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Introduction.

The Schwarzschild space-time is a four-dimensional Riemannian
space with the line element

-

ds 2 =  ( 1  
2 m

)clt 2 ( 1  ' " 2 )
1

 dr2 — r2(d02 + sin' 0dp 2)

where m  is a positive constant, and the domains of variables are

—  < t < + c c , , 2 m < r < + D o  ,  0 < 0 < n  ,  0 < p < 2 7 r .

This was obtained as a solution of the Einstein gravitational
equation and may satisfactorily describe the behaviour of the solar
system. The properties o f  this space-time have frequently been
studied so far both from the physical and the mathematical points
o f view.

It is well known that the Schwarzschild space-time is o f class
two in the sense o f imbedding, that is, it can be imbedded in a
six-dimensional pseudo-Euclidean spase [1]*. The following are
the already established expressions for the imbedding, which were
derived by Kanser [3] and Fronsdal [2] in an intuitive way.

(1 )  K asner imbedding :

=
z 1 = (1-2m 1r) 112 cos t , z , = (1 -2 m 1 r)v 2 sin t ,

*  This is a special case of the fact that a spherically symmetric space time is of
class two at most [4 ] .



44 Tamehiro Fujitani, M ineo Ikeda and M akoto Matsumoto

z , = f  (r) , where (df  dr) 2 = (2m r3 + m2 ) I r3 (r —2m) ,
z , = r sin 0 sin rp , z , = r sin cos (73 z , =  r c o s  .

(2) Fronsdal imbedding :

ds 2 = dzT— dzl— ,
= 2(1— 11r) 1 0  sinh (t/2) , z , = 2(1— 1/r) 112 cosh (t/2)

z , = g (r)  , where (dgl dr) 2( r 2 +r +1)Ir 3 ,
z , = r sin 0 sin q), z ,  =  r  sin 0 cos q), z ,  =  r  cos O.

(Note that in the paper [2] the unit is taken so that 2m =1.)
So far as we know, no further progress has been made in the

study o f the subject under consideration. T h e  purpose o f  our
work is to make a thorough investigation of the imbedding problem
of the Schwarzschild space-time. Particularly, in the end of this
paper, we shall determine all possible types of the imbedding func-
tion for a special case, which includes the above (1) and (2).

In writting this paper, we wish to express our sincere grati-
tude to Dr. Y. Akizuki and Dr. S. Sasaki fo r  their continued
encouragements.

§ 1 .  Preliminaries.

1 .  First of all, for the sake of convenience to later references
we shall give a table of some quantities of the Schwarzschild space-
t im e  If th e  coordinates t, r, 0  and y  are denoted by x°, xl, x 2

and x 3 respectively, and if we put y=1-2m/r, then the quantities
are as follows. The fundamental tensor g i ;  is given by

g „ = 7  ,  g — 7' , g„ = —  r 2 , g „  — r 2 sin' 0
g i i  =  0 for i j  ;

The Christoffel's symboles G  are given by

Fg, = = m r - 2 7 - ' , = m r - 2 7 ,
F1, = —mr- 2 7 - 1  , 112—  ,  rh = —7 , 7 sin2 O,

(1.2)=  1 1 1r 1 ,

113 =  — sin 9 cos 0 , 113 r h  =  cot O,
other G = O;
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L et R i f "  b e  th e  components o f  th e  curvature tenser. Then
R  _  g ka —lbg  k w ,  are given by

R „" = R „" = — 2m r - 3

(1.3) R „" = R „" = R „" = R „" = m r'
R u k ' = 0 ,  i f  at least three of indices are different.

2 .  The Schwarzschild space-time has, as immediately seen
from the above table, the following properties :
ir There exists a coordinate system (xi),  i= 0 ,  1, 2, 3, with respect
to which the components of the fundamental tensor and the curvature
tensor are such that

g i ;  =  0  ,  i f  i j ;
R u

k t = O, i f  at least three o f  indices are different.

[ I I ]  T h e  Ricci tensor vanishes : Rif= g
abRi a j b =  0 .

For a while, we shall not confine our consideration to the Schwarz-
schild space-time, but more generally deal with the four-dimensional
Riemannian spaces V' having those two properties only.

I f  we put
R Liu* = Si ; i J,

then it follows from the property [II] that

Si ;  =  O,i  =  0, 1, 2, 3,
i =0

and this is, as easily seen, equivalent to

So l S 02 S 03 0  , So l S23 SO2 S13 So3 S 1 2  •

Because o f these identities, we can now classify those V' into the
following four classes.
[A] None of S „, S02 and S 0 3  vanishes, and they are different one

another.
[B] None of S o „ S „ and S 0 3  vanishes, and two o f them, say S 0 2

and S „, are equal each other, while the rest S „ differs from
the other two.

