On decomposable mappings of manifolds

By

Yoshihiro Saito

(Received April 19, 1962)

In the present paper we study some relations between the singularities of mappings and the decomposable mappings of manifolds. Throughout this paper by a smooth mapping (function) we understand a C^{∞} -mapping (C^{∞} -function); M^n denotes an orientable closend n-dimensional C^{∞} -manifold, and R^n the n-dimensional Euclidean space.

We shall now recall briefly the definitions of the *singularities* $S_r(f)$, $S_{r,r'}(f)$, \cdots of a mapping $f: M^n \to R^p$, $n \ge p$, [3], [5].

Let $S_r(f)$ denote the set of points of M^n at which f has rank p-r. Suppose that $S_r(f)$ is an m-dimensional submanifold of M^n . Then $S_{r,r'}(f)$ is defined to be the subset of $S_r(f)$ consisting of points at which the mapping f restricted on $S_r(f)$ has rank m-r'. By the similar way we define the singularities $S_{r,r',\cdots,r''}(f)$.

We shall give a condition under which $S_r(f)$ is a submanifold of M^n . Let G(f) be the graph of f, and associate to each point p of M^n the tangent space of G(f) at (p, f(p)). Then we have a mapping, denoted by d_1f , of M^n to B_0 , the space of n-planes in the tangent spaces of $M^n \times R^p$.

 B_0 is a fibre bundle over $M^n \times R^p$ whose fibre is the Grassmann manifold G_n^p , the space of n-planes in R^{n+p} . Denote $B_1 = \bigvee_q F_r(q)$ where $F_r(q) = (p-r, \cdots, p-r, p, \cdots, p)$ is the Schubert variety in the fibre $G_n^p(q)$ over a point q of $M^n \times R^p$. Then B_1 is a submanifold of B_0 . Since we have $S_r(f) = d_1 f^{-1}(B_1)$, it follows that if the mapping $d_1 f$ is t-regular (transverse regular) on B_1 then $S_r(f)$ is a regular submanifold of M^n .

Now we suppose that d_1f is t-regular on B_1 . Let m be the

dimension of $S_r(f)$, and let H(q) denote the set of m-planes which are contained in n-planes regarded as points of the $F_r(q)$. Then $H = \bigcup_{q \in B_1} H(q)$ is a fibre bundle over B_1 and its fibre is G_m^{n-m} . Define d_2f to be a mapping such that $d_2f(p)$ is the tangent space of $S_r(f)$ at p. For an intger $r' \leq p-r$ and a point $q' \in B_1$ projected to q, we denote by $F'_{r'}(q')$ the set of m-planes $V^m(q') \subset V^n(q)$ which are projected to R^p with rank p-r-r'. Denote $B_2 = \bigcup_{q'} F'_{r'}(q')$ where $q' \in B_1$. Then B_2 is a submanifold of H and $S_{r,r'}(f) = d_2 f^{-1}(B_2)$. Thus it follows that if d_2f is t-regular on B_2 then $S_{r,r'}(f)$ is a submanifold of $S_r(f)$. Furthermore we can obtain the similar conditions under which the singularities of a mapping are regular submanifolds. A mapping satisfying these conditions is called generic mapping.

Let $\rho: R^{n+1} \to R^n$ denote the projection, and let f be a mapping of M^n to R^n . Then if there exists an immersion $i: M^n \to R^{n+1}$ satisfying $f = \rho i$ we say that f is decomposable [1].

Given mappings $f, \bar{f}: M^n \to R^p$, if the r-th partial derivatives of f and \bar{f} are sufficiently close for all $r \leq s$, we say that \bar{f} is a good s-approximation of f.

Our main results in this paper are stated as follows.

Theorem 3. Let M^3 be an orientable closed smooth 3-manifold and f be a smooth mapping of M^3 to R^3 . Suppose that f is a generic debomposable mapping. Then we may take a good 0-approximation \bar{f} of f so that $S_{1,1}(\bar{f})$ = the empty set \varnothing .

Theorem 4. Let M^n be an orientable closed smooth n-manifold and f be a generic mapping of M^n to R^n . Suppose that the singularities of f satisfy the following conditions.

$$S_i(f) = \emptyset$$
 $i \ge 2$, $S_{1,1}(f) = \emptyset$.

Then the mapping f is a decomposable mapping.

1. We shall now consider the case for n=p=3. In this case it is well-known [5] that $S_i(f)=\emptyset$ for any generic mapping f and $i\geq 2$. Hence we may consider only $S_1(f)$, $S_{1,1}(f)$ and $S_{1,1,1}(f)$. Given a point $q\in M^3$, we may take (local) coordinatate systems (x, y, z)

at q and (X, Y, Z) at f(q) in which f is represented by X=x, Y=y Z=h(x, y, z). Then the tangent space of the graph G(f) is represented as follows:

$$X'-x'=0$$
, $Y'-y'=0$ and $Z'-\frac{\partial h}{\partial x}x'-\frac{\partial h}{\partial y}y'-\frac{\partial h}{\partial z}z'=0$ (1)

where (x', y', z'), (X', Y', Z') are the bases of the tangent spaces. Hence $\frac{\partial h}{\partial z} = 0$ if and only if the rank of the projection of the tangent space of G(f) to R^3 is 2. Thus the set $S_1(f)$ is represented by $\frac{\partial h}{\partial z} = 0$. In this case the normal coordinate of F_1 is given by $\frac{\partial h}{\partial z}$. This shows that a condition for the t-regularity of $d_1 f$ on B_1 is that at least one of the derivatives $\frac{\partial^2 h}{\partial x \partial z}$, $\frac{\partial^2 h}{\partial y \partial z}$ and $\frac{\partial^2 h}{\partial z^2}$ is not zero.

Next we shall consider $S_{i,i}(f)$. The tangent space of $S_i(f)$ is represented by the equation (1) and

$$\frac{\partial^2 h}{\partial x \partial z} x' + \frac{\partial^2 h}{\partial y \partial z} y' + \frac{\partial^2 h}{\partial z^2} z' = 0$$
 (2)

Hence $\frac{\partial h}{\partial z} = \frac{\partial^2 h}{\partial z^2} = 0$ if and only if the rank of the projection of the tangent space of $S_1(f)$ to R^3 is 1. Therefore the set $S_{1,1}(f)$ is represented by $\frac{\partial h}{\partial z} = \frac{\partial^2 h}{\partial z^2} = 0$. In this case, the normal coordinate of F_1' is given by $\frac{\partial^2 h}{\partial z^2}$. Let (z', s') denote a basis of the tangent space of $S_1(f)$. Then a condition for the t-regularity of $d_2 f$ on B_2 is that at least one of the derivatives $\frac{\partial^3 h}{\partial s \partial z^2}$ and $\frac{\partial^3 h}{\partial z^3}$ is not zero.

The tangent space of $S_{1,1}(f)$ is represented by the equations (1), (2) and

$$\frac{\partial^3 h}{\partial x \partial z^2} x' + \frac{\partial^3 h}{\partial y \partial z^2} y' + \frac{\partial^3 h}{\partial z^3} z' = 0.$$

Note that $S_{1,1,1}(f)$ is the set of points $q \in S_{1,1}(f)$ such that the tangent line of $S_{1,1}(f)$ at q is projected to R^3 with rank 0. Therefore the set $S_{1,1,1}(f)$ is represented by the following equations

$$\frac{\partial h}{\partial z} = \frac{\partial^2 h}{\partial z^2} = \frac{\partial^3 h}{\partial z^3} = 0,$$

$$\frac{\partial^2 h}{\partial x \partial z} \frac{\partial^3 h}{\partial y \partial z^2} - \frac{\partial^2 h}{\partial y \partial z} \frac{\partial^3 h}{\partial x \partial z^2} = 0.$$
(3)

Since $\frac{\partial^3 h}{\partial z^3}$ is a normal coordinate of F_1'' , the mapping $d_3 f$ is t-regular on F_1'' if and only if $\frac{\partial^4 h}{\partial z^4} \neq 0$.

2. The types of singularities. In this section we suppose that mapping f of R^3 to R^3 is generic and it maps the origin 0 to the origin 0. The singularities of f are divided into three types S_1 , $S_{1,1}$ and $S_{1,1,1}$.

Case 1 (0 is a point of $S_1(f) - S_{1,1}(f)$). We may take coordinate systems in which f is represented by

$$X = x$$
, $Y = y$ and $Z = h(x, y, z)$.

Since 0 is a point of $S_1(f)$ the Taylor expansion of h does not contain the constant term and terms of the first order. Therefore we have

$$Z = a(x, y) + a_{13}xz + a_{23}yz + a_{33}z^2 + R$$
, ord $_zR \ge 3^{1}$.
Set $x' = x$, $y' = y$, $z' = z$, $X' = X$, $Y' = Y$ and $Z' = Z - a(X, Y)$.

This gives, dropping primes,

$$X = x$$
, $Y = y$, $Z = a_{13}xz + a_{23}yz + a_{33}z^2 + R$.

