities. If we put

ﬁ,_zzc,,,n,,, 'T:4y5v
then the coefficients ¢., must satisfy the orthogonality conditions
(1.10) SV euC.pCop = .6, .
p

The following is an example of such alterations of normals:

n, cos @ sin &\ /n, cosh &« sinh @\ /n,
i () =( )Y or 1)
n, —sin @ cos &/ \n, sinh« cosha/\n,/ ,
where the alternative is to be chosen according to e,e,= +1, and
« may be a function of coordinates. It is easily verified that the
coefficients in (1.11) satisfy the conditions (1.10). For the later
reference we give here the transformation formula of b,;; and v.;
corresponding to (1.11):
b.:; cos @ sin &\ /b,;;
w12 G = (e conalls)
bs;; —sin@ cos a/\b,;;
<coshd sinh @\ /d,;;
or ><

. > respectively,
sinh @ cosh a/\b,;;

(1.13) v; = v;—e0;, in both cases,

where v;=v,;; and 5;=75,;.

§2. The Gauss equation.

1. In this section we deal with the Gauss equation (1.7), for
such a V* satisfying the assumptions [1I] and [II]. We shall show
that only few components of the tensors b,;; remain non-trivial
under an additional assumption, which is, of course, satisfied by
the Schwarzschild space-time.

If we put

(2' ]-) bn'ijkl = ba‘ikba'jl_brrilbo-jk ’ (ba'ik = }Z gjkbtrij) ’
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then the Gauss equation (1.7) is written as
(2. 2) Riqu = e4b4,-qu+esb5,~j1"’ .
Let pg be the ordered complement of pg in 0123, (by which we
mean that if pg=rs, then pgrs is a permutation of 0123 and
(p—q)(r—s)>0)*. Multiplying (2.2) by (—1)?*%,;,*? and summing
up for p, ¢=0, 1, 2,3 and p< g, we have
Z(—l)MqRiijukﬁ = e, 2(—1)’”4[74;]'”174”5
p<q p<q

s 2 (—1)P* by 04b, 4P

r<q

On the left hand-side we apply the property [I] in the last section,

while on the right hand-side Laplace’s expansion theorem in the
determinant theory. Then we obtain

(“l)iAFjSijbuk'_j = €5 ;ﬂ(“l)p'qbsuﬂbukﬁ .

Similarly we have
(—1)*ES; b % = e, ,,% (—1)?"9b,;,29by; 79 .

It follows from these two relations that
(2.3) (—1)Ye,S;;byi” = (—1)*e,S; b * .

First, if we take k=7, then (2.3) becomes

S;(eby;;7 —esb,; ) = 0,
while the Gauss equation (2.2) gives
b7 +eby i = R =0,

Therefore we get S;;=0 or b,;;/7=0, o0=4,5. Thus we have
i, j: any for [A], [B]
{Z, ;}** == {0, 1}, {2, 3} for [C].
Next, let 7, j and & in (2. 3) be different one another. Then (2. 3)
is written as
(2.5) (—1Y¢,S;;b,17" = (—1)%e;S;bs;*

* For example, 01=23, 02=13, 21=230.
** The expression {7, j}={0, 1} means that i{=0, j=1 and /=1, j=0.

2.4 brn‘j77 =0 {
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by making use of the following identities

boin'” = 818" buii*

b,7%* = sgn[( —J)(k— D=k —1)1brr?"
These are verified as follows : b,;,77 = £ b,; % = % (b, *b, 4 —b,:'b,.*)
= £(8::8"0;" 18118"'0s" 1 — 81:8" 05" 18128 0" 1) = £ 8::8" (Dorbst® — by i*b,17)
=+ 8;;8"0,1"* = g::8"b,77%; and bk =sgn[ (i —j)k—1)1b,pi* =
sgn [(i—7)(k—1)i—k)(j—1)1b,4’". Exchanging 7 and / in (2.5), we
have

l:1-1,7, k.

(2.6) (—1)e,S;;b,i?’ = (—1)%esSi,bs;i%

It follows from (2.3) and (2.6) that

(2.7) (Si;Ste—S1;Si)bsir’ =0, o=4,5.

