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I. Introduction

The relationships between solutions of an unperturbed system
and solutions of a perturbed system have been discussed by many
authors (cf. [2], [3], [6]). Hale also has discussed asymptotic
behavior of solutions of differential-difference equations by using
a Liapunov functional for an unperturbed system [4]. Markus
has discussed the case where the perturbation term tends to zero
as t— oo [8], and Antosiewicz, Opial, Levin and Nohel have dis-
cussed the case where the perturbation terms are integrable [1],
[61, [7]1, [10]. Recently the author has also discussed the asymp-
totic behavior of solutions of a perturbed system [11].

In this paper we shall discuss the asymptotic stability of a
set, and by constructing a Liapunov function, we shall discuss
the relationships between solutions of an unperturbed system and
solutions of a perturbed system. As a special case of this paper,
some results concerning an autonomous system have been reported
at International Symposium on Nonlinear Vibrations in Kiev [12].

We shall discuss the stability of an arbitrary set and hence,
as special cases, the stability in the sense of Liapunov and orbital
stability are included in our case. Moreover the perturbation term
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. in this paper is a combination of the case where it tends to zero
as t— oo and the case where it is integrable.

Now we consider a system of differential equations
(1) ¥ = F(, x) (’:i)

. dt/,

where x is an #z-dimensional vector. Let M be a set in IxXR”",
where [ is the interval 0<{#< oo and R” is the Euclidean n-space.
In this paper we use the following notations: A is the closure
of a set A and =, is the hyperplane such that f=o. M(o) re-
presents the set such that Mn=,.. M(o, &) is the &-neighborhood
of M(s) in R” and d(x, A) is the distance between a point x and
a set A, that is, d(x, A)=inf {||[x—a||, a€ A} and C,(x) is the class
of functions which satisfy locally a Lipschitz condition with respect
to x. Let x(¢; x,, £,) be a solution of (1) through the point (¢,, x,).

We assume that F(¢, x) of (1) is defined on IXR” or in a
suitable neighborhood of the set M and that F(#, x) is continuous
in its domain of definition.

II. Definitions

In this section we shall give the definitions of stabilities of
the set M.

(i) M is said to be a stable set of (1), if for any €>>0, any
a™>0 and ¢,€ 1, there exists a 8(¢,, &, «) such that if d(x,, M(¢,))<d
and ||x,||<«, we have d(x(t; x,, t,), M(¢))< & for all t=¢,.

(i) M is said to be a umiform-stable set of (1) with respect to
¢, (or ), if 6 in (i) is independent of ¢, (or ).

(iii) M is said to be a quasi-equiasymptotically stable set of
(1), if there is a 6,4, @) and for any & >0, @ >0 there exists a
T(t,, & ) >0 such that if d(x,, M(%,))< 8, and || x,||<«, we have
d(x(t; x,, t,), M(2))<E for t=t,+ T(¢,, &, ).

(iv) M is said to be a wuniform-quasi-asymptotically stable set
of (1) with respect to t, (or @), if 8, and T in (iii) are independent
of ¢, (or ).

(v) M is said to be an equiasymptotically stable set of (1), if
M is a stable set of (1) and a quasi-equiasymptotically stable set
of (1).
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(vi) M is said to be a wuniform-asymptotically stable set of (1)
with respect to t, (or «), if M is a uniform-stable set of (1) and
a uniform-quasi-asymptotically stable set of (1) with respect to
¢, (or ).

(vii) M is said to be a quasi-equiasymptotically stable set of
(1) in the large, if for any €>0, and » >0 and any «_>0, there
exist a B(¢,, », ®) >0 and a T(4, &, n, @) such that if d(x,, M(%,))
<7 and ||x,||< @, we have d(x(t; x,, t,), M(#)<ZB(t,, , «) for all
t=t,and d(x(¢; x,, t,), M(t))< & for all t=¢,+ T(¢,, & 7, &), where
@ is a continuous function of #,.

(viiil) M is said to be a uniform-quasi-asymptotically stable set -
of (1) in the large with respect to t, (or «), if Sand T in (vii) are
independent of #, (or «).

(ix) M is said to be an equiasymptotically stable set of (1) in
the large, if M is a stable set of (1) and a quasi-equiasymptotically
stable set of (1) in the large.

(x) M is said to be a wuniform-asymptotically stable set of (1)
in the large with respect to t, (or @), if M is a uniform-stable set
of (1) and a uniform-quasi-asymptotically stable set of (1) in the
large with respect to #, (or ).

In the case where the system is autonomous and M(¢)=M(?')
for arbitrary ¢ and #/, it is clear that the stability of a set M is
uniform with respect to £,.

III. Hypotheses on M

M(¢) is a set in R” and we assume that M(¢) is not empty
for any t€l. Clearly we have

(2) d(x, M(2)) = d(x, M(t)).