Since f is generic, at least one of a_{13} , a_{23} and a_{33} is not zero. Further the origin is not the point of $S_{1,1}(f)$, therefore the tangent space of $S_1(f)$ at 0 is transversal to the null space N(0) of f^{20} . $S_1(f)$ is now represented by the following equation

$$a_{13}x + a_{23}y + 2a_{33}z + R_z = 0^{33}$$

¹⁾ $\operatorname{ord}_{z} R$ denotes the order of R with respect to the variable z.

²⁾ N(p) denotes the null space of f, the linear subspace of the tangent space which is mapped to zero vector by the differential of f.

³⁾ R_z denotes the first partial derivative of R with respect to z.

and hence the equation of the tangent plane of $S_1(f)$ at 0 is $a_{13}x + a_{23}v + 2a_{33}z = 0$. Since this plane does not contain the z-axis, we have $a_{33} \neq 0$. If $a_{13} \neq 0$ or $a_{23} \neq 0$ then we may represent f in suitable coordinates as follows:

$$X = x$$
, $Y = y$, $Z = xz + a_{33}z^2 + R$, ord $zR \ge 3$.

Set

$$x=x'$$
 , $y=y'$, $z=z'-rac{x'}{2a_{33}}$, $X=X'$, $Y=Y'$ and $Z=a_{33}Z'+\left(rac{1-2a_{33}}{4a_{33}^2}
ight)\!X'^2$.

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = z^2 + R$, ord $R \ge 3$.

Case 2 (0 is a point of $S_{1,1}(f) - S_{1,1,1}(f)$). In this case the expansion of h does not contain the term z^2 , because 0 belongs to $S_{1,1}(f)$. Hence f is represented in a new coordinates as follows:

$$X = x$$
, $Y = y$, $Z = yz + R$, ord $R \ge 3$.

Since the expansion of h contains yz, we may omit in the expansion of R the terms which contain z with at most order 1. Then the formulas for X, Y and Z become as follows in a new coordinate systems:

$$X = x$$
, $Y = y$, $Z = yz + a_{133}xz^2 + a_{233}yz^2 + a_{333}z^3 + R$, ord $R \ge 4$.

Set $z'=z+a_{233}z^2$ then we have, $z=z'+\varphi(z')$ for small z' where ord $\varphi \ge 2$. Therefore we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = yz + a_{133}xz^2 + a_{333}z^3 + R$, ord $R \ge 4$.

Then the equation of $S_{1,1}(f)$ are represented as follows:

$$y+2a_{_{133}}xz+3a_{_{333}}z^2+R_z=0$$
 , $2a_{_{133}}x+6a_{_{333}}z+R_{_{zz}}=0$.

Hence the tangent line of $S_{1,1}(f)$ at 0 is represented by the following equations:

$$y = 0$$
, $a_{133}x + 3a_{232}z = 0$.

Since $0 \notin S_{1,1,1}(f)$, the tangent line of $S_{1,1}(f)$ at 0 does not coincide with the z-axis. Hence we have $a_{333} \neq 0$.

Set

$$x' = \frac{x}{\sqrt[3]{a_{333}^2}}, \ y' = \frac{y}{-\sqrt[3]{a_{333}}}, \ z' = -\sqrt[3]{a_{333}}z,$$
 $X' = \frac{X}{\sqrt[3]{a_{333}^2}}, \ Y' = \frac{Y}{-\sqrt[3]{a_{223}}}, \ Z' = Z,$

then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = yz + a_{133}xz^2 - z^3 + R$, ord $R \ge 4$.

If $a_{133} \neq 0$, we set $z' = z + \frac{a_{133}}{3}x$. Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = yz - z^3 + R$, ord $R \ge 4$.

Case (0 is a point of $S_{1,1,1}(f)$) By the same reason as in case 2, the expansion of h becomes

$$Z = xz + a_{233}yz^2 + a_{333}z^3 + R$$
, ord $R \ge 4$.

Since 0 is a point of $S_{1,1,1}(f)$, we have, $a_{333}=0$. Since f is generic, this implies $a_{233} \neq 0$.

Set $y'=a_{233}y$ and $Y'=a_{233}Y$, then we have, dropping primes,

$$X=x$$
 , $Y=y$, $Z=xz+yz^2+R$, ord $R \ge 4$.

The last equation contains xz and yz^2 , and so we may omit in R the terms of fourth order which contain z with at most order 2.

Then we have

$$Z = xz + yz^2 + axz^3 + byz^3 + cz^4 + R$$
, ord $R \ge 5$.

Set $z'=z+az^3$, then we have $z=z'+\varphi(z')$ for small z', where ord $\varphi \ge 3$. This coordinate transformation gives us, dropping primes,

$$Z = xz + yz^2 + byz^3 + cz^4 + R$$
, ord $R \ge 5$.

Now the set $S_i(f)$ and $S_{i,i}(f)$ are represented by the following equations:

$$S_1(f): F(x, y, z) = x + 2yz + 3byz^3 + 4cz^3 + R_z = 0;$$

 $S_{1,1}(f): F(x, y, z) = 0,$
 $G(x, y, z) = 2y + 6byz + 12cz^2 + R_{zz} = 0.$

Since f is generic, we have $c \neq 0$. Set

$$x' = \frac{-\varepsilon}{\sqrt[4]{|c|}}x$$
, $y' = \frac{-\varepsilon}{\sqrt{|c|}}y$, $z' = \sqrt[4]{|c|}z$, $X' = \frac{-\varepsilon}{\sqrt[4]{|c|}}X$, $Y' = \frac{-\varepsilon}{\sqrt{|c|}}Y$, $Z' = -\varepsilon Z$,

where $\varepsilon = \operatorname{Sgn} c$. Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = xz + yz^2 + byz^3 - z^4 + R$, ord $R \ge 5$.

Set $z'=z+\frac{b}{4}y$ then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = xz + yz^2 - z^4 + R$, ord $R \ge 5$.

3. Deformation of the singularities. We shall consider in this section deformations of the singularities. First of all we consider the elimination of the cusp points of generic mapping⁴⁾ of R^2 to R^2 .

Lemma 1. Let f be a mapping of R^2 to R^2 represented by X = x, $Y = \rho(x)y - y^3$,

where $\rho(\pm a)=0$, $\rho(x)<0$ for |x|< a and $\frac{d\rho}{dx}\Big|_{\pm a} \pm 0$. Then the singularities $S_{1,1}(f)$ are two points $(\pm a,0)$ which are the cusp points of f; We may takes, in a neighborhood U of the $C=\{(x,0); |x|\leq a\}$, a good 0-approximation \bar{f} of f such that $S_{1,1}(\bar{f})=\varnothing$.

Proof. Put $\mathcal{E}' = 2 \max_{\substack{\alpha \leq |x| \leq a+\xi \\ \nu(x)}} \rho(x)$. We may take smooth functions $\nu(x)$ and $\eta(x)$ which have the following properties:

$$\nu(x) \ge 0, \ \nu(x) = 0 \text{ for } |x| \ge a + \varepsilon, \ \nu(x) > -\rho(x),
\eta(x) = 0 \text{ for } |x| \ge a + \varepsilon, \ \eta(x) > 0 \text{ for } |x| < a + \varepsilon,
\frac{\nu(x)}{\eta(x)} < \frac{\varepsilon'^2}{4}, \ \rho(x) \cdot \eta(x) < \nu(x) \text{ for } a \le |x| \le a + \varepsilon.$$
(4)

⁴⁾ In [4] the generic mapping is referred to as the excellent mapping.

Put

$$\alpha(x, y) = -\eta(x)y^3 + \nu(x)y,$$

and take a smooth function $\beta(x, y)$ with the following properties;

$$\beta(x, y) = \alpha(x, y) \text{ for } |y| < \frac{9}{10} \sqrt{\frac{\overline{\nu(x)}}{\eta(x)}},$$

$$\beta(x, y) = 0$$
 for $|y| \ge \sqrt{\frac{\overline{\nu(x)}}{\eta(x)}}$,

$$\beta(x, y)$$
 and $\frac{\partial \beta}{\partial y}$ are monotone for $\frac{9}{10} \sqrt{\frac{\overline{\nu(x)}}{\eta(x)}} \leq |y| \leq \sqrt{\frac{\overline{\nu(x)}}{\eta(x)}}$.

Let $f': R^2 \rightarrow R^2$ be a mapping represented by

$$X = x$$
, $Y = \rho(x)y - y^3 + \beta(x, y)$.

Then f' is a good 0-approximation of f in the neighborhood of C. The singularity $S_i(f')$ is represented by

$$F(x, y) = \rho(x) - 3y^2 + \frac{\partial \beta}{\partial y} = 0$$
.

In the consideration of $S_{1,1}(f')$ we may suppose that $|x| \leq a + \varepsilon$. $Case\ 1): \ a \leq |x| \leq a + \varepsilon$. The functions $(\rho(x) - 3y^2)$ and $\frac{\partial \beta}{\partial y}$ are monotone for $0 \leq |y| \leq \sqrt{\frac{\nu(x)}{3\eta(x)}}$, and $F(x,0) = \rho(0) + \nu(0) > 0$. On the other hand, it follows from (3) that $\frac{\partial \beta}{\partial y}$ and $(\rho(x) - 3y^2)$ are negative for $|y| \geq \sqrt{\frac{\nu(x)}{3\eta(x)}} \left(> \sqrt{\frac{\rho(x)}{3}} \right)$. Hence F(x,y) = 0 has only tow solu-

Case 2): $|x| \le a$. In this case, if $|y| < \sqrt{\frac{\nu(x)}{3\eta(x)}}$ then $(\rho(x) - 3y^2)$ and $\frac{\partial \beta}{\partial y}$ are negative.