If we recall a property of S;;: S;;=S;;, (2.7) is reduced to

(S,k —S;kz')ba.;kk =0 , Z, k, l: dlfferent , 0 = 4, 5 N
from which we get another case-wise result :

for [A), if i,k and | are different,
(2.8) by =04 for [B] and [C), if i, k and | are different
and {1, 1} =1- {0, 1}, {2, 3}.

2. Let us consider the case [ A]. The indices 7, £ and / being
different and fixed, four equations b,;,*’=0 and b,;,/"=0 (c=4, 5)
obtained from (2.8) may be regarded as two systems of linear
equations in b, and b, :

{ b,1*b, i —b,i%b,) =

=4,5.
b(rk bu’i _bo'i'brrk = 0 ’ 7

Two determinants b,,*b,;i —b,,b,;*=0b,,;% (6=4,5) formed with the
coefficients of the above systems never vanish at the same time
because of >)e.b,.;* =S,;==0. If both of them differ from zero, it
follows immediately that

2.9) b, = b =0, o=4,5.

If b,,;*=0 and b,,;* -1-0, we replace the normal n, by the other n,
given in (1.11) where « is small. Then it is easily seen from
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(1.12) that both b,,;** and b,,;* differ from zero so far as a=-=0.
Therefore we have

(2.10) by =b,' =0, o=4,5.

But, since b,;* continuously depend on «, (2.10) must be true even
when @=0. Thus we have the following

Proposition 2.1. In the case [A], the second fundamental
tensors b,;; are necessarily diagonal :

b,,-jzo, l.:#—_j, 0-:4,5.
3. Next, consider the case [B]. We shall show

Proposition 2.2. [In the case [B] the second fundamental
tensors b,;* satisfy

(2.11) bot=0, ik, {ik}--1{0, 1}, {2 3},
2.12) boib,: =0,

(2.13) beo'(bs’—bs5") =0, b,,°(bs’—b,,") = 0,

(2. 14) (b2 — b, )b, —b.2) = 0,

where o takes 4, 5.

Proof. The above argument for the case [A] remains valid
so long as {,/}=={0,1}, {2,3} and {k /}=={0, 1}, {2, 3}, and
hence (2. 11) holds as well. Next, take i=0 and j=2 in (2.4). Then
we have b,,°=0 and, by virtue of (2. 11), this is (2. 12) itself. If we
take /=0, j=2 and k=3 in (2.3) and divide it by S,(=S,=0),
then we have e¢,b,,,°+e.0,,”=0. On the other hand, the Gauss
equation (2.2) gives e,b,,°+¢sb:,°=0. From these two, we get
e.b,,=e,b,,"°, which is now reduced to b,,(b,,”—b,,*)=0. Similarly
we have b,'(b,,’—b,*)=0; thus the first of (2.13) is proved. By
the similar way the second follows. Finally, from the Gauss
equation (2.2) where 7=k=2,3 and j=/=0,1, we have, in the
present case,

(2.15) >eb,;ib, 7 = S;; i=23;7=01.

Since S,,=S,,=S,,=S,,, we get
E errbo-ii(baoo_'bm‘) =0 y i = 2, 3.
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From these two equations for 7=2, 3 it follows that
(2. 16) (012°b5" — b,3°bsy") (0o’ — b)) = 0, oc=4,5.
On the other hand, from (2.15) we can derive

e, (bnzbss3 - b433b522)b400 = Szobss3 - Saob522 ’
es(b533b422 - b522b433) bsoo = Ssobn2 - Szobaa3 .

Since S,,=S,,=0, these equations show that b,%b’— b,;’b;, =0
implies b,,°—b,,°=0, =4, 5. From this fact and (2. 16), the desired
(2.14) follows immediately.

It should be noted that (2.12) i.e. b,'b,,’=0by'b,"=0 implies
b, =b,'=0 or b,'=0b,"=0. In fact, if either b, or b, ==0, then,
replacing the n, by a suitable n,, we may assume that both &,
and b,'=#=0. On the other hand, since (2.12) is valid for any
normals, we have b,,'0,,°=0 and hence d,°=b,°=0, which is equiva-
lent to b,°=b,,=0. The same is true for (2.13) and (2.14).