Lemma 1. If a set M is a stable set of (1), for any %, € M(2,)
we have
(3) x(t; x,, t)EME)  for all t=1,.

We assume that if (¢, x) and (¢, x) belong to any compact set
in Ix R”", there is a positive constant K depending on each compact

set such that
(4) ld(x, M(t))—d(x, M) |=< K|t—-1] .
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In this case, from (2) and Mn=,=Mn=,, we can easily prove
the following theorem.

Theorem 1. If a set M satisfies the condition (4), each kind of
stabilities of M is equivalent to one of M.

Lemma 2. If d(x, M(¢)) and d(x, M(¢')) satisfy the condition
(4), for any E>0 we have

(5) ld(x, M2, &)—d(x, M(¥', &))|< K[t —1'] .

Proof. It is clear that we have

(6) dix, M) <& if x€M({, &)
and
(7) d(x, M(?)) = d(x, M(¢, §))+& if x€DM(, §).

In the case where x€ M(¢, &) and x € M(¢, €), we have clearly

ld(x, M(¢, &))—d(x, M(¥', &) = 0<K|t—t'| .

In the case where x € M(¢, &) and x € M(#/, €), we have

|d(x, M(t, &)—d(x, M(¥, &))|
= ld(x, M(#))—&—(d(x, M(#')—&)|  (by (7))
= ld(x, M(#))—d(x, M(t))|
<K|t—t].

In other case, for example, we assume that x € M(¢, €) and x¢€
M(t', &) and then we have

d(x, M(¢, &))—d(x, M(¥, €)) = d(x, M(¢))—€.

By the assumption (4), d(x, M(t)) is a continuous function of ¢ and
we have d(x, M(t))”>¢ and d(x, M(¢#'))<&. Therefore there is a
t, such that t<7#,<¢# and d(x, M(¢,))=&. Hence we have

ld(x, M(z, €))—d(x, M(¢', €))|
= |d(x, M(2))—d(x, M(1,))|
= Kl|t—t]|
= Kl|t-?t].
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Lemma 3. If for any € >0 we define a function G(¢, ¢, €)
such that
G, ¢, &) = d(§, M(t, €)),
we have

(8) IG & &-GW, T, &) <dl, )+K|t-t'|+16-¢€],

where K is a positive constant when (t, §), (', ') belong to a compact
set in IxXR".

Proof. We have

IG(t, ¢, &)—G({', &, &)
<I|Gt ¢ &—Gt ¢, 8| +1G(¢, &, &G, T, )]
+IG(, ¢, -G, &, &)
=\|d(&, M(¢, €)—d(', M(¢, €)| + 1d(&, M(¢, €)—d(¢', M(¥, €))|
+ (&, M(¥, €)—d(’, M, €))]
<d, OHY+K|t—t |+ 1E-¢).

IV. Equiasymptotically stable set in the large

In this section we shall discuss the equiasymptotically stable
set in the large. We assume that F(¢, x) of (1) is defined and
continuous on /X R" and that a set M satisfies the condition (4).
Now we shall construct a Liapunov function for the equiasympto-
tically stable set of (1) in the large. We need the following lemma.

Lemma 4. Let A(¢, 9, @, &) be defined, continuous and positive
on 0=t 0<%, 0=, O0<'& Then there exist four continuous
Sfunctions g(€), h(n), k(t), I(c) such that g(&)™>0 for &==0, g(0)=0,
() >0, k(£)>0, {(@)>0 and A(, 7, «, €)= g(E)M(n)k(t)l(x).

By Massera’s lemma [9], we can easily prove this lemma.

Theorem 2. We assume that F(¢, x)€ C(x). If a set M is an
equiasymptotically stable set of (1) in the large and solutions of (1)
are equi-bounded, there exists a continuous Liapunov function V(¢, x)
defined on IX R" satisfying the following conditions :

1° V¢, x)=0 if (t, x)e M,

2° ald(x, M) V(¢, x), where a(r) is continuous increasing

and positive definite, a(r)—> oo as r—> <o,
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3° V¢, x)eC(t, x) and
1

V'(t, x)= Fr:—h— {V(t+h, x +RhF(t, x))— V(t, 2)} < —cV(¢, %),

where ¢ is an arbitrary positive constant.

>0

Proof. Let Q, ., , be a domain such that 0<{<o, d(x, M(¢))<9
and ||x||=Za. If (4, x,) € Q,.,.4, there are three positive numbers
¥(o, @), B(o, 9, &) and T(o, 5, @, &) such that ||x(¢; x,, £,) || <(o, @)
for all t=t,, d(x(t; x,, t,), M(t))<B(o, n, @) for all ¢=t, and
d(x(t; x,, t,), M(#))< & for all t=¢+T(o, 7, «, §). For a suitable
& >0 we put

T(O‘, 7, &, 8) = T(O-y 7, &, 80) if &€ 2 60 .