We have

tions for a fixed x.

$$F(x, y) = -3(1+\eta(x))y^2 + (\rho(x)+\nu(x)) \text{ for } |y| \leq \sqrt{\frac{\nu(x)}{3\eta(x)}},$$

and $1+\eta(x)>0$ ane $\rho(x)+\nu(x)>0$. Hence F(x,y) has only two solutions in U for $|x|\leq a+\varepsilon$. From these results we conclude that $S_{1,1}(f')$ is empty.

Given a generic mapping f of M^3 to R^3 and a point p of of $S_{1,1,1}(f)$, we shall define the index at p as follows.

Definition of the index. Take a fixed orientation of M^3 , and let p be a point of $S_{1,1,1}(f)$, Then f is represented in suitable coordinate systems at p and at f(p) as follows:

$$X = x$$
, $Y = y$, $Z = xz + yz^2 - z^4 + R$, ord $R \ge 5$.

Let x(p), y(p) and z(p) be the tangent vectors of x-, y- and z-axis at p whose orientations are given by the direction of coordinate axes. Consider the oriented frame $\{x(p), y(p), z(p)\}$. Then we define that the index of p is +1 or -1 according as the orientation of the frame coincide with that of M^3 or not.

Lemma 2. The above definition of the index does not depend on the choice of coordinate systems.

Proof. Take two pairs of coordinate systems $\{(x, y, z), (X, Y, Z)\}$ and $\{(\tilde{x}, \tilde{y}, \tilde{z}), (\tilde{X}, \tilde{Y}, \tilde{Z})\}$. We may suppose that f is represented in these coordinate systems as follows:

$$X = x$$
, $Y = y$, $Z = xz + yz^2 - z^4 + R$, ord $R \ge 5$, $\tilde{X} = \tilde{x}$, $\tilde{Y} = \tilde{y}$, $\tilde{Z} = \tilde{x}\tilde{z} + \tilde{y}\tilde{z}^2 - \tilde{z}^4 + \tilde{R}$, ord $\tilde{R} \ge 5$.

Let

$$ilde{x}=arphi(x,\,y,\,z)$$
 , $ilde{y}=\psi(x,\,y,\,z)$, $ilde{z}=
ho(x,\,y,\,z)$, $ilde{X}=\Phi(X,\,Y,\,Z)$, $ilde{Y}=\Psi(X,\,Y,\,Z)$, $ilde{Z}=P(X,\,Y,\,Z)$,

Then the following relations hold:

$$\Phi(x, y, xz + yz^2 - z^4 + R) = \varphi(x, y, z)$$
 (6)

$$\Psi(x, y, xz + yz^2 - z^4 + R) = \psi(x, y, z)$$
 (7)

$$P(x, y, xz + yz^2 - z^4 + R) =$$

$$\varphi(x, y, z) \cdot \rho(x, y, z) - \psi(x, y, z) \cdot (\rho(x, y, z))^{2} - (\rho(x, y, z))^{4} + \tilde{R}(\varphi, \psi, \rho).$$
(8)

Put
$$\varphi_{ijk}|_{0} = \frac{\partial^{i+j+k}}{\partial x^{i}\partial y^{j}\partial z^{k}} \varphi(0, 0, 0)$$
 and $J = x + 2yz - 4z^{3} + R_{001}$.

By applying $\frac{\partial}{\partial z}\Big|_{0}$ to (6) and (7), it follows that $\varphi_{00i}|_{0} = \varphi_{00i}|_{0} = 0$

for $i \le 3$. Since (φ, ψ, ρ) is a coordinate transformation on R^3 we have

$$\rho_{001}|_{0} \neq 0 \tag{9}$$

By applying to $\frac{\partial^2}{\partial y \partial z}\Big|_{0}$ (8), we have

$$(\varphi_{010}|_{0}) \cdot (\varphi_{001}|_{0}) = 0$$
, $\varphi_{010}|_{0} = 0$, $\psi_{010}|_{0} \neq 0$.

Furthermore applying of $\frac{\partial^3}{\partial y \partial z^2}\Big|_{0}$ and $\frac{\partial^4}{\partial z^4}\Big|_{0}$ to (8) imply

$$P_{001}|_{0} = (\psi_{010}|_{0}) \cdot (\rho_{001}|_{0})^{2} \tag{10}$$

and

$$P_{001}|_{0} = (\rho_{001}|_{0})^{4}. (11)$$

From (9), (10) and (11) we have

$$|\psi_{010}|_0 > 0$$
. (12)

Applying of $\frac{\partial^2}{\partial x \partial z}$ to (8) implies

$$P_{001}|_{0} = (\varphi_{100}|_{0}) \cdot (\rho_{001}|_{0})$$
.

Hence we have

$$(\varphi_{100}|_{0}) \cdot (\varphi_{001}|_{0}) = (\varphi_{001}|_{0})^{4} > 0$$
.

Consequently the Jacobian of the transformation (φ, ψ, ρ) is positive at p.

Definition of the positive and negative sides at a point of $S_{1,1,1}$. Let $p \in S_{1,1,1}(f)$ be a point, and consider the tangent plane $T_{S_1(f)}(p)$ of $S_1(f)$ at p and the null space N(p) at p. Then the side in $T_{S_1(f)}(p)$ with respect to N(p) which contains the tangent vector y(p) of the y-axis is called positive. The another side is called negative.

The inequality (12) justifies this definition.

Let p be a point of $S_{1,1}(f) - S_{1,1,1}(f)$. Then, in a neighborhood of p, the mapping f is represented in suitable coordinate systems as follows:

$$X = x$$
, $Y = y$, $Z = yz - z^3 + R$, ord $R \ge 4$.

Lemma 3. Let $T_{S_1(f)}(p)$ be the tangent plane of $S_1(f)$ at p. The tangent vector y(p) of the y-axis is transversal to $T_{S_1(f)}(p)$. For any choice of coordinate systems, vestoy y(p) directs the same side with respect to $T_{S_1(f)}(p)$.

Proof. Suppose that f is represented in another coordinate systems as follows:

$$\tilde{X} = \tilde{x}$$
, $\tilde{Y} = \tilde{y}$, $\tilde{Z} = \tilde{y}\tilde{z} - \tilde{z}^3 + \tilde{R}$, ord $\tilde{R} \ge 4$.

Then the similar method in the last lemma proves

$$\frac{\partial \tilde{y}}{\partial x}\Big|_{0} = \frac{\partial \tilde{y}}{\partial z}\Big|_{0} = 0$$
, $\frac{\partial \tilde{y}}{\partial y}\Big|_{0} > 0$, $\frac{\partial \tilde{z}}{\partial x}\Big|_{0} = 0$.

Definition of the positive and negative sides at a point of $S_{1,1}$. Let $p \in S_{1,1}(f)$ be point, and consider the tangent space $T_{M^3}(p)$ of M^3 at p and the tangent plane $T_{S_1(f)}(p)$ of $S_1(f)$ at p. Then the side in $T_{M^3}(p)$ with respect to $T_{S_1(f)}(p)$ which contains the tangent vector y(p) of the y-axis is called positive. The another side is called negative.

This definition is justified by Lemma 3.

Theorem 1. Let f be a generic mapping of M^3 to R^3 , and let p and q be points of $S_{1,1,1}(f)$. Suppose that the following conditions:

- 1) p and q are in the same connected component of $S_1(f)$.
- 2) There is a smooth simple curve C in $S_1(f)$ which starts from p into the negative side, ends at q from the negative side and does not touch any other singularities $S_{1,1}(f)$.
 - 3) The indices of p and q are different.

Then we may take, in a tubular neighborhood U(C) of C, a good 2-approximation \bar{f} of f such that $S_{1,1,1}(\bar{f}) \cap U(C) = \emptyset$.

Before proving this theorem we prepare the following lemmas.

Lemma 4. Under the same conditions as in the last theorem, we may choose a coordinate system (x, y, z) in U(C) and a parameter system (X, Y, Z) in f(U(C)) in which C is represented as the set $\{(0, y, 0); |y| \le 1\}$, and f is represented as follows:

$$X = x$$
, $Y = y$, $Z = xz + \rho(y)z^2 - z^4 + R$, ord_z $R \ge 5$

with smooth function $\rho(y)$ satisfying $\rho(\pm 1) = 0$, $\rho(y) < 0$ for |y| < 1, $\frac{d\rho}{dy}(-1) < 0$ and $\frac{d\rho}{dy}(+1) > 0$.