[C] One o f S „, S „ and S 03 ,  say So„  vanishes and the other two
S „ and S „ differ from zero.

[D] A ll o f Si ;  vanish.

* In this paper we do not use the summation convention.
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The Schwarzschild space-time belongs, by virtue o f (1. 3), to the
class M .  The condition o f [D] implies that the V ' is  flat, and
hereafter we exclude this class from the following consideration.

3. Suppose that a V' is imbedded in a six-dimensional pseudo-
Euclidean space E ' of some signature. We denote the (indefinite)
inner product of the E 6 b y  the symbol < , > . Let (xi) be a point
in  V ' and the vector z (x ) its image in E 6 by the imbedding map.
The map being isometric, we have

<dz(x), dz(x)> E  g i i (x )d x ic ix i  ,

or this is equivalent to

(1.4)< z 1 , g15,

where z i z i (x )= az /ax i, and geometrically z 1(x) are tangent vectors
in E 6 to  z( V ') at z ( x ) .  Let n,(x ), 6- = 4, 5 be two mutually ortho-
gonal unit normals in E 6 to  z( V ') at z(x) :

<no., no.> e,(= ±1) , 0- 4 ,  5  ,
<114 , n 5 > = 0,
<n, , zi > 0 , 0, 1, 2, 3 , 0 -  = 4, 5 .

A s  is well known, the expressions of the covariant derivatives
Vi z , and V i n ,  in  terms o f z ,  and n ,  are given by the so-called
Gauss and W eingarten formulas

(1.5) vJzi 

(1.6)V i n , — E g i k k u z k +E erv,05n,,

and the coefficients b„, ; ( =b„J i )  and 1 ( = — i )  in the expressions
(1. 5) and (1. 6) necessarily satisfy the following Gauss, Codazzi
and R icci equations [1].

E Ruhr,
V  k b c r i j  V  j b o - i k E ,

Id) T crj \ -7 j V I-crk E g i l (k ik b r o —  k iik k i) •

These equations are essentially important because o f th e funda-
mental theorem o f  imbedding, stated as follows :  a  V' can be
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imbedded in an E 6 ,  if and only if there exist quantities b ,„ (= b 1 ),
(----- - )  and e,— ±1, satisfying the above three equations.

4 .  Let n, , 0- =4, 5 be another set of normals and let e,, b o.1 1

and 17),.;  be the corresponding quantities. I f  we put

=  E  c„no. , T =  4, 5,

then the coefficients c „  must satisfy the orthogonality conditions

(1. 10) E epc„c„ = .

The following is an example o f such alterations of normals :

( co s  a sin e v

rz

n4 ) ( c o s h  a sinh a /n 4

(1.11) = or
—sin a cos a ) , sinh a cosh a ) ,

where the alternative is to be chosen according to e4 e5 = ±1, and
a may be a function of coordinates. It is easily verified that the
coefficients in (1. 11) satisfy the conditions (1. 10). For the later
reference we give here the transformation formula of b ,"  and 1, _„;

corresponding to (1. 11) :

(1. 12)
0 4 1 1 )  /  cos a  sin ay b 4 "

—
\b5 1 1 / \— sin a cos a i b , i ;  )

( cosh a sinh n / b 4 i ;

or respectively,
sinh a cosh a ) b , i ;

(1. 13) =  —  e5a i a , in both cases,

where v . ; = v4 5 ; and 17 =1:-'45.f.

§  2 . The Gauss equa tion .

1. In this section we deal with the Gauss equation (1. 7), for
such a V 4 satisfying the assumptions [ I ]  and [ I I ] .  We shall show
that only few components o f the tensors 14 " remain non-trivial
under an additional assumption, which is, of course, satisfied by
the Schwarzschild space-time.

I f  we put

(2. 1) k ijk r _  k i kk i r k i rbo v k (k ik  _ j k b , i i )
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then the Gauss equation (1. 7) is w ritten as

(2. 2) RuPa — e,b4i ; "+e ,b 5 i i " •

Let p q  b e  the ordered complement of p q  in  0123, (by which we
m ean  that i f  p q = rs ,  then  p q rs  i s  a perm utation of 0123 and
(p—q)(r— s) > 0 ) * .  Multiplying (2.2) by ( -1)P `qb4 i k

7' and summing
up for p , q = 0, 1, 2, 3 and p < q ,  w e  have

E (-1 )P+qR ,,Pqb ,„ ,,P e, E (-1)P ' q b,,,Pqb4:
P<q P<q

+e5 E (-1)P F q  b 5 i j P q b 4 ik
P<q

On the left hand-side we apply the property [I] in the last section,
while on the right hand-side Laplace's expansion theorem in the
determinant theory. Then we obtain