Let D, ,.. be a domain such that 0<¢t<o+T(o, 9, @, € and
d(x, M(t))< B(, 7, @). Since F(t, x) € Cy(x), there is a L(o, 7, «, &)
>0 such that if (¢, )€ D, 0., (!, )€ Dy yae, [[%||= (0, @) and
|2 || < (e, @), we have )
|F(t, x)—F(t, )| < L(o, 9, &, &)||lx—2'||.
We put
max ||F(t, x)|| = F*(o, )

0o<i<o

Izl < Y(o,@)
and we may assume that F*(os, €)=1. Let K(o, a) represent K
in (4), where 0<¢< o and ||x||< (o, ). These numbers can be
assumed to be continuous. If we put

(9) Ao, », @, &) = F¥(o, @) exp {(c+L(o, 7, @, &))T(o, 7, @, &)}
+K(o, @) +cB(o, 7, @) exp ((T(o, 7, &, €)+0)),

Ao, 9, a, &) is defined and continuous on 0o, 079, 0o, <«
(a,: a suitable constant), <& and moreover A(o, 7, «, &) is
positive. Therefore by applying Lemma 4 to 1/A(o, 9, @, €), there
are four continuous functions g(&), (%), k(o) and /(a) such that

g(&)>>0 for &==0, g(0)=0, k()>0, k(s)>0, /(a)>>0 and that
(10) &(O)A(o, 7, &, &) < h(n)k(o)(A) .

For é=1/k (k=k,, k,+1, -+ ; k,: a suitable integer), we represent
g(&), T(o,n, a, &) and G(¢, ¢, €) in Lemma 3 by g,, TW(o, 4, @) and
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G.(¢, §) respectively.
Now we define a function V,(¢, x) as follows:

11) Vilt, x) = g» sup G(t+r, x(t+7; x, 1)) .
Since M is a stable set of (1), we have from Lemma 1
(12) Vit, 2)=0 if (¢, x)eM.
Moreover it is clear that we have

(13) &Gt ) SV (8, x).

If (¢, x) €Q,.,.0, We have

(14) Vi(t, x) < gB(o, 7, @) exp (¢ Ti(o, 9, @) = %h(n)k(o)l(a) ,

309

because g,8(c, 7, @) exp (cT (e, 7, a))ggk%A(G, 7, &, 1/k) and we

have (10).

Next we shall show that V,(¢, x) € C(t, x). We suppose that
(t, X)€EQppur ', ¥)EQ, ., and t<¢. Moreover we assume that
Vilt, )=g,G(t+7, x(t+7; x, 1))e” and that ¢t+r=¢. If we put
t4r=t'+7, X=x(";x,¢t) and if we represent T.(o, 5, &) etc.

briefly by T, etc., we have
Vk(t7 x)_ Vk(t/, x/)

< @Gyt +7, 2(t+7; %, D) —gGu(t +7, 2t +7 5 &, 1))e”

< g (Gt +7, x(t+7; %, 1) =Gt +7', x(t'+77; &7, 1))}
+ngk(f/+T', x(t’+‘r’; x/’ tl))(ec'r_ec'r’
< gl x(t+7 5 x, =2+ &, )] + guBeT (e~ 1)

(by Lemma 3)

< g’ || 2+ X, 1) —x(t'+7'; &, )] +gube” (e~ 1)

< gueen || X—x' || + gBe (e P —1)  (r—7 =1t'—1)
gt RTR{|| X —x || + || x —2"[|} + guBeTrce®(t' — 1)

< gt iR Te{||x —x' || + F*(@' — 1)} +cgpBec Tt (¢ — 1)
ggke(‘“‘k)Tk “ x_x/ ” +gk {e(c+Lk)TkF* +Cec(Tk+u‘)B} (t/_ t)
k(@) [llx—x'l| +1t=¢'|]  (by (9) and (10)).