Proof. Take a Riemannian metric in M^3 , and consider a smooth open curve $C' \supset C$. Let ε be a sufficient small positive number. Parametrize C' by $(-1-\varepsilon, 1+\varepsilon)$ and C by [-1, 1]. Take a smooth vector field $\{V_{p}\}$ on C' such that each vector V_{p} is transversal to the tangent vector of C' and the null space N(p) at p. For each point $p \in C'$, consider the geodesic g_p whose tangent vector at p is V_p . Let D_p be the set of points q of g_p such that the length of the geodesic between p and q is less than ε , and put $D = \bigcup D_p$. Then, for sufficient small \mathcal{E} , D is an open 2-disk which contains C, and the mapping f|D is a local homeomorphism. Let $L_{f(q)}$ denote the line segment which is normal to f(D) at f(q). Then it follows that $M_q = \{f^{-1}(L_{f(q)}); q \in D\}$ is a family of curves and that the set of points $r \in M_q$ $(q \in D)$ is a tubular neighborhood of C [2]. In virtue of the above definitions of C', D_p , $L_{f(q)}$ and M_q , we may take the following coordinate system (x, y, z) in a small tubular neighborhood U(C) of C and the following parameter system (X, Y, Z) in f(U(C)). Let r be a point of U(C), then r is a point of M_q , $q \in D$, and q is a point of g_p , $p \in C'$. We take (x, y, z) as coordinates of r such that

- i) x is the length in g_p from p to q.
- ii) y is the parameter on C'.
- iii) z is the length in M_q from q to r.

For the set f(U(C)), we may define (X, Y, Z) as follows: Let f(r) be a point of f(U(C)) and (x, y, z) be the coordinate of r. We set

$$X = x$$
, $Y = y$ and $Z =$ the length in $L_{f(q)}$ from $f(q)$ to $f(r)$.

Then the mapping f is represented in the neighborhood U(C) as follows:

$$X = x$$
, $Y = y$, $Z = h(x, y, z)$.

Expanding h with respect to z, we have

$$Z = \sum_{i=0}^4 \rho_i(x, y)z^i + R$$
, ord_z $R \ge 5$.

In virtue of the definition of the parameters z, Z, we have Z=0 if z=0. Hence we have $\rho_0(x, y)=0$. Consider now the set $S_1(f)$ represented by

$$\rho_1(x, y) + 2\rho_2(x, y)z + 3\rho_3(x, y)z^2 + 4\rho_4(x, y)z^3 + R_z = 0$$
.

Since the y-axis is contained in $S_1(f)$, we have $\rho_1(0, y) = 0$. Hence We may set

$$\rho_1(x, y) = \rho_{11}(y)x + \rho_{12}(x, y)x^2$$
 and $\rho_2(x, y) = \rho_{20}(y) + \rho_{21}(x, y)x$.

Then we have

$$Z =
ho_{11}(y)xz +
ho_{12}(x, y)x^2z +
ho_{20}(y)z^2 +
ho_{21}(x, y)xz^2 +
ho_3(x, y)z^3 +
ho_4(x, y)z^4 + R.$$

Since $C' \cap S_{1,1}(f)$ are only two points $(0, \pm 1, 0)$, we have

$$\rho_{20}(\pm 1) = 0 \text{ and } \rho_{20}(y) \neq 0 \text{ for } y \neq \pm 1.$$
 (13)

Now the mapping f is generic, therefore the expansion of h must contain the term of order 2. Hence we have $\rho_{11}(\pm 1) = 0$.

The equation 3) in Section 1 and 13) show that

$$\frac{d\rho_{20}}{dy}(-1)\frac{d\rho_{20}}{dy}(+1) > 0.$$
 (14)

The condition 3) in Theorem 1 and 14) show that $\rho_{11}(-1)\rho_{11}(+1) > 0$.

Take a smooth function $\rho'_{11}(y)$ such that $\rho'_{11}(y) \neq 0$ and $\rho'_{11}(y) = \rho_{11}(y)$ for y near ± 1 , and set

$$x' =
ho_{11}'(y)x$$
, $ar{
ho}_{11}(y) = rac{
ho_{11}(y)}{
ho_{11}'(y)}$.

Then we have $\bar{p}_{11}(y)=1$ for y near ± 1 and, dropping primes, we have

$$Z = \overline{\rho}_{11}(y)xz + \overline{\rho}_{12}(x, y)x^2z + \rho_{20}(y)z^2 + \overline{\rho}_{21}(x, y)xz^2 + \rho'_3(x, y)z^3 + \rho'_4(x, y)z^4 + R', \text{ ord}_z R' \ge 5.$$

Consider now a smooth function defined by

$$eta(y) = rac{ar{
ho}_{_{11}}(y) - 1}{2
ho_{_{20}}(y)}$$

and set

$$x' = x$$
, $y' = y$, $z' = z + \beta(y)x$.

We have, dropping primes,

$$X=x$$
, $Y=y$, $Z=xz+ar
ho_2(x,y)z^2+ar
ho_3(x,y)z^3+ar
ho_4(x,y)z^4+ar R$, ord z $ar R \geq 5$,

with $\bar{\rho}_2(0, y) = \rho_{20}(y)$.

Set

$$x' = x$$
, $y' = y$, $z' = z + \overline{\rho}_{21}(x, y)z^3$

where $\bar{\rho}_{2}(x, y) = \rho_{20}(y) + \bar{\rho}_{21}(x, y)x$.

Then we have, dropping primes,

$$X=x$$
, $Y=y$, $Z=xz+
ho_{20}(y)z^2+ar
ho_3(x,y)z^3+ar
ho_4(x,y)z^4+ar
ho_5$ ord, $ar
ho\ge 5$.

Set

$$x' = x$$
, $y' = y$, $z' = z + \rho_{31}(x, y)z^3$

where $\bar{\rho}_3(x, y) = \rho_{30}(y) + \rho_{31}(x, y)x$.

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = xz + \rho_{20}(y)z^2 + \rho_{30}(y)z^3 + \tilde{\rho}_4(x, y)z^4 + \tilde{R}$, ord $\tilde{z} \ge 5$.

Since the points $(0, \pm 1, 0)$ are the points of $S_{1,1,1}(f)$, the argument in Section 1 follows that

$$\rho_{30}(\pm 1) = 0. \tag{15}$$

Hence we may define the following coordinate transformation

$$x = x', \ y = y', \ z = z' - \frac{
ho_{30}(y')}{2
ho_{20}(y')}z'^2.$$

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = xz + \rho(x, y)z^2 - \nu(x, y)z^4 + R$, ord_z $R \ge 5$.

The function $\rho(x, y)$ satisfies the following conditions:

$$\rho(0, y) = \rho_{20}(y), \ \rho(0, \pm 1) = 0,$$

$$\rho(0, y) \pm 0 \text{ for } y \pm \pm 1,$$

$$\frac{\partial \rho}{\partial y}(0, -1) \cdot \frac{\partial \rho}{\partial y}(0, +1) < 0.$$
(16)

From the above properties of ρ , it follows that there exist smooth functions $\varphi(x)$ and $\psi(x)$ satisfying the following conditions:

$$\rho(x, \varphi(x)) = 0, \ \varphi(0) = -1; \ \rho(x, \psi(x)) = 0, \ \varphi(0) = 1.$$

Set

$$x = x'$$
, $y = (\psi(x') - \varphi(x')) \left(\frac{y'+1}{2}\right) + \varphi(x')$, $z = z'$, $X = X'$, $Y = (\psi(X') - \varphi(X')) \left(\frac{Y'+1}{2}\right) + \varphi(X')$, $Z = Z'$.

Then we have

$$X' = x', Y' = y', Z' = x'z' + \rho'(x', y')z'^2 - \nu(x', y')z'^4 + R',$$

$$\operatorname{ord}_{z'} R' \ge 5, \text{ with } \rho'(x', y') = \rho(x', (\psi(x') - \varphi(x')) \left(\frac{y'+1}{2}\right) + \varphi(x')).$$

The function ρ' has the following properties

$$\rho'(x', \pm 1) = 0$$
, $\rho'(0, y') = \rho(0, y')$.

We may now define a smooth function

$$\sigma(x', y') = \frac{\rho'(x', y')}{\rho'(0, y')}.$$

We have $\sigma(x', y') > 0$ for $|x'| < \varepsilon$ and $|y'| < 1 + \varepsilon$. Set

$$x' = \sqrt{\sigma(x', y')} x$$
, $y' = y$, $z' = \frac{1}{\sqrt{\sigma(x', y')}} z$

$$X' = \sqrt{\sigma(X', Y')} X, Y' = Y, Z' = Z.$$

We have

$$X = x$$
, $Y = y$, $Z = xz + \rho(0, y)z^2 - \nu''(x, y)z^4 + R$, ord_z $R \ge 5$.

Take the expansion

$$\nu''(x, y) = \nu(y) + \nu_1(x, y)x$$
,

and set

$$x' = x$$
, $y' = y$, $z' = z - \nu_1(x, y)z^4$.

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = xz + \rho(y)z^2 - \nu(y)z^4 + R$, ord, $R \ge 5$.

where $\rho(y) = \rho(0, y)$ and $\nu(y) = \nu''(0, y)$.

Since f is generic, we have $\nu(\pm 1) = 0$. We may suppose that $\nu(-1) > 0$. Then the condition 2) in Theorem 1 follows that

$$\frac{d\rho}{dy}(-1) < 0$$
 and $\rho(y) < 0$ for $|y| < 1$.

Therefore the condition 2) in Theorem 1 and 14) show that $\nu(+1) > 0$.