P<q

Sim ilarly w e have
( — 1)i ± kS i k k i lk  = e, E ( - 1)P -"b4ik"bsijPq •

h<q

It follows from these two relations that

(2.3)(  —1)le4 S i f b, i 1T 1( - 1) k e5Sikkil k  •

First, if  w e take k = j ,  then (2. 3) becomes

S 1 1 (e4 b4 —e5 b51 7 i)—  0

while the Gauss equation (2. 2) gives

e4 b4 1 J il +e 5b5 i 3 i3 — 0 •

Therefore we get S 15 = 0 o r bo_1 1 i5 =0 ,  OE- 4 ,  5. Thus w e have

0(2 4)
j :  any for [A ], [B ]

. 
{i, -1= {0, 1}, {2, 3} for [C] .

Next, let i ,  j  and k  in (2. 3) be different one another. Then (2. 3)
is w ritten as

(2.5)(  —1)je4 S u ba k r" ( - 1) k e5S15b551k i

*  For example, .0-1, =23, 02=13, 21=30.
** The expression {i, j}={0, 1}  means that i = 0 ,  j= 1  and i= 1 ,  j= 0 .

e, E ( — 1)" I qb ..Pqb P q
51.7 4 z ie •
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by m aking use of the following identities

bo-ik' i  =  g i i g " b oTfik

=  sgn [(i — j)(k — 1)(i — k)(j — 1)1b, k »  •

These are verified as follows : k ik "  =  (bo-i k b,k 1 —  b ,i l bo-kk )
± ( g i i gk k k i k g k k g l I k k igkkgkkkk k ) —  g

1
1g 1 1 (k k ik 1 k b o_k k k i i )

r k l = ; an d  b T i ik = sgn [(i — j)(k — klik --
sgn  [ (i— j)(k  — 1 )(i— k )(j— I)]b , k r". Exchanging i  and 1  in (2. 5), we
have

(2. 6) ( — 1) - le4S11b4k1 ."  —  (  1 ) k e5S1kb511 k ' •

It follows from (2. 3) and (2. 6) that

(2. 7) (S ifS ik  SrpS i k)b,rik" — O,0 - — 4, 5 .

I f  we recall a property of S 1 1 : S 11 = S 6 ,  (2. 7) is reduced to

( S , 2 —S i e ) b , i k "  = 0 , i ,  k ,  1 :  different , c r =  4 , 5

from which we get another case-wise result :

f o r [A ] ,  i f  i, k  and  1  are  different,
(2. 8) k i k "  =  0  f o r [ B ]  an d  [C ] , i f  i, k  and  1  are  different{

and { i, l}  , I= {0, 1}, {2, 3 }.

2 .  Let us consider the case [A]. The indices i, k  and 1  being
different and fixed, four equations k i k ki= 0  and k i k if = 0 (o-=4, 5)
obtained from (2 . 8 ) m ay be regarded  as tw o system s o f  linear
equations in 141

1 and k k i

b o.k kk i / =  0
t k iik k /  =  0

0- = 4, 5 .

Two determinants k k kb, i i — = b , k i ki (0- = 4, 5) formed with the
coefficients of the above system s never vanish at the same time
because o f E e , b , i ki = Ski+  O. I f  both of them differ from zero, it
follows immediately that

(2. 9) bo.1' b , k
1 =  O,0 - =  4 , 5 .

1 , 1= j ,  k .

I f  b4 k i k1 0  and b 5 k i k1 - I 0 , we replace the normal no,. by the other t4 r

g iven  in  (1. 11) w h ere  a  is  sm all. T h en  it is  eas ily  seen  fro m
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(1. 12) that both 64 ,,,ki and k k i k ' differ from zero so  far as a 4= O.
Therefore we have

(2.10)=  b , k ' = 0  , =  4, 5 .

But, since bŒ i k continuously depend on a ,  (2. 10) must be true even
when a =  0 . Thus we have the following

P ro p o s it io n  2. 1. In  th e  c as e  [ A ] ,  the second fundamental
tensors b0.1 5  are  necessarily diagonal:

a- = 4, 5.

3. Next, consider the case [ B ] .  W e shall show

P ro p o s it io n  2. 2. In  th e  c as e  [ B ]  the second fundamental
tensors k i k  satisfy

(2. 11) 0,i k ,{ i ,  k }  -I- {0, 1}, {2, 3},
(2. 12) k01b0.23 0,
(2. 13) bo.01(b22-1),33) = 0 , b o _2

3(bo .0 ° —b, 1
1) 0

(2. 14) (b,0° —b,,1)(b„2 —b,„3) 0

where 0- tak es 4, 5.

