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In the present paper we study some relations between the
singularities of mappings and the decomposable mappings of
manifolds. Throughout this paper by a smooth mapping (function)
we understand a C*-mapping (C~-function) ; M” denotes an orien-
table closend #-dimensional C~-manifold, and R” the n-dimensional
Euclidean space.

We shall now recall briefly the definitions of the singularities
S,(f), S, /(f), -+ of a mapping f: M"—R*, n=p, [3], [5]

Let S,(f) denote the set of points of M” at which f has rank
p—7. Suppose that S,(f) is an m-dimensional submanifold of M”.
Then S, ,/(f) is defined to be the subset of S,(f) consisting of
points at which the mapping f restridted on S,(f) has rank m—7".
By the similar way we define the singularities S, ,’ .. ,7(f).

We shall give a condition under which S,(f) is a submanifold
of M". Let G(f) be the graph of f, and associate to each point
p of M" the tangent space of G(f) at (p, f(p)). Then we have
a mapping, denoted by d,f, of M” to B,, the space of n-planes
in the tangent spaces of M"Xx R?.

B, is a fibre bundle over M”x R? whose fibre is the Grassmann
manifold G, the space of n-planes in R”*?., Denote B1=\qu,(q)

where F,(¢)=(p—v7r, - ,p—7, p, -, p) is the Schubert variety in
the fibre Gi(q) over a point ¢ of M”"xX R?. Then B, is a submanifold
of B,. Since we have S,(f)=d,f '(B,), it follows that if the
mapping d, f is ¢-regular (transverse regular) on B, then S,(f) is
a regular submanifold of M™.

Now we suppose that d,f is ¢-regular on B,. Let m be the
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dimension of S,(f), and let H(q) denote the set of m-planes which

are contained in #-planes regarded as points of the F,(g). Then

H= g H(qg) is a fibre bundle over B, and its fibre is G% ™. Define
9€B,

d,f to be a mapping such that d,f(p) is the tangent space of
S,(f) at p. For an intger »’ < p—r and a point ¢’€ B, projected
to ¢, we denote by F;/(q’) the set of m-planes V™(¢’)C V*(q) which
are projected to R? with rank p—»—7'. Denote B,= \jF //q") where

g€ B,. Then B, is a submanifold of H and S,,,/q(f)zdzf‘l(Bz).
Thus it follows that if d,f is #-regular on B, then S,,/(f) is a
submanifold of S,(f). Furthermore we can obtain the similar con-
ditions under which the singularities of a mapping are regular
submanifolds. A mapping satisfying these conditions is called
generic mapping.

Let p: R"*'— R" denote the projection, and let f be a mapping
of M” to R”. Then if there exists an immersion ¢: M”— R"*
satisfying f=pi we say that f is decomposable [1].

Given mappings f, f : M"— R?, if the »-th partial derivatives
of f and f are sufficiently close for all »< s, we say that f is a
good s-approximation of f.

Our main results in this paper are stated as follows.

Theorem 3. Let M?® be an orientable closed smooth 3-manifold
and f be a smooth mapping of M® to R®. Suppose that f is a generic
debomposable mapping. Then we may take a good O-approximation '
f of f so that S, (f)=the empty set &.

Theorem 4. Let M” be an orientable closed smooth n-manifold
and f be a generic mapping of M”* to R*. Suppose that the singu-
larities of f satisfy the following conditions.

S‘(f)=,®’ igz, Sl,1(f):/®'
Then the mapping f is a decomposable mapping.

1. We shall now consider the case for n=p=3. In this case
it is well-known [5] that S;(f)=& for any generic mapping f and
i=2. Hence we may consider only S,(f), S, .(f) and S, ,,(f). Given
a point g€ M?® we may take (local) coordinatate systems (%, y, 2)



On decomposable mappings of manifolds 427

at ¢ and (X, Y, Z) at f(¢q) in which f is represented by X=x, Y=y
Z=nh(x,y,z). Then the tangent space of the graph G(f) is repre-
sented as follows:

X —% =0, Y-y =0and Z’—a—hx’—gl—l_y’——%z’ =0 (1)
ox oy oz

where (v, ¥/, 2), (X', Y’, Z’) are the bases of the tangent spaces.

Hence g—h—=0 if and only if the rank of the projection of the
z

tangent space of G(f) to R*is 2. Thus the set S,(f) is represented
by g—"zo. In this case the normal coordinate of F, is given by
z

?k. This shows that a condition for the #-regularity of d,f on

oz
2 2 2
B, is that at least one of the derivatives a—h—, O%h_ and ok is
0x0z Qyoz oz’

not zero.
Next we shall consider S, ,(f). The tangent space of S,(f) is
represented by the equation (1) and

2 2 2
h x/+_a_h_y’+a_hz’zo (2)
oxoz oyoz 07

Hence g—h=g—’i=0 if and only if the rank of the projection of
z oz

the tangent space of S,(f) to R®is 1. Therefore the set S, ,(f) is

represented by g—h=g—}i =0. In this case, the normal coordinate of
z 0z
*h

! is given by Py Let (2/, s”) denote a basis of the tangent space
F4

of S,(f). Then a condition for the #-regularity of d,f on B, is

3 3

that at least one of the derivatives h and oh
0s0z? oFe

The tangent space of S,,(f) is represented by the equations

1), (2) and

is not zero.

3 3 3
*h X+ o°h ,+ahz,:0_
0x02° 0yoz* oz
Note that S,,,(f) is the set of points g€ S, ,(f) such that the

tangent line of S, ,(f) at ¢ is projected to R® with rank 0. Therefore
the set S,,,(f) is represented by the following equations
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oFh Oh _Oh Oh (3)

0x02 0y97 Oyoz oxoz

3
Since g—}ﬁ is a normal coordinate of F{’, the mapping d,f is
F

t-regular on F{’ if and only if %ﬁ:;:o.
2. The types of singularities. In this section we suppose
that mapping f of R® to R® is generic and it maps the origin 0
to the origin 0. The singularities of f are divided into three
types S,, S, and S, ;.
Case 1 (0is a point of S,(f)—S,,(f)). We may take coordinate

systems in which f is represented by
X=x,Y=yand Z=h(x,y, 2).