Now we may take a smooth function $\nu'(y) > 0$ such that $\nu'(y) = \nu(y)$ for y near

Set

$$x' = \frac{1}{\sqrt[4]{\nu'(y)}} x$$
, $y' = y$, $z' = \sqrt[4]{\nu'(y)} z$, $X' = \frac{1}{\sqrt[4]{\nu'(Y)}} X$, $Y' = Y$, $Z' = Z$.

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = xz + \bar{p}(y)z^2 - \bar{v}(y)z^4 + \bar{R}$, ord, $\bar{R} \ge 5$.

It holds that $\bar{\nu}(y)=1$ for y near ± 1 .

Set

$$x = x', y = y', z = z' + \frac{(\bar{\nu}(y) - 1)}{2\bar{\rho}(y)}z'^{3}.$$

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = xz + \bar{p}(y)z^2 + \frac{\bar{v}(y) - 1}{2\bar{p}(y)}xz^3 - z^4 + R$, ord_z $R \ge 5$.

Again set

$$x = x', y = y', z = z' - \frac{\bar{\nu}(y') - 1}{4(\bar{\rho}(y'))^2} x' z'^2.$$

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = xz + \tilde{\rho}(x, y)z^2 - \tilde{\nu}(x, y)z^4 + \tilde{R}$, ord, $\tilde{R} \ge 5$;

 $\tilde{\rho}(x, y)$ has the same properties as in 16) and $\tilde{\nu}(0, y) = 1$ for $|y| < 1 + \varepsilon$.

Hence, by repeating the method in the preceding part, we may represent f as follows:

$$X = x$$
, $Y = y$, $Z = xz + \rho(y)z^2 - z^4 + R$, ord, $R \ge 5$.

The following lemma is easily proved by Lemma 4.

Lemma 5. In the same conditions as in the theorem 1, we may take, in a neighborhood U of C, a good 4-approximation \bar{f} of f which is represented by the following equations:

$$X = x$$
, $Y = y$, $Z = xz + \rho(y)z^2 - z^4$,

with smooth function $\rho(y)$ satisfying $\rho(\pm 1) = 0$, $\frac{d\rho}{dy}(-1) < 0$, $\frac{d\rho}{dy}(+1) > 0$, $\rho(y) < 0$ for |y| < 1.

Proof of Theorem 1. By Lemma 5, we may suppose that f is represented as follows:

$$X = x$$
, $Y = y$, $Z = xz + \rho(y)z^2 - z^4$

where $|y| < 1 + \varepsilon$, $|x| < \varepsilon$, $|z| < \varepsilon$, $\rho(\pm 1) = 0$, $\frac{d\rho}{dy}(-1) < 0$, $\frac{d\rho}{dy}(+1) > 0$ and $\rho(y) < 0$ for |y| < 1.

Let $\varepsilon'>0$ be a positive number such that $\frac{\sqrt{\varepsilon'}}{2}<\varepsilon$. Then we may take a positive number ε'' such that $\varepsilon''<\varepsilon$ and $\underset{1\leq |\mathcal{V}|\leq 1+\varepsilon''}{2}$ $\rho(y)<\varepsilon'$.

We may now take a smooth function $\nu(y)$ which has the following properties:

$$\nu(y) > 0$$
 for $|y| < 1 + \varepsilon''$, $\nu(y) = 0$ for $|y| \ge 1 + \varepsilon''$, $\nu(y) > -\rho(y)$.

Put

$$\eta_0(z)=\frac{2}{\varepsilon'}z^4-z^2+\frac{\varepsilon'}{8}$$
,

and take a smooth function $\eta(z)$ satisfying the following properties:

i)
$$\eta(z) = \eta_0(z)$$
 for $|z| \leq \frac{9}{20} \sqrt{\varepsilon'}$, $\eta(z) = 0$ for $|z| \geq \frac{\sqrt{\varepsilon'}}{2}$,

ii)
$$\eta(z)$$
, $\frac{d\eta}{dz}$ are monotone for $\frac{9}{20}\sqrt{\varepsilon'} < |z| < \frac{\sqrt{\varepsilon'}}{2}$.

We may then take a positive number \mathcal{E}''' which has the following properties.

1) If
$$|x| > \varepsilon'''$$
, we have $|x+2\rho(y)z-4z^3| > \frac{4}{3}\nu(y)\sqrt{\frac{\varepsilon'}{12}}$ for $|y| \le 1+\varepsilon$, $|z| \le \frac{\sqrt{\varepsilon'}}{2}$.

2)
$$\varepsilon''' > 2\nu(y) \sqrt{\frac{\varepsilon'}{12}} \text{ for } |y| \leq 1 + \varepsilon.$$

 \mathcal{E}''' is sufficiently small if so is \mathcal{E}' . Hence we may suppose that $2\mathcal{E}''' < \mathcal{E}$. For such \mathcal{E}''' , we may take a smooth function $\varphi(x)$ satisfying the following properties:

$$\varphi(x) = \varphi(-x) \ge 0$$
, $\varphi(x) = 1$ for $|x| \le \varepsilon'''$, $\varphi(x) = 0$ for $|x| \ge 3\varepsilon'''$, and $\left| \frac{d\varphi}{dx} \right| < \frac{1}{\varepsilon'''}$.

Now we may define a mapping \bar{f} by the following equation:

$$X = x$$
, $Y = y$, $Z = xz + \rho(y)z^2 - z^4 - \varphi(x)\nu(y)\eta(z)$.

Then we have $f(x, y, z) = \overline{f}(x, y, z)$ for $|x| \ge 3\varepsilon'''$ or $|y| \ge 1 + \varepsilon''$ or $|z| \ge \frac{\sqrt{\varepsilon'}}{2}$.

Hence the mapping \bar{f} is a good 1-approximation of f. We shall next consider the singularities of \bar{f} . In this case we may suppose that $|x| \leq 3\varepsilon'''$, $|y| \leq 1 + \varepsilon''$ and $|z| \leq \frac{\sqrt{\varepsilon'}}{2}$. The set $S_1(\bar{f})$ is represented by

$$F(x, y, z) = x + 2\rho(y)z - 4z^{3} + \varphi(x)\nu(y)\frac{d\eta}{dz}(z) = 0.$$

We have

$$F_{\mathbf{x}} = 1 - \frac{d\varphi}{dx}\nu(\mathbf{y})\frac{d\eta}{dz} \text{ and } \left|\frac{d\varphi}{dx}\nu(\mathbf{y})\frac{d\eta}{dz}\right| < \frac{\nu(\mathbf{y})}{\varepsilon'''}\frac{4}{3}\sqrt{\frac{\varepsilon'}{12}} < 1 \,.$$

Hence the set $S_i(\bar{f})$ is a regular submanifold and the set $S_{i,1}(\bar{f})$ is represented by

$$F(x, y, z) = 0$$
, $G(x, y, z) = 2\rho(y) - 12z^2 - \varphi(x)\nu(y)\frac{d^2\eta}{dz^2} = 0$.

If $|x| > \varepsilon'''$, then we have $F \neq 0$. If $|z| \ge \sqrt{\frac{\varepsilon'}{12}}$, then we have G < 0 because of $\frac{d^2\eta}{dz^2} > 0$ and $\rho(y) < \frac{\varepsilon'}{2}$. Therefore we may suppose that $|x| \le \varepsilon'''$ and $|z| < \sqrt{\frac{\varepsilon'}{12}}$. In this case, the set $S_{1,1}(\tilde{f})$ is represented by

$$x + 2(\rho(y) + \nu(y))z - 4\left(1 + \frac{2\nu(y)}{\varepsilon'}\right)z^2 = 0,$$

$$(\rho(y) + \nu(y)) - 6\left(1 + \frac{2\nu(y)}{\varepsilon'}\right)z^2 = 0.$$

Hence, for a fixed y, $S_{1,1}(\bar{f})$ in U consists of only two points:

$$\left(\mp \frac{5}{3}(\nu(y) + \rho(y))\sqrt{\frac{\overline{\varepsilon'(\nu(y) + \rho(y))}}{6(2\nu(y) + \varepsilon')}}, \quad y, \ \pm \sqrt{\frac{\overline{\varepsilon'(\nu(y) + \rho(y))}}{6(2\nu(y) + \varepsilon')}}\right).$$

Moreover we consider $G_z(x,y,z)$ for points of $S_{1,1}(\bar{f})$ in U. Then we have $G_z(x,y,z) = -24\left(1+\frac{2\nu(y)}{\mathcal{E}'}\right)z$ because of $|x| < \mathcal{E}'''$ and $|z| < \sqrt{\frac{\bar{\mathcal{E}'}}{12}}$. Hence we have $G_z(x,y,z) = 0$ for points of $S_{1,1}(\bar{f})$ in U. Since $S_{1,1,1}(\bar{f})$ is represented by $F = G = G_z = 0$, $S_{1,1,1}(\bar{f}) \cap U = \varnothing$.

Lemma 6. Let C be a circle or a simple arc in $S_{1,1}(f)$. Suppose that C contains no point of $S_{1,1,1}(f)$. Then the mapping f is represented in a neighborhood of C as follows:

$$X = x$$
, $Y = y$, $Z = yz - z^3 + R$, ord_z $R \ge 4$,

where C is represented by y=z=0, and x, X are real numbers mod 1 or real numbers in [0, 1] according as C is a circle or a simple arc.