Proof. The above argument for the case [A] remains valid
so  long as /1 4= {0 , 1 }, {2, 3} an d  {k , l}   I   {0, 1}, {2, 3 }, and
hence (2. 11) holds as well. Next, take i = 0 and j = 2  in (2. 4). Then
we have b 0 2

1 3 = 0 and, by virtue of (2. 11), this is (2. 12) itself. If we
take i =0, j= 2 and k = 3 in (2. 3) and d iv id e  it b y  S 0 2 ( =S 0 3   I  0),
th en  w e  h a v e  4 4 0 3 13 + 4 5 0 2

1 2 =0 . O n  th e  other hand, the Gauss
equation (2.2) gives e4 b4 0 2 12 + 4 5 0 2

1 2 = 0 .  From these two, we get
e4b4021 2 -4403 13 , which is now reduced to b401(b422 —b433) = 0 .  Similarly
we have b 5 0

1 (b5 2
2 — b„3) =  ;  thus the first of (2. 13) is proved. By

the s im ilar w ay  the second fo llow s. F inally, from  the Gauss
equation (2. 2) where i =k =2 , 3  and j=/-0, 1, w e have, in the
present case,

(2. 15) E e b b /  = Si ; =  2, 3 ;  j  = 0, 1 .

Since S „=S ,„=S „-- S „, we get

E e,b,,i(b 7 0
0 —b, 1

1) = 0 , i  = 2, 3 .
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From these two equations for 1=2, 3  it follows that

(2. 16) (b„2b5,2— Vb522)(bo b0-1
1) = 0,0 -  = 4, 5 .

On the other hand, from (2. 15) we can derive

e 4  (b 4 2 2 b53 31 / 4 3 3 b 5 2 2 ) b 4 0 ° '-'20 53 S301)522

e 5 (b 5 ,3 b4 : b 5 2 2 b433 )b5o0 = Smb42 2 S 201)433

Since S 20  =  S 3 0 + 0 ,  these equations show that 1,
4 2

2 b5 3
3 — b4 3

3 b5 2
2 = 0

implies b, 2
2 — b0.3 3 = 0 , a = 4 ,  5 .  From this fact and (2. 16), the desired

(2. 14) follows immediately.
It should be noted that (2. 12) i.e. k 0

1 b4 2
3 =b 5 0

1b5 2
3 = 0  implies

b4 2 °=b 5 0
1 = 0  o r b4 2

3 = 1)5 2
3 = 0 .  In fact, if either b4 0

1 o r  1'5 2
1 + 0 ,  then,

replacing the no. by  a  suitable ho. ,  we may assume that both b40'
and b„1 + 0 .  On the other hand, since (2. 12) is  va lid  fo r  any
normals, we have bo.0 11)0.2 3 = 0 and hence b4 2

3 =b 52 = 0 , which is equiva-
lent to 1,

4 2
3 =b 5 2

3 = 0 .  The same is true for (2. 13) and (2. 14).
From the standpoint o f th e  above considerations, we shall

further classify the case [ B ] .  First, by virtue o f  (2. 12), the
following three cases are possible :

(a) b„1 = b 0.2 3 = 0
(b) b0.01 +  0 , b „ 3 = 0,
(c) b0.01 = 0, b,,.2

3 1:1=0.

Then (2. 13) gives an additional property b „2 = b „ 2 to  the case (b)

and bo .„°= b , , '  to the case (c). For the later requirement we may
subdivide the case (a ) as follows :

(a„)
 J,„1  = b „ 3 =  0  ,  b „ 2 =  b „ 3

(a 2)
 

b „ 1 =  b o .2
3 =  0  ,  bo-2 2 1 . „ 3 .

Then (2. 14) gives an additional property br,.,°=h,.1
1 to  the case (a 2).

In the sequel we refer to the cases (a ), (a,), (b ) and (c) as [B 0 ],
[B 3 ], [B 2 ]  and [B 4 ]  respectively.

4 .  Finally, consider the case [C ] .  The argument for the case
[A] is valid so long as fi, /1 , fk , /1 , fi, 14  I   {0, 1} , {2, 3 } , but under
this restriction any choice of indices is impossible.

Now we put on the V ' a further assumption :
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[ I I I ]  None of  S i ;  vanishes.
Then only the cases [A ] and [B] can take place. As is seen from
(1. 3), the Schwarzschild space-time satisfies this assumption.

A t closing this section, we summarize the results.