From the standpoint of the above considerations, we shall
further classify the case [B]. First, by virtue of (2.12), the
following three cases are possible :

(a) bo-ol = bo-z3 = 0;
(b) ba-o1 ==0, ba-z3 =0 ,
(c) by =0, b, =40.

Then (2.13) gives an additional property b,,°=5," to the case (b)
and b, °=b,' to the case (¢). For the later requirement we may
subdivide the case (a) as follows:

(a,) by =b,' =0, b, =0b,",
(az) baol = bo-z3 =0, bo-z2 == ba‘33 .

Then (2.14) gives an additional property b,'=b,,' to the case (a,).
In the sequel we refer to the cases (a,), (a,), (b) and (¢) as [B,],
[B.], [B.] and [B,] respectively.

4. Finally, consider the case [C]. The argument for the case
[A]is valid so long as {7, I}, {k I}, {Z, k} == {0, 1}, {2, 3}, but under
this restriction any choice of indices is impossible.

Now we put on the V* a further assumption:
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[III] None of S;; vanishes.
Then only the cases [ A] and [ B] can take place. As is seen from
(1. 3), the Schwarzschild space-time satisfies this assumption.

At closing this section, we summarize the results.

Proposition 2.3. If a space V' satisfying the assumptions | 1],
[ I1] and | XIX] is imbedded in an E°, its second fundamental tensors
b,;* belong to one of the following five classes :

[A] b,*=0 @Gk, b, +0b,", b.+b%,

[B,1 0,#=0 (F-1:-k), b, =0,

[B.]l b,*=0 (G==k {, k} -={0,1}), b,,':1-0, b’ =0,
[B.] b, =0 (G-=k), b, =0b,", b, b,

[B.] b,*=0 (==& {i, B} 4= 1{2,3}), b,.':1-0, b, =2b,'.

8§3. The Codazzi and Ricci equations.

1. In this section we deal with the Codazzi equation (1.8)
and the Ricci equation (1.9) for such a V*satisfying the assump-
tions [ I, [I11] and [III]. Concerning the Ricci equation we shall
find that the coefficients v.,; may be taken as zero by a suitable
choice of the normals. This fact will simplify the forthcoming
discussion. While, by examing the Codazzi equation, we shall see
that the cases [B,] and [B,] can not take place under a further
assumption which is also satisfied by the Schwarzschild space.

First, we consider the Ricci equation (1.9). If we set v;=v,;
(= —vs;), then (1.9) is written as

O¥;— O = 2] bibsi; — 220,705 -

In the cases [ A], [B,] and [B,], the right hand-side always vanishes
since the b,;* (and hence b,;, too) are diagonal. In the case [B,]
the right hand-side also vanishes so long as {j, k} =- {0, 1}. When
(7, £)=(0, 1), we have

a1"’0—'80“1 = gn[bml(bsoo_bml)_bsol(bmo_bu])] .
On the other hand, the Gauss equation (2.2) gives

* The last two follow easily from the fact that S,,, Sy, and S, are different one
another.



On the imbedding of the Schwarzschild space-time I. 53

e-tb401b422+esbsolbszz‘_‘leoz12 =0,
e4(b400“_bul)bnz+es(b500_b51])b522 = Soz"‘Srz =0 ’
€, (0") +5(bs,")" = €,b,,°0," + €505, "bs” = Sy = 0.

From these it follows that &,,'(b,,"—bs,')—bs'(b,,°—b,,') =0, and
hence we have O,v;—9,+,=0 for any j and k. Similarly we have
the same result for [ B,]. Therefore, in each case we find a function
v such that v;=9,». With this v, let the normals n, replace by
the other n, in (1.11) where we take a=e¢w. Then (1.13) gives
p;,=0. Thus we have

Proepesition 3.1. For a space V' stated in the proposition 2. 3.,
there exists a set of normals n, such that the corrvesponding coeffici-
ents v..; vanish.

Hereafter it is always understood that the normals are chosen
as in the proposition.

2. Consider the Codazzi equation (1.8). The normals being
chosen as above, it is rewritten in the following form :

(3. 1) akb,,ji—ajbaki - _[E I.‘]ikbo.jl‘l‘lz J.‘Iijba.kl .