Proof. Consider a Riemannian metric to M^3 . Then we may take a vector field $\{V_p\}$ on C such that each V_p is the normal vector of $S_1(f)$ at p. For each $p \in C$, consider the geodesic g_p whose tangent vector at p is V_p . Let D_p be the set of points q of the geodesic g_p such that the length of the geodesic between p and q is less than \mathcal{E} and put $D = \bigvee_{p \in C} D_p$. Then, for small \mathcal{E}' , D

is homeomorphic to $C \times I$ where I is a interval. Now the mapping f|D is a local homeomorphism. Let $L_{f(q)}$ denote the line segment which is normal to f(D) at f(q). Then $\{M_q = f^{-1}(L_{f(q)}); q \in D\}$ is a family of smooth curves. Consequence, as in the proof of Lemma 4, we may take parameter systems (x, y, z) of U(C) and (X, Y, Z) of f(U(C)) in which f is represented by

$$X = x$$
, $Y = y$, $Z = h(x, y, z)$.

Expand h with respect to z:

$$h(x, y, z) = \sum_{i=0}^{3} a_i(x, y) z^i + R, \quad \text{ord}_z R \ge 4.$$

Then, in the above choice of parameters, we have $a_0(x, y) = 0$. The set $S_1(f)$ is represented by

$$a_1(x, y) + 2a_2(x, y) + 3a_3(x, y)z^2 + R_z = 0$$
.

Since C is contained in $S_1(f)$, we have $a_1(x, y) = 0$. Hence we may put $a_1(x, y) = a_{11}(x, y)y$. We have $a_{11}(x, 0) \neq 0$ since f is generic. Set

$$x' = x$$
, $y' = a_{11}(x, y)y$, $z' = z$, $X' = X$, $Y' = a_{11}(X, Y)Y$, $Z' = Z$.

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = yz + a_2(x, y)z^2 + a_3(x, y)z^3 + R$.

Now $S_{1,1}(f)$ is represented by the following equations:

$$y+2a_2(x, y)z+3a_3(x, y)z^2+R_z=0$$
,
 $2a_2(x, y)+6a_3(x, y)z+R_{zz}=0$.

Since C is contained in $S_{1,1}(f)$, we have $a_2(x,0)=0$. Hence we may put $a_2(x, y) = a_{21}(x, y)y$.

Set

$$x' = x$$
, $y' = y$, $Z' = z + a_{21}(x, y)z^{2}$.

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = yz + a_3(x, y)z^3 + R$, ord_z $R \ge 4$.

Since f is generic, we have $a_3(x, 0) \neq 0$.

Set

$$x' = x$$
, $y' = \frac{-y}{\sqrt[3]{a_3(x, y)}}$, $z' = -\sqrt[3]{a_3(x, y)}z$, $X' = X$, $Y' = \frac{-Y}{\sqrt[3]{a_3(x Y)}}$, $Z' = Z$.

Then we have, dropping primes,

$$X = x$$
, $Y = y$, $Z = yz - z^3 + R$, ord_z $R \ge 4$.

Then following lemma is easily obtained from the last lemma.

Lemma 7. Suppose that C is a circle or a simple arc in $S_{1,1}(f)$ and that $C \cap S_{1,1,1}(f) = \emptyset$. Then the mapping f has, in a tubular neighborhood of C, a good 3-approximation \overline{f} represented by

$$X = x$$
, $Y = y$, $Z = yz-z^3$.

Lemma 8. Let p be a point of $S_{1,1}(f) - S_{1,1,1}(f)$, then we may take, in a neighborhood U of p, a good 2-approximation \bar{f} of f such that $S_{1,1}(\bar{f}) \cap U$ is a simple curve and contains two points q, q' of $S_{1,1,1}(\bar{f})$. The indices of q and q' are the same, and the positive sides of q and q' are oposite with respect to $S_{1,1}(\bar{f})$. It is possible to take the indices of q and q' as positive or negative.

Proof. By the last lemma, we may suppose that f is represented in a neighborhood U as follows:

$$X = x$$
, $Y = y$, $Z = yz-z^3$.

Consider a function $\alpha(z) = \frac{-1}{\varepsilon^2} z^5 + 2z^3 - \varepsilon^2 z$ for sufficiently small $\varepsilon > 0$. We may then take a smooth function $\beta(z)$ satisfying:

i)
$$\beta(z) = \alpha(z)$$
 for $|z| \leq \frac{9}{10} \varepsilon$,

ii)
$$\beta(z)=0$$
 for $|z| \ge \varepsilon$,

iii)
$$\beta(z)$$
, $\beta'(z) = \frac{d\beta}{dz}$ are monotone for $\frac{9}{10} \mathcal{E} \leq |z| \leq \mathcal{E}$.

Take a smooth function $\sigma(x)$ such that

$$\sigma(x) = \sigma(-x), \quad 0 \leq \sigma(x) \leq 1,$$

$$\sigma(x) = 1$$
 for $|x| \leq \frac{\varepsilon}{4}$, $\sigma(x) = 0$ for $|x| \geq \frac{\varepsilon}{2}$.

Consider now the mapping \bar{f} represented by

$$X = x$$
, $Y = y$, $Z = yz - z^3 + \sigma(x)\sigma(y)\beta(z+x)$.

Then we have $\sigma(x)\sigma(y)\beta(z+x)=0$ for $(x,y,z)\notin U$ where $U=\{(x,y,z)\,;\,|x|\leq \varepsilon,\,|y|\leq \varepsilon,\,|z|\leq 2\varepsilon\}$. Therefore \bar{f} is a good 2-approximation of f in the neighborhood U of y. Now we shall consider the singularities of \bar{f} in U. $S_1(\bar{f})$ is represented by the following equation

$$F(x, y, z) = y - 3z^2 + \sigma(x)\sigma(y)\beta'(z+x) = 0$$
.

Since $|\beta'(z+x)| \le \varepsilon^2$, we have |F(x, y, z)| > 0 for $|y| > \frac{\varepsilon}{4}$.

Hence we may suppose that $|y| \leq \frac{\varepsilon}{4}$ and the equation of $S_1(\bar{f})$ is

$$y-3z^2+\sigma(x)\beta'(z+z)=0.$$

Thus the set $S_1(\bar{f})$ is siotopic in U to $S_1(f)$. Consider $S_{1,1}(\bar{f})$ which is represented by the following equations:

$$y - 3z^2 + \sigma(x)\beta'(z+x) = 0,$$

$$-6z + \sigma(x)\beta''(z+x) = 0.$$

Set z' = z + x and $g(x,z') = -6(z'-x) + \sigma(x)\beta''(z')$.

Case 1: $\frac{\varepsilon}{4} < x < \frac{\varepsilon}{2}$. We have $\beta''(z') \ge 0$ for $z' \le -\sqrt{\frac{3}{5}} \varepsilon$.

Hence we have g(x, z') > 0. For $-\sqrt{\frac{3}{5}} \varepsilon < z' \le 0$, we have $g(x, z') = -6(z'-x) + \sigma(x) \left(\frac{-20}{\varepsilon^2} z'^3 + 12z'\right) \ge \frac{6}{4} \varepsilon - \frac{4}{10} \varepsilon > 0$. For $\sqrt{\frac{3}{5}} \varepsilon \le z'$, we have g(x, z') < 0 because z'-x>0 and $\beta''(z') \le 0$. For $0 < z' \le \sqrt{\frac{3}{5}} \varepsilon$, we have

$$g(x, z') = 6(2\sigma(x) - 1)z' - \frac{2\sigma(x)}{s^2}z'^3 + 6x$$
.

It $2\sigma(x)-1 \le 0$, then g(x, z') is monotone decreasing, g(x, 0) > 0 and $g(x)\sqrt{\frac{3}{5}}\varepsilon < 0$.

If
$$2\sigma(x) - 1 > 0$$
, then $g(x, z') > 0$ for $z' = \sqrt{\frac{2\sigma(x) - 1}{10\sigma(x)}} \varepsilon$.

Hence g(x, z') = 0 has only one solution for $x > \frac{\varepsilon}{4}$.

Case 2: $-\frac{\varepsilon}{2} < x < -\frac{\varepsilon}{4}$. By the same argument in case 1, we have that g(x, z') = 0 has only one solution for $x < -\frac{\varepsilon}{4}$.

Thus the set $S_{1,1}(\bar{f})$, for $\frac{\varepsilon}{4} < |x|$, is a simple curve.

Case 3: $|x| < \frac{\varepsilon}{4}$. The set $S_{1,1}(f)$ is represented by

$$y = 3z^2 - \beta'(z+x),$$

 $-6z + \beta''(z+x) = 0.$

If $|z+x| \ge \frac{9}{10} \varepsilon$, we have (z+x)z > 0. By the definition of β , we have $\beta''(z+x) \cdot (z+x) < 0$. Hence we have $-6z + \beta''(z+x) \neq 0$. If $|z+x| < \frac{9}{10} \varepsilon$, the set $S_{1,1}(\bar{f})$ is represented by

$$y=3z^2+rac{5}{arepsilon^2}(z+x)^4-6(z+x)^2+arepsilon^2$$
, $3z+6x-rac{10}{arepsilon^2}(z+x)^3=0$.