P r o p o s i t io n  2. 3 . I f  a space V ' satisfy ing the assumptions [I],
[I I ] and [III] is im bedded in an E 6 ,  its second fundamental tensors
b„k  belong to one o f  the following five classes:

[ A ]  k i k  = 0  (i  I   k ) ,  b „` )b „ ' ,  b 2
2b „ 3 *

[1 3 ,] k i k  = 0  (i -I- k) , 1 4 2
2 = b 3

3 ,
[B 2 ] b ' =  0  (i k, { i, -1= {0,1} ) , b „  I- 0 , k 2 2 = b 3

3 ,
[ 1 3 ,]  k i k  = 0  (i k) , b „°  =  k , ' ,  b 2

2b 3
3

[ 34 ] = 0  (i k , { i, 14    {2, 3}) , b0.2 20  ,  bo.o ° = b,„' .

§ 3. T h e  Codazzi a n d  R icc i equa tions.

1. In  this section we deal with the Codazzi equation (1. 8)
and the Ricci equation (1. 9) for such a V 4 satisfying the assump-
tions [I], [II] and [III]. Concerning the Ricci equation we shall
find that the coefficients v„ i  may be taken as zero by a suitable
choice of the normals. This fact will simplify the forthcoming
discussion. While, by examing the Codazzi equation, we shall see
that the cases [133 ] and [13 4 ]  can not take place under a further
assumption which is also satisfied by the Schwarzschild space.

First, we consider the Ricci equation (1. 9). I f  we set v i =
(=  v5 ii), then (1.9) is written as

k l-ti —  E b 4 k ib 5 1 1  E b o i k i k  •

In the cases [A ], [ B,] and [133 ], the right hand-side always vanishes
since the k i k (and hence k i k  too) are diagonal. In the case [13 2 ]
the right hand-side also vanishes so long as { j, {0, 1}. W hen
(j, k )— (0, 1), we have

a 0
,

1g u E b 4 o 1 (b.°—b511 ) —b501 (b.° — b4i')].
On the other hand, the Gauss equation (2. 2) gives

* The last tw o fo llow  easily from  the fac t th at Sol So2 and So3 are different one
another.
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'b„ 2 - Fe,b501e,b40 b522-1?,2`2 = 0
e.,(1,

4 0 °— )b4,1,b4,2 +e5(b50°  b 5 1 1 )b 5 2 2 S 0 2  S 1 2 0

e4 (1)4 2
2)2 + e 5 (b5 2

2)2 =  e4 b4 2
2b4 3

3 + e 5 b5 2
2b5 3

3 =  S23 0  .

From  these it fo llow s that b401(b50° —b511) —b501(b40° —b411)  =  0 ,  and
hence we have ak vi —ai vk  = 0  for any j  and k. Similarly we have
the same result for D M . Therefore, in each case we find a function

such that vi =3,2) • W ith  th is  I), let the n o rm a ls  n ,  replace by
the other n ,  in (1 . 1 1 ) where we take a = e 5 1. Then (1. 13) gives
P1 = 0 .  Thus we have

Proposition 3. 1. For a space V4 stated in the proposition 2. 3.,
there ex ists a set of normals n, such that the corresponding coeffici-
ents i'

Hereafter it is always understood that the n o rm a ls  are chosen
as in the proposition.

2 .  Consider the C o d a z z i equation (1. 8). The n o r m a ls  being
chosen as above, it is rewritten in the following form :

(3. 1) akbovi— aJ b k  =  —E  [ ' i ik b , / + E  r ii i bo-ki •

In the cases [133 ]  and P M , i f  we take i = 0 ,  j = 0  and k = 1 ,  (3. 1)
reduces to 3 1 b 0 0= O , since b „ '— k i ° = 0  and bo.o °=b, i '. Hence a1s0,
=  a i (E e.-(b,r00)2) = 2  E  e,b 0 0

03 1b, 0 °— O. This is not the
case of the Schwarzschild space-time, because So,— —2mr - 3  from
(1. 3). By this fact we are suggested to set an assumption
[ I V ]  The quantity S „  really depends on
Under this assumption the cases [B 3 ]  and [ K ]  can not take place
as seen above.

Proposition 3. 2. If  a space V ' satisfy ing the assumptions [I],
[ I I ] , [ I I I ]  and [IV ] is imbedded in an E 6,  i t s  second fundamental
tensors k i k belong to one of the three classes [A ], [131 ]  and [ I 3 2]
in the proposition 2. 3.

§  4 . The in tegration  of the Gauss formula.

1 .  We now return to the Schwarzschild space-time itself, so
that the case [A ] is excluded in the proposition 3. 2. The aim of
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this section is to integrate the Gauss formula (1. 5) and to obtain
an explicit form o f z.

In  the present case the Gauss formula (1. 5) for i  I  j, j}
-I= {0, 1} is written as

z—Erli ak z O.