Since 0 is a point of S,(f) the Taylor expansion of / does not
contain the constant term and terms of the first order. Therefore
we have

Z = a(x, y)taxz+a,yz+a,2’+R, ord ,R = 3.
Set
X=x,y=92=2 X=X, Y=Yand Z=7Z—alX,Y).
This gives, dropping primes,
X=2x Y=y Z=a,xz+a,yz2+a,2’+R.
Since f is generic, at least one of a,, @, and a,, is not zero.
Further the origin is not the point of S, ,(f), therefore the tangent

space of S,(f) at 0 is transversal to the null space N(0) of f®.
Si«(f) is now represented by the following equation

a.x+azy+2a,2+R, = 0%,

1) ord,R denotes the order of R with respect to the variable z.

2) N(p) denotes the null space of f, the linear subspace of the tangent space which
is mapped to zero vector by the differential of f.

3) R, denotes the first partial derivative of R with respect to z.
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and hence the equation of the tangent plane of S,(f) at 0 is
ayx+a,v+2a,2=0. Since this plane does not contain the z-axis,

we have a,;=+0. If a,,94=0 or a,=0 then we may represent f in
suitable coordinates as follows :

X=x,Y=y,7Z=2x224+a,+R, ord , R=3.

Set
x=x,y=y, z—z—ZL,X:X’, Y=Y
and Z = a,, 7’ + 1— 2a33)X,2

asa
Then we have, dropping primes,
X=x,Y=y,Z=2+R, ordR=3.

Case 2 (0 is a point of S, ,(f)—S,..(f)). In this case the ex-
pansion of % does not contain the term 2z°, because O belongs to
S,,(f). Hence f is represented in a new coordinates as follows:

X=x,Y=y Z=yz+R,ord R=3.

Since the expansion of % contains yz, we may omit in the ex-
pansion of R the terms which contain z with at most order 1. Then
the formulas for X, Y and Z becoms as follows in a new coordinate
systems :

X=2x,Y=y, Z=y2+a,,x2°+a,,y2*+a,,2+ R, ord R= 4.

Set 2’=2z+a,;2* then we have, z=2"+®(2’) for small 2 where
ord p=2. Therefore we have, dropping primes,

X=x,Y=y,7Z=yz+a,x+a,z22+R ordR=4.
Then the equation of S,,(f) are represented as follows :

y+2a,,,02+3a,.2°+R, =0,
2a,,.x+6a,,2+R,, =0.

Hence the tangent line of S, ,(f) at O is represented by the
following equations :

y=0, a,x+3a,z=0.
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Since 0¢S,,.(f), the tangent line of S,,(f) at 0 does not
coincide with the z-axis. Hence we have a,,=F0.

Set
X ) y
2= B = T3/ Z=—3% Z,
Vaiss O 7 Az Vi,
=X y-_Y  z_g
g/agsa, - ?/(2333 ’ ’

then we have, dropping primes,

X=x,Y=y,7Z=yz+a,x27—2"+R, ord R=4.
If a,,,==0, we set 2/ =z+g§3—x. Then we have, dropping primes,

X=x,Y=y9,Z=y2—2+R, ordR=4.

Case (0 is a point of S,,,(f)) By the same reason as in case
2, the expansion of % becomes

Z = 22+ a,,92°+ 4,52 + R, ord R= 4.

Since 0 is a point of S,,,(f), we have, a,,=0. Since f is
generic, this implies a,,,==0.
Set ¥ =a,,y and Y’ =a,,Y, then we have, dropping primes,

X=2x2,Y=y,Z=x2z+y2*+R, ordR=14.

The last equation contains xz and y2°, and so we may omit
in R the terms of fourth order which contain z with at most order 2.
Then we have

Z = xz+y2+ax+byz’+cz*+R, ord R=5.

Set 2 =2z+az’, then we have z=2'+@(2’) for small 2/, where
ord p=3. This coordinate transformation gives us, dropping
primes,

Z = x2+y2*+byZ+cz*+R, ord R=5.

Now the set S,(f) and S, ,(f) are represented by the following
equations :
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S(f): F(x, 9, 2) = x+2yz2+3byz°+4cz*+ R, = 0;
Sl,l(f): F(x7 Y, Z) = 0’
G(x, y, 2) = 2y+6byz+12cz’+R,, = 0.
Since f is generic, we have c¢==0.
Set

0’)

—& ,

“clx, y W(T[y’ 2= ¥clz,

P =& ! Z = —
X &VICIX’Y \/! Y, &z,

where €=Sgnc. Then we have, dropping primes,

X=2x2,Y=y,7Z=2xz2+y"+byz?—2*+R, ord R=5.
Set z’=z+% y then we have, dropping primes,

X=x,Y=y,Z=x22+y—2'+R, ord R=5.

3. Deformation of the singularities. We shall consider in
this section deformations of the singularities. First of all we
consider the elimination of the cusp points of generic mapping®
of R? to R?

Lemma 1. Let f be a mapping of R* to R* represented by
X=x,Y=pxy-y,

where p(xa)=0, p(x)<0 for |x|<a and ? =£=0. Then the
X ta

singularities S, (f) are two points (xa, 0) which are the cusp points
of f; We may takes, in a neighborhood U of the C= {(x, 0); |x|<a},
a good O-approximation f of f such that S,,(f)=5.

Proof. Put&=2 Max p(x). We may take smooth functions

né[.r|§_a+e
v(x) and #(x) which have the following properties :
v(x) =0, »(x) =0 for |x|=a+é&, v(x) > —p(x), (4)
n(x) = 0 for |x|=a+¢&, n(x) >0 for |x|< a+6&,

X0 8 pw)en) <o) for a x| ave.
7

4) In [4] the generic mapping is refered to as the excellent mapping.

(5)
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Put
a(x, y) = —n(x)y'+v(x)y,

and take a smooth function A(x, y) with the following properties ;

B(x, y) = a(x, y) for Iy|<%x/;—%,

B(x,y) =0 for mgx/;g;,

»(x)
7(%)

Let f/: R?*— R? be a mapping represented by
X=2x, Y=px)y—y+8x).

Then f’ is a good O-approximation of f in the neighborhood
of C. The singularity S,(f”) is represented by

n(x)"

B(x, ¥) and 3 '8 are monotone for m <

F(x,) = p(x)—3y* +af 0.

In the consideration of S, ,(f’) we may suppose that |x|<a-+E€.
Case 1): a<|x|<a+é&. The functions (p(x)—3y°) and gﬁ are
'y

monotone for 0 < | J’ISN/ 3 (('2), and F(x, 0)=p(0)+»(0)>0. On the

other hand, it follows from (3) that == 9B and (p(x)—3y%) are negative
oy

»(%) \/M _
for | y\;@/ 30(@) (> 3 ) Hence F(x, y)=0 has only tow solu-
tions for a fixed x.