On the other hand, in the case where ¢{+7< ¢, we have
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Vit, x) = Vi(t', x)
S g@G(t+T, x(t+7; x, 1)e" — g Gu(t, x(t 5 2/, 1))
= &G+, x(t+ 75 x, D) e~ 1)+ g {Ge(t+ 7, x(¢+7; 2, 1))
—Gi(t', x(t"; 2, )}
< g Bl P 1)+ K(t'—(t+m) + || x(t+7; x, t)—x(t'; &', )]}
(by Lemma 3 and «<t'—t)
< g {Bce”(t’' —t)+ K(t'— )+ ||x(t+7; x, t)—x(¢; x, )]|
+ 1225 %, ) —x( 5 2, )11}
< g {Bee(t' —t)+ K(t'— )+ F*(t'—t)+ ||x —x'||}
= gullx—x'|| + ge{Bee Te+ K+ F*¥} (¢ — 1)
S h(k@)U@)[llx—x'|| + |t=¢'1].
Now we assume that V,(#, x)=g.Gu(t'+ 7/, x(t'+7"; x', t'))e”
and that ¢+ =¢+7. Then we have r=7’ and
Vilt, 1)— Vilt', )
=g Gut+, x(t+7; x, 1)) — GGy’ + 7, x(t'+ 7' x/, t))e™
—ge |2t x, D=2+ %, )]
— g lxt'+7' s X, ¢~ x(t'+7; &, )|
—guet e || X— x|
=gt R Te{llx—x' | + [ X—x]}
— g R {|| x— || + FX( - 8)}
— k(@)@ Ll x—x"|| + [t—¢']].
Therefore if (¢, x)€Q,.,., and (¢, x)€Q,., -, We have
(15) | Vi(t, %)= Vil#', x')| < h(mk(o)i () LIl x— =[] + | £=2'[] .
If x’=x(¢;x,¢t) and t'=¢+h (h”>0), we have

NNINNNN

Vit', ) = gusup Gt/ + ', 2(t'+7 s 2/, )™
=g §g—[,) Gut+r, x(t+7; x, DeTe*  (t+T =1+
=& S‘;P Gult -+, x(t+7; 2, B)eTe
< V(2 x)e ",

whence we have

Vi(t', x7) = Vilt, x) Vit x) e h—1
h : ’ o
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Therefore if #—0* we have
(16) Vit x) < —cVi(t, ).
Now we define a function V(¢, x) as follows; namely

1

(17) Vb, 2) = 3 o Vilh, ).
If (¢, x)€Q,.,.., by (14) we have
(18) Ve, x) < —h(n)k(ﬂ)l(a) E 2k o = <! = k(o))

and hence (17) is convergent. Moreover o,  and «a are arbitrary
and therefore V(¢, x) is defined for all (¢, x). From (12), it is clear
that we have

(19) V(t, ) =0 if (¢, x)eM.

We shall show the existence of a function a(r) which satisfies
the condition 2°. First, we have

Vit 1) Z L Valts ) 2 &Gt 1) (by (13)

; gkod(x, M(t, I:—))
1

1
= — =
= L g {dlx M) ko}

and so V(¢, x)—> oo as d(x, M(t))— . Second, if (¢, x)e€ M(t, 1/k)
and (¢, x)€ M(¢,1/k+1), we have
Vit ) = —-V,..,(¢, %)

_“212 ky+-3

1

= 2——'k_ko+3gk+2

d(x, M(t,1/k+2))

1 1 1
= Bl MO, 1k D)+ (=)

1 11
= 2k-ko+3g”“(k+1 k+2>’

whence we can see the existence of a function a(r).
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From (15) and (16), when (¢, x) € Q,..,., and (¢, ') € Qy.n.0» WE
have

(20) | V¢, x)— V¥, 2) 1< M(k(o)l(@) Ll x—x"[|+ |£=#'[] (by (15))

and
Vit, x) =< —cV(E, x)  (by (16)).

Therefore this function V(¢, x) is the desired one and the theorem
is proved.

As a special case, if M(¢) is contained in a compact set Q in
R” for all t € I, there exists a sphere S;: ||x||<& such that M(Z) C S
for all tel and moreover for any « >0 there is an # such that
d(x, M(t))<#% contains the sphere ||x||<a. Therefore 6,8 and T
in the definitions (i) and (vii) are determined independently of «a.
Thus in this case, the equiasymptotic stability of M becomes to
the uniform-asymptotic stability of M with respect to «. More-
over in this case, necessarily the solutions of (1) are equi-bounded.
It is sufficient that we take a domain Q,, such that 0=¢{<o,
d(x, M(?))<# in place of Q,,, ., in the proof of Theorem 2. The
function A(e, 7, @, &) does not depend on « and so we have three
functions g(€), (%), k(s) such that g(€)A(s, 4, &) < h(n)k(s). There-
fore if (¢, x)€Q,., and (¢, ") € Q,.,, we have in place of (20)

(21) | V2, )= W, 2) | < h(pk(@) LI x—="[] + [£ =21 ]

If a set M is a quasi-equiasymptotically stable set of (1) in
the large, then it is not necessary that V(¢, x)=0 if (¢, x)e M.
Therefore we have the following theorem.