Substituting from (1. 2), we have the following five equations :

a 0 a 2 z =  O, a c,a,z O, a i a ,z  =  r - Ja2 z  ,
a i a,z = , a ,a ,z  =  cot 0a3 z

Integrating this set of equations (note that ao, ai, a, and a, mean
alat, aiar, ame and a / a p  respectively), we easily find

(4 J) z  = A (t,r)+r[B (0)+sin  0C (p)],

where A , B  and C  are some functions, which we are going to
determ ine. On the other hand, we have another equation in z

(4. 2) V,z, = sin 2 OV,z, .

This is obtained as follows :  from b„ 2 = b 3
3 ,  we have b,„=g33g 2 2 b,22

= sin' 0b 2 2 and hence from (1. 5) the above (4.2) follows at once.
(4. 2) is expressed as

a 3 a 3 z + rry sin2 Oakz +sin 8 cos 0 a 2 z = sin 2 0(a2 a 2 z + rya i z) ,

where 7 = 1 — 2m Ir. Substituting from (4. 1), we get

C"(T)+ C(p) = sin OB"(0)— cos OB'(0) .

Evidently both of the sides must be equal to a constant vector d.
Then each side being separately integrated, we find

C(T) =  sin (pa+ cos pb+ d ,
B(0) —  sin Od+ cos 0c + e ,

where a , 1), c  and e  are some constant vectors. Putting these
expressions into (4. 1), we get a more precise expression of z :

z  = y (t, +  r(sin 0 sin (pa+ sin cos cpb+ cos 0c) ,

where we put y(t, r)—  A (t, r)+ r e .  Often we abbreviate it as
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(4. 3) z  = y (t, r)+rS (0 , q)),

where
(4. 4) S(0, (p) sin 0 sin (p a+ sin 0 cos pb+ cos Oc

2. Recall the isometry condition (1. 4). Substituting the above
expression (4. 3) into (1. 4), we have several relations

aoy> = 1 -2 m / r,
(4. 5) <Soy, S i g +S> = O,

<aiy+s, ai y +s> = —(1-2m 1r) - ' ,
a,,s> = —1,

(4. 6) <as, av s> = O,
<a,s, a,,s> = —sin' &,

<aoy, aes> = o <aoy, aes> = o,
<ai y +s, aoS> = O, < 3 1 y + S, aes> = O.

From (4. 6) and (4 .4) we find

<a, a> < b ,  b> = <e, e> = —1,
<b, e> = <c, a> < a , b> O.

Take an orthogonal base { e„••• , e j  in E 6 such that

e, a  , e , b , e , c .

Then S(0, cp) as well as a,,S and a„s are always contained in the
e4 e5e5 -plane. Next (4. 7) shows that a oy  and  a1y  are orthogonal
to  the plane and hence they are contained in  th e e1e2 e3 -plane.
Therefore by a translation in E 6 w e m ay assume that y  itself lies
in the e,e,e,---plane. Finally (4. 5) reduces to

—r — 2m <a0 y , al Y> = o,<aoy, ra0y> ,

2 m  <a,y, sly> — •
r - 2 m

§ 5 .  Solutions for the s ta t io n a r y  im b e d d in g .

1. Continuing the last section, we consider the Schwarzschild
space-time. Let us again take up the Gauss equation (1. 7) and the

(4. 5)

(4. 8)
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Codazzi equation (1. 8). Since b ,'= 0  ( i±  k ,  { i , {0, 1} ) and
bo.2 2 =b 0 3

3 in  th e  present case, non-trivial equations of (1. 7) and
(1. 8) are as follows

E e0 (b0 0
01,,, 1 —b, o

1 b 0 ) =

E  °e,b o., b,r 2
2 =

(5. 1) E eo.b, 1
1 14,2 = m r - 3  ,

E eo.b„2 b0.2
2— 2 m r '  ,

E e0 b0 0
1 1)0 2

2  =  0

r a,b „( ' ' - '0—  b 0 1  =
a,b„'— a 0 bo.1 1 = 0

(5. 2) a0b,22 =  r b 0 0 ,

a 1k 22 = r - 1 (b011 — b022 ) ,
a 2b,r i k = = 0  for any i, k.

Making use of these equations, we shall show

P r o p o s i t io n  5 . 1 .  The k i k  always do not depend on 0  and cp,
while the b,,k  do not depend on t ,  i f  an d  only  i f  b,0

1 =0.