Case 2): |x|<a. Inthis case,if |y|<«/3 (%) then (p(x) —3y*)
,3

and == are negative.

We have

F(z, ) = =31 +n(x))y*+ (p(x) +v(x)) for |yl Sx/ 3 )

7(x)’

and 14+#(x) >0 ane p(x)+»(x)>0. Hence F(x,y) has only two
solutions in U for |x|<a+¢&. From these results we conclude that
S..(f’) is empty.
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Given a generic mapping f of M?® to R® and a point p of
of S,,,(f), we shall define the index at p as follows.

Definition of the index. Take a fixed orientation of M? and
let p be a point of S, , ,(f), Then f is represented in suitable coordi-
nate systems at p and at f(p) as follows:

X=2x2,Y=y,7Z=x2+y2—2'+R, ord R=5.

Let x(p), y(p) and z(p) be the tangent vectors of x-, y— and
z-axis at p whose orientations are given by the direction of
coordinate axes. Consider the oriented frame {x(p), ¥(»), 2(p)}.
Then we define that the index of pis +1 or —1 according as the
orientation of the frame coincide with that of M°® or not.

Lemma 2. The above definition of the index does not depend
on the choice of coordinate systems.

Proof. Take two pairs of coordinate systems {(x,y, 2), (X,
Y, Z)} and {(&, 7, 2), (X, ¥, Z)}. We may suppose that f is repre-
sented in these coordinate systems as follows :

X=x,Y=y,7Z=2x2+y"—2'+R, ord R=5,
X=%,YV=3,7Z=7%2+52—2+R, ord R=5.
Let
E=px, 92,5 =vx292), 2=rpxy 2,
X=9X,Y,2), Y=¥X,Y,2), Z=PX, Y, 2).

Then the following relations hold :

b(x, 9, x2+y2"—2'+R) = p(x, ¥, 2) (6)
W(x, ¥, x2+y2°—2'+ R) = (x, , 2) (7)
P(x, y, xz2+y2*—2'+R) =
P(%, 3, 2)+p(%, ¥, &)=V (%, 3, 2)+(p(x, 3, 2))°
—(p(x, 3, )"+ R(p, ¥, p) - (8)
ai+j+k 3
m@(o, 0,0) and J=x+2yz—42°+ R,,,.
By applying éa_z to (6) and (7), it follows that @y;|,=Pgil,=0

0

Put @;j.],=
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for :<<3. Since (@, ¥, p) is a coordinate transformation on R® we
have

pOOllO:iZO (9)

(8), we have

. *
By applying to
Yy applying S5voz

(¢010|o)'(f’001|o) = O: ¢01o|o =0, ‘!’oxo‘ozi:o-

Furthermore applying of & and o to (8) imply
oyozt |, 22|,
Pom|o = (‘I"olo|o)'(Pom|o)2 (10)
and
Pomlo = (pomlo)‘ . (11)
From (9), (10) and (11) we have
Yoolo >0 (12)
Applying of Ca to (8) implies
ox0z

POOIIO = ((}Jloolo).(POOl'O) .

Hence we have

(q’xoo' o) '(Pom I 0) = (Pool | o)4 > 0.

Consequently the Jacobian of the transformation (@, v, p) is
positive at p.

Definition of the positive and negative sides at a point of S, ,,.

Let p€S,,.(f) be a point, and consider the tangent plane
Ts.r(p) of Si(f) at p and the null space N(p) at p. Then the side
in Ts,s(p) with respect to N(p) which contains the tangent vector
y(p) of the y-axis is called positive. The another side is called
negative.

The inequality (12) justifies this definition.

Let p be a point of S,,(f)—S,,.(f). Then, in a neighborhood
of p, the mapping f is represented in suitable coordinate systems
as follows:

X=x,Y=y,Z=y2—2*+R, ordR=4.
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Lemma 3. Let Ts(p) be the tangent plane of S,(f) at p.
The tangent vector y(p) of the y-axis is transversal to Ts s (P).
For any choice of coordinate systems, vestoy y(p) dirvests the same
side with respect to Ts (D).

Proof. Suppose that f is represented in another coordinate
systems as follows :

X=%x%,V=39,Z=52—-2+R, ord R>4.
Then the similar method in the last lemma proves

oy| _ 93

ox oz

—0,9
0o Oz

oz
0,2~
0 oy >

, =0.
0 ox

0

Definition of the positive and negative sides at a point of S, ,.

Let p€ S, ,(f) be point, and consider the tangent space 7,*(?)
of M’ at p and the tangent plane Ts,(p) of S,(f) at p. Then
the side in T,»3(p) with respect to T (p) which contains the
tangent vector y(p) of the y-axis is called positive. The another
side is called negative.

This definition is justified by Lemma 3.

Theorem 1. Let f be a generic mapping of M*® to R®, and let
p and q be points of S, , .(f). Suppose that the following conditions :

1) p and q are in the same conmnected component of S,(f).

2) There is a smooth simple curve C in S,(f) which starts
from p into the negative side, ends at q from the negative side and
does not touch any other singularities S, ,(f).

3) The indices of p and q are different.

Then we may take, in a tubular neighborhood U(C) of C, a good
2-approximation f of f such that S, ,,(f)nUCC)=42.

Before proving this theorem we prepare the following lemmas.

Lemma 4. Under the same conditions as in the last theorem,
we may choose a coordinate system (x, y, z) in U(C) and a parameter
system (X, Y, Z) in f(UC)) in which C is represented as the set
{0, »,0); |¥1 <1}, and f is represented as follows :

X=x,Y=y,Z=uxz+p(v)2*-2'+R, ord,R=5
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with smooth function p(y) satisfying p(£1)=0, p(»)< 0 for |y|<1,
4P (1)< 0 and %(+1)>0.
dy ay

Proof. Take a Riemannian metric in M?® and consider a
smooth open curve C’ OC. Let & be a sufficient small positive
number. Parametrize C’ by (—1—¢&,1+¢&)and C by [ -1, 1]. Take
a smooth vector field {V,} on C’ such that each vector V, is trans-
versal to the tangent vector of C’ and the null space N(p) at p. For
each point p€ C’, consider the geodesic g, whose tangent vector
at p is V,. Let D, be the set of points ¢ of g, such that the
length of the geodesic between p and ¢ is less than &, and put
D=\JD,. Then, for sufficient small & D is an open 2-disk which

rec’
contains C, and the mapping f|D is a local homeomorphism. Let

L;, denote the line segment which is normal to f(D) at f(q).
Then it follows that M,= {f '(Ls«>);q€ D} is a family of curves
and that the set of points 7€ M, (g€ D) is a tubular neighborhood
of C [2]. In virtue of the above definitions of C’, D,, Ly and
M,, we may take the following coordinate system (x,y, 2) in a
small tubular neighborhood U(C) of C and the following parameter
system (X, Y, Z) in f(U(C)). Let r be a point of U(C), then 7 is
a point of M,,g€D, and ¢ is a point of g,, pe€C’. We take
(x, ¥, z) as coordinates of 7 such that

i) «x is the length in g, from p to q.

ii) y is the parameter on C’.

iili) z is the length in M, from ¢ to 7.