Theorem 3. We assume that F(¢, x) € C(x). If a set M is a
quasi-equiasymptotically stable set of (1) in the large and solutions
of (1) are equi-bounded, there exists a continuous non-negative
Liapunov function V(t, x) defined on I X R" satisfying the following
conditions :

1°  a(d(x, M(}))) < V¢, x), where a(r) is continuous increasing

and a(r)>0 for r==0, a(r)—> oo as r—> oo,

2° V(t, x)eCyt, x) and V'(¢, x) < —cV(L, x), where ¢ is an

arbitrary positive constant.
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Now we shall discuss the case where a set M is a uniform-
asymptotically stable set of (1) in the large with respect to £, and
solutions of (1) are uniformly bounded. In this case 8 and 7T in
the definition are independent of #, and hence we can replace
B(e, n, a), T(o, n, @, &) and (o, @) by B(n, @), T(9, a, €) and ¥(a)
respectively. Moreover by the uniform stability, we can assume
that B(», a)—0 as »—0. From (14), we have

(22) ‘ Vk(f, x) g gkﬁ(,]’ a)ech("'“D
}‘ = B(n, a)ge’Te™m™ .

On the other hand, by (9) we have

F*(0, q)e°TmaDglomanTman < A(), 5, a, &)
and hence we have
(23) & Tk < g1 A0, 7, a, 1/k) < h(mk(0)() ,

because F*(0, ®)=1 by the assumption and exp (L(0, 5, &, T (5,
a, &))=1. From the definition of V(¢, x), if (¢, x) € Q,,,.., We have

(24) V(2, x) < B(n, a)h(m)k(0)/(a) .

The right-hand side of (24) is independent of o and hence if
dx, M(t))< 75 and ||x||<e«, (24) is valid and moreover B(5, a)—0
as »—0. Therefore we can see that there is a continuous function
b(r, s) such that b(r, s)—0 as »—0 and that

V(z, x) < b(d(x, M), || x1]) .

Theorem 4. We assume that F(t, x)€ Cy(x). If a set M is a
uni form-asymptotically stable set of (1) in the large with respect to
t, and if solutions of (1) ave umiformly bounded, there exists a
continuous Liapunov function V(t, x) defined on IXR" satisfying the
following conditions :

1° V¢, x)=0 if (t, x) €M,

2° a(d(x, M)V (¢, x)<b(d(x, M), |lx||), where a(r) is

the same as in Theorem 2 and b(r, s) is continuous and
b(r, s)—0 as r—0,

3° WV, x)eC(t x) and V(¢ x)< —cV(¢, x), where ¢ is an

arbitrary positive constant.
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In this case, we can see easily from the proof of Theorem 2
that if (¢, x) € Q;.,.» and (¢, ') €Q;,,.., We have

|V, x)— V&, 2) | < (i) || x— 21| .

As a special case, now we consider the case where the Lipschitz
constant of F(¢, x) is independent of ¢, that is, if ||[x||=Z«, |2 [|=Za,
d(x, M(t))<# and d(x’, M(¢))<+#, there is a constant P(z, «) such
that

(25) IF(t, x)—F(t, 2)|| =< Py, @) || x— 2"l

for all te¢l. Adding this assumption to the assumptions in
Theorem 4, we can replace L in the proof of Theorem 2 by
L(3y, @). Therefore A(o, 5, «, &) is replaced by F*(o, ) exp {(c+
L(zn, )T(n, a, &)} + K(o, a)+cB(n, ) exp {c(T(n, a, &)+ 0o)}. When
(t, x) € Q..o and (¢, x')€Q,., ,, the Lipschitz constant of V,(¢, x)
with respect to x is considered as g,e¢“*L™ e PT®  Since we have

gr exp {(c+ L(7, @) Ti(n, @)} < g, A0, 9, @, 1/k) =< h(n)k(0)(@),
we can obtain
(26) | V{2, x)— V(¢ x") < W(o)k(0) () || x — x| .

This inequality does not depend on o and therefore this inequality
is valid for all ¢ when |[x||<«, |2/ <« d(x, M(#)) <7 and
d(x’, M) =1.

Remark 1. When a set M is a uniform-asymptotically stable
set of (1) in the large with respect to both #, and «, 8 and T are
independent of ¢, and «, and hence corresponding to (22) and (23),
we have

Vi(t, x) =< B(n)gue" ™
and
e e = h(mk(0)(a,) .

Therefore in the same way in Theorem 4, we can see that there
is a continuous function b(») such that b(»)—0 as »—0 and that
W(¢, x)=b(d(x, M(2))).
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Remark 2. In the same way, we can obtain a Liapunov
function for the uniform-quasi-asymptotically stable set of (1) in
the large with respect to #, and «. In this case, a Liapunov
function satisfies the conditions

1° a(d(x, M) V¢, x)<b(d(x, M(¢))), where a(r) is the same

as in Theorem 2 and b(») is continuous,

2° Wt x)eCyt, x) and V'(¢, x)<< —cV(¢, x), where ¢ is an

arbitrary positive constant.