P roo f. The first part is evident from the last equations of (5.2).
The proof of the second part is  as follows. Suppose ao k i k =0,
and we get b„ 1 =0 at once from the third equation of (5. 2). Con-
versely, suppose 1)0 0

1 = 0 .  Then the equations a 0 b, 1 1 -0  and a 0 b, 2 2= 0
are easily seen from (5. 2), so that we must only prove a 0 b, 0 0 =0.
From the first two equations of (5. 1), b4 0 ° and b„° are expressible
by means o f b 0.1

1 , 1)0 2
2 and r so long as b411b522 —b„'b„ 1 - 1- 0 ; then

a 0 b, 0 0=0 is trivial. Suppose now D = 0 .  Then we have necessarily
b0 1

1 = —2b,2
2 , while from  the third and fourth equations of (5. 1)

we have b,,,2
2 = —2b, 1

1 ; this is a contradiction.

2. In  th e  following part of this section we treat the case
[13 1 ]  on ly. B y the reason of the above proposition the imbedding
of the case [B 1 ]  may be called to be stationary. Our purpose is
to detirmine all possible types of the stationary imbeddings.

Take i = 0  and j = 1  in the Gauss formula (1. 5), and we have

vozi E e,b, o i n o  =  0,
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which is written as

a o a,z— rnr - 2 7 - 'a o z O.

Substituting from (4 . 3 )  and integrating the obtained equation, we
have
(5.3)y  = 7 1/2 T (t)+R (r) ,

where T  and R  are some functions of t  and r  respectively, Putting
th is expression into (4 . 8 ) , we get

< T ',  T '>  =  1 ,  mr - 2 7 - 1 /2 <T , T '>+<T ', R '> = O,
(5. 4) 2 m  m2 r - 4 7 - 1 <T , T >+2m r - 2 7 - 1 1 2 <T, R '>+<R ', R '> —

r —2m •

Next we consider the Weingarten formula (1 . 6 ) ; this is now
written as
(5. 5) ain, —b, i ia t z .

I f  w e in tegrate tw o  equations fo r i = 2  and 3 ,  m aking use of
b, 2

2 =b, 3
3 and a 2 1,

0_2 2=0, then we find that the n ,  is

n ,  =  —rb 2
2 .S +A ,(t,r),

where A , (0- = 4 , 5 )  are some functions of t and r. Differentiating
th is expression and using (5 . 5 ) , we obtain

A, —7112b „°T (t)+B ,(r) ,

where B. (c =4 , 5 )  are some functions o f r. Thus w e have

n ,  =  —7 1 1 2 b, 0
0 T (t)+ B,(r)—  rb„'S(B, 9 )) .

Let those expressions of z  and n , carry in the Gauss formula (1. 5)

for i = j = 0 .  Then a direct calculation gives
7 1127 ,,, m r -27 (m r -27 -1/2T +  R i) r y 1 / 2 , 9 7 ,  + B o ,

where we put 3 = E  eo.(b,o °)2 and B o =E e,b, o , B , .  It should be noted
that both and B o a re  functions o f r  only. D ifferentiating the
above equation and making the inner product with T ',  we get

<T ", T '> =

The left hand-side is a function o f t only, while the right depends
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upon r  only, so that their common value must b e  a constant.
Consequently we obtain an equation

(5. 6) T " 0 , c o n s t a n t .

3. As is well known, the equation (5. 6) has different aspects
in  each case where i c  is  <0, = 0 , >0 , so we shall discuss each
case separately.

i) The case where x=  — 1 /le< 0 .  In  this case the solution
is given by

T (t) = k  sin —

t  

a + k cos —

t
b+ e,

where a, b  and c are some constant vectors. We may assume that
the additive constant c  is zero because it can be included in the
undetermined function R (r) , so we drop the c  hereafter. From
the first equation o f (5. 4) we find

<a, a> =  <h, b> = 1 , <a, b> = 0 .

Choose the base vectors e , and e , so that e, —  a, e2 = b. Then T (t)
is expressed as

(5. 7) T (t) = k  sin e,+k  COS e2

where
<e„ e1> = 4 2 , e2> = +1 .

Next we seek the expression of R ( r ) .  I f  we carry (5. 7) into the
second equation o f (5. 4), then we find <e„ R '> = <e2, R '>= 0, and
hence R ' keeps the constant direction e3 . Then we may assume
that R ( r)  itself keeps the constant direction e 3 . I f  we set R (r)

f ( r) e .  and put i t  in the last equation o f  (5. 4), after a short
calculation we have

(f i )24 3 , e  —  _m 2 k2 + 2mr 3

r 3(r —  2m)

The right hand-side being always negative, we know

f ,) 2 nek 2 +2m r 3
< e 3 ,  e 3 > 1 .

r 3 (r —2m)
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Thus z  is completely determined.
The imbedding o f K asner (see Introduction) is contained in

this type as a special case where k =1.
ii) The case where , c = 0 .  In this case the solution is given by

(5.8)T ( t )  =  P a +  t b  ,

where a and b are some constant vectors and an additive constant
is previously omitted by the same reason as in i). Substituting
from (5. 8) in the first equation o f (5. 4), we have

<a, a> = <a, b> = O , <b, b> = + 1 .