For the set f(U(C)), we may define (X, Y, Z) as follows: Let
f(») be a point of f(U(C)) and (x, y, 2) be the coordinate of 7.
We set

X ==x, Y=y and Z=the length in L,,, from f(q) to f(r).

Then the mapping f is represented in the neighborhood U(C)
as follows:

X=x2,Y=y9,Z="nhx12).

Expanding 7 with respect to 2, we have
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Z =3 pdx, 3z +R, ord, R=5.

In virtue of the definition of the parameters 2z, Z, we have

Z=0 if z=0. Hence we have py(x, ¥)=0. Consider now the set
S.(f) represented by

pi(x, ¥)+2p,(x, ¥)2+3p(x, »)Z+4p(x, )Z+R, = 0.

Since the y-axis is contained in S,(f), we have p,(0, y)=0.
Hence We may set

pi(x, ¥) = pu(¥)x+pi(x, )2* and py(x, 3) = po(P)+palx, ¥)x.
Then we have

Z = p(9)x2+pu(x, P)X°2+ po( )2+ (%, 9)x2°
+p3(%, ¥)2+px, )2+ R.

Since C'N S, ,(f) are only two points (0, +1, 0), we have

Pe(£1) = 0 and p,(y) 40 for y== x1. 13)
Now the mapping f is generic, therefore the expansion of /7
must contain the term of order 2. Hence we have p,(%1):1-0.

The equation 3) in Section 1 and 13) show that
By _1y%Pu(11)>0. (14)
dy dy

The condition 3) in Theorem 1 and 14) show that p,,(—1)p,,(+1)

>0.

Take a smooth function p7,(») such that p1,(¥)==0 and pii(¥)
=p,(y) for y near +1, and set

x = pil(y)xy pn(y) = P}1(}’) .
P11 ()

Then we have p,,(y)=1 for y near +1 and, dropping primes,
we have

Z = pu(9)xz2+pu(x, 9)x°2+ po( 9)2°+ Por(X, $)22°+ p3(%, 3)2°
+pi(x, »)2*+R’, ord, R =5.

Consider now a smooth function defined by
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B(y) = Pu(y)—1
( 2p.()
and set

¥=x2,y=y,2 =z+B(x.
We have, dropping primes,
X==x,Y=y,7Z=1xz+px, )2+p,x, 3)2°
+p.x, »)2*+R, ord, R =5,

with p,(0, ¥)=p.().
. Set

X=x,y=y,7 =z+pux, 7

where p,(x, ¥)=po(¥)+ pulx, ¥)x.
Then we have, dropping primes,

X==x,Y=y,Z=xz2+p,(9)2+p(%, 9)7
+p.%, 9)z*+R, ord, R=5.
Set

¥=x,y =y, 2 =z2+p,(x, 92

where ;a(x’ J’) = pso(y) + Psl(x» y)x-
Then we have, dropping primes,

X=2x,Y=y9,Z=xz2+p,(9)2"+ps(12
+p,(x, )2*+ R, ord, R=5.

Since the points (0, =1, 0) are the points of S, ,,(f), the argu-
ment in Section 1 follows that

Pao('—tl) =0. (15)

Hence we may define the following coordinate transformation

7
x=x,y=y,z2= 2 — PulY) 2
2p2(")

Then we have, dropping primes,
X=x,Y=y, Z=xz+p(x, 2*—v(x, »)z2'+R, ord, R=5.

The function p(x, y) satisfies the following conditions :
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p(0, ) = pu(y), PO, £1) =0,
p(0, ») 2= 0 for y = +1, 16)
%0, ~1)-22(0, +1)<C0.
oy oy
From the above properties of p, it follows that there exist
smooth functions @(x) and y+(x) satisfying the following conditions :

p(x, (x)) = 0, (0) = —1; p(x, ¥(x)) = 0, p(0) = 1.
Set

s= 2, 3= W) —pN( L) ro(x), 2= 7,

X=X,Y= (\P(X’)—¢(X’))(Z/2Jr—1)+¢(X’), Z=27.
Then we have
X=x,Y=y,2 =x2+p(,y)2"—v(x', y)2*+R’,
ord R'=5, with p’(x’, ) =p(x’, (\P(x’)—¢(x’))(y/—;’1)+¢(x’))-
The function p’ has the following properties
P, £1) =0, p'(0,5) = (0, 5).
We may now define a smooth function
(0, ¥)
We have o(x/, ') >0 for |x'|< ¢ and [y |<1+6.
Set

O‘(x/, y,) =

/ 1

x = "TNX, V=9, @ = e
Vo, )%, YV =Y NCeah
X =VeX, Y)X,Y =Y,Z =2.
We have

X=x,Y=y,Z==xz2+p0, »)2"—v"(x, »)2'+R, ord, R=5.

Take the expansion

X"”(x’ y) = ”(y)"")l(x’ J’)x:
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and set
¥=x,y=y,7=z-vx3z2.

Then we have, dropping primes,
X=x,Y=y9,Z=2xz+p(»)Z—»(z'+R, ord, R=5.

where p(y)=p(0, ) and »(y)=»"(0, ).
Since f is generic, we have v(x1)-=0. We may suppose that
v»(—1)>0. Then the condition 2) in Theorem 1 follows that

%(_1)<0 and p(y) <0 for |y|<1.

Therefore the condition 2) in Theorem 1 and 14) show that
v(+1)>0.