V. Uniform-asymptotically stable set

In this section we shall discuss the uniform-asymptotically
stable set of (1) with respect to both #, and «. In this case we
assume that F(f, x) of (1) is defined and continuous in a domain

D:0<t<oo, dx,Mit))=< H (H >0 constant)

and that F(¢, x) € Cy(x).

By the uniform stability, there is a 6(H)>>0 such that if
d(x,, M(t,))< 8(H), we have d(x(¢; x,, t,), M(t))< H for all t=t,.
And let H' be a positive number such that H’'< min (6(H), §,),
where 6, is the positive number which appears in Definition (iv).
Then we can show the existence of a Liapunov function in the
domain 0<#< oo, d(x, M(t))< H'. To do that, it is sufficient that
we take k, sufficiently large and »=H’ in the proof of Theorem 2.
Therefore we have the following theorem.

Theorem 5. If all the solutions of (1) are uniformly bounded
and a set M is a uniform-asymptotically stable set of (1) with respect
to both t, and «, there exists a continuous Liapunov function V(¢, x)
defined in a domain 0<t< oo, d(x, M($))< H' satisfying the follow-
ing conditions :

1° V¢, x)=0if (¢, x)€M,

2° a(d(x, M()) < V(E, x) < b(d(x, M(2))), where a(r) is continuous

increasing, positive definite and b(r) is continuous, b(r)—0
as r—0,

3° WV, x)eCyt, x) and V'(t, x)< —cV(¢, x), where ¢ is an

arbitrary positive constant.
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VI. Eventual stability

Now we consider a perturbed system
(27) x' = F(t, x)+ G, )+ Gt %),

where G (¢, x) are defined and continuous on IX R” or on D.

Definitions. A set M is said to be an eventually stable set of
(1), if for every £€>0 and every a=«, (®,=0: a suitable constant),
there exists an S(&, a)=0 such that Definition (i) in the section 2
is satisfied for all those #,=S(&, «). Similar definitions apply for
eventual stabilities for (ii) through (x). For example, we shall say
that a set M is an eventually uniform-stable set of (1) with respect
to t,, if for any € >0 and any a=c«,, there exist an S(§ a)=0
and 8(&, «)>>0 such that if [|x,||< @, d(x,, M(4,))<6(& @) and
t,=S(¢&, «), we have d(x(t; x,, t,), M(¢))< € for all t=1¢,. We shall
say that a set M is an eventually uniform-asymptotically stable set
of (1) with respect to t,, if M is an eventually uniform-stable set
of (1) with respect to £, and if for any € >0 and any a¢=«,, there
exist a 8, (@), a T(&, «) and S,(&, @) such that if d(x,, M(Z,))<6,(a),
x,]|<a and #,=S,(&, @), we have d(x(¢; x,, &,), M(2))< & for all
t=t,+ T(§ @) (cf. [4]).

Lemma 5. We assume that F(t, x) of (1) is defined on D,
F(t, x) € Cx) and all the solutions of (1) are uniformly bounded and
that a set M is a wuniform-asymptotically stable set of (1) with
respect to both t, and «. Moreover we assume that G(t, x) of (27)
are defined on D and that all the solutions of (27) are also uniformly
bounded, that is, for any a=c,=0 there is a v*) such that
a¥(t; x4, L) | S v¥(Q) if || x,||=a, where x*(t; x,, t,) is a solution
of (27).

If w(t; x,, t,) ¢S the solution of the equation of the first order

(28) {u' = —cu+ h(H)(v*()k(t) Lg.(2, v*(a))+ g2, v*(c))]
u(to) = V(tO) xo) ’

where h(H)I(v*())k(t) is given in (20), V(¢, x) is the function given
in Theorem 5, d(x, M($))<<H' and g{t, a)=”n|1]asx l|G(t, )||, and if
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u(t; x,, to=a(H") for t=t,, where a(r) is the function given in
Theorem 5, then the solution x*(t; x,,t,) of (27) such that || x,||<«
satisfies the relation

a(d(x*(t; %, ), M) = u(t; x,, 8,)  for t=%,.
Proof. If (¢, x)€Q,.,., and (¢, x)€Q,.. ., Wwe have by (20)
| V(Z, x)— V(E, 2')| < W(n)k(a)l(@)||x—x"]| .