In the cases [B,] and [B,], if we take /=0, j=0 and k=1, (3.1)
reduces to 9,0,,/=0, since b,,'=5,°=0 and b,’=b,,'. Hence 9,5,
=0,(3)e,0,.°6,,)=2,3] ¢,(b,.)))=2 > e,b,,0,b,’=0. This is not the
case of the Schwarzschild space-time, because S, = —2mr~* from
(1.3). By this fact we are suggested to set an assumption

[IV] The quantity S, really depends on x'.

Under this assumption the cases [B,] and [B,] can not take place
as seen above.

Proposition 3.2. [f a space V* satisfying the assumptions [1],
[IX], [XX] and [IV] is imbedded in an E°, its second fundamental
tensors b,;* belong to one of the three classes [A], [B,] and [B,]
in the proposition 2.3.

§4. The integration of the Gauss formula.

1. We now return to the Schwarzschild space-time itself, so
that the case [ A] is excluded in the proposition 3.2. The aim of
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this section is to integrate the Gauss formula (1.5) and to obtain
an explicit form of z.
In the present case the Gauss formula (1.5) for i==j, {i, j}
== {0, 1} is written as
a;ajz—}__-‘, Ffjakz =0.
k

Substituting from (1.2), we have the following five equations :

000.2 =0, 9,0,z=0, 9,0,2z=7r""9,z2,
0,0,z = r 'z, 0,0,z = cot 09,z .

Integrating this set of equations (note that 9,, 9,, 9, and 2, mean
2/at, o/or, 2/20 and 9/0p respectively), we easily find

(4.1 z = A(t, r)+r[ B(6)+sin 6C(p)],

where A, B and C are some functions, which we are going to
determine. On the other hand, we have another equation in z

(4.2) V,z, = sin?0V,z, .

This is obtained as follows: from b, =0, we have b, ,,=g,,8%b.,,
=sin® 60b,,, and hence from (1.5) the above (4.2) follows at once.
(4.2) is expressed as

0,0,z + ¥y sin® 00,z +sin 6 cos 0 9,z = sin® 0(0,0,z + ryo,z) ,
where y=1—2m/r. Substituting from (4.1), we get
C”(p)+C(p) = sin OB”(0)—cos OB'(0) .

Evidently both of the sides must be equal to a constant vector d.
Then each side being separately integrated, we find

C(p) = sin pa+cos pb+-d ,
B(6) = —sin 6d+cos 6c+e,

where a, b, ¢ and e are some constant vectors. Putting these
expressions into (4.1), we get a more precise expression of z:

z = y(t, v)+r(sin 6 sin pa -+ sin 6 cos b+ cos fe) ,

where we put y(¢, )= A(, r)+re. Often we abbreviate it as
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(4.3) z = y(t, r)+7rS@0, p),
where
(4. 4) S(0, @) = sin 0 sin @ a+sin 6 cos pb+cos Oc .

2. Recall the isometry condition (1.4). Substituting the above
expression (4.3) into (1.4), we have several relations

<{Boy, Qo> = 1-2m][r,
(4.5) <2y, 0 y+8>=0,
{o,y+8S,0y+S>=—-1A-2m[r)",
<9,8,9,8> = —1,
4.6) {3,8,9,8S>=0,
(9,8, 9,8y = —sin’d,
Oy, 0,80 =0, <Gy, 38> =0,
{ {Oy+8,9,8S> =0, By+8,3,8>=0.

From (4.6) and (4 .4) we find

la,a) =<b,b> =<e,c> = —1, -
<b,e> =<e,ay =<a, by =0.

Take an orthogonal base {e,, -, e} in E° such that

(4.5)

e, =a, e=b, e, =c.

Then S(6, p) as well as 0,S and 9,S are always contained in the
eee,-plane. Next (4.7) shows that 9,y and 9,y are orthogonal
to the plane and hence they are contained in the e,ee,~plane.
Therefore by a translation in E° we may assume that y itself lies
in the ee.e,~plane. Finally (4.5) reduces to

<oy, 2y = r—anz, <2y, 2,y> =0,
4. 8) 9
<aly’ aly> = - .
r—2m

8§ 5. Solutions for the stationary imbedding.