Now we may take a smooth function »'(y) >0 such that v'(y)=
v(y) for y near

Set
¥=t k. y=y, 2= W2,
VY (y)
1
X =-—=- X, V=Y,Z2=2.
VV(Y)

Then we have, dropping primes,
X=x,Y=y,27Z=uxz2+p(3)2—5(»)z'+R, ord, R =5.

It holds that 5(y)=1 for y near =+1.
Set
’ ’ s (B()—1) s
X=x,y=y,2=2+————=2".
2p(y)
Then we have, dropping primes,

X=x,Y=y,7Z= xz+p(y)zz+%:)lxza—z‘+]€, ord, R=5.
PLy

Again set
/_E(_y,)_ lx/zlz .

x=x',y=y,2=2 -
4(p(¥))

Then we have, dropping primes,

X=x,Y=y Z=xz+p(x 9)2—5(x,)z'+R, ord, R=5;
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p(x, ¥) has the same properties as in 16) and (0, y)=1 for |y|
<1+6.

Hence, by repeating the method in the preceding part, we
may represent f as follows:

X=x Y=y, Z=zxz+p(»)z*—2*+R, ord, R=5.
The following lemma is easily proved by Lemma 4.

Lemma 5. In the same conditions as in the theorem 1, we may
take, in a neighborhood U of C, a good 4-approximation f of f which
is represented by the following equations :

X=2x Y=y Z=2xz+py)z—2",

with smooth function p(y) satisfying p(£1)=0, %(—1)<0, Z_p<+1>
y Yy
>0, p(»)<0 for |y|<1.
Proof of Theorem 1. By Lemma 5 we may suppose that f

is represented as follows :

X=x, Y=y Z=zxz+p(p)*—2

where [y|<{1+£, |x|<C, |21<C&, p(+1)=0, 22 (~1)<0, %(H)
y
>0 and p(y)<0 for |y|<(1. -
El
Let ¢ >0 be a positive number such that VZ <&, Then we
may take a positive number &’ such that &’<’é and 2 Max

1+
p(y) <€
We may now take a smooth function »(y) which has the
following properties :

v() >0 for [y|<1+¢&”, »(y) =0 for [y|=1+¢€",
v(3) > —p(y) .

Put

2 g
7,(2) = gz‘—zz+§,

and take a smooth function 7(2) satisfying the following properties ;
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i %@=%@)mrhb§%V§}m@=0ﬂnld23§3

i) 5(2), T are monotone for 2—0\/8’ <|2!<"—‘
We may then take a positive number &” which has the
following properties. .
8/
1) If |x|>€&”, we have |x+2p(y)z—4z3|>—§—v(y)x/1—2 for

ly|<1+6, ]zlé\/

2) 8”’>2u(y)«/ﬁ for |y|<1+6.

& is sufficiently small if so is &. Hence we may suppose
that 26”’< €. For such &”, we may take a smooth function @(x)
satisfying the following properties :

p(x)=p(—x)=0, p(x)=1 for |x|<&”, p(x)=0 for |x|=3¢",

dap
and l |< E/// *
Now we may define a mapping f by the following equation :
X=12x Y=y Z=xz+p()2—2"—px)v(y)n(2).
Then we have f(x, y, 2)=f(x, y, 2) for |x|=3¢" or |y|=1+&"

8/
or |z|2\/2
Hence the mapping f is a good l-approximation of f. We

shall next consider the singularities of f In this case we may
/& _
suppose that |x|<<36"”, |y|<1+€" and ]zlg\z The set S,(f)

is represented by

F(x, 3, 2) = x+2p(y) 2— 42"+ p(x) V(y) (z) =0.

We have

d

Fo=1- 25 ? %

\”.

and u( ) 12<1

Hence the set S,(f) is a regular submanifold and the set
Si( f) is represented by

F(x,9,2) =0, G,y 2) = 2p(y)—122"—p(x)( v)—— =
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=

If |x|>¢€”, then we have F==0. If |z1;y/i—2, then we have

G<0 because of gz—z>0 and p(y)<—€2—. Therefore we may sup-
z

& , :
pose that |x]|<é&” and |z|<x/1—2. In this case, the set S, ,(f)

is represented by

20+ -4 (142 2 — 0,
(P(9) +2(3) — 6<1 +?“E(—y)) F£=0.

Hence, for a fixed y, S, ( 7) in U consists of only two points :

5 /& () +p(9)) &((3)+p()
(¥ 30 eeaEgeer > =N a@e) )
Moreover we consider G,(x, v, 2) for points of Sl,l(f_) in U.

Then we have G (x,), 2)=—24 <1+22(/v)> z because of |x|<&”

and Izl<\/—f—2. Hence we have G,(x,y, 2)=-0 for points of
S,«(f) in U. Since S, ,,(f) is represented by F=G=G,=0,
Sl,l,l(f)r\ U=42.

Lemma 6. Let C be a circle or a simple arc in S, ,(f). Suppose
that C contains no point of S, , (f). Then the mapping f is repre-
sented in a neighborhood of C as follows :

X=x Y=y Z=y2—2+R, ord, R=1,

where C is represented by y=2z=0, and x, X are real numbers mod
1 or real numbers in [0, 1] according as C is a circle or a simple
arc.

Proof. Consider a Riemannian metric tn M® Then we may
take a vector field {V,} on C such that each V, is the normal
vector of S,(f) at p. For each pe€C, consider the geodesic g,
whose tangent vector at p is V,. Let D, be the set of points ¢
of the geodesic g, such that the length of the geodesic between
p and ¢ is less than & and put sz\ejo D,. Then, for small &, D
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is homeomorphic to Cx I where I is a interval. Now the mapping
fID is a local homeomorphism. Let Ls,, denote the line segment
which is normal to f(D) at f(¢g). Then {M,=f"'(Lxs); g€ D}
is a family of smooth curves. Consequence, as in the proof of
Lemma 4, we may take paramenter systems (x, y, z) of U(C) and
(X, Y, Z) of f(UC)) in which f is represented by

X=x Y=y Z=~Wkxy2).

Expand /# with respect to z:
h(x, , 2) = afx, y)z#+R, ord, R=4.
i=0
Then, in the above choice of parameters, we have a,x, y)=0.
The set S,(f) is represented by
a,(x, ¥)+2ax, y)+3ax, y) 2+ R, = 0.

Since C is contained in S,(f), we have a,(x, y)=0. Hence we
may put a,(x, y)=a,(x, y)y. We havea,(x, 0)==0 since f is generic.