Hence the set $S_{1,1,1}(\bar{f})$ is represented by the above equations together with

$$1-\frac{10}{\varepsilon^2}(z+x)^2=0.$$

Thus $S_{1,1,1}(\bar{f})$ consists of two points $\{q, q'\} = \left\{ \left(\pm \frac{2\varepsilon}{3\sqrt{10}}, \frac{77}{60}\varepsilon^2, \pm \frac{5\varepsilon}{3\sqrt{10}} \right) \right\}$. This proves the first part.

Expanding $yz-z^3+\beta(x+z)$ at q or q', we have

$$Z' = a + \varphi(x', y') + (y' + \psi(x'))z' + (3x' + \rho(x'))z'^{2} + bx'z'^{3} + \left(\pm \frac{5}{\sqrt{10}\varepsilon} + \nu(x')\right)z'^{4} + R', \quad \text{ord}_{z'} R' \ge 5,$$

with ord $\psi \geq 1$, ord $\rho \geq 2$, ord $\nu \geq 1$.

Consequently we have:

1) The indicds of q and q' are the same.

2) The positive side at q is opposite to the positive side at q' with respect to $S_{1,1}(\bar{f})$

This proves the second part.

Consider mapping \bar{f} given by

$$X = x$$
, $Y = y$, $Z = yz - z^3 + \sigma(x)\sigma(y)\beta(z - x)$.

Then the above argument shows that the singularities of \bar{f} have the same properies as of f except that the indices of \bar{f} are opposite to those of f. This proves the last part.

4. Topological consideration. We suppose that $f: M^3 \to R^3$ is a generic decomposable mapping, and M^3 is an orientable closed smooth manifold. By definition there exist a locally homeomorphic mapping i and a projection π of R^4 to R^3 such that $\pi i = f$.

We may take a vector field $\{V_p\}$ on R^4 such that these vectors are projected to the null vector by $d\pi$. Since i is an immersion, the differential of i is an into-isomorshism from the tangent space of M^3 to that of R^4 . Let p be a point of $S_1(f)$ then $di(T_p)$ contains the vector $V_{i(p)}$ where di is the differential of i and T_p is the tangent space of M^3 at p. Define now $\tilde{V}_p = (di)^{-1}(V_{i(p)})$, then $\{\tilde{V}_p\}$ is a smooth vector field on $S_1(f)$ which is contained in the null space N(p). This vector field is called the null vector field.

Lemma 9. Let f be a generic mapping. Then the connected components of $S_1(f)$ are orientable closed 2-manifolds.

Proof. Since f is generic, $S_1(f)$ is a closed submanified of M^3 . Since the local degree of f can be defined at points of $M^3-S_1(f)$, it follows that the normal bundle of $S_1(f)$ is trivial. Hence the lemma is proved.

Lemma 10. Let f be a generic mapping and D be a connected component of $S_1(f)$. Then we may take, in a neighborhood U of D, a good 2-approximation \bar{f} of f such that the singularity $S_{1,1}(\bar{f}) \cap U$ is a connected set.

Proof. Let E_1, \dots, E_i be the singularities $S_{1,1}(f)$ in D, and p be a point of E_1 . We may take E_j and a point $q \in E_j$ such that the points p and q are connected by a curve on D without touch-

ing any other point of $S_{1,1}(f)$. By Lemma 8, we may take in neighborhoods of p and q a deformation f' of f such that the indices of the points of $S_{1,1,1}(f')$ near p and q are different. Then, by Theorem 1 there exists a deformation f'' of f' in U(C) so that E_1 and E_j are connected in the singularities $S_1(f'')$. By making such deformations successively, we obtain the lemma.

Remark. The decomposabllity of mapping is invariant under deformations if their first partial derivatives are close enough. The deformations in Section 3 are such deformations. Hence we may suppose that if the mapping f in the last lemma is decomposable then so is \overline{f} .

Lemma 11. Suppose that the mapping f is a generic decomposable mapping. Let D a connected component of $S_1(f)$. If $S_{1,1}(f) \cap D = E$ is a connected set then E divides D into two connected parts.

Proof. Let p be a point of E. Then we may suppose that the singularities of f is represented in a neighborhood of p as follows:

$$S_1(f): y-3z^2=0, S_{1,1}(f): y=z=0.$$

If E does not divide D, we may take a simple closed curve C in $S_1(f)$ so that C is the intersection of $S_1(f)$ and x=0 in a neighborhood of p and so that C intersects with E at a single point p. Take an orientation in C. Let T_r be the tangent vector of C at r and N_r be the normal vector of C in the tangent plane of $S_1(f)$ at r. If r is a point of $S_1(f) - S_{1,1}(f)$, then $\{T_r, N_r, \tilde{V}\}$ is a non-degenerate frame.

Take points $p' = \left(0, \mathcal{E}, \sqrt{\frac{\mathcal{E}}{3}}\right)$, $p'' = \left(0, \mathcal{E}, -\sqrt{\frac{\mathcal{E}}{3}}\right)$ on C for small $\mathcal{E} > 0$, and consider these frames at p' and p''. We may suppose teat $\tilde{V}_p = \left(\frac{\partial}{\partial z}\right)_{p'}$, $\tilde{V}_{p''} = \left(\frac{\partial}{\partial z}\right)_{p''}$, $N_{p'} = \left(\frac{\partial}{\partial x}\right)_{p'}$ and $N_{p''} = \left(\frac{\partial}{\partial x}\right)_{p''}$. Since the y-component of $T_{p'}$, and $T_{p''}$ are opposite, the frames $\{T_{p'}, N_{p'}, \tilde{V}_{p'}\}$ and $\{T_{p''}, N_{p''}, \tilde{V}_{p''}\}$ have opposite orientations. This contradicts to the orientability of M^3 . This completes the proof.

Lemma 12. Suppose that the mapping f is a generic mapping. Let p and q be points of $S_{1,1,1}(f)$ which are contained in a connected component of $S_{1,1}(f)$. Suppose that there is no point of $S_{1,1,1}(f)$ between p and q. Then the following two cases occur.

- 1) The positive sides at p and q are the same side with respect to $S_{1,1}(f)$ in $S_1(f)$, and the indices of p and q are different.
- 2) The positive sides at p and q are opposite with respect to $S_{1,1}(f)$ in $S_1(f)$, and the indices of p and q are the same.

Proof. Let C be an open oriented subarc of $S_{1,1}(f)$ between p and q. There exist coordinate systems at p and q under which f is represented in the form in the sence of Section 1. Take in a tubular neighborhood of C a Riemannian metric which induces Euclidean metric determined by the coordinate systems at p and q. Let $v_1(p)$, $v_2(p)$ and $v_3(p)$ denote respectively the tangent vectors of x-, y- and z-axis in the coordinate system at p. For q, use the same notation.

Let s be a point of C. Let T(s) denote the tangent vector of $S_{1,1}(f)$ at s, N(s) the null space at s, and W(s) the normal vector to $S_1(f)$. The orientation of W(s) is determined by the direction from the negative side to the positive.

Let r be a point of C near p, and give N(r) the orientation determined by the direction of z-axis in the coordinate system at p. Then the plane (W(r), N(r)) converges to the plane $(v_1(p), v_3(p))$ if r converges to p. Hence we can compare the orientation of $\{W(r), N(r)\}$ with that of $\{v_1(p), v_3(p)\}$. We divide two cases according as the z-component of the coordinate of r is negative or positive.

Negative case: In this case, the directions of N(r) and of $v_2(p)$ are the same in $S_1(f)$ with respect to $S_{1,1}(f)$, and the orientations of $\{W(r), N(r)\}$, $\{v_1(p), v_3(p)\}$ are opposite.

Positive case: In this case the directions of N(r) and of $v_2(p)$ are opposite in $S_1(f)$ with respect to $S_{1,1}(f)$ and the orientations of $\{W(r), N(r)\}$ and of $\{v_1(p), v_3(p)\}$ are the same.

For r near p, N(r) is already oriented. These determine naturally the orientation of N(s) for any $s \in C$. Then $\{\{W(s), T(s), \}\}$

Negative Case

Positive Case

N(s), $s \in C$ is a continous family of non-degenerate frames. We may suppose that the direction of z-axis in the coordinate system at q is the same to that of N(t) for a point t near q. Compare now the orientations of $\{v_1(p), v_2(p), v_3(p)\}$ and of $\{v_1(q), v_2(q), v_3(q)\}$. It occurs two cases according as the directions of $v_2(p)$ and $v_2(q)$ are the same or not in $S_1(f)$ with respect to $S_{1,1}(f)$.

Case I (The directions are the same). In this case, if the directions of $v_2(p)$ and of N(r) are the same with respect to $S_{1,1}(f)$ then the directions of $v_2(q)$ and of N(t) are the same with respect to $S_{1,1}(f)$. Hence the above negative cases arises for (p, r) and (t, q). Therefore it follows that the orientations of $\{v_1(p), v_2(p), v_3(p)\}$ and of $\{W(r), T(r), N(r)\}$ are opposite, and that the orientations of $\{W(t), T(t), N(t)\}$ and of $\{v_1(q), v_2(q), v_3(z)\}$ are the same.