1. Continuing the last section, we consider the Schwarzschild
space-time. Let us again take up the Gauss equation (1.7) and the
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Codazzi equation (1.8). Since b,#=0 (i==k, {7, k}=-{0, 1}) and
b,,’=b,; in the present case, non-trivial equations of (1.7) and
(1. 8) are as follows

2Ve, (b0, —b,0'0,.") = —2mr=?,
20 .50, = mr?,
(5.1) Sleb, b, = mr?,
>Neb,h,t = —2mr?
Seb, b, =0,
100" —3ib," = mr 'y (b, —b,")
9,b,0' — b, =0,
(5.2) O = 77,
Bibrt = by — b, |
2,0, = 9,b,;* =0 for any i, k.

Making use of these equations, we shall show

Proposition 5.1. The b,* always do not depend on 0 and @,
while the b,* do not depend on t, if and only if b,,'=0.

Proof. The first part is evident from the last equations of (5.2).
The proof of the second part is as follows. Suppose 9,,;=0,
and we get b,,'=0 at once from the third equation of (5.2). Con-
versely, suppose b,,'=0. Then the equations 9,0,,'=0 and 9,b,,’=0
are easily seen from (5.2), so that we must only prove 9,6,,’=0.
From the first two equations of (5.1), b,,° and b, are expressible
by means of b, b,,> and » so long as D=b,'b,’—b,,’b,,'-0 ; then
90, =0 1is trivial. Suppose now D=0. Then we have necessarily
b,'=—2b,’, while from the third and fourth equations of (5.1)
we have b,,°= —2b,,'; this is a contradiction.

2. In the following part of this section we treat the case
[B,] only. By the reason of the above proposition the imbedding
of the case [B,] may be called to be stationary. Our purpose is
to detirmine all possible types of the stationary imbeddings.

Take /=0 and j=1 in the Gauss formula (1.5), and we have

voz1 = Z eo'ba'OIno' = 0 )
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which is written as
0,0,z—mr 'y 9,z = 0.

Substituting from (4. 3) and integrating the obtained equation, we
have
(5.3) y=v"T{t)+R(r),

where T and R are some functions of ¢ and » respectively, Putting
this expression into (4.8), we get

<T/» T/> =1 ’ mr_27_1/2<T) T,>+<T/1 R/> = 07

(5.4) om
[ mitr=y™ T, T+ 2mr T, R +<R', R'> = —

r—2m’

Next we consider the Weingarten formula (1.6); this is now
written as
(5. 5) a,‘no- = —b(,;ia;z .

If we integrate two equations for /=2 and 3, making use of
b,.2=b,’ and 9,b,,’=0, then we find that the n, is

n, = —rb,’S+ AUt 7),

where A, (=4, 5) are some functions of ¢ and . Differentiating
this expression and using (5.5), we obtain

Acr = —fyllzchOT(t)+Bu(7) )
where B, (¢=4,5) are some functions of . Thus we have
n, = =7, T (t)+ B(r)—rb,,’S(0, P) .

Let those expressions of z and n, carry in the Gauss formula (1.5)
for i=j=0. Then a direct calculation gives
VAT —mr~*y(mry *T+R') = —y"BT+B,,

where we put =3 ¢,(b,,")’ and B,=>]¢,b,,,B,. It should be noted
that both B8 and B, are functions of 7 only. Differentiating the
above equation and making the inner product with 7/, we get

T, T"> =mr"'—yB.

The left hand-side is a function of # only, while the right depends
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upon 7 only, so that their common value must be a constant.
Consequently we obtain an equation

(5.6) T" —xT' =0, ©: constant.

3. As is well known, the equation (5.6) has different aspects
in each case where « is <0, =0, >0, so we shall discuss each
case separately.

i) The case where «=—1/k*<0. In this case the solution
is given by

T(t) = ksin—;;a+kcos %b+c,

where a, b and ¢ are some constant vectors. We may assume that
the additive constant ¢ is zero because it can be included in the

undetermined function R(?), so we drop the ¢ hereafter. From
the first equation of (5.4) we find

la,a> =<b,b> =1, <a,b>=0.

Choose the base vectors e, and e, so that e,=a, e,=b. Then T (¢)
is expressed as

(5.7 T(t) = ksin - e, +hcos -, .,

where
e,y e =<e,, e, = +1.