Take a vector c  in the e1e2e3-plane such that a, b and c are linearly
independent and satisfy the following conditions

<a, c> = +1, < h , c> = O, <c , c > = O.

The existence of such a vector c  is easily proved. I f  we set

R  (r) = f  i (r)a + f 2 (r)b + f3 (r)e

then from the last two equations o f (5. 4) we find

f ( r )  =  O, 2 f  (r)+ (7` 1 2 )' = O, f  Ç (r) = 2r7 - 1 /2 .

Integrating these, we get

f i (r) = 2  ry - 1 2 dr , , f 2(r) O, f 3(r) — —
71/2

(where we have taken additive constants equal to zero, since they
can be canceled by a  suitable translation in E 6 ). Thus y is now
completely determined :

y = (7 112 t 2 +2f (r))a + 7v 2 tb —  —21 -7 112c ,

where
f ( r)

In this expression, however, the vector a  is not orthogonal to c.
In order to improve this defect, we put

1 1 e , = a+ 
 2 

c , e ,  =  b  ,  e ,  =  a  
2

c .
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Then these e „ e ,  and e , are orthogonal to each other and

<e„ e 1 > = + 1 ,  < e„ e 2 > = + 1 ,  <e „ e ,> =  —1.

With this base, the expression of y is  as follows :

y

[

1 2 2—ry1/ (t — 1)+f(r)]e i +7 1/2 te ,+ [
1

- 7 1 1 2 (t 2 + 1 )+ f(r )]e ,
2 2

iii) The case where K=1/k 2 > 0 .  In this case, by a discussion
similar to i)  we have

T  (t) = k sinh e i +k  cosh 
 t  

 e2, R(r) =  g(r)e„

where
<e„ e 1> = + 1 ,  < e„  e 2 > = — 1,

( f ,) 2 < e 3 ,  e 3 >  _  mr : r
2
 2 2 mmr:

Here arises a particular situation. If k2 >16m 2 ,  then  th e term
(m2k2 —2mr3 )I r 3 (r — 2m) takes both positive and negative values ;
consequently the sign of <e„ e3 > is indeterminate. This fact shows
that the function z  corresponding to such a value of k does not
give an imbedding map of the whole V' into an E 6 w ith  a fixed
signature. On the other hand, if k2 <16m 2 ,  the term  is always
negative since 2 m < r  <  +  •  Therefore we may set

2mr'—m 2k2

( f ' ) 2 —  , <6. 3 , e3 > = —1.
O r —2m)

Thus we get another set of the imbedding functions. Fronsdal's
imbedding (see Introduction) corresponds to  a  special case k= 4m
o f this type.

Consequently, we now establish the following result :

Theorem. A ny stationary imbedding (i.e. the case [131 ] )  o f  the
Schwarzschild space in to  a  six - dimensional pseudo - Euclidean space
is given by  one o f  the following expressions :

( i ) ds2 = dz 1
2 + dz2

2 —dz,2 — dz4
2 —dz5

2 —dz6
2 ,

z, = k(1-2mIr) 1 1 2 sin (t I k) , k0 ,
z2 =  k(1 -2m/r)" 2 cos (t k) ,
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z 3 = f (r), where (df I dr) 2 = (2m r 3 +m 2 k 2 )1r 3 (r —2m) ,
z , = r sin 0 sin cp , z , = r sin 0 cos (13 , z , =  r cos 0 ;

(ii) ds2 = dz, 2 —dz 2
2 —dz 3

2 — dz4
2 —dz 5

2 —dz 6
2

z , = k (1-2m 1r)'" 2 sinh (t lk) , —4m Z  k 4 m , k  -I= O,

z, k(1 -2m /r)" 2 cosh (tIk ),
z , = g(r), where (dgldr) 2  = (2m r 3 —m2 k2 )1r 2 (r— 2m) ,

, z „ z ,: the same as above;

(iii) ds2 = dz 1
2 +dz 2

2 —dz 3
2 —dz 4

2 — dz52 —  dZ6 2 )

z  =  
1

(t 2 — 1)(1 —2mIr) 1 1 2  +h(r)
2

z , = t(1 -2 m /r)" 2 , where dhldr = r(1 - 2 m / r) " 2 ,
1= — (t 2 +1)(1-2m 1r)o+h(r) ,
2

z ,, z „ z ,: the same as above.
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