If the directions of $v_2(p)$ and of N(r) are opposite in $S_1(f)$ with respect to $S_{1,1}(f)$, then the directions of $v_2(q)$ and of N(t) are opposite in $S_1(f)$ with respect to $S_{1,1}(f)$. Thus the above positive case arises for (p, r) and (t, q).

Hence we have that the orientations of $\{v_1(p), v_2(p), v_3(p)\}$ and of $\{W(r), T(r), N(r)\}$ are the same, and that the orientations of $\{W(t), T(t), N(t)\}$ and of $\{v_1(q), v_2(q), v_3(q)\}$ are opposite.

As a consequence of the argument above it follows that the indices of p and of q are different.

Case II (The directions are opposite). In this case, the similar consideration shows that the indices of p and of q are the same.

Corollary. Let f be a generic mapping of M³ tn R³, where M³

is an orientable closed smooth manifold. Let C denote a connected component of $S_{1,1}(f)$. Then the number of points of $S_{1,1,1}(f)$ in C is even.

Theorem 2. Let M^3 be an orientable closed smooth 3-manifold and f be a mapping of M^3 to R^3 . Suppose that f is a generic decomposable mapping. Then we may take a good 2-approximation \bar{f} of f so that $S_{1,1,1}(\bar{f})$ is empty and $S_{1,1}(\bar{f})$ are boundaries of domains of $S_1(\bar{f})$.

Proof. By Lemma 10, we may suppose that the part E of $S_{1,1}(f)$ which is contained in a connected component D of $S_1(f)$ is connected. Thus, by Lemma 11, E divides D into two domains. Now let p and q be points of $S_{1,1,1}(f) \cap E$ between which there is no point of $S_{1,1,1}(f)$.

Case 1 (The indices of p and q are different). In this case, the positive sides at p and at q are the same side with respect to E. Now we may consider the curve C running from p to q whose interior is contained in D-E and which starts from p into the negative side and which ends to q from the negative side. Then, by Theorem 1, we may eliminate p and q from $S_{1,1,1}$.

Case 2 (The indices of p and q are the same). In this case, the positive sides at p and at q are opposite side with respect to E. Let r be a point of E between p and q. By Lemma 8, we may take in a small neighborhood of r a good 2-approximation f' of f so that there exist, between p and q, two new point r' and r'' of $S_{1,1,1}(f')$ whose indices are different from those of p and q. Then applying the same method as in case 1 to (p, r') and (q, r), it follows that we may eliminate p and q from $S_{1,1,1}$.

The above argument shows that there exists an approximation \bar{f} of f such that $S_{1,1,1}(\bar{f})$ is empty.

It is easily shown that each connected component of $S_{1,1}(\bar{f})$ is the boundary of a 2-disk or of a domain in $S_1(\bar{f})$.

Lemma 13. Let E' be a smooth circle in $M^3 - S_1(f)$, and suppose that E' is the boundary of an orientable smooth 2-manifold D' in $M^3 - S_1(f)$. Then we may take in a neighborhood U(D') of D' a

good 0-approximation f' of f so that the mapping f' is a generic mapping and $S_{1,1}(f') \cap U(D') = E'$ and $S_{1,1,1}(f') \cap U(D') = \emptyset$.

Proof. For a given D', there exist sets D_1 , D_2 such that $D_1 \subseteq D' \subseteq D_2$, $D_2 \cap S_1(f) = \emptyset$ and $D_2 - D_1$ is diffeomorphic to $E' \times [-1, 1]$. Then we may take a neighborhood U(D') of D' which is diffeomorphic to $D_2 \times [-1, 1]$ and which is contained in $M^3 - S_1(f)$.

Take a smooth function $\rho(x, t)$ having the following properties:

1)
$$\rho(x, 0) = x$$
, for $|x| \le 1$,

2)
$$\frac{\partial \rho}{\partial x}(x, t) > 0$$
 for $0 \le t < \frac{1}{2}$, $\rho(x, t) = x$ for $1 \ge |x| \ge \frac{2}{3}$,

3)
$$\rho(x, t) = (4t - 1)x^3 + (-2t + 1)x$$
, for $\frac{1}{2} \le t \le 1$, $|x| \le \frac{1}{3}$, $\rho(x, t) = x$ for $\frac{1}{2} \le t \le 1$, $1 \ge |x| \ge \frac{2}{3}$, $\frac{\partial \rho}{\partial x}(x, t) > 0$ for $\frac{1}{2} \le t \le 1$, $1 \ge |x| > \frac{1}{3}$.

We may take a smooth function $\nu(p)$ on D_2 such that

$$u(p) \ge 0 \text{ for } p \in D_2, \quad \nu(p) = 1 \text{ for } p \in D_1,$$
 $u(p) = \frac{1}{2} \text{ if and only if } p \in E',$
 $u(p) = 0 \text{ for } p \in \partial D_2.$

Then we have a smooth mapping h of $\mathit{U}(D')$ to $\mathit{U}(D')$ defined by

$$h(p, x) = (p, \rho(x, \nu(p)))$$

where $p \in D_2$, $x \in [-1, 1]$.

Since the mapping h is the identity on the boundary of U(D'), h has an extension $h': M^3 \to M^3$ so that $h' \mid M^3 - U(D') =$ the identity.

It is now easily shown that the mapping f' = fh' satisfies the conditions of the lemma.

Theorem 3. Let M^3 be an orientable closed smooth manifold, and f be a generic decomposable mapping of M^3 to R^3 . Then we may take a good 0-approximation \bar{f} of f so that $S_{1,1}(\bar{f}) \neq \emptyset$.

Proof. By Theorem 2, we may suppose that $S_{1,1,1}(f)$ is empty and any circle of $S_{1,1}(f)$ is the boundary of a domain of $S_1(f)$. Denote by E one of the components of $S_{1,1}(f)$. By Lemma 7, we

may take a coordinate system (x, y, z) in a neighborhood of E and the parameter system (X, Y, Z) in R^3 so that a good 3-approximation f' of f is represented by

$$X = x$$
, $Y = y$, $Z = yz-z^3$.

Let E' be the set of points $(x, -\varepsilon, 0)$ where $\varepsilon > 0$ is sufficiently small. Then E' satisfies the conditions of Lemma 13, and hence we may take a good 0-approximation f'' of f' which is represented by the following equations in a tubular neighborhood of E:

$$X = x$$
, $Q = y$, $Z = \rho(y)z - z^3$,

where $\rho(y)$ is a smooth function which has the following conditions:

$$\rho(y) = 0 \text{ for } y = 0, = \varepsilon,$$

$$\rho(y) < 0 \text{ for } 0 < y < \varepsilon,$$

$$\frac{d\rho}{dy}(0) < 0, \frac{d\rho}{dy}(\varepsilon) > 0.$$

Applying Lemma 1 to each section: x = constant, we obtain a good 0-approximation f'' of f' so that E is eliminated from the singularities $S_{1,1}$. By this methods we may obtain a good 0-approximation \bar{f} which satisfies the condition in the theorem.

Theorem 4. Let M^n be an orientable closed smooth n-manifold and f be a mapping of M^n to R^n . Suppose that the singularities of f satisfy the following conditions:

$$S_i(f) = \emptyset$$
 $(i \ge 2)$, $S_{1,1}(f) = \emptyset$.

Then the mapping f is decomposable mapping.

Proof. By the condition $S_i(f) = \emptyset(i \ge 2)$, $S_1(f)$ is an (n-1)-dimensional smooth submanifold of M^n . Since $S_{1,1}(f) = \emptyset$, it follows that $f|S_1(f)$ is a local homeomorphism. The null space N(p) is transversal to $S_1(f)$ because of $S_{1,1}(f) = \emptyset$. Since M^n is orientable, we may define the local degree of f at points of $M^n - S_1(f)$. Hence the normal bundle of $S_1(f)$ is trivial, and we may take an orientation in N(p) so that $\{N(p): p \in S_1(f)\}$ is a transversal vector field. Denote by L_p the geodesic segment whose tangent vector

at p is N(p) Then $U = \bigcup_{p \in S_1(f)} L_p$ is a neighborhood of $S_i(f)$. Now we may take a smooth function g(q) on U such that the derivative of g(q) with respect to the vector N(p) is not zero. For example, we may take as g(q) the length of L_p from p to q. Then the function g(q) can be extended to a smooth function g(q) on M^n . Denote h(p) = (f(p), g(p)), then h is a smooth mapping of M^n to R^{n+1} which is a local homeomorphism.

Thus the theorem is proved.

REFERENCES

- [1] A. Haefliger, Quelques remarques sur les applications differentiables d'une surface dans le plan, Ann. de L'institut Fourier, 10 (1960), 47-60.
- [2] R. Thom, Quelques propriétés globales des variétés différentiables, Commentarii Math. Helvetici, 28 (1954) 17-86.
- [3] R. Thom, Les singularités des applications différentiables, Ann. de L'institut Fourier, 6 (1956) 43-87.
- [4] H. Whitney, On singularities of mappings of Euclidean spaces, I, Mappings of the plane into the plane, Ann. of Math. 62 (1955) 374-410.
- [5] H. Whitney, Singularities of mappings of Euclidean spaces, Sympos. Int. de Topologia Algebraica, 285-301.