Set
¥=x,y=a,x,3y =2 X=X, Y=aXY)Y, Z=2.

Then we have, dropping primes,

X=ux Y=y Z=yz+talx, y)Z+a(x, y»)@+R.
Now S, ,(f) is represented by the following equations:
y+2a,(x, y)z2+3a,(x, »)Z+R, =0,
2a,(x, y)+6a,x, y)z2+R,.,=0.

Since C is contained in S, ,(f), we have a,(x,0)=0. Hence

we may put a,(x, y)=a,(x, ¥)Jy.
Set
¥ =x ¥y =y 2 =zta,(x,2".

Then we have, dropping primes,
X=x Y=y Z=yzt+ax,)2+R, ord, R=4.

Since f is generic, we have a,(x, 0)==0.
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Set
/: /=~_————y ,: —13/
X X, Yy 3a3(x’y), 4 a(x, y) z,
-Y
X=X, V=ouo—m——, Z=12Z.
Ya,(xY)

Then we have, dropping primes,
X=2x Y=y Z=yz—2+R, ord, R=4.
Then following lemma is easily obtained from the last lemma.

Lemma 7. Suppose that C is a circle or a simple arc in S, (f)
and that CNS,, (f)=2. Then the mapping f has, in a tubular
neighborhood of C, a good 3-approximation f represented by

X=x Y=y Z=y2—2".

Lemma 8. Let p be a point of S, (f)—S,..(f), then we may
take, in a neighborhood U of p, a good 2-approximation f of f such
that S,,l(f)f\U is a simple curve and contains two points q, ¢ of
S, 14( f). The indices of q and q are the same, and the positive
sides of q and q' are oposite with respect to Sl,l(f). It is possible
to take the indices of q and q' as positive or mnegative.

Proof. By the last lemma, we may suppose that f is repre-
sented in a neighborhood U as follows:
X=x Y=y Z=yz-2".
-1
2 ZS

Consider a function a(z)= o +22°—¢&%2 for sufficiently small

€>0. We may then take a smooth function B(z) satisfying :
) AE)=a() for |26,
i) B(z)=0 for |z|=¢,
i) B(2), B(2)= a are monotone f e<|z|=e.
dz one for j°=I%1=
Take a smooth function o(x) such that
o(x) = o(—x), 0=c(x)=1,
o(x) =1 for |x|§% o(x) = 0 for leg%.
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Consider now the mapping f represented by
X=2x Y=y Z=yz—2+ox)o(y)B(z+x).

Then we have o(x)a(v)B(z+x)=0 for (x,y, 2)¢ U where
U={(x,9 2); |x|<€, |y|<§&, |z|<2¢}. Therefore f is a good
2-approximation of f in the neighborhood U of y. Now we shall
consider the singularities of f in U. S f) is represented by the
following equation

F(x,9,2) = y—32+0(x)o(y)B(2+x) = 0.
Since |F'(z+x)|<¢&, we have |F(x,y, 2)|>0 for Iyi>%.

Hence we may suppose that | yl§% and the equation of S,(f) is

y— 32Z+o(x)B(z+2) = 0.

Thus the set S( f) is siotopic in U to S,(f). Consider S, ,( j_')
which is represented by the following equations:

y— 3F+o(x)B(z+x) =0,
—6z+0(x)B"(2+x) = 0.
Set Z=z+2x and g(x,2)=—6(2'—x)+o(x)B"(2).
c _
Case 1: %<x<7. We have £87(z)=0 for z'g—x/%e.

Hence we have g(x, 2/)>0. For—x/ %8<z’§0, we have g(x, 2/)

6 _
=—6(z’—x)+<r(x)< 8%02’3+122’>gzé—£1—()8>0. For V%sgz’,

we have g(x, 2/)<{0 because z’—x>0 and 8”(2)<0. For 0<2
< V %8, we have

g(x, 2) = 6(20(x)—1) z’—zae—(zx)z’3+6x.

It 20(x)—1<0, then g(x, ') is monotone decreasing, g(x, 0)~>0
and g(x)x/ §6<0.
If 20(x)—1>>0, then g(x, 2) >0 for 2= 20(x)—1

100(z) &
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Hence g(x, 2)=0 has only one solution for x>%.

&

&
Case 2: _§<.x<—Z' By the same argument in case 1,
&

we have that g(x, 2)=0 has only one solution for x<~—z.

Thus the setSu(f), for %< x|, is a simple curve.

Case 3: |x[<%. The set S, ,(f) is represented by

y=32-F(z+x),
—6z+8"(z+x)=0.
If |z+x|g%e, we have (z+x)z_>0. By the definition of 8,

we have 8”’(z+x)-(z2+x)< 0. Hence we have —6z+8"(z+x)==0.
If Iz+x[<19‘08’ the set S, ,(f) is represented by

y:3z2+§—2(z+x)"—6(z+x)2+62,
10
3z+6x—§(2+x)3 =0.

Hence the set S, ; (( f) is represented by the above equations
together with

1—18—(2)(:z+x)2 =0.

- . . 26 77
Thus S, ; , consists of two points {g, ¢ :{(i——:, &,
us S,,,,.(f) ists o points {g, ¢’} 3U10’ 60
5¢&
310
Expanding yz—2z'+B(x+2) at ¢ or ¢/, we have

+ )} This proves the first part.

Z' = a+o', )+ (Y + (@) 2 + (3" +p(x") 2+ bx'2"?

5 7 /4 4
— R =
+(:i:\/108+u(x ))z + R, ord,, R"=5,
with ordy =1, ord p=2, ord v=1.

Consequently we have :

1) The indicds of ¢ and ¢’ are the same.
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2) The positive side at ¢ is opposite to the positive side at
¢’ with respect to S, ,(f)
This proves the second part.

Consider mapping f given by
X=zx Y=y Z=yz-2+0(x)0(y)B(z—x).

Then the above argument shows that the singularities of f:

have the same properies as of f except that the indices of f: are
opposite to those of f. This proves the last part.

4. Topological consideration. We suppose that f:M°’— R®
is a generic decomposable mapping, and M?® is an orientable closed
smooth manifold. By definition there exist a locally homeomorphic
mapping 7 and a projection = of R* to R® such that #zi=f.