For this lemma, we may put »=H" and x*(¢; x,, {,) of (27) such
that ||x,||< « satisfies ||x*(¢; x,, £,)||<vy*(@). Thus we consider
the function W({, x) given in Theorem 5 in the domain such that
0= t<oo, [[x[|=v*(a), d(x, M(t))< H' and hence if (¢, x) and (¢, x")
belong to this domain we have

| V2, x)— V&, 2')| < R(CH))U v (a)k@) || x—="|] -
Therefore it follows that
Vi(¢, x*(¢; %, L))
= —c WV, x¥(E 5 20, 1))+ RCH)(vH(@Dk@) LIG(E, x%(E 5 x,, )]
+ 1G, 225 %o, t)IT
if d(x*(t; x,, t,), M(t))<H’. Thus, if u(¢; x,, ¢,) is the solution of (28),
we have V(¢, x*(t; x,, t,)) < u(t; x,, t,). Since a(d(x*(t; x,, t,), M(¢)))

< V(¢ x*(t; x,, t,)), we can prove the lemma.
Now we assume that G (f, x) satisfy the conditions

(29) KONG5 =0 as t— oo
and
(30) [ K IGt, w1t < oo,

where x(#) is an arbitrary continuous bounded function defined for
t=1t, and belongs to the domain of definition of G;(¢, x).

Theorem 6. We assume that F(t, x) of (1) is defined on D,
F(t, x)e C(x) and all the solutions of (1) are wuniformly bounded
and that a set M is a uniform-asymptotically stable set of (1) with
respect to both t, and a. Moreover we assume that GJt, x) of (27)
are defined on D, continuous and satisfy the conditions (29), (30)
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and that all the solutions of (27) are uniformly bounded. Then the
set M is an eventually uniform-asymptotically stable set of (27) with
respect to t,.

Proof. By the assumptions, there exists a continuous Liapunov
function V({, x) satisfying the conditions in Theorem 5, and if
(¢, x) €Qy.it.0 and (£, ') € Q, .0, We have

| V¢, x)— V&, )| < W(H K a)k() [|x—2"]]  (by (20)).
Let x*(¢; x,, £,) be a solution of (27) such that |[x,|]|<a. Then
there is a v*(a) such that ||x*(¢; x,, &) ||<v*(a) for all t=¢,.
Now we consider the equation (28) in Lemma 5. By (29) and (30),
we have

(31) K)gt, v¥ @) =0  as t— oo
and
(32) S:ku)gz(t, y¥(a))dt < oo .

The solution of (28) is of form as follows:

u(t) = OV, x)+ et || HEMHME) [, 7¥(@)
' +g(s, YH@))1ds .
From this, we have

u(t) = e 19b(d(z,, M+ Jeet || ek s, v(ds

+Jet || e h)gs, TH(@)ds,

0
where J=J(H’, &)=h(H")l(7*(«)).
If corresponding to any & >0, we choose 8(€) and S(¢& &) so
that

b(r)<%8), if r< 86,

Zsé%p k(t)g(t, fy*(a))<d(8}c

[l KIS, 7@ < G2,

we have u(t)< a(é) when d(x,, M(t,))< 8(¢), IIxollsa and t=t,>
S(&, «) (cf. [4]). From Lemma 5, we have for {=¢,
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a(d(x*(t 5 %y, ), M(8))) = u(t) < a(€) .

Therefore we have d(x*(¢; x,, ¢,), M(¢))<é. This means that a set
M is an eventually uniform-stable set of (27) with respect to Z,.

By (30), there is a p(a)”>0 such that k(#)g,(¢, v*(@))< p(a).
Moreover for any p >0, there are T;(p, @) (=1, 2) such that if
t=T(p, ),

-4 _~ a(p)e
<6]P(“)
and that if £=T,(p, @), max k(s)g(s, '7*(“))<‘%PJ)£- For t=max T;
we have ==
et [P s a(p)
Je<t | e ks ts, vands < 2,
because

Jer | ek (s, vH(e)ds

< % J{ p(a)e‘%’+ max k(s)g,(s, v*(a))} .

<5<
b

For a fixed &€=¢,, we put S(&, @)=S,(«¢) and 8(§)=8,. Corres-
ponding to any p >0, we choose S,(p, &)= S,(@) so large that
KI5, ve(nds < 41

SSz(P. @)

and then choose Ty (p, &) so large that

exp {~C(S@)+ Ti(p, )= Sip, N} [ )gils, s < 1.
Then by following the proof of Hale’s theorem in [4], for any
t,=S(a), t=t,+ Tp, &) we have

Je et Si e k(s)g (s, v¥(a))ds < CL(B&) '

Moreover there is a T,(p) such that e <“~b(d(x,, M(¢,))<a(p)/3
for d(x,, M(¢,))< 8, and ¢t=¢,+ T(p), and hence for any ¢,=S,(«),
t=t,+ T(p, @) and d(x,, M(¢,))< 8, we have u(t)< a(p) from which
we have d(x*(¢; x,, £,), M(¢))<p, where T(p, @)=max(T,, T,, T,, T,).
Thus the proof is completed.
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As a sufficient condition, we have the following theorem.

Theorem 7. We assume that F(t, x) of (1) is defined on D and
all the solutions of (1) are uniformly bounded. Suppose that there
exists a continuous Liapunov function V(i, x) satisfying the condi-
tions in Theorem 5 and that if ||x||=<a and ||¥'||=«, we have

|V, 2)— V2, )| < o(@)k(@) |2 — 21| .