Next we seek the expression of R(»). If we carry (5.7) into the
second equation of (5.4), then we find <e,, R’> = <e,, R’>=0, and
hence R’ keeps the constant direction e,. Then we may assume
that R(r) itself keeps the constant direction ¢,. If we set R(»)
= f(r)e, and put it in the last equation of (5.4), after a short
calculation we have

"y _ _mk+2mr?
(F)ew e = =25 005

The right hand-side being always negative, we know

(F) = ._’M, le,,e>= —1.
r¥(r—2m)
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Thus z is completely determined.

The imbedding of Kasner (see Introduction) is contained in
this type as a special case where k=1.

ii) The case where «=0. In this case the solution is given by

(5.8) T(t) = ta+1b,

where a and b are some constant vectors and an additive constant
is previously omitted by the same reason as in i). Substituting
from (5.8) in the first equation of (5.4), we have

la,a> =<a,b> =0, <bb>= +1.

Take a vector ¢ in the eee,—plane such that a, b and ¢ are linearly
independent and satisfy the following conditions

la,e> = +1, <bec> =0, <e,ec>=0.

The existence of such a vector ¢ is easily proved. If we set

R(r) = fl(r)a + )b+ fi(r)e

then from the last two equations of (5.4) we find
fir)y =0, 2f»)+@'7)Y =0, fi(r)=2ry .
Integrating these, we get

£ =2{rrdr, pin =0, gl = -2,

(where we have taken additive constants equal to zero, since they
can be canceled by a suitable translation in E®). Thus y is now
completely determined :

1y

y = "t +2f(r)a+v""tb— 5 ‘c,

where
fr) = S ry '*dr.

In this expression, however, the vector a is not orthogonal to e.
In order to improve this defect, we put

e1=a+—;—c, e, =0, e3=a——1~c.

2
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Then these e,, e, and e, are orthogonal to each other and
<en el> =+1, <e, ey = +1, e, ) = —1

With this base, the expression of y is as follows:
v = [ S HE= D) e rite, + | L EE D7) e

iii) The case where «k=1/k*_>0. In this case, by a discussion
similar to i) we have

T(t) = ksmh 5 e +k cosh P e,, R(r)=g)e,,

where
<el’ 1>: +1, <ezrez>: -

(F)<esr e = mfr——g"ml;—

Here arises a particular situation. If k* >16m’, then the term
(m*k*—2mr®) [r*(r —2m) takes both positive and negative values;
consequently the sign of {e,, e,> is indeterminate. This fact shows
that the function z corresponding to such a value of %k does not
give an imbedding map of the whole V* into an E°® with a fixed
signature. On the other hand, if k*<16m’ the term is always
negative since 2m< r<+oo. Therefore we may set

m*k*

(f)Z‘W

<ea» es> = -

Thus we get another set of the imbedding functions. Fronsdal's
imbedding (see Introduction) corresponds to a special case k=4m
of this type.

Consequently, we now establish the following result:

Theorem. Any stationary imbedding (i.e. the case [B,]) of the

Schwarzschild space into a six-dimensional pseudo-Euclidean space
is given by omne of the following expressions :

(i) ds® = dz?+dz'—dz’—dz’—dz'—dz/,
2, = k(1 —2m/r)* sin (t/k), k=FO,
2, = k(1—2m/ry/ cos (t/k),
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z,= f(r), where (df]dr)* = @mr®+m’k’)[r'(r —2m),
z,=rsindsing, 2z, =rsinfdcosp, 2 = r cos @ ;

(ii) ds® = dz}—dz,—dz’—dz/—dz’—dz/,
2, = k(1—2m/r)"*sinh (¢/k), —dm<k<4m, k-1-0,

z, = k(1—2m/7r)"* cosh (¢/k),

z, = g(r), where (dg|dr): = 2mr’ —m’k?)[r*(r —2m),

2,, 25, 2¢: the same as above ;
(iii) ds’ = dz*+dz,—dz’—dz'—dz’—dz’,
2, = %(tz—l)(l—Zm/r)’”Jrh(r),

= t(1—2m[7)"*,  where dh|dr = r(1—2m[r)""*,

n
M
|

z = %(t2+1)(1—2m/r)'/2+lz(r),
2,, 25, 2¢: the same as above.
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