We may take a vector field {V,} on R‘ such that these vectors
are projected to the null vector by dz. Since ¢ is an immersion,
the differential of 7 is an into-isomorshism from the tangent space
of M? to that of R‘. Let p be a point of S,(f) then di(T,) con-
tains the vector V., where di is the differential of / and T, is
the tangent space of M® at p. Define now V,=(di)"*(Vi,), then
{V,} is a smooth vector field on S,(f) which is contained in the
null space N(p). This vector field is called the null vector field.

Lemma 9. Let f be a generic mapping. Then the connected
components of S,(f) are orientable closed 2-manifolds.

Proof. Since f is generic, S,(f) is a closed submsnifiold of
M®. Since the local degree of f can be defined at points of
M*—S,(f), it follows that the normal bundle of S,(f) is trivial.
Hence the lemma is proved.

Lemma 10. Let f be a generic mapping and D be a connected
component of S,(f). Then we may take, in a neighborhood U of D,
a good 2-approximation f of f such that the singularity S, (f)nU
is a connected set.

Proof. Let E,, .-, E; be the singularities S, ,(f) in D, and p
be a point of E,. We may take E; and a point g€ E; such that
the points p and ¢ are connected by a curve on D without touch-
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ing any other point of S, ,(f). By Lemma 8, we may take in
neighborhoods of p and ¢ a deformation f’ of f such that the
indices of the points of S, , ,(f’) near p and ¢ are different. Then,
by Theorem 1 there exists a deformation f”” of f’ in U(C) so that
E, and E; are connected in the singularities S,(f”). By making
such deformations successively, we obtain the lemma.

Remark. The decomposabllity of mapping is invariant under
deformations if their first partial derivatives are close enough.
The deformations in Section 3 are such deformations. Hence we
may suppose that if the mapping f in the last lemma is decom-
posable then so is f.

Lemma 11. Suppose that the mapping f is a generic decom-
posable mapping. Let D a connected component of S,(f). If S, .(f)
ND=E is a connected set then E divides D into two connected parts.

Proof. Let p be a point of E. Then we may suppose that
the singularities of f is represented in a neighborhood of p as
follows :

S(f):y—32=0, S, (fl:y=2=0.

If E does not divide D, we may take a simple closed curve
C in S,(f) so that C is the intersection of S,(f) and x=0 in a
neighborhood of p and so that C intersects with E at a single
point p. Take an orientation in C. Let T, be the tangent vector
of C at » and N, be the normal vector of C in the tangent plane
of S,(f) at ». If r is a point of S,(f)—S, .(f), then {7T,, N,, V}
is a non-degenerate frame.

& &
Take points p’=<0, g, «/§>, p"=<0, g, —/\/§> on C for small
€>0, and consider these frames at p’ and p”’. We may suppose

teat 171,:<—a—> , Vpuz(i) ,N,,/:<i> and Np//=<—a—> .

oz /s oz /s ox/y ox /s’
Since the y-component of 7,, and T, are opposite, the frames
{Ty, Ny, V,} and {T,s, Ny, V,} have opposite orientations.
This contradicts to the orientability of M?® This completes the
proof.
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Lemma 12. Suppose that the mapping f is a generic mapping.
Let p and q be points of S, , ,(f) which are contained in a connected
component of S, (f). Suppose that there is no point of S, .(f)
between p and q. Then the following two cases occur.

1) The positive sides at p and q are the same side with re-
spect to S, (f) in S\(f), and the indices of p and q are different.

2) The positive sides at p and q are opposite with respect to
S:..(f) in S|(f), and the indices of p and q are the same.

Proof. Let C be an open oriented subarc of S, ,(f) between
p and ¢. There exist coordinate systems at p and ¢ under which
f is represented in the form in the sence of Section 1. Take in
a tubular neighborhood of C a Riemannian metric which induces
Euclidean metric determined by the coordinate systems at p and
q. Let v(p), v(p) and v,(p) denote respectively the tangent vectors
of x-, y- and z-axis in the coordinate system at p. For ¢, use
the same notation.

Let s be a point of C. Let 7(s) denote the tangent vector of
S..(f) at s, N(s) the null space at s, and W(s) the normal vector
to S,(f). The orientation of W(s) is determined by the direction
from the negative side to the positive.

Let » be a point of C near p, and give N(») the orientation
determined by the diredtion of z-axis in the coordinate system at
p. Then the plane (W(r), N(r)) converges to the plane (v,(p),
v(p)) if 7 converges to p. Hence we can compare the orientation
of {W(r), N(»)} with that of {v,(p), v,(p)}. We divide two cases
according as the z-component of the coordinate of #» is negative
or positive.

Negative case: In this case, the directions of N(») and of
v,(p) are the same in S,(f) with respect to S, ,(f), and the orienta-
tions of {W(r), N(»)}, {v.(p), v,(p)} are opposite.

Positive case: In this case the directions of N(») and of v,(p)
are opposite in S,(f) with respect to S, ,(f) and the orientations
of {W(r), N(r)} and of {v.(p), v,(p)} are the same.

For » near p, N(r) is already oriented. These determine natur-
ally the orientation of N(s) for any s€ C. Then {{W(s), T(s),
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Negative Case Positive Case

N(s)}, s€C} is a continous family of non-degenerate frames. We
may suppose that the direction of z-axis in the coordinate system
at ¢ is the same to that of N(f) for a point ¢ near ¢. Compare
now the orientations of {v,(p), v.p), v, (p)} and of {v.(q), v.(g),
v,(9)}. It occurs two cases according as the directions of v,(p)
and v,(gq) are the same or not in S,(f) with respect to S, ,(f).

Case I (The directions are the same). In this case, if the
directions of v,(p) and of N(r) are the same with respect to S, ,(f)
then the directions of v,(¢) and of N(Z) are the same with respect
to S,.(f). Hence the above negative cases arises for (p,7) and
(¢, g). Therefore it follows that the orientations of {v,(p), v.p),
v(p)} and of {W(»), T(r), N(r)} are opposite, and that the orienta-
tions of {W(¢), T(¢), N(t)} and of {v.(q), v.(q), v,(2)} are the same.

If the directions of v,(p) and of N(») are opposite in S,(f)
with respect to S, ,(f), then the directions of v,(¢) and of N(¢) are
opposite in S,(f) with respect to S, ,(f). Thus the above positive
case arises for (p, 7) and (¢, q).

Hence we have that the orientations of {v,(p), v,(p), v,(p)} and
of {W(r), T(r), N(r)} are the same, and that the orientations of
{W(@), T(t), N@#)} and of {v,(q), v.(q), v,(q¢)} are opposite.