Moreover we assume that G(t, x) of (27) are defined on D, continuous
and satisfy the conditions

E@IGE, x| =0  as t— oo
and

[ eonGLE xplar <,

where x(t) is the same in (29), (30), and that all the solutions of
(27) are uniformly bounded.

Then the set M is a uniform-asymptotically stable set of (1)
with respect to both t, and « and M is an eventually wuniform-
asymptotically stable set of (27).

As a special case of Theorem 6, if we have the condition (25),

from (26) we have
| V(t, x)— V&, 2)| < h(HR(O)((@) || x — " ||

when ||x||<«, ||x'||<«, and therefore the conditions which are
satisfied by G,(¢, x) are as follows:

29y Gt x@)—0 as t— oo
and
(30") [ TG syt <o

Remark. If a set M is a uniform-asymptotically stable set
of (1) with respect to both £, and «, and if M(¢) is contained in a
compact set € in R” for all £ €I, then necessarily the solutions of
(1) in consideration are uniformly bounded. Moreover if we assume
(25), P(n, @) of (25) is determined depending only on 7. Therefore
from (26) we have
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|V, x)— V&, x')| < h(HRQO)A ()| x— 2] .

And the functions g, and g, in Lemma 5 are independent of .
Therefore we do not need assume the boundedness of solutions
of (27).

VII. Asymptotic behavior of solutions of perturbed system

In this section we assume that F(¢, x) of (1) is defined on
IXR*, F(t, x)€C(x) and that G,(¢, x) and G,(¢, x) are defined on
Ix R” and continuous. Now we consider a perturbed system (27),
where G,(¢, x) and G,(¢, x) are perturbation terms. We assume
that all the solutions of (1) are equi-bounded. Moreover we
assume that a set M is an equiasymptotically stable set of (1) in
the large and that G,(¢, x) and G,(¢, x) satisfy the conditions (29)
and (30) respectively, where k(t) is the function which appear for
the equiasymptotic stability of M in the large.

Theorem 8. Under the assumptions above, if every solution of
(27) is bounded, every solution of (27) approaches M as t— oo,

Proof. We consider a solution x*(¢; x,,¢,) of (27). Then
there is a positive constant ¢ such that for all ¢ =¢,

[lx*(t; %4, 2] <.

Since the solution of (1) is bounded and approaches the set M,
we have a positive number N such that the set ||x||<< N includes
at least one point of M(¢) for every t € I. Therefore we can assume
that v is so large that the domain ||x||<v includes a point of
M(t) for every t€l. From the assumptions, there exists a conti-
nuous Liapunov function V(¢, x) defined on Ix R” satisfying the
conditions in Theorem 2. Now we consider this function V{(¢, x)
only in the domain IXS, (Sy: [|x]||<v). If x€S,, we have
d(x, M(t))< 2y, and therefore by (20) we have

| V(t, x)— V¢, x)| < h@V)UvR@) | x—2"]],
if x€S, and »’€S,. Thus we have

VI, 2525 %o, 80)) = —cV(E, 2%(E ;5 %0, 1))+ Kk(2)(&,(8) + &:(8))
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where K=h(2v)I(y) and g;(¢)= max ||G,(¢, x)]|. By the assumptions
e <Y
on G, x) and G,¢, x), we have
k(t)g,(t) — 0 as t— oo

and
[ ktgmar < oo
If we let u(?; x,, t,) be the solution of the equation

{u’ = —cu+ Kk(t)(g,(t)+ g,2))
u(to) = V(tO) xo) ’

we have
V¢, x*(t; x,, to) < ult; x,, L) for all ¢=¢,.

In the same way in Theorem 6, we can see that u(¢; x,, {,)—0 as
t— oo, and therefore V(¢, x*(¢; x,, t,)) =0 as {— . By the condi-
tion 2° which V{(¢, x) satisfies, we have

d(x*(t ; x,, t,), M(#)) =0 as t— oo,

which implies that x*(¢; x,, ,) approaches M as ¢— oco.
As a special case, we have the following corollary.

Corollary. We assume that F(t, x) is defined and continuous
on IXR” and that F(t, x) satisfies the condition (25). Moreover we
assume that G(t, x) are defined and continuous on IX R" and that
G(t, x) satisfy the conditions (29') and (30'). If all the solutions of
1) are uniformly bounded and every solution of (27) is bounded and
if a set M is a uniform-asymptotically stable set of (1) in the large
with respect to t,, every solution of (27) approaches M as t— oo.

In this case, we have by (26)

V@, x)— V(E, 2)| < h2y)U(0)kO) || x — 27|

and hence it is sufficient that G (¢, x) satisfy the conditions (29")
and (30).
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