As a consequence of the argument above it follows that the
indices of p and of ¢ are different.

Case II (The directions are opposite). In this case, the similar
consideration shows that the indices of p and of ¢ are the same.

Corollary. Let f be a generic mapping of M® tn R®, where M®



452 Yoshihiro Saito

is an orientable closed smooth manifold. Let C denote a connected
component of S, ,(f). Then the number of points of S, ,,(f) in C
is even.

Theorem 2. Let M® be an orientable closed smooth 3-manifold
and f be a mapping of M® to R®. Suppose that f is a generic
decomposable mapping. Then we may take a good 2-approximation
f of f so that Sl,lyl(f) is empty and S, 1(]7) are boundaries of domains

of Si(f).

Proof. By Lemma 10, we may suppose that the part E of
S, .(f) which is contained in a connected component D of S,(f) is
connected. Thus, by Lemma 11, E divides D into two domains.
Now let p and ¢ be points of S, ,,(f)NE between which there is
no point of S, ,,(f).

Case 1 (The indices of p and q are different). In this case,
the positive sides at p and at ¢ are the same side with respect to
" E. Now we may consider the curve C running from p to ¢ whose
interior is contained in D—FE and which starts from p into the
negative side and which ends to ¢ from the negative side. Then,
by Theorem 1, we may eliminate p and ¢ from S, , ,.

Case 2 (The indices of p and q are the same). In this case,
the positive sides at p and at ¢ are opposite side with respect to
E. Let » be a point of E between p and ¢. By Lemma 8, we
may take in a small neighborhood of » a good 2-approximation f’
of f so that there exist, between p and ¢, two new point 7’ and
r” of S, ,,(f’) whose indices are different from those of p and gq.
Then applying the same method as in case 1 to (p, #’) and (g, 7),
it follows that we may eliminate p and ¢ from S, , ;.

The above argument shows that there exists an approximation
f of f such that S, , ,(f) is empty.

It is easily shown that each connected component of S, ( f)
is the boundary of a 2-disk or of a domain in S,(f).

Lemma 13. Let E’ be a smooth circle in M*—S,(f), and sup-
pose that E’ is the boundary of an orientable smooth 2-manifold D’
in M°—S,(f). Then we may take in a neighborhood U(D’) of D’ a
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good O-approximation f' of f so that the mapping f' is a genmeric
mapping and S, ,(f)NUD")=E’ and S, , (f)NnUD")=£.

Proof. For a given D’, there exist sets D,, D, such that D,&
D'<D,, D,nS,(f)=% and D,— D, is diffeomorphic to E’x[—1,1].
Then we may take a neighborhood U(D’) of D’ which is diffeo-
morphic to D,x[—1, 1] and which is contained in M*®—S,(f).

Take a smooth function p(x, ¢) having the following properties :

1) p(x, 0)=ux, for |x|<1,

2) gﬁ(x, £)>0 for O§t<%, p(x, H)=x for 12|x|;%,
X

3) p(x, £)=(dt—1)x’+(— 2t +1)x, for %gtgL |x|g%,

p(x, t)=x for %gtél, 1;|xl;%,

op N 1 1

L(x, t) >0 for =<t<1, 1= =

ax(x )=>0 for g =t= _Ix|>3

We may take a smooth function »(p) on D, such that
v(p) =0 for peD,, v(p) =1 for peD,,
v(p) = % if and only if pe E’,
v(p) = 0 for pe€oD,.

Then we have a smooth mapping # of U(D’) to U(D’) defined
by

h(ﬁ» x) = (17» P(x) ”(17)))

where peD,, xe[—1, 1].

Since the mapping # is the identity on the boundary of U(D’),
h has an extension #’: M®— M® so that #’'| M®— U(D’)=the identity.

It is now easily shown that the mapping f’=f#’ satisfies the
conditions of the lemma.

Theorem 3. Let M® be an orientable closed smooth manifold,
and f be a generic decomposable mapping of M® to R*. Then we
may take a good O-approximation f of f so that S, .(f)=+©.

Proof. By Theorem 2, we may suppose that S, , ,(f) is empty
and any circle of S, ,(f) is the boundary of a domain of S,(f).
Denote by E one of the components of S, ,(f). By Lemma 7, we
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may take a coordinate system (x, y, 2) in a neighborhood of E and
the parameter system (X, Y, Z) in R® so that a good 3-approxima-
tion f/ of f is represented by

X=x Y=p9 Z=yz2—2".

Let E’ be the set of points (x, —&, 0) where € >0 is suffici-
ently small. Then E’ satisfies the conditions of Lemma 13, and
hence we may take a good O-approximation f”” of f/ which is repre-
sented by the following equations in a tubular neighborhood of E:

X=% Q=3 Z=pz-2,
where p(») is a smooth function which has the following conditions :

p(y) =0 for y=0, =€,
p(») <0 for 0<Ty<E,

dp dp
d_j(O) <0, d—y(e) >0.

Applying Lemma 1 to each section: x=constant, we obtain a
good O-approximation f” of f’ so that E is eliminated from the
singularities S, ,. By this methods we may obtain a good 0-ap-
proximation f which satisfies the condition in the theorem.

Theorem 4. Let M” be an orientable closed smooth n-manifold
and f be a mapping of M” to R*. Suppose that the singularities
of f satisfy the following conditions :

S;(f)=g (1_22), Sl,l(f):g'
Then the mapping f is decomposable mapping.

Proof. By the condition S;(f)=9(G=2), S,(f) is an (n—1)-
dimensional smooth submanifold of M”. Since S, ,(f)=4, it follows
that £|S,(f) is a local homeomorphism. The null space N(p) is
transversal to S,(f) because of S, ,(f)=. Since M" is orientable,
we may define the local degree of f at points of M*—S,(f). Hence
the normal bundle of S,(f) is trivial, and we may take an orien-
tation in N(p) so that {N(p); p€S,(f)} is a transversal vector
field. Denote by L, the geodesic segment whose tangent vector
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at p is N(p) Then U= \/J L, is a neighborhood of S,(f). Now

PESCH
we may take a smooth function g(g) on U such that the derivative

of g(g) with respect to the vector N(p) is not zero. For example,
we may take as g(g) the length of L, from p to ¢g. Then the
function g(g) can be extended to a smooth function g on M™
Denote /(p)=(f(p), &(p)), then & is a smooth mapping of M” to
R”*' which is a local homeomorphism.

Thus the theorem is proved.
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